STORMWATER IMPACT ANALYSIS

ROLESVILLE CROSSING ROLESVILLE, NORTH CAROLINA

SEPTEMBER 15, 2021

PREPARED FOR:

Hopper Communities, Inc. 1616 Cleveland Ave Charlotte, NC 28203 (919) 618-9929

PREPARED BY:

Timmons Group, NC License No. C-1652 Patrick Barbeau, PE 5410 Trinity Road, Suite 102 Raleigh, North Carolina 27607 (919) 866-4512 | patrick.barbeau@timmons.com <u>www.timmons.com</u>

Table of Contents

Stormwater Narrative	1	
Project Background	1	
Proposed Project Description	1	
Proposed Stormwater Management	1	
Nitrogen Loading Summary	3	
Stormwater Control Measure Analysis	5	
SCM Design Calculations	5	
Wake County Municipal Tool		5
Hydraflow Model		
Maps	6	
NOAA Rainfall Data	6	
USGS Map	6	
FEMA FIRM Maps		
NRCS Soil Survey Map	6	
Pre/Post Development Drainage Area Maps	6	

Stormwater Narrative

Project Background

The Wheeler Tract project is located at 1801 Rolesville Road in Rolesville, Wake County, North Carolina. The property identification numbers (PINs) are 1767-48-3143 and 1767-58-6083. The site consists of approximately 91.39 acres and is mostly grass, pasture, and woods. The predominant existing soils are Rawlings-Rion complex "RgB/RgC/RgD", Helena sandy loam "HeB", and "Wedowee-Saw complex "WfB", in the Hydrologic Soils Groups "C" and "D." Most of the site drains northeast toward Buffalo Creek in the Neuse River basin. A smaller portion of the site drains toward Harris Creek in the Neuse River Basin. The surface water classification is C;NSW. FIRM Panel 3720176600J indicates the site does contain special flood hazard areas.

Proposed Project Description

This project proposes a mixed residential development consisting of 177 single family lots and 120 townhome lots. A clubhouse, mail kiosk, parking facilities, paved greenway, and five stormwater control measures are also proposed.

There is approximately 0.19 AC of existing impervious cover within the property boundary. The proposed improvements will result in a post-developed impervious cover of 31.40 AC, which represents a net increase of 31.21 AC. Each proposed townhome lot has been allotted 1,500 SF of impervious area. Each proposed single-family lot has been allotted 3,600 SF of impervious area.

Two (2) wet ponds and three (3) extended detention dry ponds are proposed to meet post-developed peak flow requirements. The nutrient loading calculations included in this report show that a nitrogen buy-down is required.

Proposed Stormwater Management

This project shall meet Wake County stormwater requirements in accordance with the County Stormwater Ordinance.

Stormwater Quality Requirements:

Within the Neuse River basin, a nitrogen loading limit of 3.6 lb/ac/yr is imposed on new development. Nitrogen load from new developments that exceeds this limit may be offset with a buy-down payment, provided that no new single family residential development exceeds 6.0 lb/ac/yr and that no townhome, multi-family or commercial development exceeds 10.0 lbs/ac/yr.

Two Wake County Municipal Stormwater Tools have been included to model the Development's nitrogen loading rates. The single-family portion of the project is modeled in one tool. The townhome portion of the project is modeled in a separate tool. Refer to the Municipal Tools, which indicates that the post-development nitrogen loading rates are less than 6 lbs/ac/yr and 10 lbs/ac/yr, respectively. An offset payment will be made in order to comply with nutrient reduction requirements.

Stormwater Peak Flow Requirements:

Post-developed peak flows cannot exceed pre-developed peak flows during the 1-year, 24-hour storm.

One wet pond and four extended detention dry ponds are proposed to meet this requirement. They are designed in accordance with the NCDEQ Stormwater Design Manual, latest version.

Seasonal High Water Table:

The seasonal high water table ("SHWT") report will be provided with a future submittal. Per DEQ manual, there is a required separation of six inches between the bottom of a dry pond and the SHWT. Per DEQ manual, there is no SHWT requirement for wet ponds.

Methodology for Stormwater Modeling:

A pre-development and post-development hydrologic analysis was completed for the site using the SCS TR 20 method. A hydraulic analysis was completed using Hydraflow modeling software to route these storm events through the proposed detention and outlet structures.

Hydrology:

The SCS TR20 method was used to determine the peak discharge rates for pre-development and postdevelopment conditions, develop runoff hydrographs and size the detention storage for the SCM. Rainfall data used in the design was taken from published NOAA data for the Town of Rolesville (see Stormwater Control Measure Analysis). SCS Runoff curve numbers were based on Table 2-2 in the TR55 manual (see Wake County Hybrid Tool for curve number calculations). The Time of Concentration (Tc) values were determined using the TR55 method for sheet, shallow and concentrated flows, with a minimum Tc of 5 minutes.

Hydraulics:

Computer simulated reservoir routing using Hydraflow modeling software was completed for the 1-year, 10year, and 100-year storm events utilizing stage-storage and stage-discharge functions. Stage-storage was determined using the proposed grading contours of the detention ponds. Stage-discharge functions were developed using the proposed outlet structures. The outlet structures were designed to attenuate the postdevelopment discharge rates for the 1- and 10-year storm events equal to or less than pre-development levels.

Pre- & Post-Development Runoff Summary:

Analysis Point 1:

	S	TORM EVENT (CF	S)
SITE CONDITION	1-YR	10-YR	100-YR
PRE-DEVELOPMENT	97.36	258.16	459.85
POST-DEVELOPMENT	57.63	312.50	546.69

Analysis Point 2:

	S	TORM EVENT (CF	S)
SITE CONDITION	1-YR	10-YR	100-YR
PRE-DEVELOPMENT	7.22	19.07	33.80
POST-DEVELOPMENT	2.94	7.15	12.25

Analysis Point 3:

	S	TORM EVENT (CF	S)
SITE CONDITION	1-YR	10-YR	100-YR
PRE-DEVELOPMENT	8.08	21.04	37.13
POST-DEVELOPMENT	2.95	6.87	11.52

See Hydraflow Detention Routing Calculations Section for detailed calculations.

Nitrogen Loading Summary

Methodology:

The nutrient loading calculation was performed using the Wake County Municipal Stormwater Tool ("MST"). Two separate tools were used to separate the nutrient loading of the single-family areas and the townhome area. We utilized the townhome post-development drainage area for the pre-development drainage area in order to provide a comparison.

Single-Family Portion

The single-family portion of the development was modeled using the MST. Project data including land cover characteristics and SCM characteristics were entered into the MST. The post-developed TN export summary is as follows (See Single-Family MST for detailed information):

Impervious Area Summary

Total Proposed Impervious Cover =	25.21 AC
Existing Impervious Cover =	0.19 AC
New Impervious Cover =	25.02 AC

Nitrogen Export Summary

Pre-Development Nitrogen Loading Rate =	1.25 lbs/ac/yr
Post-Development Nitrogen Loading Rate (without treatment) =	7.26 lbs/ac/yr
Post-Development Nitrogen Loading Rate (after treatment) =	5.92 lbs/ac/yr

The computed export for the single-family portion of the project is less than 6 lbs/ac/yr. An offset payment will be made to comply with nutrient reduction requirements.

Townhome Portion

The townhome portion of the development was modeled using the MST. Project data including land cover characteristics and SCM characteristics were entered into the MST. The post-developed TN export summary is

as follows (See Townhome MST for detailed information):

Impervious Area Summary

Total Proposed Impervious Cover =	6.65 AC
Existing Impervious Cover =	0.00 AC
New Impervious Cover =	6.65 AC

Nitrogen Export Summary

Pre-Development Nitrogen Loading Rate =	1.20 lbs/ac/yr
Post-Development Nitrogen Loading Rate (without treatment) =	11.01 lbs/ac/yr
Post-Development Nitrogen Loading Rate (after treatment) =	9.91 lbs/ac/yr

The computed export for the townhome portion of the project is less than 10 lbs/ac/yr. An offset payment will be made to comply with nutrient reduction requirements.

Stormwater Control Measure Analysis

SCM Design Calculations

Wake County Municipal Tool

Hydraflow Model

TIMMONS GROUP

YOUR VISION ACHIEVED THROUGH OURS.

Project: Wheeler Tract Calculated By: R. Wingate/P. Barbeau Project No.: Date:

43398 7/12/2021

> 85% 30% 30%

SCM 1

Wet Pond Design Calculations

Pollutant / Nutrient Removal (Per NCDEQ SCM Credit Documents v2017-08-07)

Total Suspended Solids (TSS)
Nitrogen

Phosphorus

		Basin Characteristics			
Post-Development	Drainage Area	E	stimated Impervio	us	
Area to F	ond	Lots			
Description	Acres	Description	Area (ft)	% Impervious	Total Area (ac)
Impervious Lots	6.90	Lots	244,600.00	100%	5.62
Impervious R/W	3.79	Parking Lot/Club House	56,000.00	100%	1.29
Managed Pervious	14.58				
Offsite Pervious					
		Subtotal			6.90
			Streets and SW		
		Description	Area (ft)	% Impervious	Total Area
		Rights-of-Way	165,284.80	100%	3.79
		Subtotal			3.79
			Other		
Total to Pond	25.28				
Pond Basin CN	88	Grand Total	•		10.70

Surface Area to Drainage Area Ratio for Permanent Pool Sizing

Dr	ainage Area to S	SCM				
Impervio	ous Area	Acres	Requi	red Surface Area of M	lain Pool	
Offsite Imperviou	s Area	0.00				
Onsite Imperviou	s Area	10.70	Average Depth (ft) =	verage Depth (ft) =		
Total Impervious	Area	10.70	SA/DA Ratio =	SA/DA Ratio =		
			Required SA (ft2) =	Required SA (ft2) =		
Total Drainage A	rea To SCM	25.28	SA as Shown (ft2) =	SA as Shown (ft2) =		
Percent Impervio	t Impervious Area 42%		SA/DA Ratio from latest NCDEQ Stormwater Design Mar			ual
	SA / D	A Pond Volun	nes and Areas (Below Per	manent / Normal	Pool)	
		E h .	D th	NA. 1		Tatal
Elevation	Main	Forebay	Depth	Main	Forebay	Total
Elevation (ft)	Main Area (sf)	Forebay Area (sf)	Depth (ft)	Main Inc. Vol (cf)	Forebay Inc. Vol (cf)	Total Vol (cf)
				Inc. Vol (cf)		Vol (cf)

366.0	16,575	2,925	1.0	15,895	2,805	18,700
367.0	17,935	3,165	2.0	17,255	3,045	20,300
368.0	19,295	3,405	3.0	18,615	3,285	42,200
369.0	20,740	3,660	4.0	20,018	3,533	65,750
Total			4.0	71,783	12,668	84,450
Ver	ify the Forebay \	/olume Is Approxima	ntely (15% - 20%) of the P	ermanent Pool Volun	ne.	18%
	Water Q	uality and Quanti	ty Volumes (Above F	Permanent / Norm	al Pool)	
Elevation	Main	Forebay	Depth	Inc Total	Accu	m' Total
(ft)	Area (sf)	Area (sf)	(ft)	Vol (cf)		ol (cf)
369.0	20,740	3,660	0.00	Permanent Po		Notes
370.0	29,600	-	1.00	25,170	25,170	
371.0	32300	-	2.00	30,950	56,120	
371.5	33,650	-	2.50 3.00	16,488	72,608	WQE / TF
372.0 373.0	35,000 37,850	_	4.00	33,650 53,625	89,770 126,233	
373.0	40,700		5.00	39,275	126,233	
374.0	40,700 43,650	-	6.00	42,175	207,683	
376.0	46,600	-	7.00	45,125	252,808	BERM
010.0	-70,000	-	7.00		202,000	
		Vorify the Aver	ago Donth of Deal (D	Equation 2		
	d = [Vperm pool -		age Depth of Pool (D		lf] / Abottom of shelt	:
	Vperm =			83 C.F. (Main Pond)		
	A _{bottom shelf} =			40 S.F. (Main Pond)		
Depth of	Water over shelf =			00 FT		
	rimeter perm pool =		0.	0 L.F. (Main Pond)		
				0 E.F. (Main Fond)		
	merged part of shelf =					
-	D _{avg} =			46 FT		
De	epth for SA/DA =			00 FT (Round D _{av} dow	n to nearest 0.5 ft	
			uality Runoff Volume			
	Using the runc		ns in the "Simple Metho	,	Schueler (1987)	
			v = Runoff Coefficient, i			
	I = Percent Impe			l= 42.39		
	Rv = 0.05 + 0.00	()	Rv	/ = 0.43	1	
		olume (Required)				
		S=(Design rainfall) (Rv	/	l 0 inch		
	Design Rainfall =			I.0 inch 28 acres		
Ct-	Drainage Area = rage Required =			28 acres 30 cu. ft.		
510	• •		39,50 Runoff Above Perr		vided)	
Depth	PPE SA (SF)		Top Temp Pool SA (SF)		Volume (CF)	Elevatio
2.00	20,740		33,650		39,530	371.00
			for (2-5) Day Drawdo	own for 1" Runof	f Volume	
	$Q_{1"} = CdA(2gh)^{1/2}$	2 (0	rifice Equation; Cd=0.60)			
	4.00	Or	fice Diameter (inches)			
	0.61		iving Head to Centroid of (Orfice (ft)		
	0.19		1.0" Drawdown Rate (cfs)			
	39,530		ater Quality Volume (V _{wQ})			
		a)				
N	/ _{wq} /(Q1" x 86,400		awdown Time (days)			
N		Dr	awdown Time (days) awdown Time (days) (2 - / Riser Data & Elevat			

TSS Removal	85%	
Top of Pond / Berm	376.00 ft	
Secondary Spillway Width	40.00 ft	
Bottom of Secondary Spillway	375.00 ft	
Top of Riser	372.00 ft	(at least 1' Above TPE)
Riser Type / Size	4X4 ft	
Top of Water Quality / Temp Pool Elev	371.50 ft	(1" Runoff)
Top of Veg. Shelf	370.00 ft	
Permanent Pool Elevation (Normal Pool)	369.00 ft	
Water Quality Orifice Elevation & Size	369.00 ft	4.00 in
Secondary Orifice Elevation & Size	ft	in
Bottom of Veg. Shelf	369.00 ft	
Top of Sediment Storage / Pond Bottom	365.00 ft	
Bottom of Sediment Storage	364.00 ft	(Min 1 ft)
Invert Out of Riser	369.00 ft	
Outlet Pipe Size	36.00 in	Diameter RCP
Outlet Pipe Length & Slope	60.00 ft	0.60 %
Downstream Outlet Elevation	368.60 ft	
1 Yr Water Surface Elev / Peak Flow (CFS)	370.97 ft	4.45 CFS
2 Yr Water Surface Elev Peak Flow (CFS)	371.42 ft	9.60 CFS
10 Yr Water Surface Elev Peak Flow (CFS)	372.89 ft	16.94 CFS
100 Yr Water Surface Elev Peak Flow (CFS)	374.88 ft	39.94 CFS

DRY POND NAME		
Dry Pond #2		

CALCULATED BY A. Blye

TIMMONS GROUP

PROJECT NAME Wheeler Tract PROJECT NUMBER 43398

DRY POND CALCULATIONS

DRY POND NAME:	Y POND NAME: Dry Pond #2			
			_	
SITE INFORMATION				
Drainage Area (A) =	7.95	Acres		
Impervious Area =	3.19	Acres		
Percent Impervious =	40.13	%		
REQUIRED WATER QUALITY VOLUME				$WQ_v = (P$

Design Storm (P) = 1.00 inch Rv Value (Rv) 0.41 0.41 Drainage Area (A) = 7.95 Acres Water Quality Volume = 0.27 Ac-ft

····	-	
Required Water Quality Volume =	11865	Cu-ft
25% Add. Volume for Sed. Storage	14831	Cu-ft
Forebay Required?	FOREBAY N	OT REQ.

PROVIDED WATER QUALITY VOLUME

Elevation	Contour Area (sf)	Depth (ft)	Incremental Volume (cf)	Cumulative Volume (cf)	Elevation Notes
381.27	0	0.00	0	0	(Bottom Elevation / Water Quality Drawdown Orifice)
382.00	11,815	0.73	4,312	4,312	
383.00	13,703	1.73	12,759	17,071	Secondary Weir Elev. (At or Above Temp Pool Elev.)
384.00	15,661	2.73	14,682	31,753	
385.00	17,685	3.73	16,673	48,426	(Emergency Spillway Crest Elevation)
386.00	19,774	4.73	18,730	67,156	(Top of Embankment Elevation)

Required Water Quality Volume =	14831	Cu-ft		_
Provided Water Quality Volume =	17071	Cu-ft	OK	
Design Volume Ponding Depth =	2.73	ft		

(Required Storage Volume for Water Quality) (Cumulative Volume between Temporary Pool & Bottom Elevation) (Distance from water quality drawdown orifice to the Temporary Pool Elev)

Size Water Quality Orifice for (2-5) Day Drawdown for 1" Runoff Volume					
Orifice Diameter	1.50	inches		Water Quality Orifice to Drain Temporary Pool	
Driving Head to Centroid of Orifice	0.89	ft		Driving Head (h/3) Distance to Centroid of Orifice	
Q1.0" Drawdown Rate	0.06	cfs		Q1" = CdA(2gh)1/2	
Provided Water Quality Volume	17071	Cu-ft		(Orifice Equation; Cd=0.60 & h=h/3; Pg 3-13 BMP Manual)	
Drawdown Time	3.55	Days	ОК	Drawdown Time = Provided Water Quality Volume / (Q1" x 86,400)	

DRY BASIN ELEVATIONS

Seasonal High Water Elevation	NA	ft
Small Permanent Pool Bottom Elevation	379.27	ft
Bottom / Drawdown Outlet Elevation	381.27	ft
Temporary Pool / Control Weir Elevation	383.00	ft
Top of Control Structure Elevation	383.00	ft
Emergency Spillway Elevation	385.00	ft
Top of Pond / Embankement Elevation	386.00	ft
1-Yr Storm Stage	383.34	ft
10-Yr Storm Stage	384.59	ft
25-Yr Storm Stage	384.99	ft
100-Yr Storm Stage	385.37	ft

NOTES & FORMULAS

(Drainage Area to Dry Pond - Including Dry Pond)

$WQ_v =$	(P)(R _v)(A)
	12
where:	2000
WQv	= water quality volume in ac-ft
P	= 1 inch of rainfall
R _v	= 0.05 + 0.009(I), where I= the percent impervious cover
A	= drainage area in acres

(Required Storage Volume for Water Quality)

(Minimum Volume Required at Bottom of Proposed Control Weir Spillway) (If Min. Volume Required is greater than 20,000 Cu-ft: Forebay is Required) DRY POND NAME
Dry Pond #3

CALCULATED BY

R. Wingate

TIMMONS GROUP

PROJECT NAME Wheeler Tract PROJECT NUMBER 43398

DRY POND CALCULATIONS

DRY POND NAME:	Dry Po	nd #3
SITE INFORMATION		
	42.40	Acres
Drainage Area (A) =	13.16	/ 10/ 00
Impervious Area =	6.65	Acres
Percent Impervious =	50.53	%
REQUIRED WATER QUALITY VOLUME		
Design Storm (P) =	1.00	inch
Rv Value (Rv)	0.50	
Drainage Area (A) =	13.16	Acres
Water Quality Volume =	0.55	Ac-ft
Required Water Quality Volume =	24114	Cu-ft
15% Add. Volume for Sed. Storage	27731	Cu-ft
Forebay Required?	FOREBAY R	EQUIRED

NOTES & FORMULAS

(Drainage Area to Dry Pond - Including Dry Pond)

WQ _v =	$(P)(R_v)(A)$
	12
where:	
WQv	= water quality volume in ac-ft
Р	= 1 inch of rainfall
R,	= 0.05 + 0.009(I), where I= the percent impervious cover
A	= drainage area in acres

(Required Storage Volume for Water Quality)

(Minimum Volume Required at Bottom of Proposed Control Weir Spillway) (If Min. Volume Required is greater than 20,000 Cu-ft: Forebay is Required)

PROVIDED WATER QUALITY VOLUME

Elevation	Contour Area (sf)	Depth (ft)	Incremental Volume (cf)	Cumulative Volume (cf)	Elevation Notes
339.91	0	0.00	0	0	(Bottom Elevation / Water Quality Drawdown Orifice)
340.00	20	0.09	1	1	
341.00	1,210	1.09	615	616	
342.00	1,792	2.09	1,501	2,117	
343.00	2,491	3.09	2,142	4,258	
344.00	3,287	4.09	2,889	7,147	
345.00	4174	5.09	3,731	10,878	
346.00	5150	6.09	4,662	15,540	
347.00	6214	7.09	5,682	21,222	
348.00	7366	8.09	6,790	28,012	
349.00	8607	9.09	7,987	35,998	Secondary Weir Elev. (At Temp Pool Elev.)
350.00	9936	10.09	9,272	45,270	(Emergency Spillway Crest Elevation)
351.00	11340.00	11.09	10,638	55,908	(Top of Embankment Elevation)

Required Water Quality Volume =	27731	Cu-ft		(Required Storage Volume
Provided Water Quality Volume =	35998	Cu-ft	OK	(Cumulative Volume between Tempor
Design Volume Ponding Depth =	9.09	ft		(Distance from water quality drawdown ori

(Required Storage Volume for Water Quality) (Cumulative Volume between Temporary Pool & Bottom Elevation) (Distance from water quality drawdown orifice to the Temporary Pool Elev)

Size Water Quality Orifice for (2-5) Day Drawdown for 1" Runoff Volume							
Orifice Diameter	2.00	inches		Water Quality Orifice to Drain Temporary Pool			
Driving Head to Centroid of Orifice	3.00	ft		Driving Head (h/3) Distance to Centroid of Orifice			
Q1.0" Drawdown Rate	0.18	cfs		Q1'' = CdA(2gh)1/2			
Provided Water Quality Volume	35998	Cu-ft		(Orifice Equation; Cd=0.60 & h=h/3; Pg 3-13 BMP Manual)			
Drawdown Time	2.29	Days	ОК	Drawdown Time = Provided Water Quality Volume / (Q1" x 86,400)			

DRY BASIN ELEVATIONS

Seasonal High Water Elevation	NA	ft
Small Permanent Pool Bottom Elevation	337.91	ft
Bottom / Drawdown Outlet Elevation	339.91	ft
Temporary Pool / Control Weir Elevation	349.00	ft
Top of Control Structure Elevation	349.00	ft
Emergency Spillway Elevation	350.00	ft
Top of Pond / Embankement Elevation	351.00	ft
1-Yr Storm Stage	349.44	ft
10-Yr Storm Stage	350.32	ft
25-Yr Storm Stage	350.46	ft
100-Yr Storm Stage	350.73	ft

TIMMONS GROUP

YOUR VISION ACHIEVED THROUGH OURS.

Project: Wheeler Tract Calculated By: R. Wingate/P. Barbeau Project No.: Date: 43398 7/12/2021

SCM 4

Wet Pond Design Calculations

Pollutant / Nutrient Removal (Per NCDEQ SCM Credit Documents v2017-08-07)

Total Suspended Solids (TSS)	85%
Nitrogen	30%
Phosphorus	30%

		Basin Characteristics	5						
Post-Development Drai	nage Area	Estimated Impervious							
Area to Pond			Lots						
Description	Acres	Description	Area (ft)	% Impervious	Total Area (ac)				
Impervious Lots	3.42	Lots	149,100.00	100%	3.42				
Impervious R/W	1.94								
Managed Pervious	11.69								
Offsite Pervious									
		Subtotal			3.42				
			Streets and SW						
		Description	Area (ft)	% Impervious	Total Area				
		Rights-of-Way	84,500.00	100%	1.94				
		Subtotal			1.94				
			Other						
Total to Pond	17.05								
Pond Basin CN	86	Grand Total			5.36				

Surface Area to Drainage Area Ratio for Permanent Pool Sizing

Drainage Area to SCM		СМ						
Impervious	s Area	Acres	Required Surface Area of Main Pool					
Offsite Impervious	Area	0.00						
Onsite Impervious	Area	5.36	Average Depth (ft) =	4.0				
Total Impervious Ar	rea	5.36	SA/DA Ratio =	0.97				
			Required SA (ft2) =					
Total Drainage Area	a To SCM	17.05	SA as Shown (ft2) =					
Percent Impervious Area 31%		31%	SA/DA Ratio from latest NCDEQ Stormwater Design Manual					

Elevation	Main	Forebay	Depth	Main	Forebay	Total
(ft)	Area (sf)	Area (sf)	(ft)	Inc. Vol (cf)	Inc. Vol (cf)	Vol (cf)
362.0				Bottom of	of Sediment Stor	age
363.0	3,910	690	0.0	Top of	Sediment Storag	ge

204.0	4 505	705	1.0	1 200	740	4.050			
364.0 365.0	4,505	795	1.0	4,208	743 848	4,950			
365.0	5,100 5,780	900	2.0 3.0	5,440	960	5,650			
		1,020				12,050			
367.0	6,375	1,125	4.0	6,078	1,073	19,200			
368.0	7,140	1,260	5.0	6,758	1,193	27,150			
369.0	7,820	1,380	6.0	7,480	1,320	35,950			
Total			6.0	34,765	6,135	40.900			
	rify the Forebay	Volume Is Approx	imately (15% - 20%) of the Pe			18%			
	-					1076			
			ntity Volumes (Above P			m! Total			
Elevation (ft)	Main Area (sf)	Forebay Area (sf)	Depth (ft)	Inc Total Vol (cf)		m' Total ol (cf)			
369.0	7,820	1,380	0.00	Permanent Poo		Notes			
370.0	11,900	-	1.00	9,860	9,860	110100			
371.0	13350	-	2.00	12,625	22,485	WQE / TF			
372.0	14,900	-	3.00	14,125	36,610				
373.0	16,400	1	4.00	29,750	52,235	SPILLWAY			
374.0	18,000	1	5.00	32,900	69,510	BERM			
011.0	10,000		0.00	02,000	00,010	DEI WI			
		_							
		Verify the As	Prove Donth of Dool (D						
			verage Depth of Pool (D _a	5	_				
	d _{avg} = [Vperm pool	- [0.5 x Depth max ov	ver shelf x Perimeter perm pool x W	/idth submerged part of shelf] / Abottom of shel	f			
	Vperm =	:	34,76	5 C.F. (Main Pond)					
	A _{bottom shelf} =		7,82	0 S.F. (Main Pond)					
Depth o	f Water over shelf =			FT					
•	rimeter perm pool :		L.F. (Main Pond)						
				· · · · · ·					
VVIATA su	bmerged part of shelf =			FT					
	D _{avg} =		4.4	5 FT					
D	epth for SA/DA =	:	4.0	FT (Round D _{av} down	to nearest 0.5 f	t)			
		1.0" Wate	^r Quality Runoff Volume	Calculation					
	Using the run		ations in the "Simple Method		chueler (1987)			
	oonig alo lan		Rv = Runoff Coefficient, in			/			
	I = Percent Impe		,	= 31.5%					
	Rv = 0.05 + 0.00		Rv						
		olume (Required)	1.00	0.000					
		, , ,	(Rv) (Drainage Area)						
	Design Rainfall =	· · · /		0 inch					
	Drainage Area =			5 acres					
Ste	prage Required =			5 cu. ft.					
			1.0" Runoff Above Pern		ided)				
Denth									
Depth	PPE SA (SF)	Top Temp Pool SA (SF)		Volume (CF)				
2.00	7,140		14,900		20,615	371.00			
			ce for (2-5) Day Drawdo	wn for 1" Runoff	Volume				
	$Q_{1"} = CdA(2gh)^{1/2}$	2	(Orifice Equation; Cd=0.60)						
	3.00		Orfice Diameter (inches)						
	0.63		Driving Head to Centroid of C	Orfice (ft)					
0.11 Q1.0" Drawdown Rate (cfs)									
	/ _{wq} /(Q1" x 86,40	0)	Drawdown Time (days)						
	2.2		Drawdown Time (days) (2 -						
		Po	nd / Riser Data & Elevati	ions					

TSS Removal	85%	
Top of Pond / Berm	374.00 ft	
Secondary Spillway Width	40.00 ft	
Bottom of Secondary Spillway	373.00 ft	
Top of Riser	372.00 ft	(at least 1' Above TPE)
Riser Type / Size	4X4 ft	
Top of Water Quality / Temp Pool Elev	372.00 ft	(1" Runoff)
Top of Veg. Shelf	370.00 ft	
Permanent Pool Elevation (Normal Pool)	369.00 ft	
Water Quality Orifice Elevation & Size	369.00 ft	3.00 in
Secondary Orifice Elevation & Size	ft	in
Bottom of Veg. Shelf	369.00 ft	
Top of Sediment Storage / Pond Bottom	363.00 ft	
Bottom of Sediment Storage	362.00 ft	(Min 1 ft)
Invert Out of Riser	369.00 ft	
Outlet Pipe Size	36.00 in	Diameter RCP
Outlet Pipe Length & Slope	60.00 ft	0.60 %
Downstream Outlet Elevation	368.60 ft	
1 Yr Water Surface Elev / Peak Flow (CFS)	370.97 ft	4.45 CFS
2 Yr Water Surface Elev Peak Flow (CFS)	371.42 ft	9.60 CFS
10 Yr Water Surface Elev Peak Flow (CFS)	372.89 ft	16.94 CFS
100 Yr Water Surface Elev Peak Flow (CFS)	374.88 ft	39.94 CFS

DRY POND NAME

Dry Pond #5 CALCULATED BY

DRY POND NAME:

A. Blye

PROJECT NAME Wheeler Tract PROJECT NUMBER 43398

DRY POND CALCULATIONS

Dry Pond #5

SITE INFORMATION		
Drainage Area (A) =	6.60	Acres
Impervious Area =	3.16	Acres
Percent Impervious =	47.88	%
REQUIRED WATER QUALITY VOLUME		
Design Storm (P) =	1.00	inch
Rv Value (Rv)	0.48	
Drainage Area (A) =	6.60	Acres
Water Quality Volume =	0.26	Ac-ft
Required Water Quality Volume =	11522	Cu-ft
25% Add. Volume for Sed. Storage	14402	Cu-ft
Forebay Required?	FOREBAY N	IOT REQ.

NOTES & FORMULAS

(Drainage Area to Dry Pond - Including Dry Pond)

 $\begin{array}{lll} WQ_v = \underbrace{(P)(R_v)(A)}{12} \\ \text{where:} \\ WQ_v &= \text{water quality volume in ac-ft} \\ P &= 1 \text{ inch of rainfall} \\ R_v &= 0.05 + 0.009(1), \text{ where I= the percent impervious cover} \\ A &= \text{drainage area in acres} \end{array}$

(Required Storage Volume for Water Quality)

(Minimum Volume Required at Bottom of Proposed Control Weir Spillway) (If Min. Volume Required is greater than 20,000 Cu-ft: Forebay is Required)

PROVIDED WATER QUALITY VOLUME

Elevation	Contour Area (sf)	Depth (ft)	Incremental Volume (cf)	Cumulative Volume (cf)	Elevation Notes
346.20	0	0.00	0	0	(Bottom Elevation / Water Quality Drawdown Orifice)
347.00	1,036	0.80	414	414	
348.00	1,513	1.80	1,275	1,689	
349.00	2,080	2.80	1,797	3,485	
350.00	2,761	3.80	2,421	5,906	
351.00	3,523	4.80	3,142	9,048	
352.00	4352	5.80	3,938	12,985	
353.00	5250	6.80	4,801	17,786	Secondary Weir Elev. (At Temp Pool Elev.)
354.00	6213	7.80	5,732	23,518	
355.00	7238	8.80	6,726	30,243	
356.00	8322	9.80	7,780	38,023	(Emergency Spillway Crest Elevation)
357.00	9465	10.80	8,894	46,917	(Top of Embankment Elevation)

Required Water Quality Volume =	14402	Cu-ft		(Required Storage Volume for Water Quality)
Provided Water Quality Volume =	17786	Cu-ft	OK	(Cumulative Volume between Temporary Pool & Bottom Elevation)
Design Volume Ponding Depth =	6.80	ft		(Distance from water quality drawdown orifice to the Temporary Pool Elev)

Size Water Quality Orifice for (2-5) Day	Drawdown f	ior 1" Run	off Volume	
Orifice Diameter	1.50	inches		Water Quality Orifice to Drain Temporary Pool
Driving Head to Centroid of Orifice	2.25	ft		Driving Head (h/3) Distance to Centroid of Orifice
Q1.0" Drawdown Rate	0.09	cfs		Q1'' = CdA(2gh)1/2
Provided Water Quality Volume	17786	Cu-ft		(Orifice Equation; Cd=0.60 & h=h/3; Pg 3-13 BMP Manual)
Drawdown Time	2.33	Days	OK	Drawdown Time = Provided Water Quality Volume / (Q1" x 86,400)

DRY BASIN ELEVATIONS

Seasonal High Water Elevation	NA	ft
Small Permanent Pool Bottom Elevation	344.20	ft
Bottom / Drawdown Outlet Elevation	346.20	ft
Temporary Pool / Control Weir Elevation	353.00	ft
Top of Control Structure Elevation	353.00	ft
Emergency Spillway Elevation	356.00	ft
Top of Pond / Embankement Elevation	357.00	ft
1-Yr Storm Stage	353.25	ft
10-Yr Storm Stage	353.87	ft
25-Yr Storm Stage	354.27	ft
100-Yr Storm Stage	355.20	ft

Towns of Rolesville, Wendell and Zebulon Stormwater Tool Directions

The Wake County Municipal Stormwater Tool is required for all stormwater submittals in Rolesville Wendell, and Zebulon. Engineer will input all data requested that is highlighted inblue. Engineer may follow provided links to view calculations used in this tool. Calculations for peak flow, runoff, time of concentration, etc. are for individual drainage areas. Engineer should complete a worksheet for each drainage area within a project limit.

	Complete SITE DATA worksheet. SITE DATA worksheet should be submitted with preliminary plan submittals and modified and submitted for construction plan submittals.
1	The 2-yr, 24-hr rainfall input will be used for projects requesting LID classification further into the tool. The 10-year, 24-hour rainfall input will be used for potential Downstream Impact Analyses (DIA).
	Stormwater Narrative should describe the site conditions in pre- and post-development conditions including a description of site improvements and proposed stormwater BMPs.
	Complete DA worksheets. Most of the site data is inputted by the engineer on the DA worksheets. DA worksheets are designed essentially to account for Ultra-Low, Low, and High Density project requirements per Ordinance standards.
2	DA Worksheets will calculate runoff, time of concentration, peak flow, and volume to be managed per drainage area. Inputs will also be used to calculate the site composite curve numbers for pre and post development, Target Curve Number (TCN), and total nitrogen loading (TN) calculations.
2	This sheet will also calculate required volume management for the 1st inch rainfall for high density projects. 1st inch of runoff should be handled by each DA BMP for High Density projects.
	Disconnected Impervious - This area will be used to provide an adjusted post development composite curve number (CN _{adjusted}) to allow a credit for the use of disconnected impervious. Site plans should clearly indicate areas of disconnected impervious.
	SITE SUMMARY worksheet summarizes the pre and post runoff, Tc, and peak flow per drainage area based on inputs from DA worksheets. This worksheet denotes the volume required for management per drainage area based on high density requirements.
	TCN and composite curve numbers for pre and post development are also calculated and summarized. If the TCN is exceeded, this worksheet will calculate total volume to be managed for the entire site based on TCN requirements.
3	Nitrogen Loading: Nitrogen Loading Rate for the site is calculated based on the Hydrologic Soil Groups and site acreages imputed on DA worksheets. This worksheet calculates the total amount of nitrogen loading. Nitrogen total will be used on following BMP worksheets.
	Note: There are no engineer inputs on this sheet and all exeedances from DA worksheets will be flagged in red.
	DA BMP worksheets require engineer to input proposed BMP information. BMPs are categorized by sub-basins within the drainage area. Engineer should input BMP device name, type, and volume provided. BMP requirements are automatically imported from previous inputs.
	Engineer should input land uses by sub-basin. Off-site drainage to the sub-basin may also be inputted to allow credit for nitrogen removal (if said drainage is routed through the BMP).
4	BMPs are required in each DA where post-development peak flow is higher than pre-development peak flow. Only under special circumstances will a BMP not be required. In these cases, the engineer must show the following: 1. Total runoff volume for the DA must be less than 10% of the entire site runoff. 2. TN must be handled for the site elsewhere. 3. Runoff must not leave the DA at an erosive velocity. 4. Proposed design must comply with all state and federal regulations.
	DA BMP worksheets will ensure that proposed BMPs meet requirements for peak flow, TCN, and for Nitrogen. Engineer must input post-BMP discharge.
	Note: Engineers are required to input post BMP peak flow for the 1-year, 2-year, and 10-year storms for each DA. The SW Design Tool uses the TR-55 method. The TR-55 method is preferred for post BMP calculations. If engineer uses a method/model other than TR-55 for the post-BMP peak discharge and runoff, engineer must also provide pre-development calculations from the method/model (in addition to the SW Design Tool) and pre-development calculations must be within 10% of results computed by the SW Design Tool). A summary sheet should be attached with the submittal to for all inputs used in design.
	BMP SUMMARY worksheet summarizes the pre and post BMP runoff, and peak flow per drainage area based on inputs from DA BMP worksheets.
5	Nitrogen Loading: Nitrogen mitigated for the site is calculated based on the inputs on DA BMP worksheets. This worksheet calculates the total amount of nitrogen left to be mitigated for the site (Wendell only). Site expansions use the aportioning method.
	Note: There are no engineer inputs on this sheet and all exeedances from DA BMP worksheets will be flagged in red.
	LID worksheet summarizes the pre and post runoff, Tc, and peak flow per drainage area for the 2-year, 24-hour storm based on inputs from DA and BMP worksheets. This worksheet will determine if design calculations provided meet LID classification.
6	Engineers may wish to modify site design or mitigate with additional BMPs to meet LID Requirements. In that case, DA and BMP worksheets should be modified to meet these requirements and the LID sheet will be updated automatically.
	If calculation requirements for LID are met, Engineer should complete the LID CHECKLIST on LID worksheet and provide associated documentation to determine if project meets ALL LID requirements.
	Downstream Impact Analysis DIA worksheet presents requirements for a downstream impact analysis. Based on engineer inputs, this sheet will report if a DIA is required for the project based on the 10-
7	year storm discharge leaving each discharge point. This stormwater tool does NOT complete the actual downstream impact analyses. A DIA shall be performed at the outlet(s) of the site, and downstream at each tributary junction to the point(s) in the conveyance system where the area of the portion of the site draining into the system is less than or equal to 10 percent of the total drainage area above that point. The outflow hydrograph at these points is to be determined for the pre-development condition. Then, the outflow hydrograph at each of these points is to be determined for the conditions after the site in question has been developed. <u>All</u> hydrographs and inputs should be provided with plan submittal.

SITE DATA

Project Information									
	Project Name:	ROLESVILLE CROSSING							
	Applicant:	Timmons Group for Hopper Communities							
	Applicant Contact Name:	Robert Wingate							
	Applicant Contact Number:	984-255-2352							
	Contact Email:	robert.wingate@timmons.com							
	Municipal Jurisdiction (Select from dropdown menu):	Rolesville							
	Last Updated:	Monday, July 12, 2021							
	Site Data:								
	Total Site Area (Ac): 78.21								
	Existing Lake/Pond Area (Ac):	0.28							
	Proposed Disturbed Area (Ac):	79.64							
	Impervious Surface Area (acre):	24.69							
	Type of Development (Select from Dropdown menu):	Residential							
	Percent Built Upon Area (BUA):	32%							
	Project Density:	High							
	Is the proposed project a site expansion?	No							
	Number of Drainage Areas on Site:	3							
	1-Year, 24-Hour Storm (inches) (See NOAA Website):	2.86							
NOAA	2-Year, 24-Hour Storm (inches) (See NOAA Website):	3.46							
10/14	10-Year, 24-Hour Storm (inches) (See NOAA Website):	5.07							
		Lot Data (if applicable):							
	Total Acreage in Lots:	45.89							
	Number of Lots:	177							
	Average Lot Size (SF):	11294.00							
	Total Impervious Surface Area on Lots (SF):	637200.00							
	Average Impervious Surface Area Per Lot (SF):	3600.00 characters - attach additional pages with submittal if necessary):							
This Municipal T Total Site Descri	ool spreadsheet is only for the single-family areas. Refer to the	other Municipal Tool for the townhomes.							
Mixed Residentia There are three	al development consisting of 177 single family lots and 120 towr points of discharge along the boundary of the site. Each point ha stormwater runoff will be treated to comply Wake County and Si	nhome lots as been analyzed to ensure post-construction runoff rates are equal to or less than existing rates. ate regulations by routing the majority of the runoff through 2 proposed wet ponds and 3 proposed extended							
Each townhome	Each townhome lot has been alloted 1,500 SF of impervious. Each single family lot has been alloted 3,600 SF of impervious. The amenity space has been allotted 9,800 SF of impervious.								

ROLESVILLE CROSSING

Project Name:

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT			POST-DEVELOPMENT						
Drainage Area (Acres)=			.23		79.42					
Site Acreage within Drainage=	69.49				75.05					
One-year, 24-hour rainfall (in)=	2.8				86					
Two-year, 24-hour rainfall (in)=	3.4				46					
Ten-year, 24-hour storm (in)=				5.	07					
Total Lake/Pond Area (Acres)=		0.	28			2.	93			
Lake/Pond Area not in the Tc flow path (Acres)=	0.28				1.	45				
Site Land Use (acres):	A B C D			А	D					
Pasture										
Woods, Poor Condition										
Woods, Fair Condition										
Woods, Good Condition				9.68				9.38		
Open Space, Poor Condition										
Open Space, Fair condition										
Open Space, Good Condition				59.76				40.96		
Reforestation (in dedicated OS)										
Connected Impervious				0.05				24.71		
Disconnected Impervious										
SITE FLOW	PR	E-DEVEL	OPMEN	ТΤ	POST-DEVELOPMENT Tc					
Sheet Flow										
Length (ft)=		100	0.00		50.00					
Slope (ft/ft)=		0.0)20		0.020					
Surface Cover:		Gr	ass		Grass					
n-value=		0.2	240		0.240					
T _t (hrs)=		0.2	252		0.144					
Shallow Flow										
Length (ft)=		950	0.00		250.00					
Slope (ft/ft)=		0.0)20		0.020					
Surface Cover:		Unp	aved		Unpaved					
Average Velocity (ft/sec)=		2.	28			2.	28			
T _t (hrs)=		0.	12			0.	03			
Channel Flow 1										
Length (ft)=		245	0.00			870	0.00			
Slope (ft/ft)=		0.0)20			0.0)20			
Cross Sectional Flow Area (ft ²)=		15	.00			7.	00			
Wetted Perimeter (ft)=		16	.50			9.	40			
Channel Lining:		We	eds			Concrete	, finished			
n-value=		0.0)40			0.0)12			
Hydraulic Radius (ft)=		0.	91			0.	74			
Average Velocity (ft/sec)=		4.	94			14	.43			
T _t (hrs)=		0.	14			0.	02			

Project Name:

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

ROLESVILLE CROSSING

Channel Flow 2		
Length (ft)=		2450.00
Slope (ft/ft)=		0.020
Cross Sectional Flow Area (ft ²)=		15.00
Wetted Perimeter (ft)=		16.50
Channel Lining:		Weeds
n-value=		0.040
Hydraulic Radius (ft)=		0.91
Average Velocity (ft/sec)=		4.94
T _t (hrs)=		0.14
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.51	0.33
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	80	86
Disconnected Impervious Adjustment		
Disconnected impervious area (acre) =		
CN _{adjusted} (1-year)=	8	6
Illink Density Oaks		
High Density Only		
High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	95,	142
Volume of runoff from 1" rainfall for DA	95,	142
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft^3) =	95,	142
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)		
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	1.12	1.51 411,528
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	1.12 283,083	1.51 411,528
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	1.12 283,083 128,	1.51 411,528 445
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} =	1.12 283,083 128,	1.51 411,528 445
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	1.12 283,083 128, 65.230	1.51 411,528 445 105.726
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	1.12 283,083 128, 65.230 1.58	1.51 411,528 445 105.726 2.03
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	1.12 283,083 128, 65.230 1.58 397,692	1.51 411,528 445 105.726 2.03 551,971
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} =	1.12 283,083 128, 65.230 1.58 397,692	1.51 411,528 445 105.726 2.03 551,971
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{2-year} = 10-year, 24-hour storm (DIA)	1.12 283,083 128, 65.230 1.58 397,692 91.639	1.51 411,528 445 105.726 2.03 551,971 141.807

ROLESVILLE CROSSING

Project Name:

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT			POST-DEVELOPMENT							
Drainage Area (Acres)=	5.56				1.91						
Site Acreage within Drainage=		5.	.56		1.91						
One-year, 24-hour rainfall (in)=		2.86									
Two-year, 24-hour rainfall (in)=				3.	46						
Ten-year, 24-hour storm (in)=				5.	07						
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=	-										
Site Land Use (acres):	A B C D				А	В	С	D			
Pasture											
Woods, Poor Condition											
Woods, Fair Condition	-										
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair condition											
Open Space, Good Condition				5.42				1.63			
Reforestation (in dedicated OS)											
Connected Impervious	-			0.14				0.28			
Disconnected Impervious											
SITE FLOW	PR	E-DEVEI	OPMEN	T T _c	POST-DEVELOPMENT Tc						
Sheet Flow											
Length (ft)=		10	0.00			100	0.00				
Slope (ft/ft)=		0.0	020		0.020						
Surface Cover:		Gr	ass		Grass						
n-value=		0.:	240		0.240						
T _t (hrs)=		0.:	252		0.252						
Shallow Flow											
Length (ft)=		63	0.00		500.00						
Slope (ft/ft)=		0.0	020		0.020						
Surface Cover:		Unp	aved			Unp	aved				
Average Velocity (ft/sec)=		2	.28			2.	28				
T _t (hrs)=		0	.08			0.	06				
Channel Flow 1					-						
Length (ft)=											
Slope (ft/ft)=											
Cross Sectional Flow Area (ft ²)=											
Wetted Perimeter (ft)=											
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=											
T _t (hrs)=											

Project Name:

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

ROLESVILLE CROSSING

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.33	0.31
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	80	83
Composite Curve Number= Disconnected Impervious Adjustment	80	83
	80	83
Disconnected Impervious Adjustment	80	
Disconnected Impervious Adjustment Disconnected impervious area (acre) =		
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		3
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	8	3
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	8	3
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	8	3 197
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	8 1,2 1.17	3 1.31
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	8 1,2 1.17	3 1.31
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year) ⁼ High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	8 1,2 1.17 23,677	3 197 1.31 9,090
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} =	8 1,2 1.17 23,677	3 197 1.31 9,090
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	8 1,2 1.17 23,677 6.617	3 197 1.31 9,090 2.598
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	8 1,2 1.17 23,677 6.617 1.64	3 197 1.31 9,090 2.598 1.80
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	8 1,2 1.17 23,677 6.617 1.64 33,032	3 1.31 9,090 2.598 1.80 12,463
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} =	8 1,2 1.17 23,677 6.617 1.64 33,032	3 1.31 9,090 2.598 1.80 12,463
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (fiches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)	8 1,2 1.17 23,677 6.617 1.64 33,032 9.231	3 197 1.31 9,090 2.598 1.80 12,463 3.562

ROLESVILLE CROSSING

Project Name:

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT			POST-DEVELOPMENT						
Drainage Area (Acres)=	4.94				1.25					
Site Acreage within Drainage=	4.36				1.25					
One-year, 24-hour rainfall (in)=				2.	86					
Two-year, 24-hour rainfall (in)=				3.	46					
Ten-year, 24-hour storm (in)=				5.	07					
Total Lake/Pond Area (Acres)=		0.	00			0.	00			
Lake/Pond Area not in the Tc flow path (Acres)=	0.00					0.	00			
Site Land Use (acres):	A B C D				A B C					
Pasture										
Woods, Poor Condition										
Woods, Fair Condition										
Woods, Good Condition										
Open Space, Poor Condition										
Open Space, Fair condition										
Open Space, Good Condition				4.36				1.03		
Reforestation (in dedicated OS)										
Connected Impervious								0.22		
Disconnected Impervious										
SITE FLOW	PR	E-DEVEL	OPMEN	T T _c	POST-DEVELOPMENT Tc					
Sheet Flow										
Length (ft)=		50	.00		20.00					
Slope (ft/ft)=		0.0)20		0.020					
Surface Cover:		Gr	ass		Grass					
n-value=		0.2	240		0.240					
T _t (hrs)=		0.1	144		0.069					
Shallow Flow										
Length (ft)=		200	0.00		200.00					
Slope (ft/ft)=		0.0)20		0.020					
Surface Cover:		Unp	aved			Unp	aved			
Average Velocity (ft/sec)=		2.	28			2.	28			
T _t (hrs)=		0.	02			0.	02			
Channel Flow 1					-					
Length (ft)=										
Slope (ft/ft)=										
Cross Sectional Flow Area (ft ²)=										
Wetted Perimeter (ft)=										
Channel Lining:										
n-value=										
Hydraulic Radius (ft)=										
Average Velocity (ft/sec)=										
T _t (hrs)=								_		

Project Name:

ROLESVILLE CROSSING

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

Length (th) Slope (th); Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Wetted Perimeter (th) Channel Lining Channel Lining Channel Lining Channel Lining Channel Lining Avarage Velocity (theor) Channel Lining T (tra) Channel Flow X Channel Flow X Channel Flow X Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Cross Sectional Flow Area (th) Sectional Flow Area (th) Cross Sectional Flow Area (th) Metted Perimeter (th) Cross Sectional Flow Area (th) <t< th=""><th>Channel Flow 2</th><th></th><th></th></t<>	Channel Flow 2			
Sippe (http:Image: Constraint of the section of the sect				
Cross Sectional Flow Area (t ²) Wetted Perimeter (t) Channel Linng n-Values Natures Hydraulic Radius (t) Average Velocity (titsec): T, (trs)= Channel Flow 3 Length (t)= Stope (tht): Oross Sectional Flow Area (t ²): Wetted Perimeter (t): Channel Linng: Oross Sectional Flow Area (t ²): Wetted Perimeter (t): Channel Linng: Metted Perimeter (t): Channel Linng: Nature Oross Sectional Flow Area (t ²): Channel Linng: Nature: Average Velocity (titsec): Average Velocity (titsec): Average Velocity (titsec): Resource fundervious Adjustment Bisconnected impervious Adjustment Bisconnected impervious Adjustment Notine of runoff from 1* riantall for DA High Density Only Volume of runoff from 1* riantall for DA <td></td> <td></td> <td></td>				
Wetted Parimetr (ft)AChannel Lining				
Channel Lining Invalue N-value Invalue Hydrauic Radius (th) Invalue Average Valocity (tifeec) Invalue T (trins) Invalue Channel Flow 3 Invalue Channel Flow 4rea (th) Invalue Cross Sectional Flow Area (th) Invalue Orses Sectional Flow Area (th) Invalue Ortannel Lining Invalue Ortannel Lining Invalue Average Valocity (theor) Invalue Average Valocity (theor) Invalue Average Valocity (theor) Invalue T (this) Invalue Ortannel Lining Invalue Average Valocity (theor) Invalue Average Valocity (theor) Invalue T (this) Invalue Otomposite Curve Number = 80 Bisconnected Impervious Adjustment 83 Disconnected Impervious Adjustment 83 High Density Ony Invalue Volume of rundf from I' raintall for Invalue 1.15 1-year, 24-hour storm (Peak Flow) Invalue High Density Choy Invalue Volume of rundf from I raintall for Invalue 1.15 Yalom functif (t ¹) 1.15 Peak Discharge (sh) = Q _{1-yow} <td></td> <td></td> <td></td>				
n-value Image: state in the state in th				
Hydraulic Radius (h)=Image: control of the set of t	-			
Average Velocity (titsec)=InstrumeTi (hrsp=InstrumeChannel Flow 3InstrumeLength (t)=InstrumeSlope (trift)=InstrumeCross Sectional Flow Are (t)*InstrumeWetted Perimeter (t)=InstrumeWetted Perimeter (t)=InstrumeChannel Lining:InstrumeNetted Perimeter (t)=InstrumeAverage Velocity (titsec)=InstrumeAverage Velocity (titsec)=InstrumeTi (hrsp=InstrumeTi (hrsp=InstrumeComposite Curve Numbere80Bisconnected Impervious area (acre) =InstrumeComposite Curve Numbere83Disconnected Impervious area (acre) =InstrumeNaguated (tyser)=InstrumeNaguated (tyser)=InstrumeNume of runoff forn "* rainfall for DA HIGH DENSITY REQUIREMENT =InstrumeVolume of runoff (tift)=1.151.35Noure of runoff (tift)=1.151.35Volume of runoff (tift)=1.81.386.107Volume change (tift)=Instrume2.704Peak Discharge (cb)= Q _{1.598} =1.601.84Volume of runoff (tift)=2.3378.340Peak Discharge (cb)= Q _{2.5984} =1.653.66210-year, 24-hour storm (LID)Instrume3.662Peak Discharge (cb)= Q _{1.5984} =1.653.66210-year, 24-hour storm (DA)Instrume3.66210-year, 24-hour storm (DA)Instrume3.662 <trr>Peak Discharge (cb)= Q_{1.5984}</trr>				
Ti (hrs)=Image: constraint of the second secon				
Channel Flow 3Length (th)=Image: Consectional Flow Area (th)=Cross Sectional Flow Area (th)=Image: Consectional Flow Area (th)=Wetted Perimeter (th)=Image: Consectional Flow Area (th)=Channel LiningImage: Consectional Flow Area (th)=Channel LiningImage: Consectional Flow Area (th)=ResultsImage: Consectional Flow Area (th)=Average Velocity (th/sec)=Image: Consectional Flow Area (th)=Tr. (thrs)=Image: Consection Flow Area (th)=Composite Curve Numbers8083Disconnected Impervious AdjustmentBisconnected Impervious AdjustmentDisconnected Impervious AdjustmentImage: Consection Flow Area (th)=Volume of runoff from 1* rainfall for DA HiGH Density Consult Flow Press946High Density Consult Flow Press946Usuan of runoff (fiches) = Q* topost1.15Notume change (th)=1.15Peak Discharge (cfs)=Q_ topost7.5382.7042.year, 24-hour storm (LD)Runoff (Inches) = Q* topost1.84Volume of runoff (th)=2.537Runoff (Inches) = Q* topost3.69210-year, 24-hour storm (LD)2.537Runoff (Inches) = Q* topost3.692ID-year A4-Discharge (cfs) = Q* topost3.692ID-year C4-hour storm (LD)1.84Runoff (Inches) = Q* topost3.692ID-year C4-hour storm (LD)3.692Runoff (Inches) = Q* topost3.692ID-year C4-hour storm (LA)1.84Runoff (Inches) = Q* topost3.692 <td></td> <td></td> <td></td>				
Length (t)=Image: constraint of the sector of				
Slope (tt/t)Image: state of the				
Cross Sectional Flow Area (ft ²)=Image: Channel Lining:Wetted Perimeter (ft)=Channel Lining:Channel Lining:Netal (ft) (ft) (ft) (ft) (ft) (ft) (ft) (ft)				
Wetted Perimeter (ft):Image: Channel Lining:Channel Lining:Channel Lining:n-value:Nerage Velocity (ft/sec):Average Velocity (ft/sec):Channel Lining:Tr. (hrs):0.17Other (hrs):0.17Tc (hrs):0.17Composite Curve Number:80Bisconnected Impervious AdjustmentPRE-DEVELOPMENTDisconnected Impervious Adjustment83Disconnected Impervious area (acre): $Valume of runoff from 1^* rainfall for DAHIGH Density OnlyVolume of runoff from 1** rainfall for DAHIGH Density REQUIREMENT = (ft3):9461-year, 24-hour storm (Peak Flow)1.15Runoff (inches) = Q*_1year1.15Nolume of nunoff (ft3):1.35Volume of nunoff (ft3):2.7042-year, 24-hour storm (LID)1.80Runoff (inches) = Q*_2year1.60Runoff (inches) = Q*_2year1.60Runoff (inches) = Q*_2year1.60Runoff (inches) = Q*_2year1.653.4002.92Peak Discharge (cfs)= Q*_2year1.65Statistical Constraint (DIA)2.95Runoff (inches) = Q*_1year2.953.4003.40Peak Discharge (cfs)= Q*_2year1.6553.6923.69210-year, 24-hour storm (DIA)2.95Runoff (inches) = Q*_1year2.953.4003.40Peak Discharge (cfs)= Q*_1year3.51.499$				
Channel LiningImage: constraint of the section of the s				
n-valueHydraulic Radius (t)=Average Velocity (t/sec)=T((hrs)=T((hrs)=Tc (hrs)=O.170.09RESULTSPRE-DEVELOPMENTPOST-DEVELOPMENTComposite Curve Number=8083Disconnected Impervious AdjustmentDisconnected Impervious area (acre) = $CN_{adjusted}$ (tysen)Righ Density OnlyVolume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (th))1.96ar, 24-hour storm (Peak Flow)Notume of runoff (th)=1.151				
Hydraulic Radius (ft)=Average Velocity (ft/sec)=Tr (hrs)=Tr (hrs)=0.170.09Tc (hrs)=RESULTSPRE-DEVELOPMENTPOST-DEVELOPMENTPOST-DEVELOPMENTComposite Curve Number=808083Disconnected Impervious Adjustment83Disconnected impervious area (acre) =CN adjusted (1yaar) ^a 83High Density Only946Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft ²) =9461-year, 24-hour storm (Peak Flow)946Volume of runoff (inches) = Q [*] _1year1.15Nolume change (rfs ³) =1.60Peak Discharge (rfs) = Q1_year7.5382-year, 24-hour storm (LD)1.60Runoff (inches) = Q2_year1.60Nolume of runoff (ft ²) =25.397Runoff (inches) = Q2_year1.60Nolume of runoff (ft ²) =2.953.6923.25Volume of runoff (ft ²) =2.95Starge (rfs) = Q1_topper3.49				
Average Velocity (ft/sec)= T_ (ftrs)=IT_ (ftrs)=0.170.09RESULTSPRE-DEVELOPMENTPOST-DEVELOPMENTComposite Curve Number=8083Disconnected Impervious Adjustment83Disconnected Impervious area (acre) = $CN_{adjusted (tyster)}$ 83Migh Density Only83Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUERMENT = (th^2) =9461-year, 24-hour storm (Peak Flow)946Runoff (inches) = Q*_1,ear1.151.35Volume of runoff (th^3) =18.1386.107Volume change (th^3) =7.5382.704Peak Discharge (cfs)= Q_{1,ear}=1.601.84Volume of runoff (th^3) =25.3978.340Peak Discharge (cfs)= Q_{2,ear}=1.0553.69210-year, 24-hour storm (DIA)1.9553.25Yolume of runoff (th^3) =2.953.25Volume of runoff (th^3) =2.953.25Volume of runoff (th^3) =46.75351.499				
T _t (hrs)= 0.17 0.09 Tc (hrs)= 0.17 0.09 RESULTS PRE-DEVELOPMENT POST-DEVELOPMENT Composite Curve Number= 80 83 Disconnected impervious Adjustment 83 83 Disconnected impervious area (acre) = 83 83 CN _{adjusted (1 year)} = 83 83 High Density Only 946 83 Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 946 1.15 1.35 Nolume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1.15 1.35 0.107 Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1.15 1.35 0.107 Volume of runoff (ft ³) = 1.15 1.35 0.107 Volume change (ft ³) = 1.15 1.35 0.107 Volume change (ft ³) = 1.15 1.35 0.107 Volume change (ft ³) = 1.60 1.84 0.107 Peak Discharge (cfs) = Q _{2.yea} = 1.60 1.84 0.61 1.84				
Tc (hrs) 0.17 0.09 RESULTS PRE-DEVELOPMENT POST-DEVELOPMENT Composite Curve Number 80 83 Disconnected Impervious Adjustment 80 83 Disconnected Impervious area (acre) = $CN_{adjusted (1/year)}$ 83 CN_{adjusted (1/year)} 83 83 High Density Only 83 946 Volume of runoff from 1' rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 946 946 1-year, 24-hour storm (Peak Flow) 946 946 Nolume of runoff (fth) = 1.15 1.35 Volume of runoff (fth) = 1.15 1.35 Volume of runoff (fth) = 1.8138 $6,107$ Volume change (ft ³) = 1.60 1.84 Volume change (ft ³) = 2.537 8.340 Peak Discharge (cfs) = $Q_{2.year}$ 1.60 1.84 Volume of runoff (fth) = 2.95 3.692 10-year, 24-hour storm (DIA) 1.84 3.692 Peak Discharge (cfs) = $Q_{2.year}$ 1.655 3.692	- · · · · · · · · · · · · · · · · · · ·			
RESULTSPRE-DEVELOPMENTPOST-DEVELOPMENTComposite Curve Number=8083Disconnected Impervious Adjustment83Disconnected Impervious area (acre) = $\$ Nadjusted (1-year)83CN adjusted (1-year)83High Density Only $\$ 946Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =9461-year, 24-hour storm (Peak Flow)946Runoff (inches) = Q [*] _1.year1.15Nolume of runoff (ft ³) =1.15Volume of runoff (ft ³) =1.60Volume of runoff (ft ³) =25.397Runoff (inches) = Q [*] _2.year10.555Now of runoff (ft ³) =2.95Storage (cfs) = Q_1.year2.95Storage (cfs) = Q [*] 1.year2.95Now of runoff (ft ³) =2.95Now of runoff (ft ³) =2.95Now of runoff (ft ³) =3.40Storage (cfs) = Q [*] 1.year3.692Storage (cfs) = Q [*] 1.year3.692Storage (cfs) = Q [*] 1.year3.692Now of runoff (ft ³) =3.95Now of runoff (ft ³) =3.95Storage (ft) =3.95Storage (ft) =3.95Storage (ft) =3.95Storage (ft) =3.95Now of runoff (ft ³) =3.95Now of runoff (ft ³) =		0 17	0.09	
Composite Curve Number 80 83 Disconnected Impervious Adjustment	10 (113)-			
Disconnected Impervious AdjustmentDisconnected Impervious area (acre) = $CN_{adjusted (f-year)}$ $Righ Density Only$ Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft3) =1-year, 24-hour storm (Peak Flow)Runoff (inches) = Q* 1_{-year} 1.151.150Runoff (inches) = Q* 1_{-year} 1.602-year, 24-hour storm (LID)Runoff (inches) = Q* 2_{-year} 1.601.84001.961.961.961.961.961.971.981.981.981.991				
CN _{adjusted (1-year)} 83 High Density Only Volume of runoff from 1* rainfall for DA HIGH DENSITY REQUIREMENT = (ft ²) = 946 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1.year Nolume of runoff (ft ³) 1.15 1.35 Volume of runoff (ft ³) 18,138 6,107 Volume of runoff (ft ³) 18,138 6,107 Volume of runoff (ft ³) 18,138 6,107 Volume of runoff (ft ³) Peak Discharge (cfs)= Q_1.year Peak Discharge (cfs)= Q_1.year Nour Runoff (inches) = Q*_2.year Nolume of runoff (ft ³) 2.704 Start Runoff (inches) = Q*_2.year 1.60 1.84 Volume of runoff (ft ³) 25,397 3.692 IO-year, 24-hour storm (DIA) Runoff (inches) = Q*_10.year 2.95 3.25 Out of runoff (ft ³) 46.753 51,499	RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT	
High Density Only 946 946 Peak Discharge (rfs ³) = Numer (Peak Flow) 1.15 1.35 Numer (Peak Flow) Numer (Inches) = Q* _{1-year} Numer (rds) = Numer (rds) = Numer (rds) = Numer (rds) = Numer (rds) = Numer (rds) = Numer (rds) = Numer (rds) = Numer (rds) = Numer (rds) = Num (rds) = <th col<="" td=""><td>RESULTS Composite Curve Number=</td><td>PRE-DEVELOPMENT</td><td>POST-DEVELOPMENT</td></th>	<td>RESULTS Composite Curve Number=</td> <td>PRE-DEVELOPMENT</td> <td>POST-DEVELOPMENT</td>	RESULTS Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft^3) = 946 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q^*_{1-year} 1.15 1.35 Volume of runoff (ft^3) = 18,138 6,107 Volume change (ft^3) = 7.538 2.704 Peak Discharge (cfs) = Q_{1-year} 7.538 2.704 Quiting function of runoff (ft^3) = 1.84 1.84 Volume of runoff (ft^3) = 25,397 8,340 Peak Discharge (cfs) = Q_{2-year} 10.555 3.692 ID-year, 24-hour storm (DIA) Runoff (inches) = $Q^*_{10-year}$ Volume of runoff (ft ³) = Q2-year 10.555 3.692 Other storm (DIA) Runoff (inches) = $Q^*_{10-year}$ 2.95 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT	POST-DEVELOPMENT	
HIGH DENSITY REQUIREMENT = (ft ³) = 946 1-year, 24-hour storm (Peak Flow) 1.15 Runoff (inches) = Q^*_{1-year} 1.15 Volume of runoff (ft ³) = 18,138 Volume change (ft ³) = 6,107 Volume change (cfs) = Q_{1-year} 7.538 Peak Discharge (cfs) = Q_{1-year} 7.538 2-year, 24-hour storm (LID) 25,397 Runoff (inches) = Q^*_{2-year} 10.555 10-year, 24-hour storm (DIA) 3.692 10-year, 24-hour storm (DIA) 2.95 Runoff (inches) = $Q^*_{10-year}$ 2.95 State 3.25 Volume of runoff (ft ³) 46,753	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT 80	POST-DEVELOPMENT 83	
Runoff (inches) = Q_{1-year}^* 1.15 1.35 Volume of runoff (ft ³) = 18,138 6,107 Volume change (ft ³) = Peak Discharge (cfs) = Q_{1-year}^* 7.538 2.704 2-year, 24-hour storm (LID) Runoff (inches) = Q_{2-year}^* 1.60 1.84 Volume of runoff (ft ³) = 25,397 8,340 Peak Discharge (cfs) = Q_{2-year}^* 10.555 3.692 10-year, 24-hour storm (DIA) 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	PRE-DEVELOPMENT 80	POST-DEVELOPMENT 83	
Volume of runoff (ft ³) = 18,138 6,107 Volume change (ft ³) = Peak Discharge (cfs) = $Q_{1.year}$ 7.538 2.704 2-year, 24-hour storm (LID) Runoff (inches) = $Q^*_{2.year}$ 1.60 1.84 Volume of runoff (ft ³) = 25,397 8,340 Peak Discharge (cfs) = $Q_{2.year}$ 10.555 3.692 10-year, 24-hour storm (DIA) 3.25 Runoff (inches) = $Q^*_{10-year}$ 2.95 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT 80 80	POST-DEVELOPMENT 83 3	
Volume of runoff (ft ³) = 18,138 6,107 Volume change (ft ³) = Peak Discharge (cfs) = $Q_{1.year}$ 7.538 2.704 2-year, 24-hour storm (LID) Runoff (inches) = $Q^*_{2.year}$ 1.60 1.84 Volume of runoff (ft ³) = 25,397 8,340 Peak Discharge (cfs) = $Q_{2.year}$ 10.555 3.692 10-year, 24-hour storm (DIA) 3.25 Runoff (inches) = $Q^*_{10-year}$ 2.95 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	PRE-DEVELOPMENT 80 80	POST-DEVELOPMENT 83 3	
Peak Discharge (cfs) = Q _{1-year} 7.538 2.704 2-year, 24-hour storm (LID) 1.60 1.84 Runoff (inches) = Q* _{2-year} 1.60 1.84 Volume of runoff (ft ³) = 25,397 8,340 Peak Discharge (cfs) = Q _{2-year} 10.555 3.692 10-year, 24-hour storm (DIA) 2.95 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT 80 80 94	POST-DEVELOPMENT 83 13 46	
2-year, 24-hour storm (LID) Runoff (inches) = Q^*_{2-year} 1.60 1.84 Volume of runoff (ft ³) 25,397 8,340 Peak Discharge (cfs)= Q_{2-year} 10.555 3.692 10-year, 24-hour storm (DIA) 2.95 3.25 Volume of runoff (ft ³) 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT 80 8 94 1.15	POST-DEVELOPMENT 83 3 46 1.35	
Runoff (inches) = Q^*_{2-year} = 1.60 1.84 Volume of runoff (ft ³) = 25,397 8,340 Peak Discharge (cfs)= Q_{2-year} = 10.555 3.692 10-year, 24-hour storm (DIA) Runoff (inches) = $Q^*_{10-year}$ = 2.95 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) =	PRE-DEVELOPMENT 80 8 94 1.15	POST-DEVELOPMENT 83 3 46 1.35	
Volume of runoff (ft ³) = 25,397 8,340 Peak Discharge (cfs) = Q _{2-year} 10.555 3.692 10-year, 24-hour storm (DIA) 2.95 3.25 Runoff (inches) = Q* _{10-year} 2.95 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) =	PRE-DEVELOPMENT 80 81 94 1.15 18,138	POST-DEVELOPMENT 83 3 46 1.35 6,107	
Peak Discharge (cfs) = Q _{2-year} = 10.555 3.692 10-year, 24-hour storm (DIA) 2.95 3.25 Runoff (inches) = Q* _{10-year} = 2.95 3.25 Volume of runoff (tf ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume of runoff (ft ³) = Peak Discharge (cfs)= Q _{1-year} =	PRE-DEVELOPMENT 80 81 94 1.15 18,138	POST-DEVELOPMENT 83 3 46 1.35 6,107	
10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} = 2.95 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT 80 8 94 1.15 18,138 7.538	POST-DEVELOPMENT 83 33 46 1.35 6,107 2.704	
Runoff (inches) = Q* _{10-year} = 2.95 3.25 Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year}] High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT 80 8 1.15 18,138 7.538 1.60	POST-DEVELOPMENT 83 3 46 1.35 6,107 2.704 1.84	
Volume of runoff (ft ³) = 46,753 51,499	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) =	PRE-DEVELOPMENT 80 80 94 1.15 18,138 7.538 1.60 25,397	POST-DEVELOPMENT 83 3 46 1.35 6,107 2.704 1.84 8,340	
	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft ³) = Runoff (inches) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q* _{2-year} =	PRE-DEVELOPMENT 80 80 94 1.15 18,138 7.538 1.60 25,397	POST-DEVELOPMENT 83 3 46 1.35 6,107 2.704 1.84 8,340	
	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year) ⁼ High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)	PRE-DEVELOPMENT 80 8 8 94 1.15 18,138 7.538 1.60 25,397 10.555	POST-DEVELOPMENT 83 3 46 46 1.35 6,107 2.704 1.84 8,340 3.692	
Peak Discharge (cfs)= Q _{10-year} = 19.431 6.537	RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft ³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	PRE-DEVELOPMENT 80 80 94 1.15 18,138 7.538 1.60 25,397 10.555 2.95	POST-DEVELOPMENT	

Project Name:

ROLESVILLE CROSSING

DA SITE SUMMARY STORMWATER PRE-POST CALCULATIONS

SITE SUMMARY											
DRAINAGE AREA SUMMARIES		0			0				1		
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	
Runoff (in) = Q _{pre,1-year} =	Pre-Dev 1.12	1.17	(1-year, 24- 1.15	hour stori	n)				1	1	
	65.230	6.617	7.538								
reak riow (cis)-Gt _{1-year} -			ļ	hour stor	m)				1		
Drangood Imponious Surface (core) =	24.71	0.28	0.22	-nour stor					1	1	
Proposed Impervious Surface (acre) = Runoff (in)=Q _{1-year} =	1.51	1.31	1.35								
	105.726	2.598	2.704								
		2.598	2.704								
Minimum Volume to be Managed for DA	128,445 95,142	1,297	946								
		1				1	1	1	1		
		S	te Data								
			COMPOSI								
HYDROLOGIC SOIL GROU					Area	9	%		Target CN	1	
A					00		%		N/A		
В					00	-	%		N/A		
C					00		%		N/A		
D					.21		0%		N/A		
		To	tal Site Area		.21	10					
Percent BI	IA (Include		Total Site Area (acres) = ting Lakes/Pond Areas) =			78.21 31%					
	and (intolucio	Project Density =				31% High					
						N/A					
		Target Curve Number (TCN) =									
Minimum Volume to be Manage	od (Total 9	CN _{adjusted (1-year)} =				85 N/A					
	•		en Loading								
			TN export			Site			N		
HSG			coefficient (lbs/ac/yr)		Acreage			Export			
Pasture			1.2			0.00		0.00			
Woods, Poor Condition			1.6			0.00			0.00		
Woods, Fair Condition			1.2			0.00			0.00		
Woods, Good Condition			0.8			9.38		7.50			
Open Space, Poor Condition			1.0			0.00		0.00			
Open Space, Fair Condition			0.8			0.00			0.00		
Open Space, Good Condition			0.6			43.62			26.17		
Reforestation (in dedicated OS)			0.6			0.00			0.00		
Impervious			21.2						534.45		
SITE NITROGEN LOADING RATE (It	os/ac/yr)=	7.26									
Nitrogen Load	• •										
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_Wend						286.57					
		n Loading	Data For E	xpansion	s Only						
		·	Existing					New			
Impervious(acres)=			NA					NA			
"Expansion Area" (acres=)						I					
Nitrogen Load (lbs/yr)=			NA					NA			
SITE NITROGEN LOADING RATE (lbs/ac/yr)=			NA					NA			
Total Site loading rate (lbs/ac/yr)						1					
I otal Site loading rate (ibs/ac/vr)											

Project Name:

ROLESVILLE CROSSING

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA1 Site Acreage=				75.05	5						
DA1 Off-Site Acreage=		4.37									
Total Required Storage Volume for Site				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA1				05.14	2						
1" Rainfall for High Density (ft ³)=		r		95,14	2						
Will site use underground detention/cistern?	No	Enter %	of the year	water will be reused=		0%				nation/details ate water usa	
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
	HSG	Sub-E (A Site		Sub-D (A Site			DA1(c) Ac) Off-site		DA1(d) (c) Off-site		DA1(e) Ac) Off-site
Pasture		One	Oll-Site	One	Oll-Site	One	Oll-Sile	One	Oll-Site	One	Oll-Sile
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition		14.27	0.31	4.76	1.71	8.97	2.35	3.44		18.90	
Reforestation (in dedicated OS)											
Impervious		10.70		3.19		5.73		3.16		1.93	
Sub-DA1(a) BMP(s)										1	1
Device Name (As Shown on Plan)	Device Type		Provided Water Quality Volume Volume that will for Sub-DA (ft ³) drawdown 2-5 days. (ft ³) (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)		
1	Wet Detention Basin							25%	235.59	58.90	60
						0%	176.69	0.00	00		
			15,715			42,000		0%	176.69	0.00	
						0%	176.69	0.00			
								0%	176.69	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):	: 176.69								1	
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):								T		T
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that v wdown 2-5 c (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
2	Dry Extended Detention Basin							10%	71.51	7.15	48
								0%	64.36	0.00	
			3,021					0%	64.36	0.00	
								0%	64.36	0.00	
								0%	64.36	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):					64	.36				
Sub-DA1 (c) BMP(s)											
	If Sub-DA1(c) is connected to upstream subbasin(s), ne nitrogen leaving the most upstream subbasin(lbs):							T	1	T	1
Device Name (As Shown on Plan)	Device Type		er Quality Vo er Sub-DA (fi			Provided olume that v wdown 2-5 c (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
4	Wet Detention Basin							25%	128.27	32.07	48
								0%	96.20	0.00	
			7,113					0%	96.20	0.00	
								0%	96.20	0.00	
								0%	96.20	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):					96	.20				

ROLESVILLE CROSSING Project Name:

DRAINAGE AREA 1 BMP CALCULATIONS

					_	_	_			
Sub-DA1(d) BMP(s)										
It Sub-DA1(d) is connected to upstream subb	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):									
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdow Time (hours)			
5	Dry Extended Detention Basin			10%	69.06	6.91	48			
				0%	62.15	0.00				
		2,056		0%	62.15	0.00				
				0%	62.15	0.00				
				0%	62.15	0.00				
Tot	al Nitrogen remaining leaving the subbasin (lbs):		62.15							
Sub-DA1(e) BMP(s)										
If Sub-DA1(e) is connected to upstream subb	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):		-							
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdowr Time (hours)			
				0%	52.26	0.00				
				0%	52.26	0.00				
		5,434		0%	52.26	0.00				
				0%	52.26	0.00				
				0%	52.26	0.00				
Tot	al Nitrogen remaining leaving the subbasin (lbs):		52.26							
	DA	1 BMP SUMMARY								
	Total Volume Treated (ft ³)=		42,000							
	Nitrogen Mitigated(Ibs)=		105.02							
I-year, 24-hour storm										
	Post BMP Volume of Runoff (ft ³) _(1-year) =		369,528							
	Post BMP Runoff (inches) = Q* _(1-year) =									
	Post BMP CN _(1-year) =	83								
	Post BMP Peak Discharge (cfs)= Q _{1-year} =	= 36.860								
2-year, 24-hour storm (LID)										
	Post BMP Volume of Runoff (ft3) _(2-year) =		509,971							
	Post BMP Runoff (inches) = Q* _(2-year) =									
	Post BMP CN _(2-year) =	83								
	Post BMP Peak Discharge (cfs)= Q _(2-year) =		67.100							
10-year, 24-hour storm (DIA)										
	Post BMP Volume of Runoff (ft ³) _(10-year) =		837,696							
	Post BMP Runoff (inches) = Q* _(10-year) =		3.07							
	Post BMP CN(10-year)=		96							
	Post BMP Peak Discharge (cfs)= Q _(10-year) =		206.410							

Project Name:

ROLESVILLE CROSSING

DRAINAGE AREA 2 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA2 Site Acreage=				1.91							
DA2 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA2					_						
1" Rainfall for High Density (ft3)=				1,297	7			1			
Will site use underground detention/cistern?		Enter %	of the year v	vater will be reused=				Note: Supp submitted to			
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA							-1			
	HSG	Sub-E (A Site	DA2(a) ac) Off-site	Sub-D (A Site		Sub-I (A Site			0A2(d) ac) Off-site		DA2(e) Ac) Off-site
Pasture		Olle	Oll-Sile	Olle	Oll-site	Oite	Oll-site	Oile	Oll-site	Oite	Oll-Sile
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)		[[1	[1	1
Device Name (As Shown on Plan)	Device Type		er Quality Vo er Sub-DA (fl					Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
		1				0%	0.00	0.00			
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
	If Sub-DA1(b) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)			Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
	If Sub-DA1(c) is connected to upstream subbasin(s),										
enter ti	he nitrogen leaving the most upstream subbasin(lbs):							1		1	1
Device Name (As Shown on Plan)	Device Type		er Quality Vo er Sub-DA (fl			Provided olume that w wdown 2-5 c (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
	al Nitrogen remaining leaving the subbasin (lbs):	1									

Project Name:

ROLESVILLE CROSSING

DRAINAGE AREA 2 BMP CALCULATIONS

NORTH CAROLINA										
Sub-DA1(d) BMP(s)										
If Sub-DA1(d) is connected to upstream subb	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):									
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)			
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
Tot	al Nitrogen remaining leaving the subbasin (lbs):									
Sub-DA1(e) BMP(s)										
If Sub-DA1(e) is connected to upstream subb	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):									
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft^3)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)			
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
Tot	al Nitrogen remaining leaving the subbasin (lbs):									
	DA	2 BMP SUMMARY								
	Total Volume Treated (ft ³)=									
	Nitrogen Mitigated(Ibs)=									
1-year, 24-hour storm										
	Post BMP Volume of Runoff (ft ³)(1-year)=		9,090							
	Post BMP Runoff (inches) = Q* _(1-year) =	1.31								
	Post BMP CN _(1-year) =		82							
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		2.938							
2-year, 24-hour storm (LID)										
	Post BMP Volume of Runoff (ft3)(2-year)=		12,463							
	Post BMP Runoff (inches) = Q* _(2-year) =	1.80								
	Post BMP CN _(2-year) =		82							
	Post BMP Peak Discharge (cfs)= Q _(2-year) =		4.043							
10-year, 24-hour storm (DIA)										
	Post BMP Volume of Runoff (ft ³) _(10-year) =		64,643							
	Post BMP Runoff (inches) = Q* _(10-year) =		9.32							
	Post BMP CN(_{10-year})=		98							
	Post BMP Peak Discharge (cfs)= Q _(10-year) =		7.151							

Project Name: ROLESVILLE CROSSING

DRAINAGE AREA 3 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS										
DA3 Site Acreage=				1.25	;						
DA3 Off-Site Acreage=											
Total Required Storage Volume				N/A							
TCN Requirement (ft ³)= Total Required Storage Volume for DA3				0.10							
1" Rainfall for High Density (ft3)=				946							
Will site use underground detention/cistern?		Enter %	of the year	water will be reused=				Note: Supp submitted to	orting inform o demonstra	nation/details te water usa	should be ge.
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA										
	HSG	Sub-I (A Site	0A3(a) .c) Off-site	Sub-E (A Site			DA3(c) Ac) Off-site		DA3(d) Ac) Off-site		DA3(e) Ac) Off-site
Pasture		Olle	Oll-Site	Olle	Oll-site	Oite	Oll-Sile	Olle	Oll-site	Oite	Oll-Site
Woods, Poor Condition											
Woods, Fair Condition											
Woods, Good Condition											
Open Space, Poor Condition											
Open Space, Fair Condition											
Open Space, Good Condition											
Reforestation (in dedicated OS)											
Impervious											
Sub-DA1(a) BMP(s)		r			1			1	1	r	
Device Name (As Shown on Plan)	Device Type		er Quality Vo r Sub-DA (fi		Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
		1		0%	0.00	0.00					
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1(b) BMP(s)											
	If Sub-DA1(b) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):										
Device Name (As Shown on Plan)	Device Type		Provided Water Quality Volume Volume that will for Sub-DA (ft ³) <u>drawdown 2-5 days</u> (ft ³)					Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
								0%	0.00	0.00	
		1						0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										
Sub-DA1 (c) BMP(s)											
enter ti	If Sub-DA1(c) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):				1			1	1	1	1
Device Name (As Shown on Plan)	Device Type		er Quality Vo r Sub-DA (fi			Provided olume that v wdown 2-5 c (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
								0%	0.00	0.00	
Tot	al Nitrogen remaining leaving the subbasin (lbs):										

Project Name: ROLESVILLE CROSSING

DRAINAGE AREA 3 BMP CALCULATIONS

Sub-DA1(d) BMP(s) If Sub-DA1(d) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(lbs) Provided Volume that will Nitrogen Sub-DA Nitrogen Drawdow Water Quality Volume Device Name (As Shown on Plan) Removal Efficiency Nitrogen (lbs) Time (hours) Device Type Removed for Sub-DA (ft3) drawdown 2-5 days (lbs) (ft³) 0.00 0% 0.00 0% 0.00 0.00 0.00 0% 0.00 0% 0.00 0.00 0% 0.00 0.00 Total Nitrogen remaining leaving the subbasin (lbs): Sub-DA1(e) BMP(s) If Sub-DA1(e) is connected to upstream subbasin(s), enter the nitrogen leaving the most upstream subbasin(lbs) Provided Volume that will drawdown 2-5 days (ft³) Nitrogen Removal Efficiency Sub-DA Nitrogen Drawdow Water Quality Volume Nitrogen (Ibs) emovec (lbs) Time (hours) Device Name (As Shown on Plan) Device Type for Sub-DA (ft3) 0% 0.00 0.00 0% 0.00 0.00 0.00 0% 0.00 0% 0.00 0.00 0% 0.00 0.00 Total Nitrogen remaining leaving the subbasin (lbs): DA3 BMP SUMMARY Total Volume Treated (ft3)= Nitrogen Mitigated(lbs)= 1-year, 24-hour storm Post BMP Volume of Runoff (ft³)(1-year)= 6,107 Post BMP Runoff (inches) = Q*(1-year)= 1.35 Post BMP CN(1-year)= 83 Post BMP Peak Discharge (cfs)= Q_{1-year}= 2.953 2-year, 24-hour storm (LID) Post BMP Volume of Runoff (ft3)(2-year)= 8.340 Post BMP Runoff (inches) = Q*(2-year)= 1.84 Post BMP CN(2-year)= 83 Post BMP Peak Discharge (cfs)= Q_(2-year)= 3.992 10-year, 24-hour storm (DIA) Post BMP Volume of Runoff (ft³)(10-year)= 51,499 Post BMP Runoff (inches) = Q*(10-year)= 11.35 Post BMP CN(10-year)= 98 6.868 Post BMP Peak Discharge (cfs)= Q_(10-year)=

Project Name:

ROLESVILLE CROSSING

DA SITE SUMMARY BMP CALCULATIONS

BMP SUMMARY										
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development (1-year, 24-hour storm)										
Runoff (in)=Q* _{1-year} =	1.12	1.17	1.15							
Peak Flow (cfs)=Q _{1-year} =	65.230	6.617	7.538							
Post-Development (1-year, 24-hour storm)										
Target Curve Number (TCN) =					NA	۱				
Post BMP Runoff (inches) = Q* _(1-year) =	1.36	1.31	1.35							
Post BMP Peak Discharge (cfs)= Q _{1-year} =	36.860	2.938	2.953							
Post BMP CN _(1-year) =					83					
	Post-BM	IP Nitroge	n Loading							
TOTAL SITE NITROGEN MITIGATED (lbs)=					105.	02				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=					5.9	2				
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=					181.	55				

Project Name: ROLESVILLE CROSSING

LOW IMPACT DEVELOPMENT SUMMARY

DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
			Pre-Develo	pment	-		-	-	-	1
Runoff (in) = Q _{pre_2-year} =	1.58	1.64	1.60							
Total Runoff Volume (ft ³)=	397,692	33,032	25,397							
Peak Flow (cfs)=Q _{2-year} =	91.639	9.231	10.555							
			Post-Devel	opment						
2-year, 24-hour storm (LID)					1			1		
Post BMP Runoff (inches) = Q* _(2-year) =	1.87	1.80	1.84							
Post BMP Peak Discharge (cfs)= Q _(2-year) =	67.100	4.043	3.992							
Post BMP Volume of Runoff (ft3) _(2-year) =	509,971	12,463	8,340							
Does Runoff meet LID requirements?		Yes	No							
Does Peak Flow meet LID requirements?		Yes	Yes							
Does Runoff Volume meet LID requirements?	No	Yes	Yes							
SITE SUMMART			Site Da							
Torget CN -	[Sile Da	ald	N	/A				
Target CN = Post-Development CN =						3				
Does CN meet LID requirements?						0				
	I									
Cor	nplete the b	elow check	LID CHEC dist if all req		have been	met above:				
LID Techniques (check all that apply) At least one of the following techniques must be	used to ac	hieve LID c	lassificatior							
	Bioretentio	n								
	On-site inf	Itration								
	Additional LID Techniques (check all that apply) At least two (one for Wendell) of the following techniques must be used to achieve LID classification:									
Retention of 50% of vegetated area, including open space, landscaping or forests										
	-					ice, landsca	aping or for	ests		
	Retention	of 50% of v		ea, includii	ng open spa				ng areas	
	Retention Use of per	of 50% of v meable pav	egetated ar	ea, includii <u>Ill</u> private c	ng open spa Iriveways, p	rivate road			ng areas	
	Retention Use of per Installation	of 50% of v meable pav of one rain	egetated an vement for <u>a</u> n cistern per	ea, includii <u>Ill</u> private c	ng open spa Iriveways, p	rivate road			ng areas	
	Retention Use of per Installation	of 50% of v meable pay of one rain of vegetati	egetated ar vement for <u>a</u> n cistern per	ea, includii <u>Ill</u> private c lot or thre	ng open spa Iriveways, p e rain barrel	rivate road	s, sidewalk	s and parki	-	by 50 feet
	Retention of Use of per Installation Installation Increasing	of 50% of v meable pay of one rain of vegetati all buffers i	egetated ar vement for <u>a</u> n cistern per ive roofs in the Ripar	ea, includii <u>all</u> private c lot or thre ian buffer 2	ng open spa Iriveways, p e rain barrel	rivate road	s, sidewalk	s and parki	-	by 50 feet
	Retention Use of per Installation Installation Increasing Use of rec	of 50% of v meable pav of one rain of vegetati all buffers i aimed wate	egetated ar vement for <u>a</u> n cistern per	ea, includii all private c lot or thre ian buffer z ldings	ng open spa Iriveways, p e rain barrel zone or the	rivate road	s, sidewalk	s and parki	-	by 50 feet

Project Name:

ROLESVILLE CROSSING

DOWNSTREAM IMPACT ANALYSIS SITE SUMMARY

DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development										
					1	T	1	1	1	-
Peak Discharge (cfs)=Q _{10-year} =	169.55	16.90	19.43							
Volume of Runoff (ft ³) _(10-year) =	735,826	60,464	46,753							
			Post-Devel	opment	•	•	•	•	•	
10-year, 24-hour storm (DIA)										
Post BMP Peak Discharge (cfs)= Q _(10-year) =	206.41	7.15	6.87							
Post BMP Volume of Runoff (ft ³) _(10-year) =	837,696	64,643	51,499							

MUNICIPAL TOOL - TOWNHOMES

Towns of Rolesville, Wendell and Zebulon Stormwater Tool Directions

The Wake County Municipal Stormwater Tool is required for all stormwater submittals in Rolesville Wendell, and Zebulon. Engineer will input all data requested that is highlighted inblue. Engineer may follow provided links to view calculations used in this tool. Calculations for peak flow, runoff, time of concentration, etc. are for individual drainage areas. Engineer should complete a worksheet for each drainage area within a project limit.

	Complete SITE DATA worksheet. SITE DATA worksheet should be submitted with preliminary plan submittals and modified and submitted for construction plan submittals.
1	The 2-yr, 24-hr rainfall input will be used for projects requesting LID classification further into the tool. The 10-year, 24-hour rainfall input will be used for potential Downstream Impact Analyses (DIA).
	Stormwater Narrative should describe the site conditions in pre- and post-development conditions including a description of site improvements and proposed stormwater BMPs.
	Complete DA worksheets. Most of the site data is inputted by the engineer on the DA worksheets. DA worksheets are designed essentially to account for Ultra-Low, Low, and High Density project requirements per Ordinance standards.
	DA Worksheets will calculate runoff, time of concentration, peak flow, and volume to be managed per drainage area. Inputs will also be used to calculate the site composite curve numbers for pre and post development, Target Curve Number (TCN), and total nitrogen loading (TN) calculations.
2	This sheet will also calculate required volume management for the 1st inch rainfall for high density projects. 1st inch of runoff should be handled by each DA BMP for High Density projects.
	Disconnected Impervious - This area will be used to provide an adjusted post development composite curve number (CN _{adjusted}) to allow a credit for the use of disconnected impervious. Site plans should clearly indicate areas of disconnected impervious.
	SITE SUMMARY worksheet summarizes the pre and post runoff, Tc, and peak flow per drainage area based on inputs from DA worksheets. This worksheet denotes the volume required for management per drainage area based on high density requirements.
	TCN and composite curve numbers for pre and post development are also calculated and summarized. If the TCN is exceeded, this worksheet will calculate total volume to be managed for the entire site based on TCN requirements.
3	Nitrogen Loading: Nitrogen Loading Rate for the site is calculated based on the Hydrologic Soil Groups and site acreages imputed on DA worksheets. This worksheet calculates the total amount of nitrogen loading. Nitrogen total will be used on following BMP worksheets.
	Note: There are no engineer inputs on this sheet and all exeedances from DA worksheets will be flagged in red.
	DA BMP worksheets require engineer to input proposed BMP information. BMPs are categorized by sub-basins within the drainage area. Engineer should input BMP device name, type, and volume provided. BMP requirements are automatically imported from previous inputs.
	Engineer should input land uses by sub-basin. Off-site drainage to the sub-basin may also be inputted to allow credit for nitrogen removal (if said drainage is routed through the BMP).
4	BMPs are required in each DA where post-development peak flow is higher than pre-development peak flow. Only under special circumstances will a BMP not be required. In these cases, the engineer must show the following: 1. Total runoff volume for the DA must be less than 10% of the entire site runoff. 2. TN must be handled for the site elsewhere. 3. Runoff must not leave the DA at an erosive velocity. 4. Proposed design must comply with all state and federal regulations.
	DA BMP worksheets will ensure that proposed BMPs meet requirements for peak flow, TCN, and for Nitrogen. Engineer must input post-BMP discharge.
	Note: Engineers are required to input post BMP peak flow for the 1-year, 2-year, and 10-year storms for each DA. The SW Design Tool uses the TR-55 method. The TR-55 method is preferred for post BMP calculations. If engineer uses a method/model other than TR-55 for the post-BMP peak discharge and runoff, engineer must also provide pre-development calculations from the method/model (in addition to the SW Design Tool) and pre-development calculations must be within 10% of results computed by the SW Design Tool). A summary sheet should be attached with the submittal to for all inputs used in design.
	BMP SUMMARY worksheet summarizes the pre and post BMP runoff, and peak flow per drainage area based on inputs from DA BMP worksheets.
5	Nitrogen Loading: Nitrogen mitigated for the site is calculated based on the inputs on DA BMP worksheets. This worksheet calculates the total amount of nitrogen left to be mitigated for the site (Wendell only). Site expansions use the aportioning method.
	Note: There are no engineer inputs on this sheet and all exeedances from DA BMP worksheets will be flagged in red.
	LID worksheet summarizes the pre and post runoff, Tc, and peak flow per drainage area for the 2-year, 24-hour storm based on inputs from DA and BMP worksheets. This worksheet will determine if design calculations provided meet LID classification.
6	Engineers may wish to modify site design or mitigate with additional BMPs to meet LID Requirements. In that case, DA and BMP worksheets should be modified to meet these requirements and the LID sheet will be updated automatically.
	If calculation requirements for LID are met, Engineer should complete the LID CHECKLIST on LID worksheet and provide associated documentation to determine if project meets ALL LID requirements.
	Downstream Impact Analysis DIA worksheet presents requirements for a downstream impact analysis. Based on engineer inputs, this sheet will report if a DIA is required for the project based on the 10-
7	year storm discharge leaving each discharge point. This stormwater tool does NOT complete the actual downstream impact analyses. A DIA shall be performed at the outlet(s) of the site, and downstream at each tributary junction to the point(s) in the conveyance system where the area of the portion of the site draining into the system is less than or equal to 10 percent of the total drainage area above that point. The outflow hydrograph at these points is to be determined for the pre-development condition. Then, the outflow hydrograph at each of these points is to be determined for the conditions after the site in question has been developed. <u>All</u> hydrographs and inputs should be provided with plan submittal.

MUNICIPAL TOOL - TOWNHOMES

SITE DATA

	Project Information							
	Project Name:	ROLESVILLE CROSSING						
	Applicant:	Timmons Group for Hopper Communities						
	Applicant Contact Name:	Robert Wingate						
	Applicant Contact Number:	984-255-2352						
	Contact Email:	robert.wingate@timmons.com						
	Municipal Jurisdiction (Select from dropdown menu):	Rolesville						
	Last Updated:	Monday, July 12, 2021						
		Site Data:						
	Total Site Area (Ac):	13.16 (Equal to post-DA3)						
	Existing Lake/Pond Area (Ac):	0.00						
	Proposed Disturbed Area (Ac):	13.16						
	Impervious Surface Area (acre):	6.71						
	Type of Development (Select from Dropdown menu):	Residential						
	Percent Built Upon Area (BUA):							
	Project Density:							
	Is the proposed project a site expansion?	Yes						
	Number of Drainage Areas on Site:	1						
NOAA	1-Year, 24-Hour Storm (inches) (See NOAA Website):	2.86						
NOAA	2-Year, 24-Hour Storm (inches) (See NOAA Website): 10-Year, 24-Hour Storm (inches) (See NOAA Website):	3.46						
	Tu-rear, 24-nour Storm (inches) (See NOAA Website):	5.07						
		Lot Data (if applicable):						
Total Acreage in Lots:		5.81						
	Number of Lots:	120						
	Average Lot Size (SF):	2259.00						
	Total Impervious Surface Area on Lots (SF):	180000.00 1500.00						
	Average Impervious Surface Area Per Lot (SF):	characters - attach additional pages with submittal if necessary):						
This Municipal T	ool spreadsheet is only for the townhome area. Refer to the oth	er Municipal Tool for the single-family areas.						
Mixed Residential development consisting of 177 single family lots and 120 townhome lots There are three points of discharge along the boundary of the site. Each point has been analyzed to ensure post-construction runoff rates are equal to or less than existing rates. The first inch of stormwater runoff will be treated to comply Wake County and State regulations by routing the majority of the runoff through 2 proposed wet ponds and 3 proposed extended detention dry ponds on site.								
Each townhome	lot has been alloted 1,500 SF of impervious. Each single family	/lot has been alloted 3,600 SF of impervious.						

Project Name: ROLESVILLE CROSSING

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	Р	RE-DEVE	LOPME	NT	POST-DEVELOPMENT				
Drainage Area (Acres)=		13	5.16			13	.16		
Site Acreage within Drainage=		13	5.16		13.16				
One-year, 24-hour rainfall (in)=	2.86								
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=				5.	07				
Total Lake/Pond Area (Acres)=		0.	.00			0.	35		
Lake/Pond Area not in the Tc flow path (Acres)=	0.00				0.	00			
Site Land Use (acres):	А	В	С	D	А	В	С	D	
Pasture									
Woods, Poor Condition									
Woods, Fair Condition									
Woods, Good Condition				0.00				0.00	
Open Space, Poor Condition									
Open Space, Fair condition									
Open Space, Good Condition				13.16				6.51	
Reforestation (in dedicated OS)									
Connected Impervious				0.00				6.65	
Disconnected Impervious									
SITE FLOW	PRE-DEVELOPMENT T _c POST-DEVELOPM				LOPMEN	IT Tc			
Sheet Flow									
Length (ft)=		75	5.00		125.00				
Slope (ft/ft)=		0.0	030			0.0)20		
Surface Cover:		Gr	ass			Gr	ass		
n-value=		0.:	240			0.2	240		
T _t (hrs)=		0.	170			0.3	301		
Shallow Flow									
Length (ft)=		77	0.00						
Slope (ft/ft)=		0.0	040						
Surface Cover:		Unp	aved						
Average Velocity (ft/sec)=		3.	.23						
T _t (hrs)=		0.	.07						
Channel Flow 1									
Length (ft)=						162	5.00		
Slope (ft/ft)=						0.0)20		
Cross Sectional Flow Area (ft ²)=					7.00				
Wetted Perimeter (ft)=						9.	40		

Project Name: ROLESVILLE CROSSING

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

Channel Lining:	Concrete, finished
n-value=	0.012
Hydraulic Radius (ft)=	0.74
Average Velocity (ft/sec)=	14.43
T _t (hrs)=	0.03

Project Name: ROLESVILLE CROSSING

* WAKE COUNTY NORTH CAROLINA

DRAINAGE AREA 1

STORMWATER PRE-POST CALCULATIONS

Channel Flow 2		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft ²)=		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.24	0.33
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=	80	89
Disconnected Impervious Adjustment		
Disconnected impervious area (acre) =		
CN _{adjusted} (1-year)=	8	9
High Density Only		
Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft^3) =	24,	114
1-year, 24-hour storm (Peak Flow)		
Runoff (inches) = Q* _{1-year} =	1.15	1.78
Volume of runoff (ft ³) =	54,746	85,121
Volume change (ft ³) =	30,	375
Peak Discharge (cfs)= Q _{1-year} =	17.643	23.665
2-year, 24-hour storm (LID)		
Runoff (inches) = Q* _{2-year} =	1.60	2.33
Volume of runoff (ft ³) =	76,657	111,265

Project Name:

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

ROLESVILLE CROSSING

Peak Discharge (cfs)= Q _{2-year} =	24.704	30.933
10-year, 24-hour storm (DIA)		
Runoff (inches) = Q* _{10-year} =	2.95	3.85
Volume of runoff (ft ³) =	141,116	183,889
Peak Discharge (cfs)= Q _{10-year} =	45.476	51.124

Project Name:

ROLESVILLE CROSSING

DA SITE SUMMARY STORMWATER PRE-POST CALCULATIONS

		SITES	SUMMAR	1							
DRAINAGE AREA SUMMARIES											
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	
	Pre-Dev	elopment	(1-year, 24-	hour storr	n)	I	1	1	1	I	
Runoff (in) = Q _{pre,1-year} =	1.15										
Peak Flow (cfs)=Q _{1-year} =	17.643										
	Post-De	velopment	(1-year, 24	-hour stor	m)	r	1		1	1	
Proposed Impervious Surface (acre) =	6.65										
Runoff (in)=Q _{1-year} =	1.78										
Peak Flow (cfs)=Q _{1-year} =	23.665										
Increase in volume per DA (ft ³)_1-yr storm=	30,375										
Minimum Volume to be Managed for DA HIGH DENSITY REQUIREMENT = (ft ³) =	24,114										
TARGET CURVE NUMBER (TCN)											
		Si	te Data								
		SITE \SOIL	COMPOSI	TION		1					
HYDROLOGIC SOIL GROU			Site	Area		<u>%</u>		Target CN	<u>l</u>		
A				0.	00	0	1%		N/A		
В				0.	00	0	1%		N/A		
С				0.	00	0	1%		N/A		
D	D						0%		N/A		
Total Site Area (acres) =							13.16				
Percent BUA (Includes Existing Lakes/Pond Areas) = 49%											
Project Density = High											
	Target Curve Number (TCN) = N/A										
	CN _{adjusted} (1-year)= 89										
Minimum Volume to be Manag	ed (Total S	Site) Per T	CN Requirer	nent= ft ³ =			N	I/A			
	5	Site Nitrog	en Loading	Data				i.			
HSG			TN export coefficient (lbs/ac/yr)		Site Acreage			N Export			
Pasture			1.2		0.00			0.00			
Woods, Poor Condition			1.6		0.00			0.00			
Woods, Fair Condition			1.2			0.00		0.00			
Woods, Good Condition			0.8			0.00			0.00		
Open Space, Poor Condition			1.0			0.00			0.00		
Open Space, Fair Condition			0.8			0.00			0.00		
Open Space, Good Condition			0.6			6.51			3.91		
Reforestation (in dedicated OS)			0.6			0.00			0.00		
Impervious			21.2			6.65			140.98		
SITE NITROGEN LOADING RATE (I	lbs/ac/yr)=					NA					
Nitrogen Loa	d (lbs/yr)=					144.89					
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_Wen	dell Only=					NA					
Si	ite Nitroge	n Loading	Data For E	xpansions	s Only						
			Existing					New			
Impervious(acres)=								6.65			
"Expansion Area" (acres=)					13.1	16					
Nitrogen Load (lbs/yr)=			0.00		144.89						
SITE NITROGEN LOADING RATE (lbs/ac/yr)=			0.00				11.01				
Total Site loading rate (lbs/ac/yr)					11.0)1					
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)=					97.5	51					

ROLESVILLE CROSSING Project Name:

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES A	ND ADJUSTMENTS											
DA1 Site Acreage=				13.10	6							
DA1 Off-Site Acreage=												
Total Required Storage Volume for Site				N/A								
TCN Requirement (ft ³)= Total Required Storage Volume for DA1												
1" Rainfall for High Density (ft3)=				24,11	4							
Will site use underground detention/cistern?	No	No Enter % of the year water will be reused= 0%						Note: Supporting information/details should be submitted to demonstrate water usage.				
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA											
	HSG	Sub-E (A Site		Sub-E (A Site			DA1(c) Ac) Off-site		DA1(d) Ac) Off-site		DA1(e) Ac) Off-site	
Pasture		Olic	Oll-Site	One	Oll-Site	One	OII-Site	One	Oll-Site	One	Oll-Site	
Woods, Poor Condition												
Woods, Fair Condition												
Woods, Good Condition												
Open Space, Poor Condition												
Open Space, Fair Condition												
Open Space, Good Condition		6.51										
Reforestation (in dedicated OS)												
Impervious		6.65										
Sub-DA1(a) BMP(s)			l		1			1	1	1		
Device Name (As Shown on Plan)	Device Type		Provided Water Quality Volume Volume that will for Sub-DA (ft ³) drawdown 2-5 days (ft ²)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)			
3	Dry Extended Detention Basin							10%	144.89	14.49	48	
								0%	130.40	0.00		
			24,114					0%	130.40	0.00		
								0%	130.40	0.00		
								0%	130.40	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):					13	0.40					
Sub-DA1(b) BMP(s)												
	If Sub-DA1(b) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):											
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi		Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)		
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):											
Sub-DA1 (c) BMP(s)												
	If Sub-DA1(c) is connected to upstream subbasin(s), he nitrogen leaving the most upstream subbasin(lbs):											
Device Name (As Shown on Plan)	Device Type		er Quality Vo or Sub-DA (fi			Provided olume that w wdown 2-5 (ft ³)		Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)	
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
Tot	al Nitrogen remaining leaving the subbasin (lbs):											

ROLESVILLE CROSSING Project Name:

DRAINAGE AREA 1 BMP CALCULATIONS

NORTH CAROLINA										
Sub-DA1(d) BMP(s)										
If Sub-DA1(d) is connected to upstream subba	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):									
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (Ibs)	Drawdown Time (hours)			
				0%	0.00	0.00	49.68			
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
Tot	al Nitrogen remaining leaving the subbasin (lbs):									
Sub-DA1(e) BMP(s)										
If Sub-DA1(e) is connected to upstream subb	asin(s), enter the nitrogen leaving the most upstream subbasin(lbs):									
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (Ibs)	Nitrogen Removed (lbs)	Drawdown Time (hours)			
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
				0%	0.00	0.00				
Tot	al Nitrogen remaining leaving the subbasin (lbs):									
		1 BMP SUMMARY								
	Total Volume Treated (ft ³)=									
1	Nitrogen Mitigated(Ibs)=		14.49							
1-year, 24-hour storm			05.404							
	Post BMP Volume of Runoff (ft ³) _(1-year) = Post BMP Runoff (inches) = Q* _(1-year) =									
			1.78							
	Post BMP CN _(1-year) =		89							
	Post BMP Peak Discharge (cfs)= Q _{1-year} =		8.400							
2-year, 24-hour storm (LID)										
	Post BMP Volume of Runoff (ft3) _(2-year) =		111,265							
	Post BMP Runoff (inches) = Q* _(2-year) =		2.33							
	Post BMP CN _(2-year) =									
	Post BMP Peak Discharge (cfs)= Q _(2-year) =		34.700							
10-year, 24-hour storm (DIA)										
	Post BMP Volume of Runoff (ft ³) _(10-year) =		183,889							
	Post BMP Runoff (inches) = Q* _(10-year) =									
	Post BMP CN(_{10-year})=		98							
	Post BMP Peak Discharge (cfs)= Q _(10-year) =		78.200							

Project Name:

ROLESVILLE CROSSING

DA SITE SUMMARY BMP CALCULATIONS

BMP SUMMARY										
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development (1-year, 24-hour storm)										
Runoff (in)=Q* _{1-year} =	1.15									
Peak Flow (cfs)=Q _{1-year} =	17.643									
Post-Development (1-year, 24-hour storm)										
Target Curve Number (TCN) =					NA	١				
Post BMP Runoff (inches) = Q* _(1-year) =	1.78									
Post BMP Peak Discharge (cfs)= Q _{1-year} =	8.400									
Post BMP CN _(1-year) =					89					
	Post-BM	IP Nitroge	n Loading							
TOTAL SITE NITROGEN MITIGATED (lbs)=					14.4	19				
SITE NITROGEN LOADING RATE (lbs/ac/yr)=					9.9	1				
TOTAL SITE NITROGEN LEFT TO MITIGATE_Wendell Only (lbs)=					83.0)2				

Project Name: ROL

ROLESVILLE CROSSING

LOW IMPACT DEVELOPMENT SUMMARY

Г

DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
			Pre-Develo	opment						-
Runoff (in) = Q _{pre_2-year} =	1.60									
Total Runoff Volume (ft ³)=	76,657									
Peak Flow (cfs)=Q _{2-year} =	24.704									
		1	Post-Devel	opment						
2-year, 24-hour storm (LID)			1		1	1		1	1	
Post BMP Runoff (inches) = Q* _(2-year) =	2.33									
Post BMP Peak Discharge (cfs)= Q _(2-year) =	34.700									
Post BMP Volume of Runoff (ft3) _(2-year) =	111,265									
Does Runoff meet LID requirements?	No									
Does Peak Flow meet LID requirements?	No									
Does Runoff Volume meet LID requirements?	No									
SITE SUMMARY			Site D							
	-		Site D	ald	N	/A				
Target CN = Post-Development CN =						/A i9				
Does CN meet LID requirements?						19				
Does CN meet LID requirements?										
Con	nplete the be	low check	LID CHEC		have been	met above:				
ID Techniques (check all that apply) At least one of the following techniques must be	used to ach	ieve LID c	lassification	n:						
	used to ach Bioretention		lassification	1:						
At least one of the following techniques must be		I	lassification	n:						
At least one of the following techniques must be	Bioretention On-site infilt Iy)	ration			sification:					
At least one of the following techniques must be	Bioretention On-site infilt Iy)	ration	ed to achiev	ve LID clas		ace, landsca	aping or for	ests		
At least one of the following techniques must be	Bioretention On-site infilt I y) echniques m	ration lust be use f 50% of v	ed to achiev egetated ar	ve LID clas ea, includir	ng open spa				ng areas	
Additional LID Techniques (check all that app tt least two (one for Wendell) of the following t	Bioretention On-site infilt Iy) echniques m Retention of	ration oust be use f 50% of v neable pay	ed to achiev egetated ar vement for a	ve LID clas ea, includir all private d	ng open spa riveways, p	rivate road			ng areas	
Additional LID Techniques (check all that app tt least two (one for Wendell) of the following t	Bioretention On-site infilt iy) Retention of Use of perm	ration lust be use f 50% of v neable pay	ed to achiev egetated ar vement for a	ve LID clas ea, includir all private d	ng open spa riveways, p	rivate road			ng areas	
At least one of the following techniques must be	Bioretention On-site infilt Iy) echniques m Retention of Use of perm Installation of	ration lust be use f 50% of v leable pay of one rain of vegetati	ed to achiev egetated ar vement for a o cistern per	re LID clas rea, includir all private d lot or three	ng open spa riveways, p e rain barrel	rivate road	s, sidewalk	s and parki		by 50 fee
At least one of the following techniques must be	Bioretention On-site infilt Iy) Retention of Use of perm Installation of Installation of	ration nust be use f 50% of v neable pay of one rair of vegetati	ed to achiev egetated ar vement for a n cistern per ve roofs in the Ripar	ve LID clas ea, includir all private d lot or three ian buffer z	ng open spa riveways, p e rain barrel	rivate road	s, sidewalk	s and parki		by 50 fee
At least one of the following techniques must be	Bioretention On-site infilt Iy) echniques m Retention of Use of perm Installation of	ration ust be use f 50% of v neable pay of one rain of vegetati all buffers	ed to achiev egetated ar vement for a cistern per ve roofs in the Ripar er for all bui	re LID clas ea, includir all private d r lot or three ian buffer z Idings	ng open spa riveways, p e rain barrel	rivate road	s, sidewalk	s and parki		by 50 fee

Project Name:

ROLESVILLE CROSSING

DOWNSTREAM IMPACT ANALYSIS SITE SUMMARY

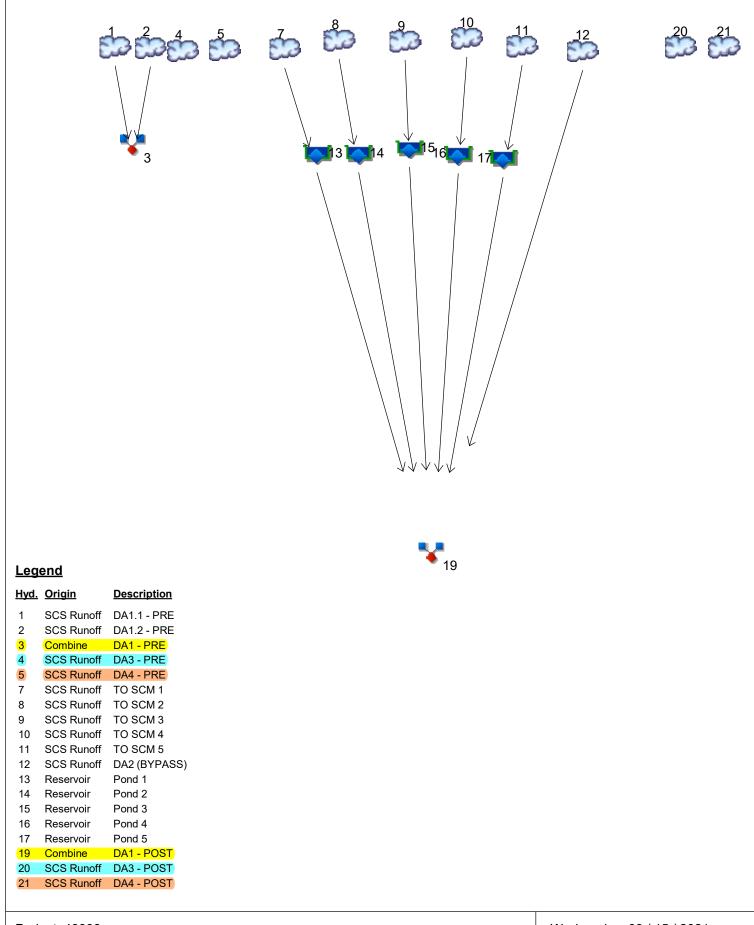
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10
Pre-Development										
Peak Discharge (cfs)=Q _{10-year} =	45.48									
Volume of Runoff (ft ³) _(10-year) =	141,116									
			Post-Devel	opment						
10-year, 24-hour storm (DIA)										
Post BMP Peak Discharge (cfs)= Q _(10-year) =	78.20									
Post BMP Volume of Runoff (ft ³) _(10-year) =	183,889									

Hydraflow Table of Contents

Summary Report Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, DA1.1 - PRE	
Hydrograph No. 2, SCS Runoff, DA1.2 - PRE	
Hydrograph No. 3, Combine, DA1 - PRE	
Hydrograph No. 4, SCS Runoff, DA3 - PRE	
Hydrograph No. 5, SCS Runoff, DA4 - PRE	8
Hydrograph No. 7, SCS Runoff, TO SCM 1	9
Hydrograph No. 8, SCS Runoff, TO SCM 2	
Hydrograph No. 9, SCS Runoff, TO SCM 3	
Hydrograph No. 10, SCS Runoff, TO SCM 4	
Hydrograph No. 11, SCS Runoff, TO SCM 5	
Hydrograph No. 12, SCS Runoff, DA2 (BYPASS)	14
Hydrograph No. 13, Reservoir, Pond 1	15
Pond Report - Wet Pond 1	
Hydrograph No. 14, Reservoir, Pond 2	
Pond Report - Dry Pond 2	
Hydrograph No. 15, Reservoir, Pond 3	
Pond Report - Dry Pond 3	
Hydrograph No. 16, Reservoir, Pond 4	
Pond Report - Wet Pond 4	
Hydrograph No. 17, Reservoir, Pond 5	
Pond Report - Dry Pond 5	24
Hydrograph No. 19, Combine, DA1 - POST	
Hydrograph No. 20, SCS Runoff, DA3 - POST	
Hydrograph No. 21, SCS Runoff, DA4 - POST	27

10 - Year

Summary Report	28
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, DA1.1 - PRE	
Hydrograph No. 2, SCS Runoff, DA1.2 - PRE	30
Hydrograph No. 3, Combine, DA1 - PRE	31
Hydrograph No. 4, SCS Runoff, DA3 - PRE	32
Hydrograph No. 5, SCS Runoff, DA4 - PRE	33
Hydrograph No. 7, SCS Runoff, TO SCM 1	34
Hydrograph No. 8, SCS Runoff, TO SCM 2	35
Hydrograph No. 9, SCS Runoff, TO SCM 3	
Hydrograph No. 10, SCS Runoff, TO SCM 4	37
Hydrograph No. 11, SCS Runoff, TO SCM 5	
Hydrograph No. 12, SCS Runoff, DA2 (BYPASS)	39
Hydrograph No. 13, Reservoir, Pond 1	40
Hydrograph No. 14, Reservoir, Pond 2	41


Hydrograph No. 15, Reservoir, Pond 3	42
Hydrograph No. 16, Reservoir, Pond 4	43
Hydrograph No. 17, Reservoir, Pond 5	
Hydrograph No. 19, Combine, DA1 - POST	
Hydrograph No. 20, SCS Runoff, DA3 - POST	46
Hydrograph No. 21, SCS Runoff, DA4 - POST	47

100 - Year

Summary Report	48
Hydrograph Reports	
Hydrograph No. 1, SCS Runoff, DA1.1 - PRE	49
Hydrograph No. 2, SCS Runoff, DA1.2 - PRE	50
Hydrograph No. 3, Combine, DA1 - PRE	51
Hydrograph No. 4, SCS Runoff, DA3 - PRE	52
Hydrograph No. 5, SCS Runoff, DA4 - PRE	53
Hydrograph No. 7, SCS Runoff, TO SCM 1	54
Hydrograph No. 8, SCS Runoff, TO SCM 2	55
Hydrograph No. 9, SCS Runoff, TO SCM 3	56
Hydrograph No. 10, SCS Runoff, TO SCM 4	57
Hydrograph No. 11, SCS Runoff, TO SCM 5	58
Hydrograph No. 12, SCS Runoff, DA2 (BYPASS)	59
Hydrograph No. 13, Reservoir, Pond 1	
Hydrograph No. 14, Reservoir, Pond 2	61
Hydrograph No. 15, Reservoir, Pond 3	62
Hydrograph No. 16, Reservoir, Pond 4	63
Hydrograph No. 17, Reservoir, Pond 5	64
Hydrograph No. 19, Combine, DA1 - POST	65
Hydrograph No. 20, SCS Runoff, DA3 - POST	
Hydrograph No. 21, SCS Runoff, DA4 - POST	
F Report	68

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

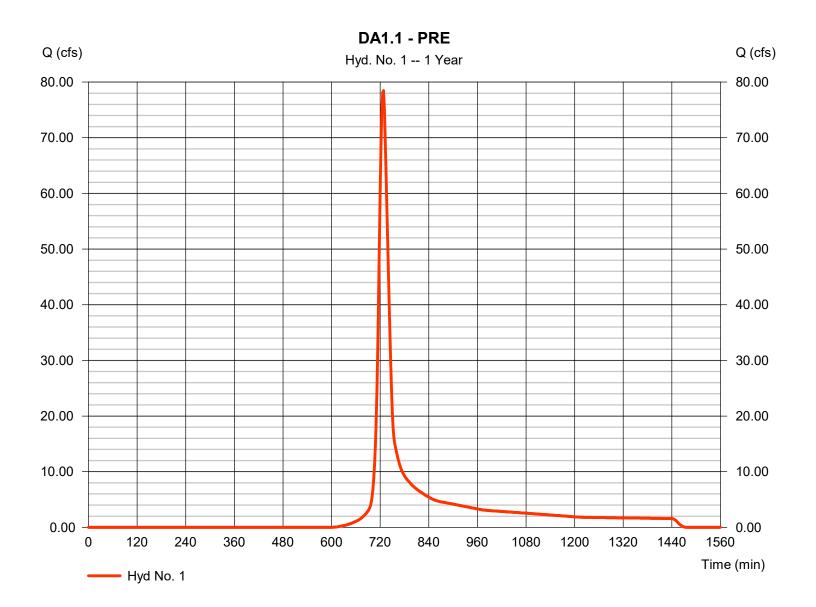
Project: 43398.gpw

Hydrograph Return Period Recap Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

yd. o.		Inflow hyd(s)				Peak Out	tflow (cfs)				Hydrograph Description
).			1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Description
1	SCS Runoff		78.46	111.42			207.43	268.18		368.69	DA1.1 - PRE
2	SCS Runoff		19.80	28.49			53.99	70.29		97.37	DA1.2 - PRE
<mark>3</mark>	Combine	1, 2	97.36	138.75			258.16	333.71		459.85	DA1 - PRE
4	SCS Runoff		7.224	10.28			19.07	24.62		33.80	DA3 - PRE
5	SCS Runoff		8.078	11.40			21.04	27.11		37.13	DA4 - PRE
7	SCS Runoff		71.48	93.23			151.95	187.56		245.29	TO SCM 1
8	SCS Runoff		25.05	33.25			55.64	69.31		91.51	TO SCM 2
9	SCS Runoff		38.60	49.92			80.35	98.75		128.57	TO SCM 3
10	SCS Runoff		46.22	60.80			100.40	124.48		163.56	TO SCM 4
11	SCS Runoff		19.51	25.23			40.60	49.90		64.97	TO SCM 5
12	SCS Runoff		21.03	29.90			55.76	72.17		99.33	DA2 (BYPASS)
13	Reservoir	7	3.504	9.968			58.79	86.49		124.48	Pond 1
14	Reservoir	8	0.098	0.360			7.130	30.17		60.89	Pond 2
15	Reservoir	9	12.35	37.74			78.19	96.76		126.14	Pond 3
16	Reservoir	10	24.35	31.11			79.59	111.27		156.07	Pond 4
17	Reservoir	11	7.363	21.15			39.50	48.68		63.14	Pond 5
10	Combine	10 10 14	61.29	112.60			077.00	205.96			
19 20	SCS Runoff	12, 13, 14, 15, 16, 17, 		113.60 4.043			277.83 7.151	395.86 9.083		565.57 12.25	DA1 - POST DA3 - POST
21	SCS Runoff		2.958	3.992			6.868	8.637		11.52	DA4 - POST
			2.000	0.002			0.000	0.007		11.02	

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

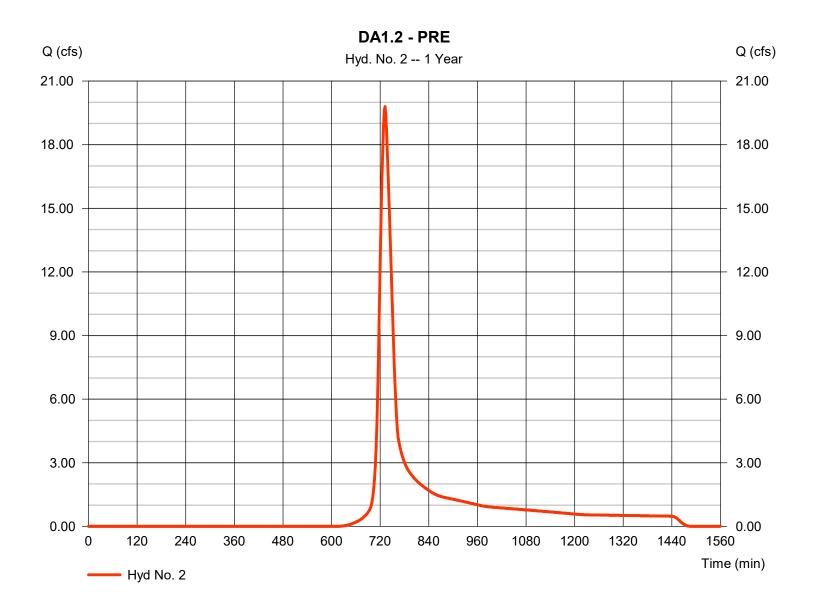

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	78.46	2	728	277,812				DA1.1 - PRE
2	SCS Runoff	19.80	2	732	82,006				DA1.2 - PRE
3	Combine	97.36	2	728	359,818	1, 2			DA1 - PRE
4	SCS Runoff	7.224	2	726	23,130				DA3 - PRE
5	SCS Runoff	8.078	2	722	21,193				DA4 - PRE
7	SCS Runoff	71.48	2	716	145,704				TO SCM 1
8	SCS Runoff	25.05	2	716	50,731				TO SCM 2
9	SCS Runoff	38.60	2	716	79,076				TO SCM 3
10	SCS Runoff	46.22	2	716	93,851				TO SCM 4
11	SCS Runoff	19.51	2	716	39,960				TO SCM 5
12	SCS Runoff	21.03	2	732	86,445				DA2 (BYPASS)
13	Reservoir	3.504	2	782	143,269	7	371.86	86,830	Pond 1
14	Reservoir	0.098	2	1444	26,220	8	383.36	46,663	Pond 2
15	Reservoir	12.35	2	724	78,532	9	349.37	38,211	Pond 3
16	Reservoir	24.35	2	722	93,676	10	371.71	36,444	Pond 4
17	Reservoir	7.363	2	724	38,388	11	353.26	19,287	Pond 5
19	Combine	61.29	2	724	466,530	12, 13, 14, 15, 16, 17,			DA1 - POST
20	SCS Runoff	2.938	2	724	9,254				DA3 - POST
21	SCS Runoff	2.953	2	716	5,964				DA4 - POST
433	98.gpw				Return F	Period: 1 Ye	ear	Wednesda	ay, 09 / 15 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

DA1.1 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 78.46 cfs
Storm frequency	= 1 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 277,812 cuft
Drainage area	= 65.610 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

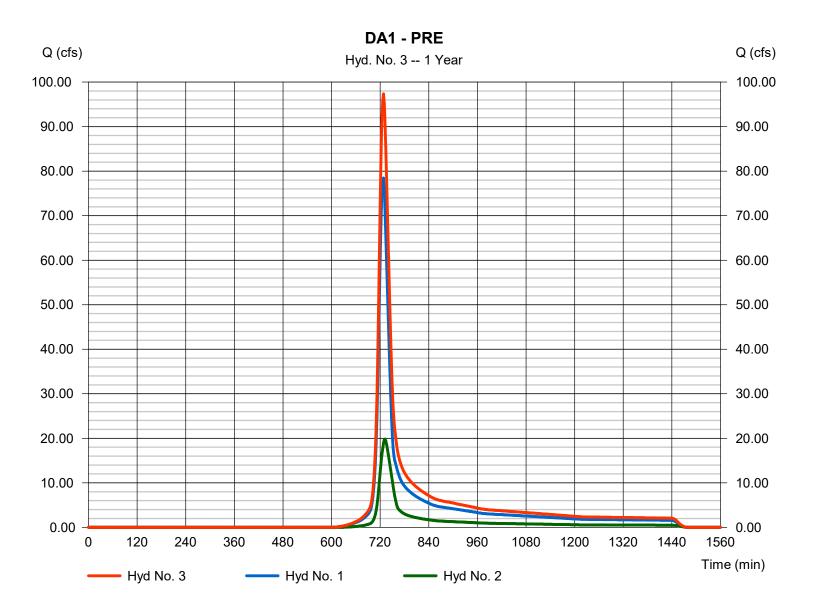


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

DA1.2 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 19.80 cfs
Storm frequency	= 1 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 82,006 cuft
Drainage area	= 20.780 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

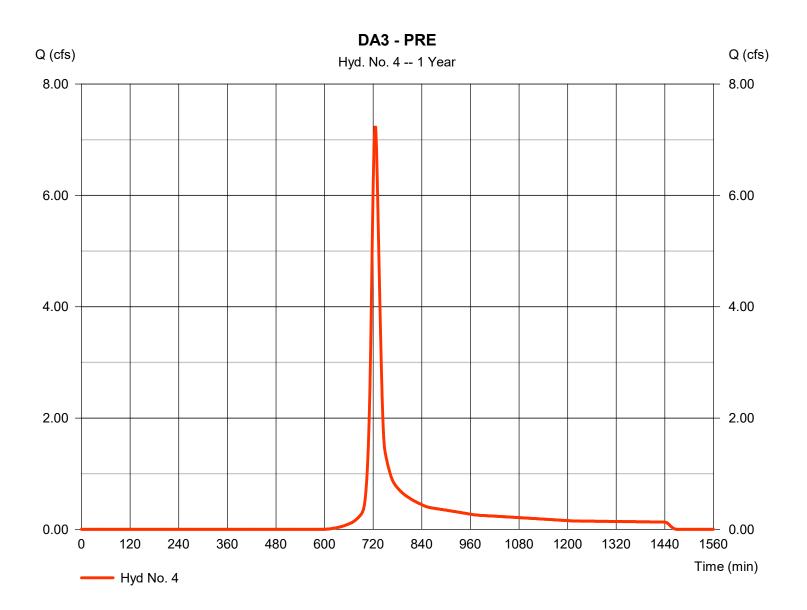


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

DA1 - PRE

Hydrograph type	= Combine	Peak discharge	= 97.36 cfs
Storm frequency	= 1 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 359,818 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 86.390 ac

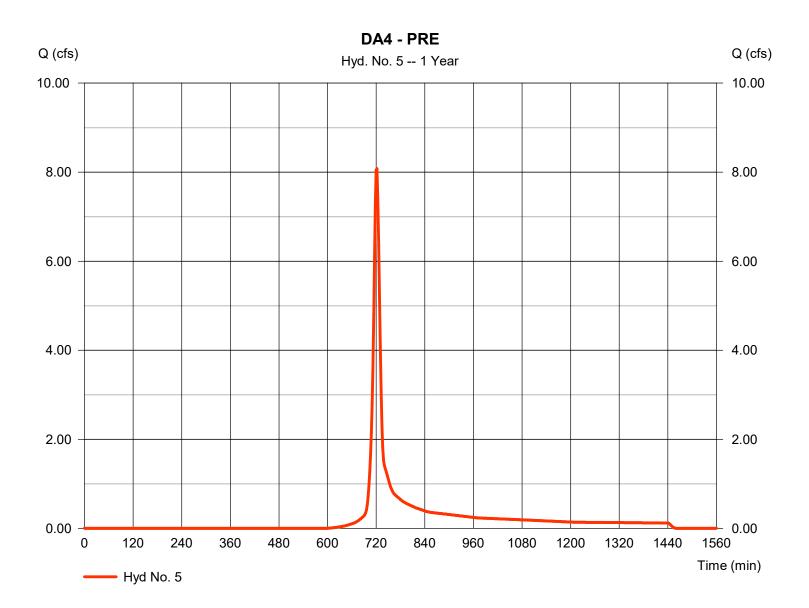


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

DA3 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 7.224 cfs
Storm frequency	= 1 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 23,130 cuft
Drainage area	= 5.560 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

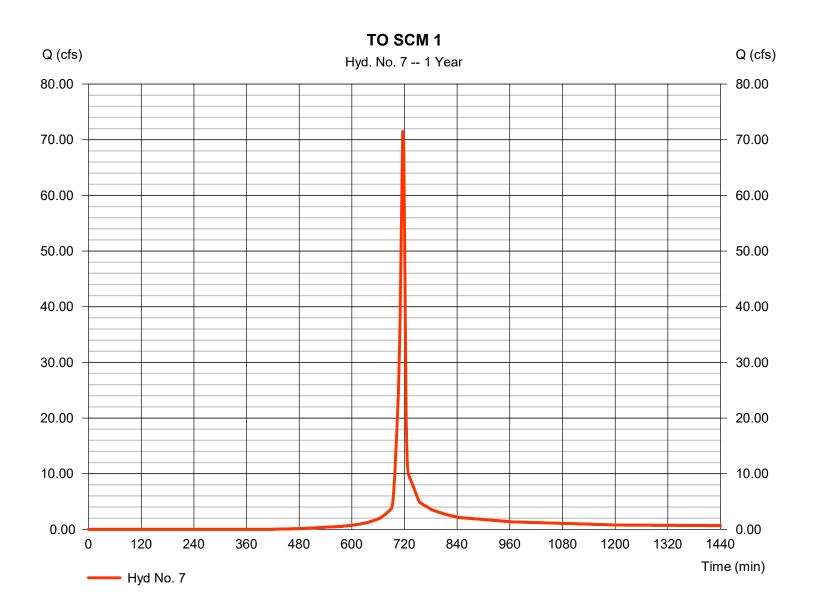


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

DA4 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 8.078 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 21,193 cuft
Drainage area	= 4.940 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

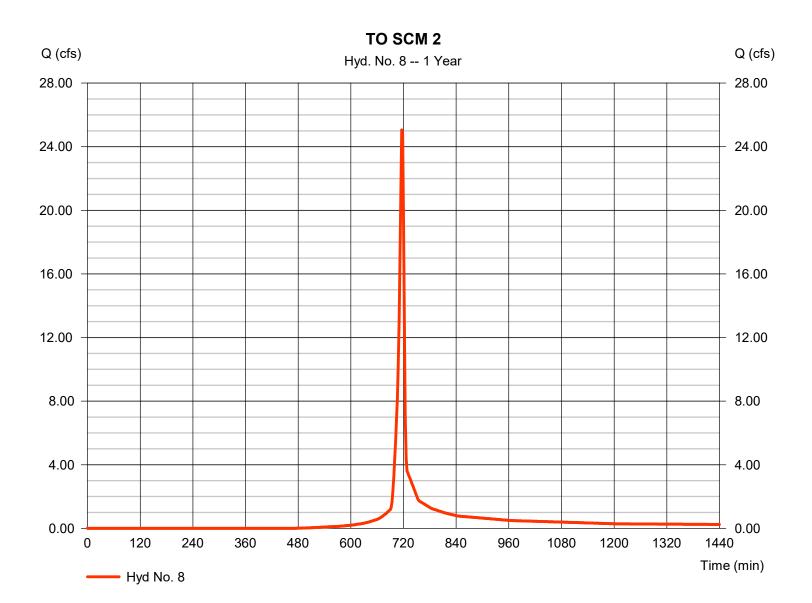

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

TO SCM 1

Hydrograph type	= SCS Runoff	Peak discharge	= 71.48 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 145,704 cuft
Drainage area	= 25.270 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.790 x 98) + (7.460 x 98) + (14.020 x 80)] / 25.270


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

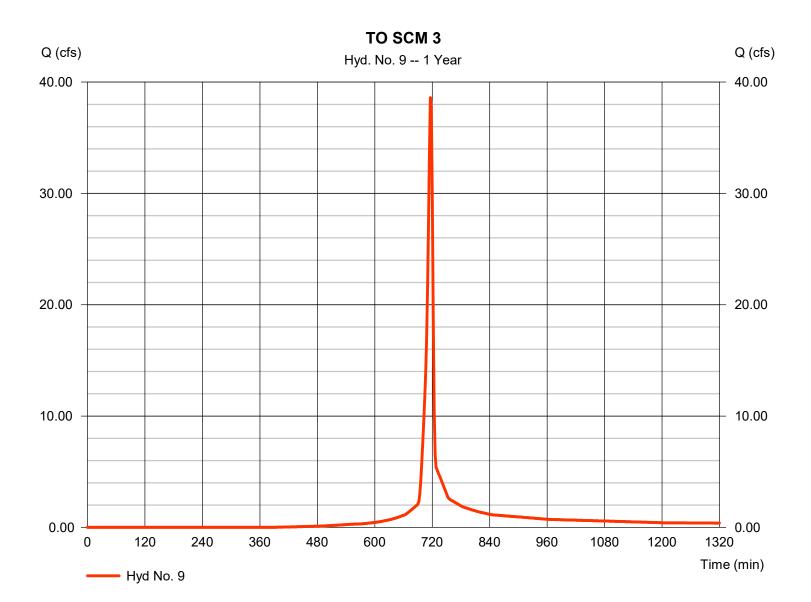
Hyd. No. 8

TO SCM 2

Hydrograph type	= SCS Runoff	Peak discharge	= 25.05 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 50,731 cuft
Drainage area	= 9.660 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.100 x 98) + (2.090 x 98) + (6.470 x 80)] / 9.660

10


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

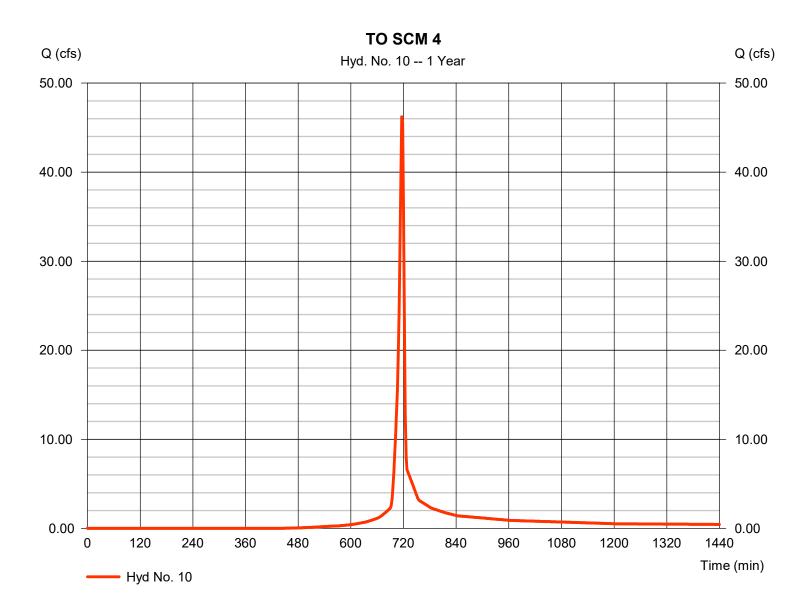
Hyd. No. 9

TO SCM 3

Hydrograph type	= SCS Runoff	Peak discharge	= 38.60 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 79,076 cuft
Drainage area	= 13.100 ac	Curve number	= 89*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
Tc method Total precip.	= User = 2.86 in	Time of conc. (Tc) Distribution	= 5.00 min = Type II

* Composite (Area/CN) = [(2.820 x 98) + (3.860 x 98) + (6.420 x 80)] / 13.100

11


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

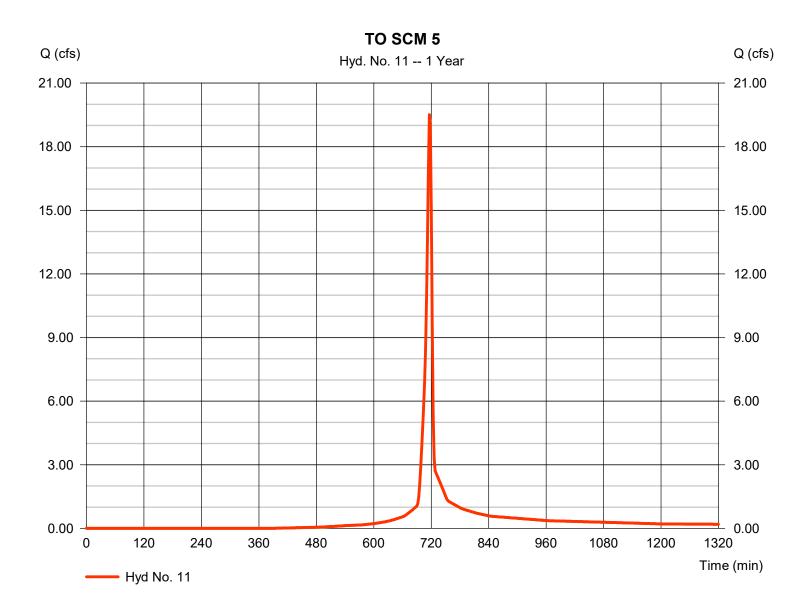
Hyd. No. 10

TO SCM 4

Hydrograph type	= SCS Runoff	Peak discharge	= 46.22 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 93,851 cuft
Drainage area	= 17.050 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.940 x 98) + (4.220 x 98) + (10.890 x 80)] / 17.050

Wednesday, 09 / 15 / 2021


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

TO SCM 5

Hydrograph type	= SCS Runoff	Peak discharge	= 19.51 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 39,960 cuft
Drainage area	= 6.620 ac	Curve number	= 89*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.380 x 98) + (2.000 x 98) + (3.240 x 80)] / 6.620

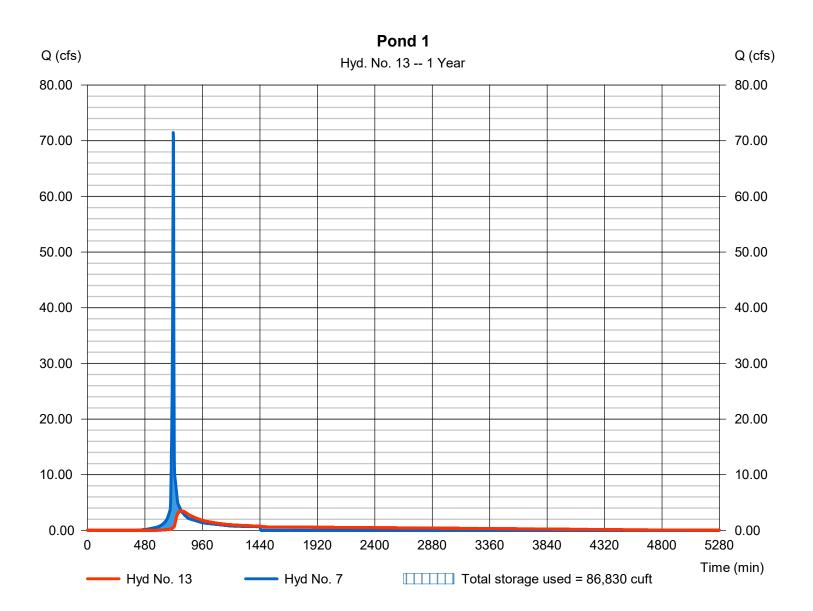
13

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

DA2 (BYPASS)

Hydrograph type	= SCS Runoff	Peak discharge	= 21.03 cfs
Storm frequency	= 1 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 86,445 cuft
Drainage area	= 20.780 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
		-	


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Pond 1

ervoir Peak discl	harge = 3.504 cfs
s Time to pe	eak = 782 min
n Hyd. volur	me = 143,269 cuft
O SCM 1 Max. Eleva	ation = 371.86 ft
Pond 1 Max. Stora	age = 86,830 cuft
	n Time to pe n Hyd. volur O SCM 1 Max. Eleva

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 1 - Wet Pond 1

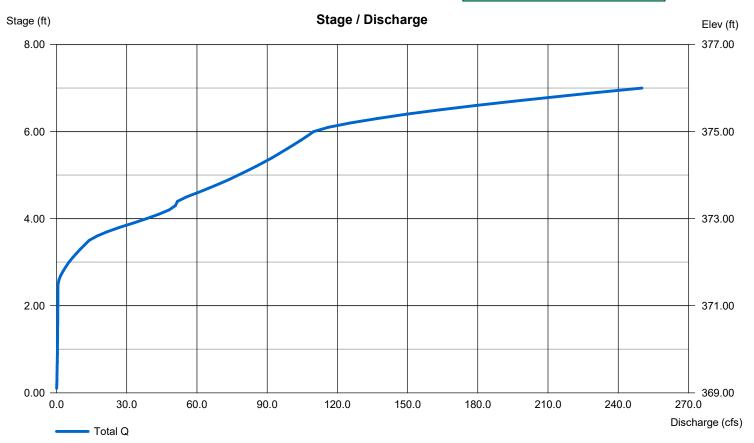
Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 369.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	369.00	24,400	0	0
1.00	370.00	29,600	27,000	27,000
2.00	371.00	32,300	30,950	57,950
3.00	372.00	35,000	33,650	91,600
4.00	373.00	37,850	36,425	128,025
5.00	374.00	40,700	39,275	167,300
6.00	375.00	43,650	42,175	209,475
7.00	376.00	46,600	45,125	254,600

Culvert / Orifice Structures

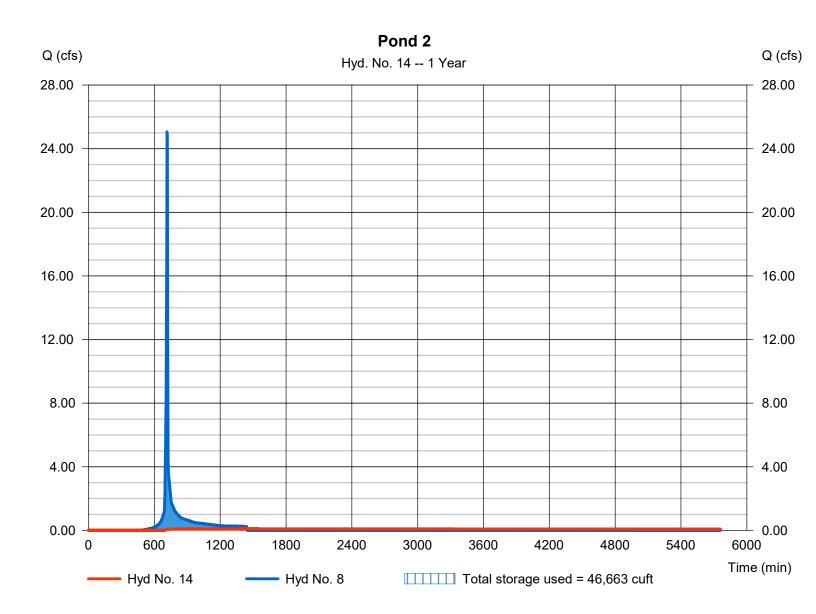

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 48.00	4.00	0.00	0.00	Crest Len (ft)	= 12.00	4.00	45.00	0.00
Span (in)	= 48.00	4.00	0.00	0.00	Crest El. (ft)	= 372.50	371.50	375.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 369.00	369.00	0.00	0.00	Weir Type	= Rect	Rect	Broad	
Length (ft)	= 82.00	1.00	0.00	0.00	Multi-Stage	= Yes	Yes	No	No
Slope (%)	= 0.60	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Weir Structures

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

[A] DISCHARGE PIPE [B] PEAK FLOW DRAWDOWN ORIFICE

[A] TOP OF RISER [B] PEAK FLOW WEIR [C] EMERGENCY SPILLWAY


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Pond 2

Hydrograph type	= Reservoir	Peak discharge	= 0.098 cfs
Storm frequency	= 1 yrs	Time to peak	= 1444 min
Time interval	= 2 min	Hyd. volume	= 26,220 cuft
Inflow hyd. No.	= 8 - TO SCM 2	Max. Elevation	= 383.36 ft
Reservoir name	= Dry Pond 2	Max. Storage	= 46,663 cuft
	•	-	

Storage Indication method used.

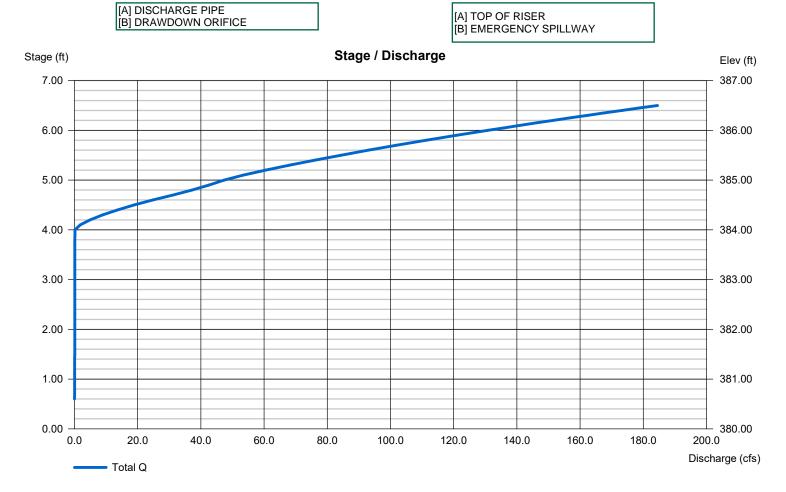
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 2 - Dry Pond 2

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 380.00 ft


Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	380.00	900	0	0
1.00	381.00	13,990	7,445	7,445
2.00	382.00	16,076	15,033	22,478
3.00	383.00	18,226	17,151	39,629
4.00	384.00	20,440	19,333	58,962
5.00	385.00	22,721	21,581	80,543
6.00	386.00	25,071	23,896	104,439
6.50	386.50	26,273	12,836	117,275

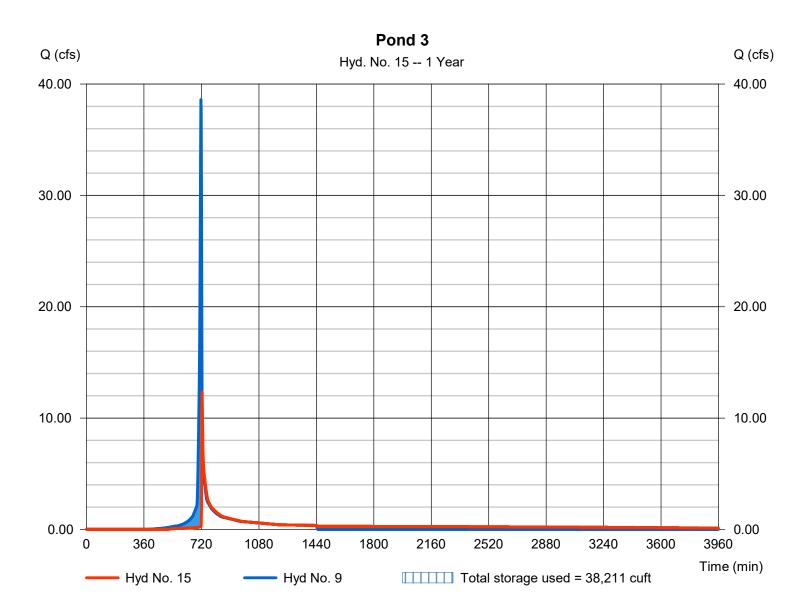
Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 42.00	1.50	0.00	0.00	Crest Len (ft)	= 16.00	20.00	0.00	0.00
Span (in)	= 42.00	1.50	0.00	0.00	Crest El. (ft)	= 384.00	385.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	2.60	3.33	3.33
Invert El. (ft)	= 380.50	380.55	0.00	0.00	Weir Type	= Rect	Broad		
Length (ft)	= 86.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.40	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by	Wet area)		
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

18

Weir Structures


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Pond 3

Hydrograph type	= Reservoir	Peak discharge	= 12.35 cfs
Storm frequency	= 1 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 78,532 cuft
Inflow hyd. No.	= 9 - TO SCM 3	Max. Elevation	= 349.37 ft
Reservoir name	= Dry Pond 3	Max. Storage	= 38,211 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 3 - Dry Pond 3

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 341.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	341.00	00	0	0
1.00	342.00	1,792	896	896
2.00	343.00	2,491	2,142	3,038
3.00	344.00	3,287	2,889	5,927
4.00	345.00	4,174	3,731	9,657
5.00	346.00	5,150	4,662	14,319
6.00	347.00	6,214	5,682	20,001
7.00	348.00	7,366	6,790	26,791
8.00	349.00	8,607	7,986	34,777
9.00	350.00	9,936	9,271	44,049
10.00	351.00	11,340	10,638	54,687
10.50	351.50	12,066	5,852	60,538

Culvert / Orifice Structures

Rise (in)

Span (in)

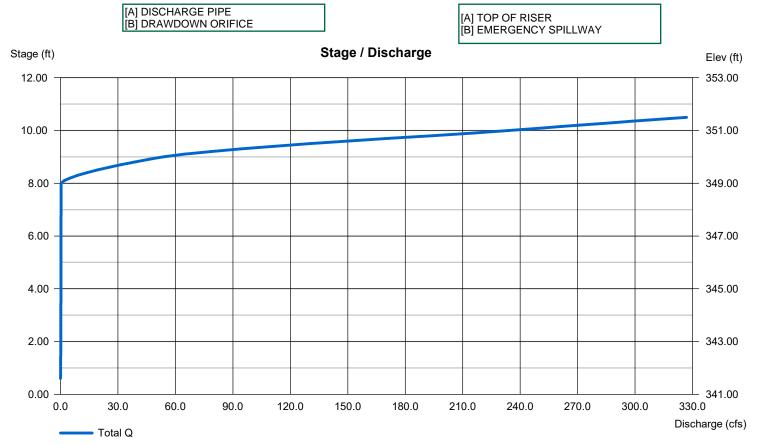
No. Barrels

Invert El. (ft)

Orifice Coeff.

Multi-Stage

Length (ft)


Slope (%)

N-Value

[C] [A] [B] [C] [A] [B] [PrfRsr] = 48.00 2.00 0.00 0.00 = 16.00 35.00 0.00 Crest Len (ft) = 48.00 2.00 0.00 0.00 Crest El. (ft) 350.00 0.00 = 349.00 = 1 1 0 0 Weir Coeff. = 3.33 2.60 3.33 341.60 0.00 0.00 Broad = 341.59Weir Type = Rect ---= 150.00 1.00 0.00 0.00 Multi-Stage = Yes No No = 0.40 0.00 0.00 n/a

= .013	.013	.013	n/a		
= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by Wet area)
= n/a	Yes	No	No	TW Elev. (ft)	= 0.00

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

[D]

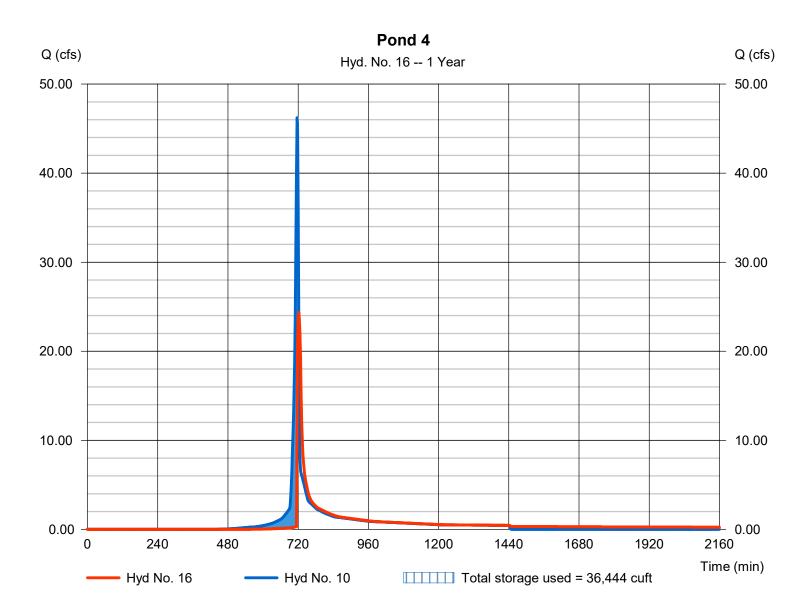
0.00

0.00

3.33

No

Weir Structures


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Pond 4

Hydrograph type	= Reservoir	Peak discharge	= 24.35 cfs
Storm frequency	= 1 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 93,676 cuft
Inflow hyd. No.	= 10 - TO SCM 4	Max. Elevation	= 371.71 ft
Reservoir name	= Wet Pond 4	Max. Storage	= 36,444 cuft

Storage Indication method used.

Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 4 - Wet Pond 4

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 369.00 ft

Stage / Storage Table

Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	369.00	10,270	0	0
1.00	370.00	13,100	11,685	11,685
2.00	371.00	14,638	13,869	25,554
3.00	372.00	16,216	15,427	40,981
4.00	373.00	17,852	17,034	58,015
5.00	374.00	19,545	18,699	76,714

Culvert / Orifice Structures

	[A]	[B]	[C]	[PrfRsr]		[A]	[B]	[C]	[D]
Rise (in)	= 48.00	3.00	0.00	0.00	Crest Len (ft)	= 20.00	0.00	45.00	0.00
Span (in)	= 48.00	3.00	0.00	0.00	Crest El. (ft)	= 371.00	0.00	373.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	2.60	3.33
Invert El. (ft)	= 369.00	369.00	0.00	0.00	Weir Type	= 1		Broad	
Length (ft)	= 20.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	0.00	0.00	n/a					
N-Value	= .013	.013	.013	n/a					
Orifice Coeff.	= 0.60	0.60	0.60	0.60	Exfil.(in/hr)	= 0.000 (by Wet area)			
Multi-Stage	= n/a	Yes	No	No	TW Elev. (ft)	= 0.00			

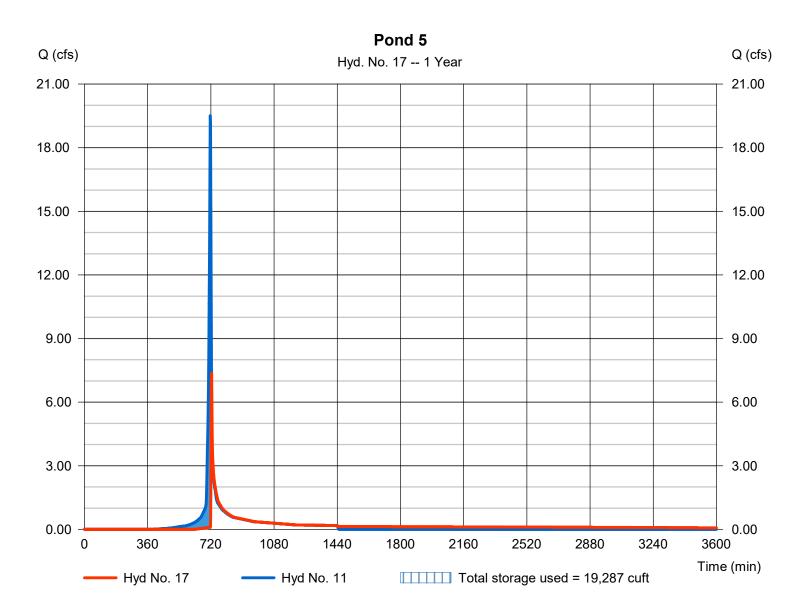
Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

[A] DISCHARGE PIPE [B] PEAK FLOW DRAWDOWN ORIFICE

[A] TOP OF RISER

C EMERGENCY SPILLWAY Stage / Discharge Stage (ft) Elev (ft) 5.00 374.00 4.00 373.00 3.00 372.00 2.00 371.00 370.00 1.00 0.00 369.00 0.0 20.0 40.0 60.0 80.0 100.0 120.0 140.0 160.0 180.0 200.0 220.0 Discharge (cfs) Total Q


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

Pond 5

Hydrograph type	= Reservoir	Peak discharge	= 7.363 cfs
Storm frequency	= 1 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 38,388 cuft
Inflow hyd. No.	= 11 - TO SCM 5	Max. Elevation	= 353.26 ft
Reservoir name	= Dry Pond 5	Max. Storage	= 19,287 cuft

Storage Indication method used.

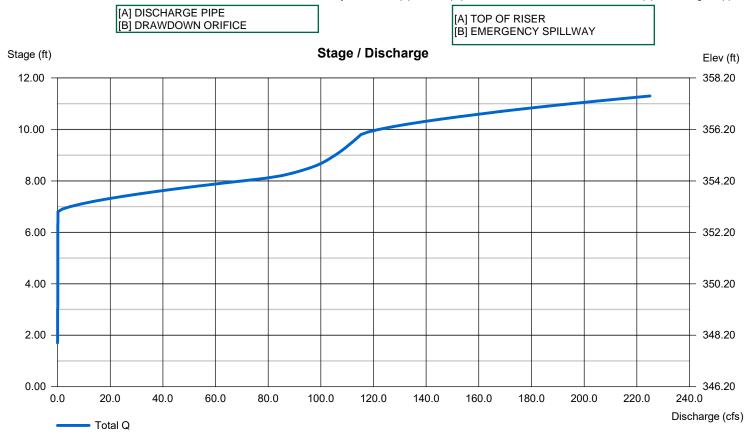
Pond Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Pond No. 5 - Dry Pond 5

Pond Data

Contours -User-defined contour areas. Average end area method used for volume calculation. Begining Elevation = 346.20 ft


Stage / Storage Table

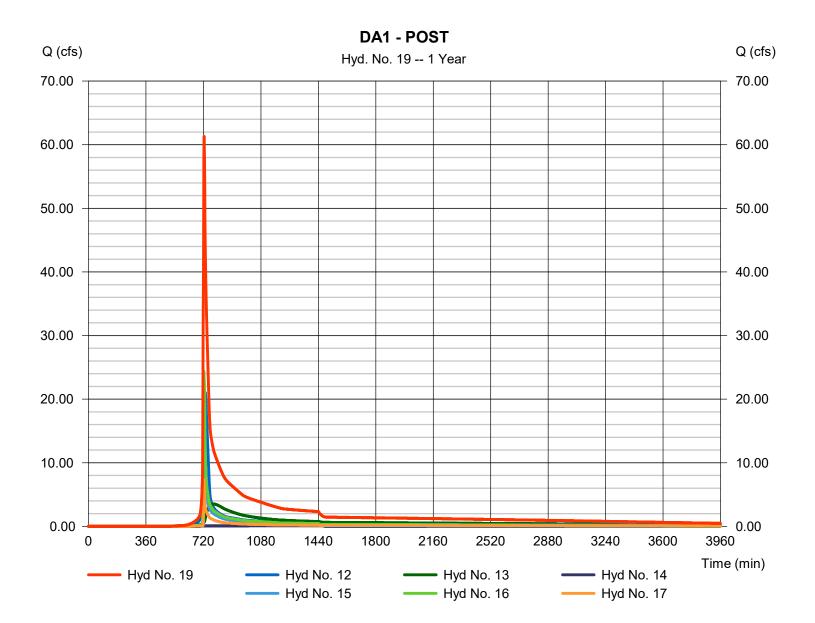
Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	346.20	00	0	0
0.80	347.00	1,036	414	414
1.80	348.00	1,513	1,274	1,688
2.80	349.00	2,080	1,796	3,485
3.80	350.00	2,761	2,421	5,905
4.80	351.00	3,523	3,142	9,047
5.80	352.00	4,352	3,937	12,985
6.80	353.00	5,250	4,801	17,786
7.80	354.00	6,213	5,731	23,517
8.80	355.00	7,238	6,725	30,242
9.80	356.00	8,322	7,780	38,022
10.80	357.00	9,465	8,893	46,915
11.30	357.50	10,058	4,881	51,796

Culvert / Orifice Structures

[A] [B] [C] [PrfRsr] [A] [B] [C] [D] = 42.00 1.50 0.00 0.00 Crest Len (ft) = 16.00 20.00 0.00 0.00 Rise (in) Span (in) = 42.00 1.50 0.00 0.00 Crest El. (ft) = 353.00 356.00 0.00 0.00 = 1 0 Weir Coeff. = 3.33 2.60 3.33 3.33 No. Barrels 1 0 347.90 0.00 0.00 Weir Type Invert El. (ft) = 347.85 = Rect Broad -------= 100.00 0.00 0.00 0.00 Multi-Stage No No No Length (ft) = Yes = 0.60 0.00 0.00 n/a Slope (%) = .013 .013 .013 n/a N-Value Orifice Coeff. = 0.60 0.60 0.60 0.60 Exfil.(in/hr) = 0.000 (by Wet area) Yes = 0.00 Multi-Stage = n/aNo No TW Elev. (ft)

Note: Culvert/Orifice outflows are analyzed under inlet (ic) and outlet (oc) control. Weir risers checked for orifice conditions (ic) and submergence (s).

Weir Structures

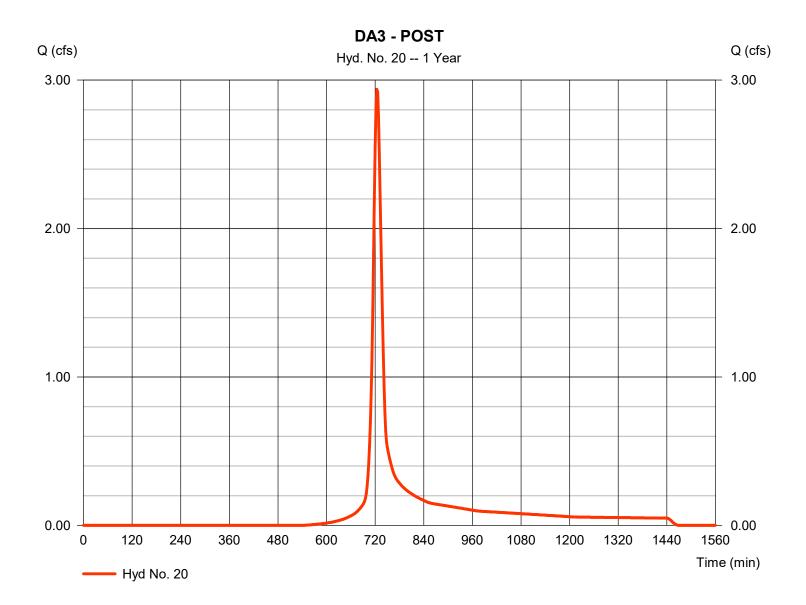

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Wednesday, 09 / 15 / 2021

Hyd. No. 19

DA1 - POST

Hydrograph type	 Combine 1 yrs 2 min 12, 13, 14, 15, 16, 17 	Peak discharge	= 61.29 cfs
Storm frequency		Time to peak	= 724 min
Time interval		Hyd. volume	= 466,530 cuft
Inflow hyds.		Contrib. drain. area	= 20.780 ac
innow nyas.	= 12, 13, 14, 15, 16, 17	Contrib. drain. area	$= 20.780 \mathrm{ac}$

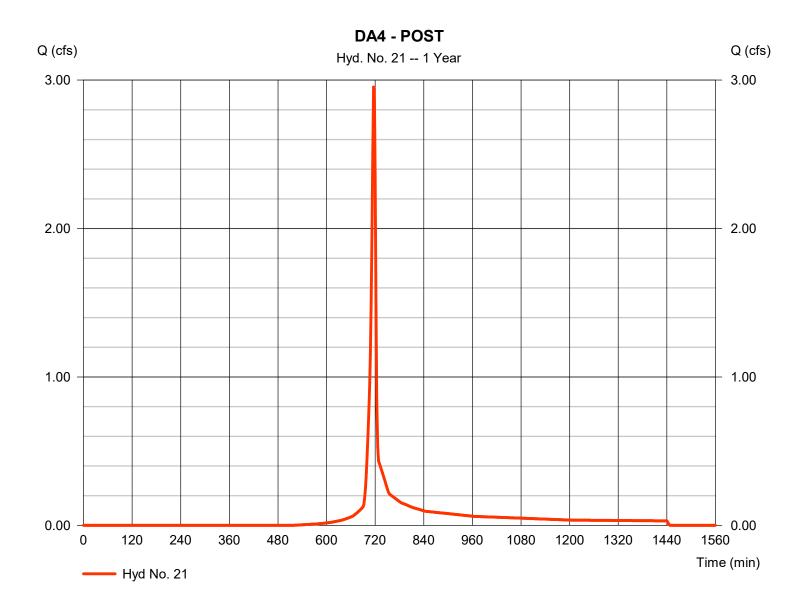


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

DA3 - POST

Hydrograph type	= SCS Runoff	Peak discharge	= 2.938 cfs
Storm frequency	= 1 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 9,254 cuft
Drainage area	= 1.910 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

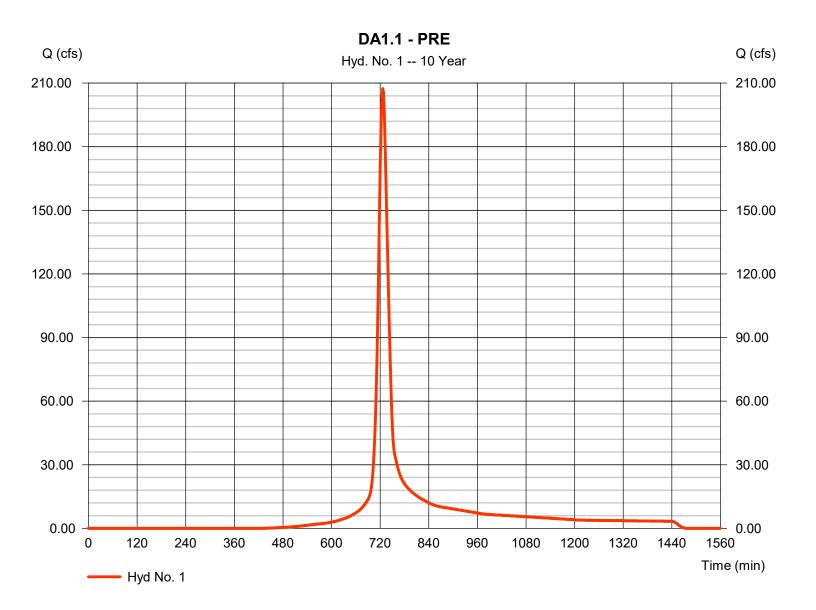
Hyd. No. 21

DA4 - POST

Hydrograph type	= SCS Runoff	Peak discharge	= 2.953 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 5,964 cuft
Drainage area	= 1.250 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

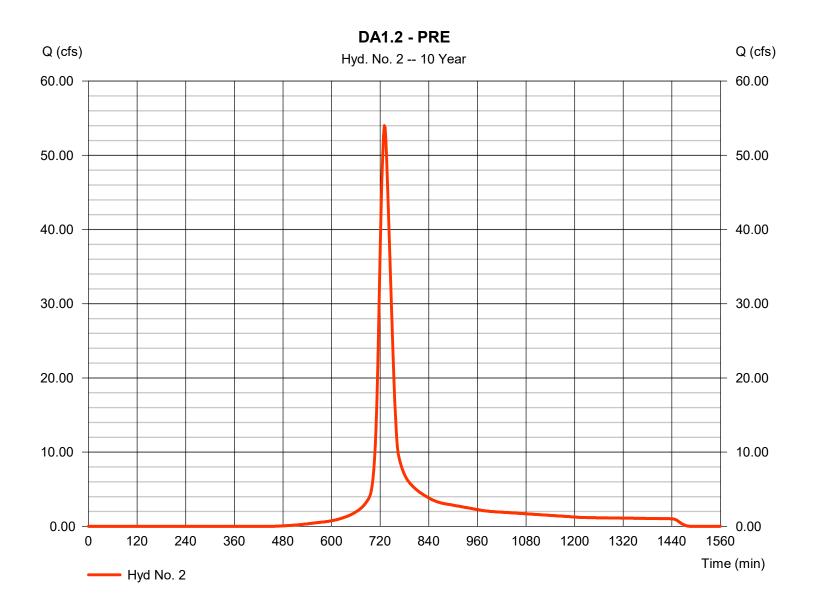

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	207.43	2	726	716,105				DA1.1 - PRE
2	SCS Runoff	53.99	2	730	215,885				DA1.2 - PRE
3	Combine	258.16	2	728	931,989	1, 2			DA1 - PRE
4	SCS Runoff	19.07	2	724	59,620				DA3 - PRE
5	SCS Runoff	21.04	2	720	54,627				DA4 - PRE
7	SCS Runoff	151.95	2	716	321,238				TO SCM 1
8	SCS Runoff	55.64	2	716	116,124				TO SCM 2
9	SCS Runoff	80.35	2	716	171,145				TO SCM 3
10	SCS Runoff	100.40	2	716	210,814				TO SCM 4
11	SCS Runoff	40.60	2	716	86,487				TO SCM 5
12	SCS Runoff	55.76	2	730	222,826				DA2 (BYPASS)
13	Reservoir	58.79	2	722	318,721	7	373.57	150,282	Pond 1
14	Reservoir	7.130	2	730	82,114	8	384.26	64,504	Pond 2
15	Reservoir	78.19	2	718	170,602	9	350.20	46,161	Pond 3
16	Reservoir	79.59	2	720	210,638	10	373.34	64,342	Pond 4
17	Reservoir	39.50	2	718	84,915	11	353.82	22,469	Pond 5
19	Combine	277.83	2	720	1,089,816	12, 13, 14, 15, 16, 17,			DA1 - POST
20	SCS Runoff	7.151	2	724	22,447				DA3 - POST
21	SCS Runoff	6.868	2	716	14,185				DA4 - POST
433	98.gpw				Return F	Period: 10 Y	/ear	Wednesda	y, 09 / 15 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

DA1.1 - PRE

Hydrograph type	 SCS Runoff 10 yrs 2 min 65.610 ac 0.0 % User 5.07 in 	Peak discharge	= 207.43 cfs
Storm frequency		Time to peak	= 726 min
Time interval		Hyd. volume	= 716,105 cuft
Drainage area		Curve number	= 80
Basin Slope		Hydraulic length	= 0 ft
Tc method		Time of conc. (Tc)	= 22.00 min
Total precip.		Distribution	= Type II
Storm duration	= 5.07 m = 24 hrs	Shape factor	= 1ype II = 484

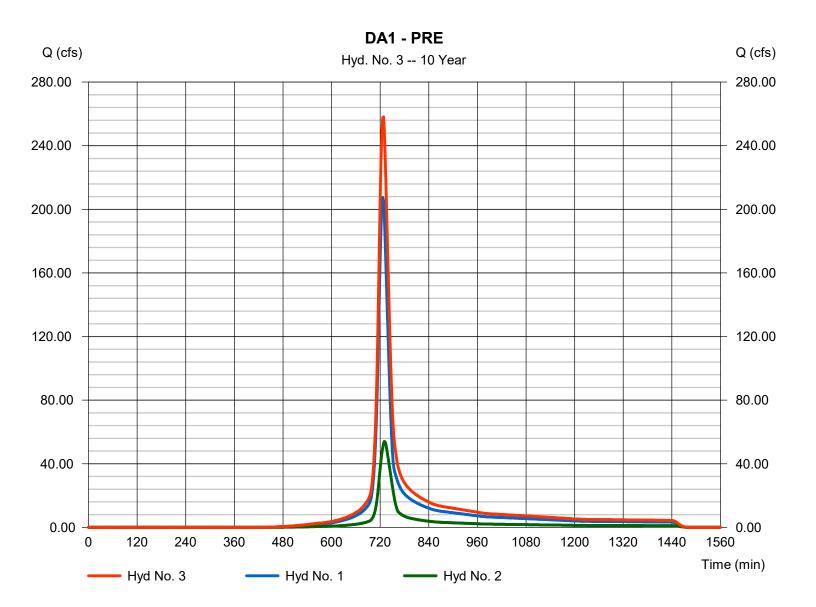


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

DA1.2 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 53.99 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 215,885 cuft
Drainage area	= 20.780 ac	Curve number	= 79
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

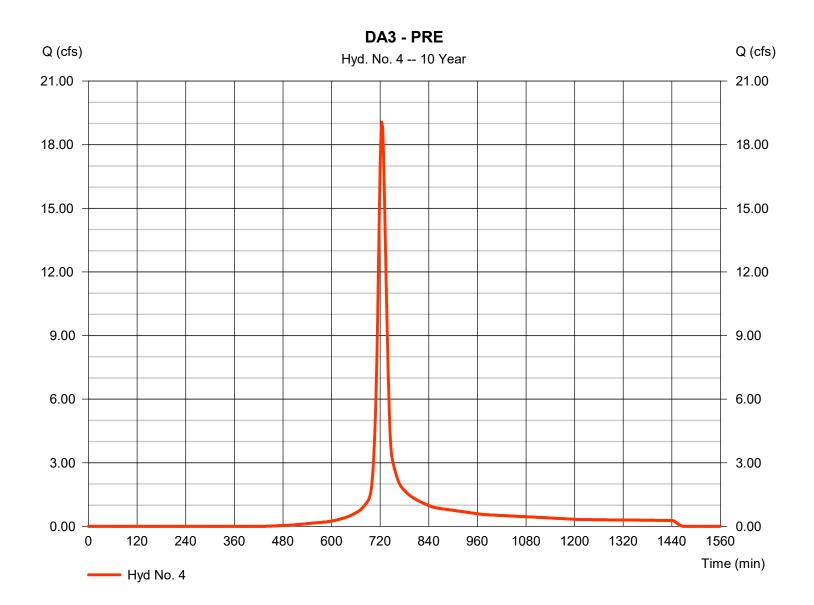


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

DA1 - PRE

Hydrograph type	= Combine	Peak discharge	= 258.16 cfs
Storm frequency	= 10 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 931,989 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 86.390 ac
	-; _	••••••	

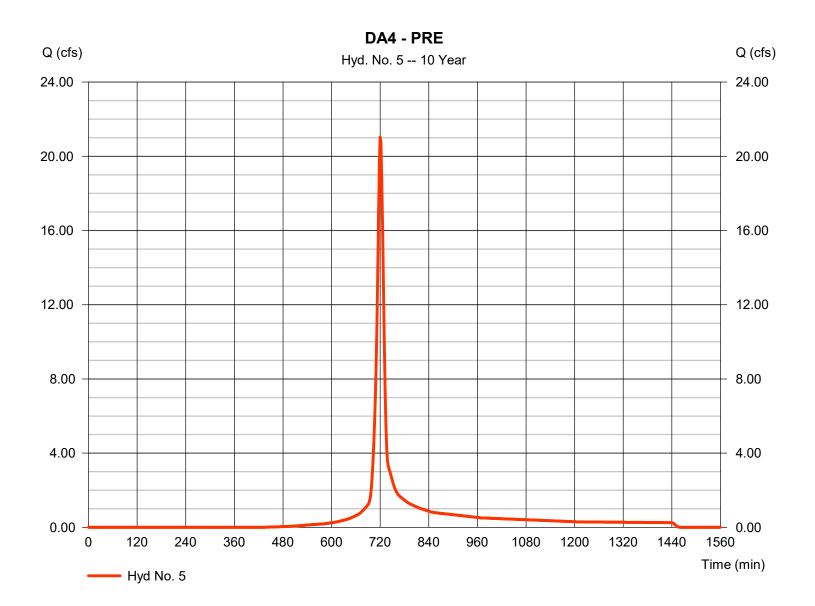


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

DA3 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 19.07 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 59,620 cuft
Drainage area	= 5.560 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

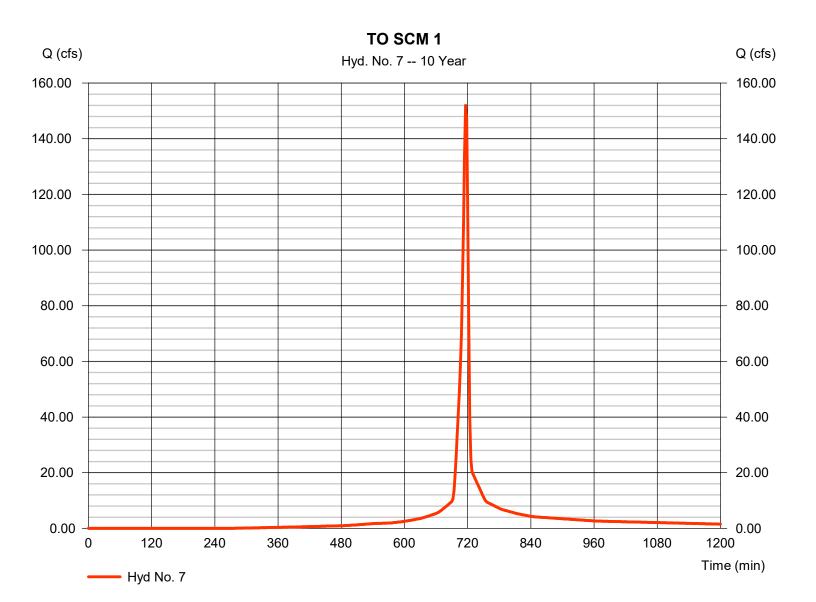


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

DA4 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 21.04 cfs
Storm frequency	= 10 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 54,627 cuft
Drainage area	= 4.940 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

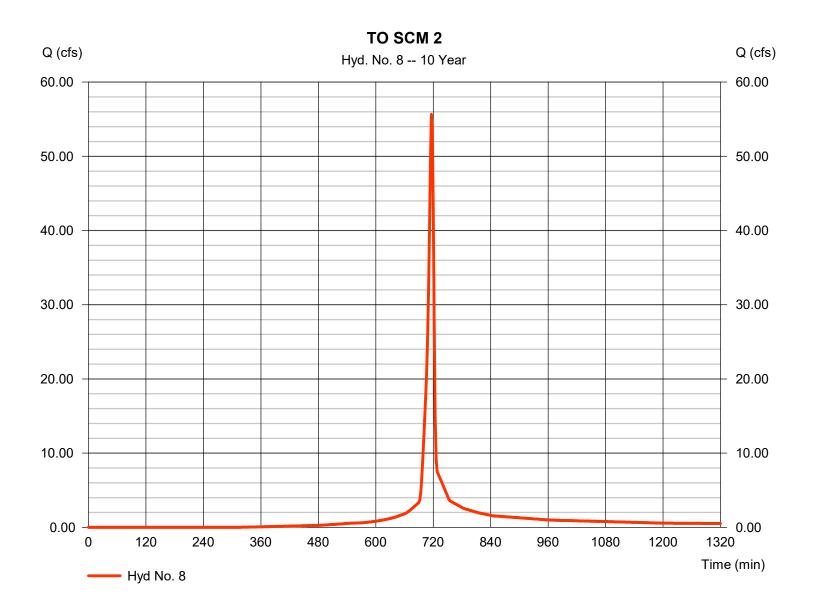
Hyd. No. 7

TO SCM 1

Hydrograph type	= SCS Runoff	Peak discharge	= 151.95 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 321,238 cuft
Drainage area	= 25.270 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.790 x 98) + (7.460 x 98) + (14.020 x 80)] / 25.270

34


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

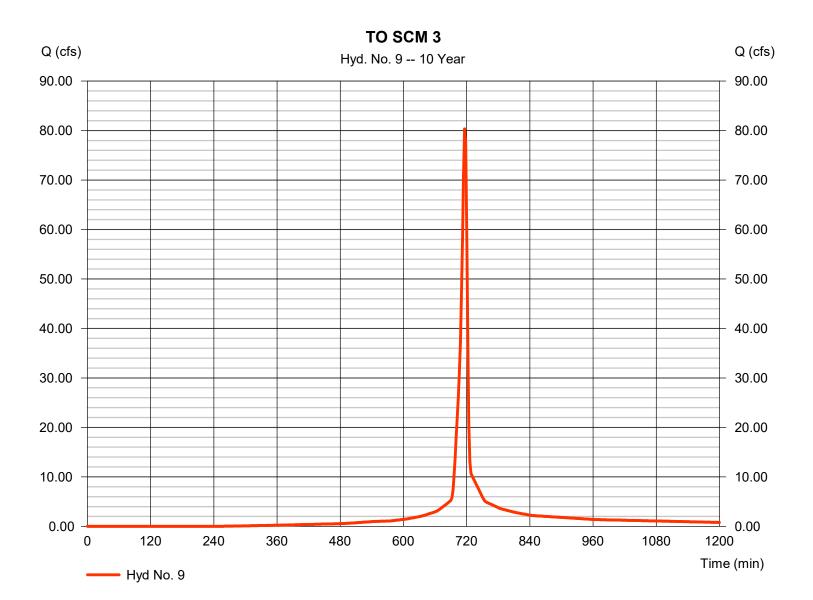
Hyd. No. 8

TO SCM 2

Hydrograph type	= SCS Runoff	Peak discharge	= 55.64 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 116,124 cuft
Drainage area	= 9.660 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.100 x 98) + (2.090 x 98) + (6.470 x 80)] / 9.660

35

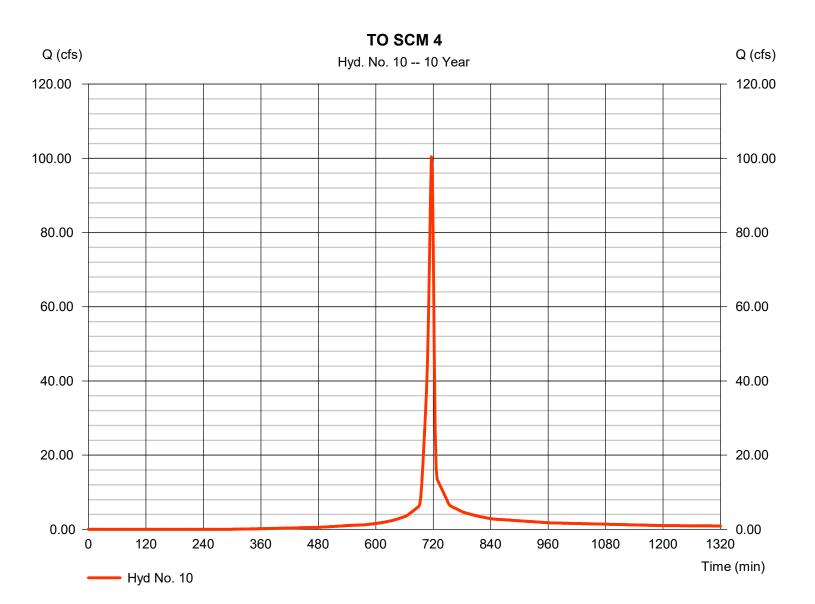

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

TO SCM 3

Hydrograph type	= SCS Runoff	Peak discharge	= 80.35 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 171,145 cuft
Drainage area	= 13.100 ac	Curve number	= 89*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(2.820 x 98) + (3.860 x 98) + (6.420 x 80)] / 13.100

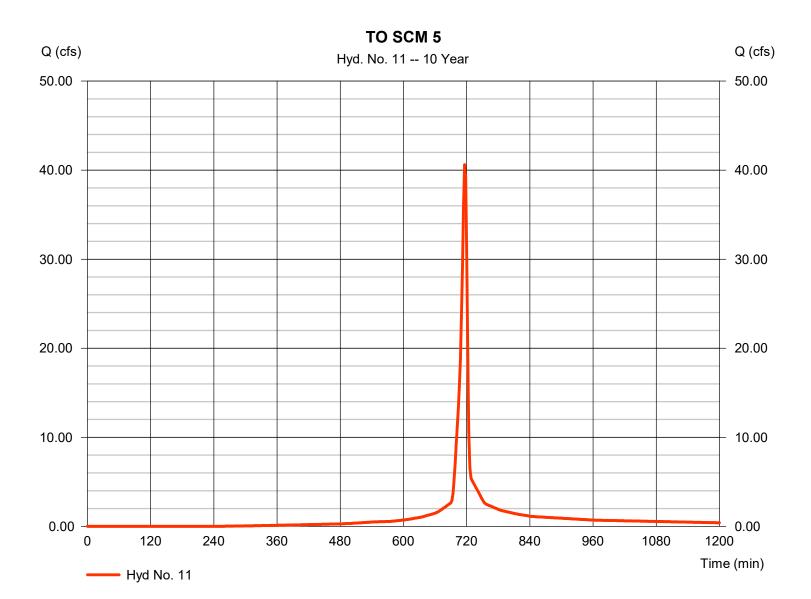

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

TO SCM 4

Hydrograph type	= SCS Runoff	Peak discharge	= 100.40 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 210,814 cuft
Drainage area	= 17.050 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.940 x 98) + (4.220 x 98) + (10.890 x 80)] / 17.050

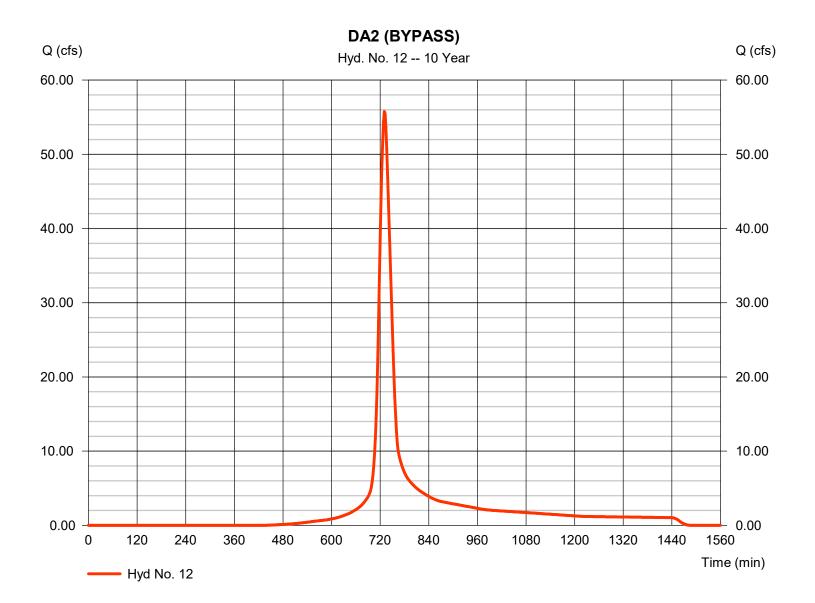

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

TO SCM 5

Hydrograph type	= SCS Runoff	Peak discharge	= 40.60 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 86,487 cuft
Drainage area	= 6.620 ac	Curve number	= 89*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.380 x 98) + (2.000 x 98) + (3.240 x 80)] / 6.620

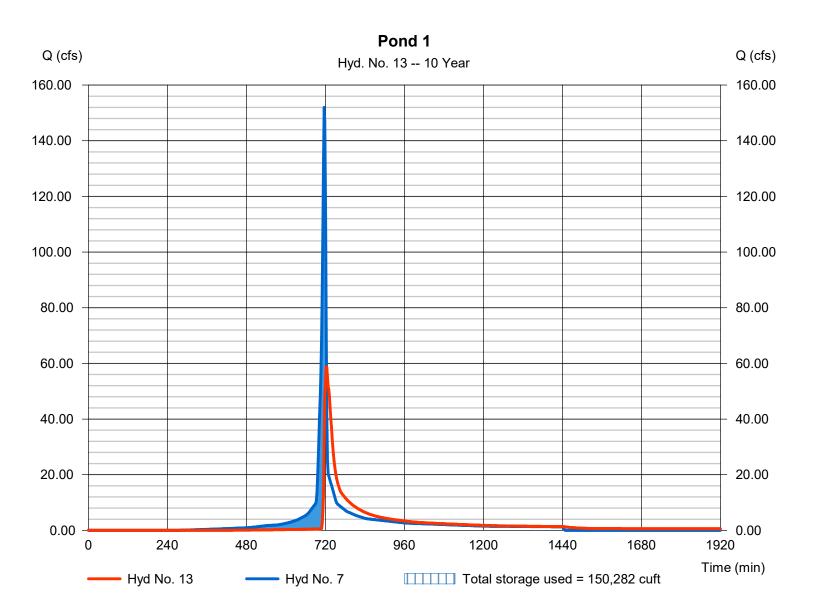


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

DA2 (BYPASS)

Hydrograph type	= SCS Runoff	Peak discharge	= 55.76 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 222,826 cuft
Drainage area	= 20.780 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

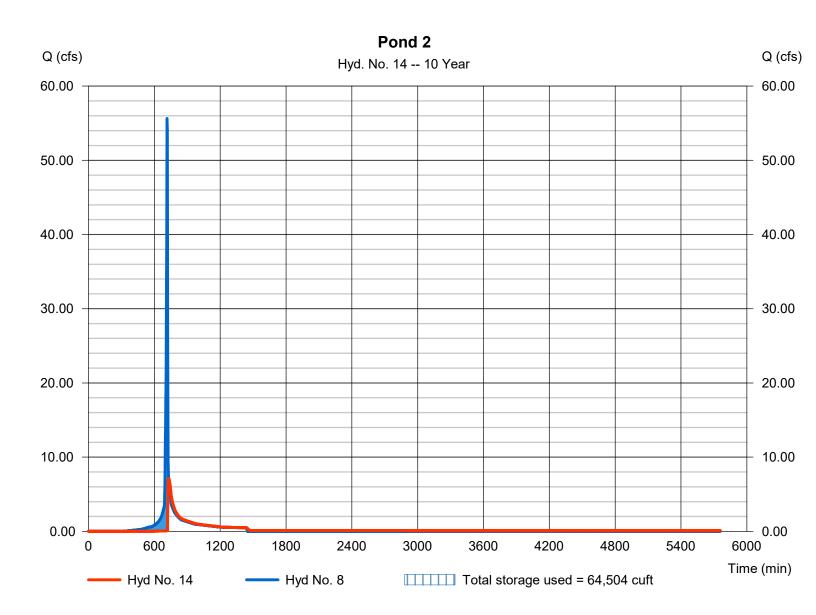

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Pond 1

Hydrograph type	= Reservoir	Peak discharge	= 58.79 cfs
Storm frequency	= 10 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 318,721 cuft
Inflow hyd. No.	= 7 - TO SCM 1	Max. Elevation	= 373.57 ft
Reservoir name	= Wet Pond 1	Max. Storage	= 150,282 cuft

Storage Indication method used.

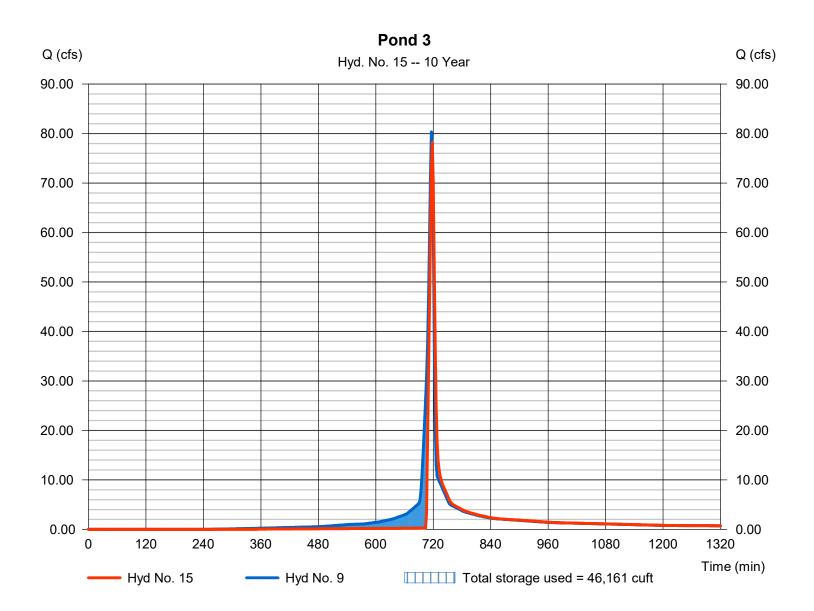


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Pond 2

Hydrograph type	= Reservoir	Peak discharge	= 7.130 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 82,114 cuft
Inflow hyd. No.	= 8 - TO SCM 2	Max. Elevation	= 384.26 ft
Reservoir name	= Dry Pond 2	Max. Storage	= 64,504 cuft
Time interval Inflow hyd. No.	= 2 min = 8 - TO SCM 2	Hyd. volume Max. Elevation	= 82,114 cuft = 384.26 ft

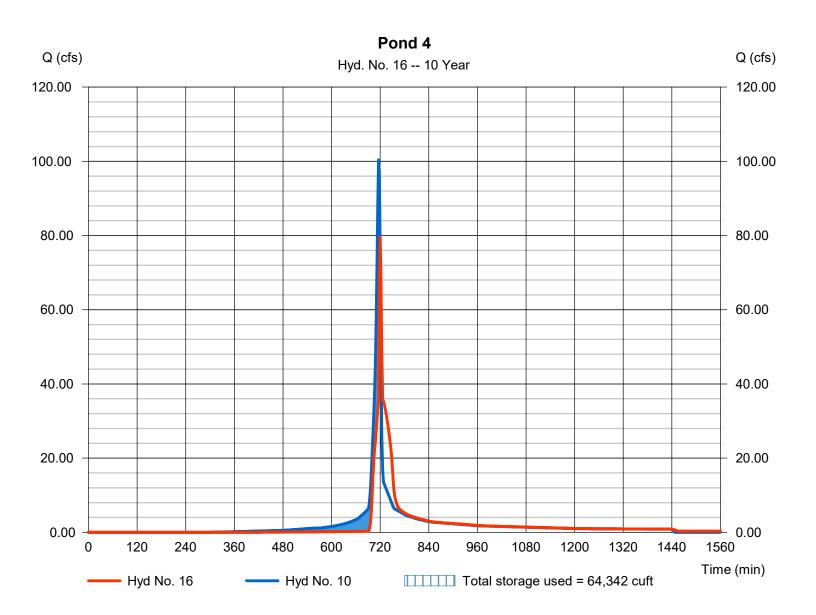


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Pond 3

Hydrograph type	= Reservoir	Peak discharge	= 78.19 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 170,602 cuft
Inflow hyd. No.	= 9 - TO SCM 3	Max. Elevation	= 350.20 ft
Reservoir name	= Dry Pond 3	Max. Storage	= 46,161 cuft
Reservoir name	= Dry Pond 3	Max. Storage	= 46,161 cuft

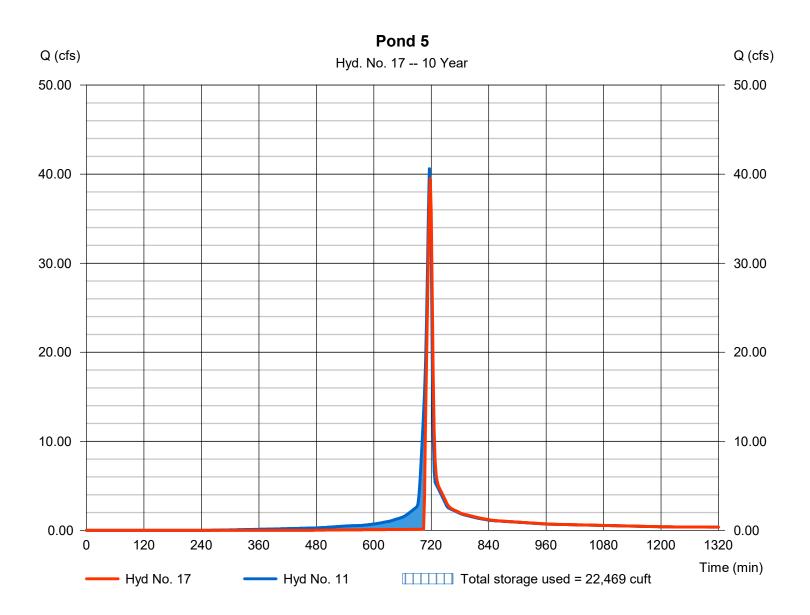


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Pond 4

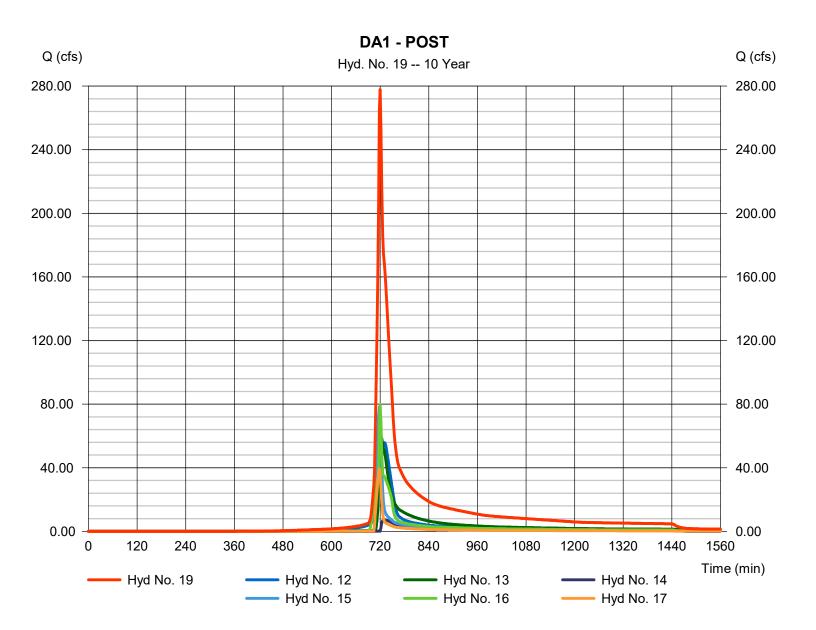
= Reservoir	Peak discharge	= 79.59 cfs
= 10 yrs	Time to peak	= 720 min
= 2 min	Hyd. volume	= 210,638 cuft
= 10 - TO SCM 4	Max. Elevation	= 373.34 ft
= Wet Pond 4	Max. Storage	= 64,342 cuft
	= 10 yrs = 2 min = 10 - TO SCM 4	= 10 yrsTime to peak= 2 minHyd. volume= 10 - TO SCM 4Max. Elevation



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

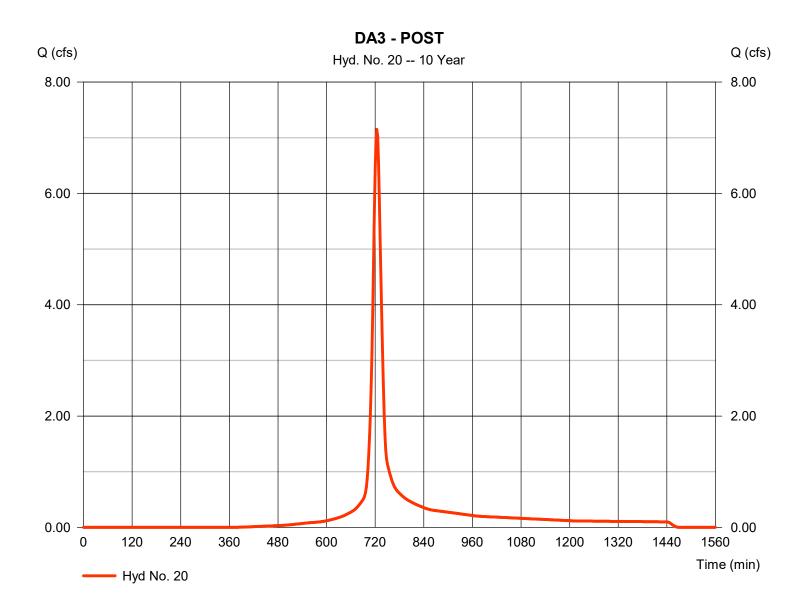
Pond 5


Hydrograph type	= Reservoir	Peak discharge	= 39.50 cfs
Storm frequency	= 10 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 84,915 cuft
Inflow hyd. No.	= 11 - TO SCM 5	Max. Elevation	= 353.82 ft
Reservoir name	= Dry Pond 5	Max. Storage	= 22,469 cuft

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

DA1 - POST

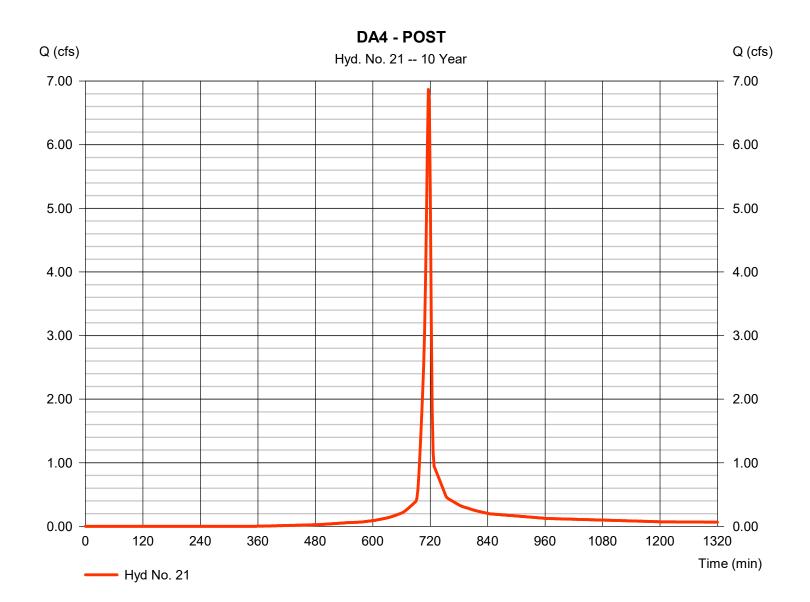


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

DA3 - POST

Hydrograph type	= SCS Runoff	Peak discharge	= 7.151 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 22,447 cuft
Drainage area	= 1.910 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

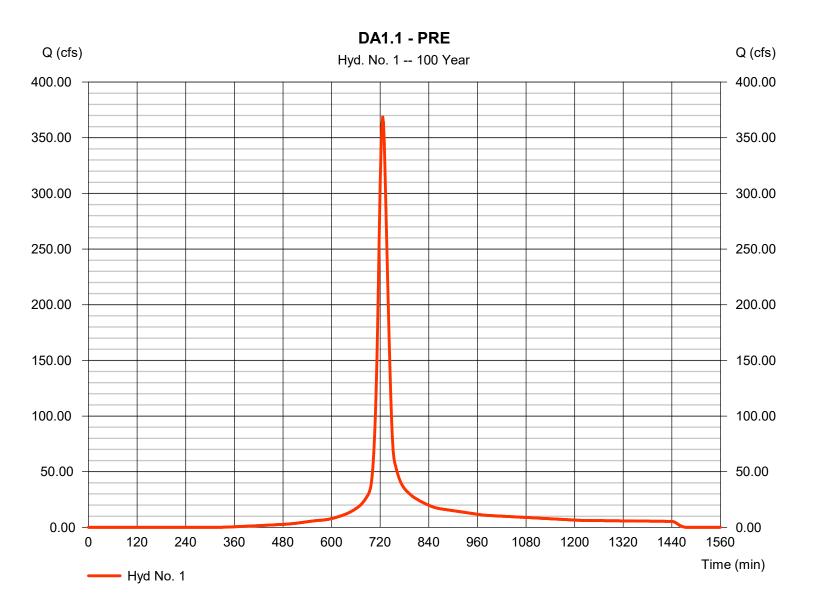
Hyd. No. 21

DA4 - POST

Hydrograph type	= SCS Runoff	Peak discharge	= 6.868 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 14,185 cuft
Drainage area	= 1.250 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.07 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

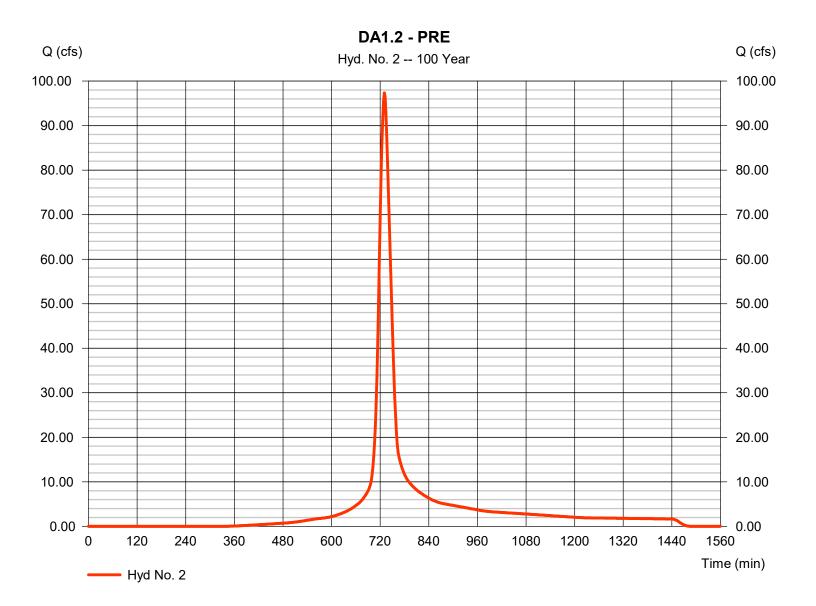

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	368.69	2	726	1,284,246				DA1.1 - PRE
2	SCS Runoff	97.37	2	730	390,953				DA1.2 - PRE
3	Combine	459.85	2	726	1,675,198	1, 2			DA1 - PRE
4	SCS Runoff	33.80	2	724	106,922				DA3 - PRE
5	SCS Runoff	37.13	2	720	97,968				DA4 - PRE
7	SCS Runoff	245.29	2	716	535,449				TO SCM 1
8	SCS Runoff	91.51	2	716	197,000				TO SCM 2
9	SCS Runoff	128.57	2	716	282,807				TO SCM 3
10	SCS Runoff	163.56	2	716	354,483				TO SCM 4
11	SCS Runoff	64.97	2	716	142,915				TO SCM 5
12	SCS Runoff	99.33	2	730	399,610				DA2 (BYPASS)
13	Reservoir	124.48	2	722	532,894	7	375.19	218,014	Pond 1
14	Reservoir	60.89	2	720	162,940	8	385.21	85,469	Pond 2
15	Reservoir	126.14	2	718	282,264	9	350.48	49,134	Pond 3
16	Reservoir	156.07	2	718	354,306	10	373.77	72,459	Pond 4
17	Reservoir	63.14	2	718	141,343	11	354.12	24,314	Pond 5
19	Combine	565.57	2	718	1,873,357	12, 13, 14, 15, 16, 17,			DA1 - POST
20	SCS Runoff	12.25	2	724	39,130				DA3 - POST
21	SCS Runoff	11.52	2	716	24,502				DA4 - POST
433	98.gpw				Return P	Period: 100	Year	Wednesda	y, 09 / 15 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 1

DA1.1 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 368.69 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 1,284,246 cuft
Drainage area	= 65.610 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 22.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

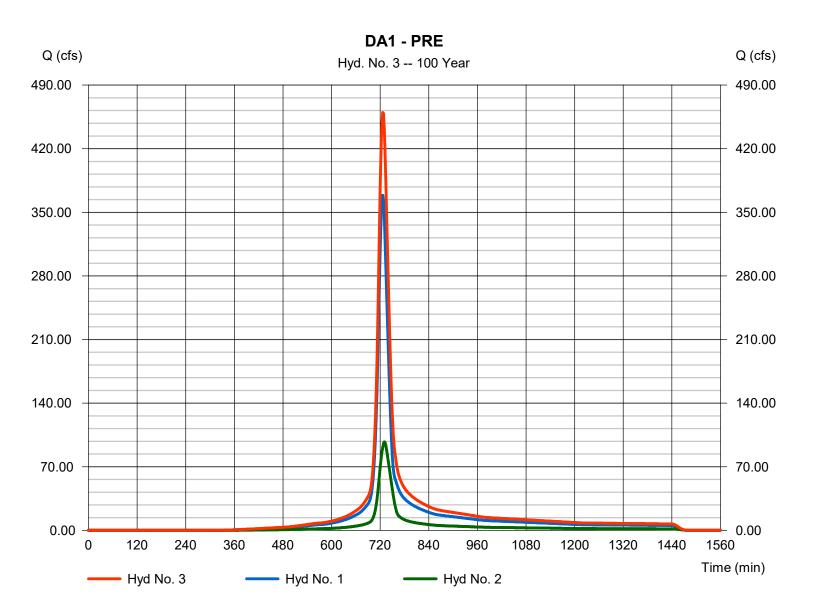


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 2

DA1.2 - PRE

Hydrograph type	 SCS Runoff 100 yrs 2 min 20.780 ac 0.0 % 	Peak discharge	= 97.37 cfs
Storm frequency		Time to peak	= 730 min
Time interval		Hyd. volume	= 390,953 cuft
Drainage area		Curve number	= 79
Basin Slope		Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

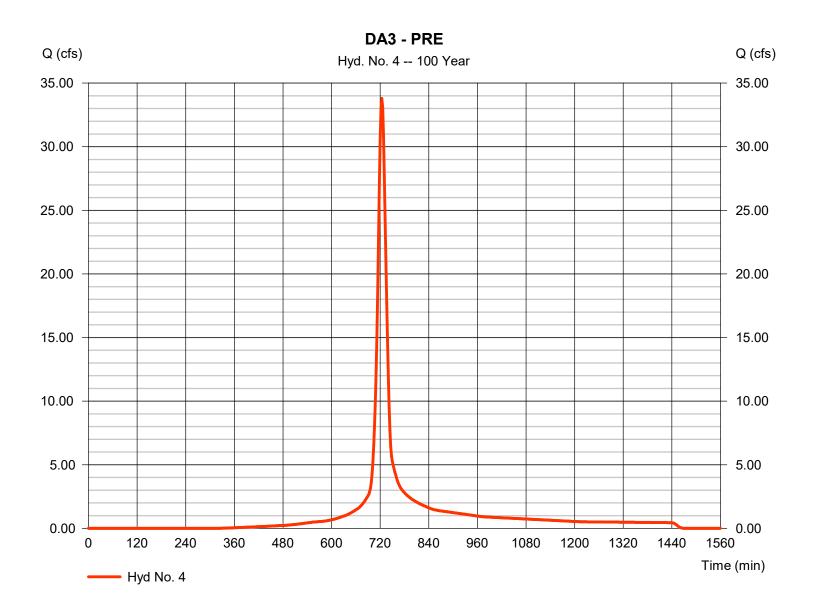


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 3

DA1 - PRE

Hydrograph type	= Combine	Peak discharge	= 459.85 cfs
Storm frequency	= 100 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 1,675,198 cuft
Inflow hyds.	= 1, 2	Contrib. drain. area	= 86.390 ac

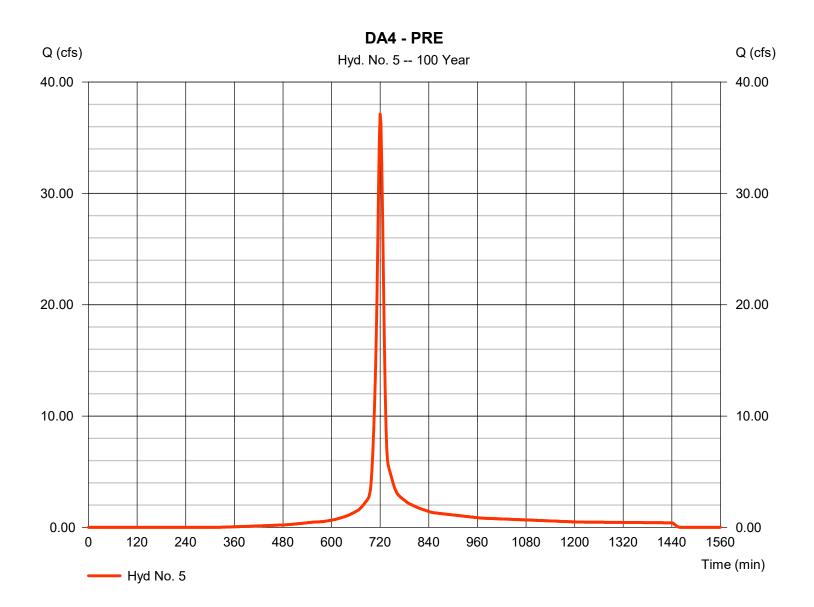

51

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 4

DA3 - PRE

Hydrograph type	= SCS Runoff	Peak discharge	= 33.80 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 106,922 cuft
Drainage area	= 5.560 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484



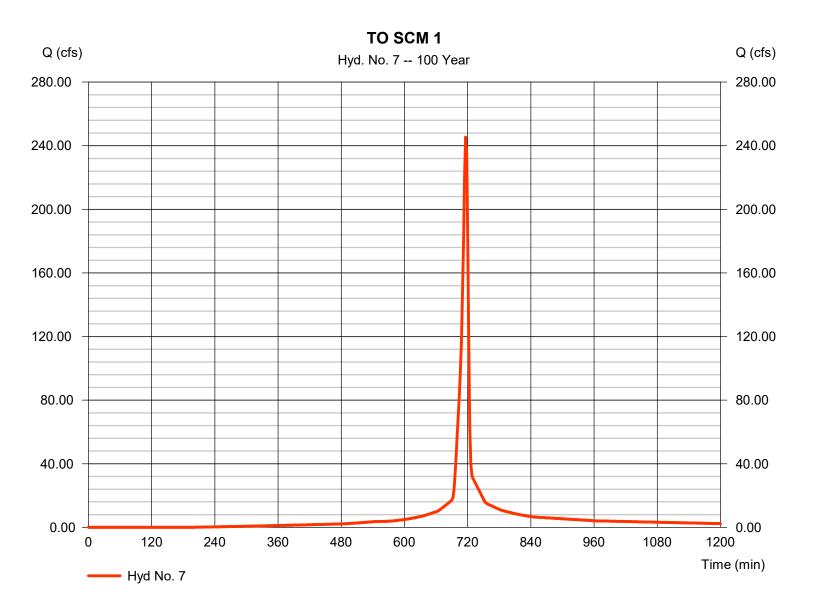
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 5

DA4 - PRE

Hydrograph type Storm frequency	= SCS Runoff = 100 yrs	Peak discharge Time to peak	= 37.13 cfs = 720 min
Time interval	= 2 min	Hyd. volume	= 97,968 cuft
Drainage area	= 4.940 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 10.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

53

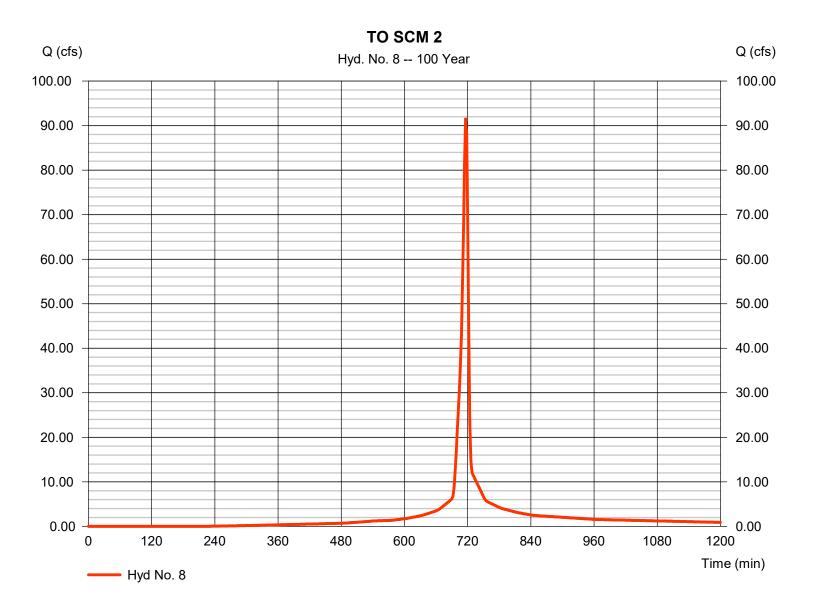

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 7

TO SCM 1

Hydrograph type	= SCS Runoff	Peak discharge	= 245.29 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 535,449 cuft
Drainage area	= 25.270 ac	Curve number	= 88*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(3.790 x 98) + (7.460 x 98) + (14.020 x 80)] / 25.270

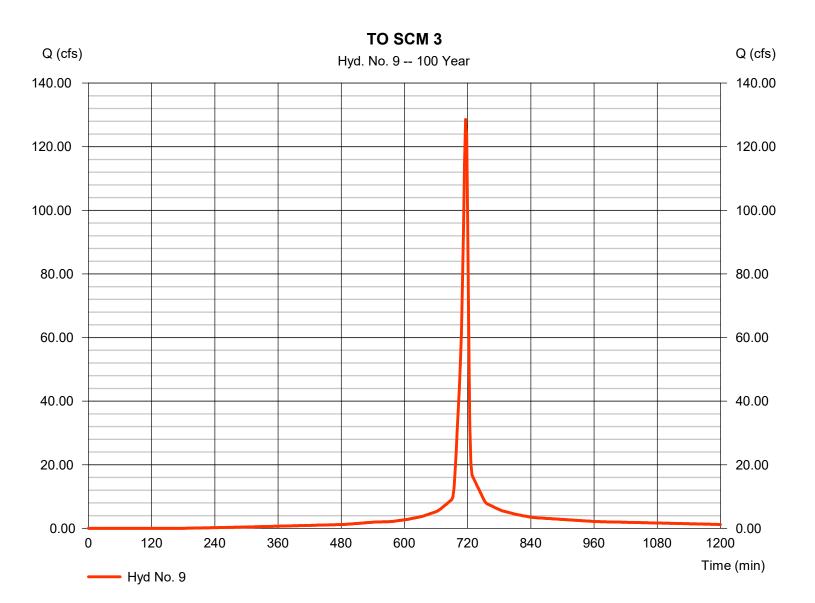

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 8

TO SCM 2

Hydrograph type	= SCS Runoff	Peak discharge	= 91.51 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 197,000 cuft
Drainage area	= 9.660 ac	Curve number	= 86*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
Time interval Drainage area Basin Slope Tc method Total precip.	= 2 min = 9.660 ac = 0.0 % = User = 7.65 in	Hyd. volume Curve number Hydraulic length Time of conc. (Tc) Distribution	= 197,000 cuft = 86* = 0 ft = 5.00 min = Type II

* Composite (Area/CN) = [(1.100 x 98) + (2.090 x 98) + (6.470 x 80)] / 9.660

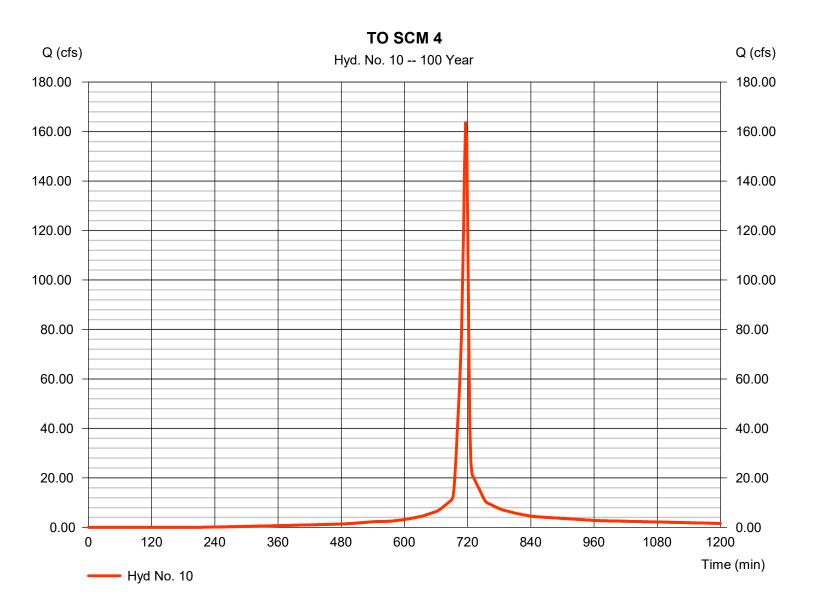

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 9

TO SCM 3

Hydrograph type	= SCS Runoff	Peak discharge	= 128.57 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 282,807 cuft
Drainage area	= 13.100 ac	Curve number	= 89*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484
• •			51

* Composite (Area/CN) = [(2.820 x 98) + (3.860 x 98) + (6.420 x 80)] / 13.100

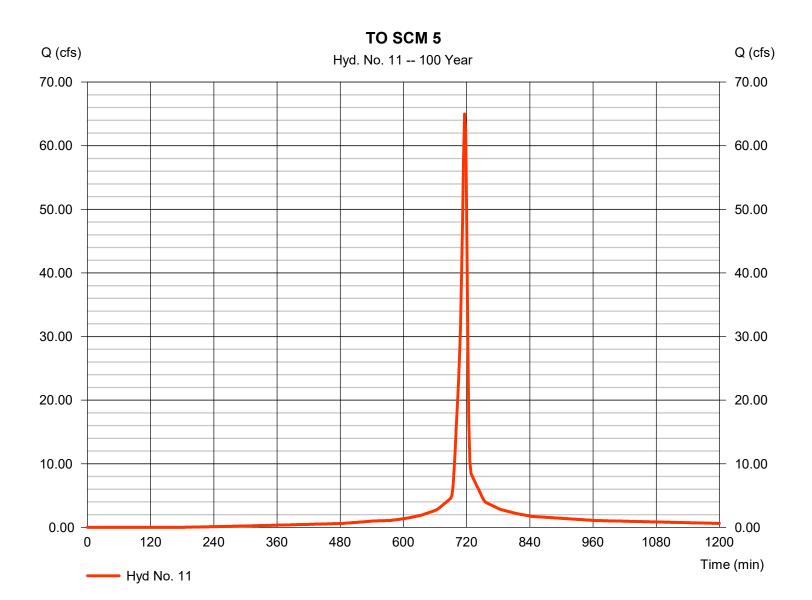

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 10

TO SCM 4

Hydrograph type	= SCS Runoff	Peak discharge	= 163.56 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 354,483 cuft
Drainage area	= 17.050 ac	Curve number	= 87*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.940 x 98) + (4.220 x 98) + (10.890 x 80)] / 17.050

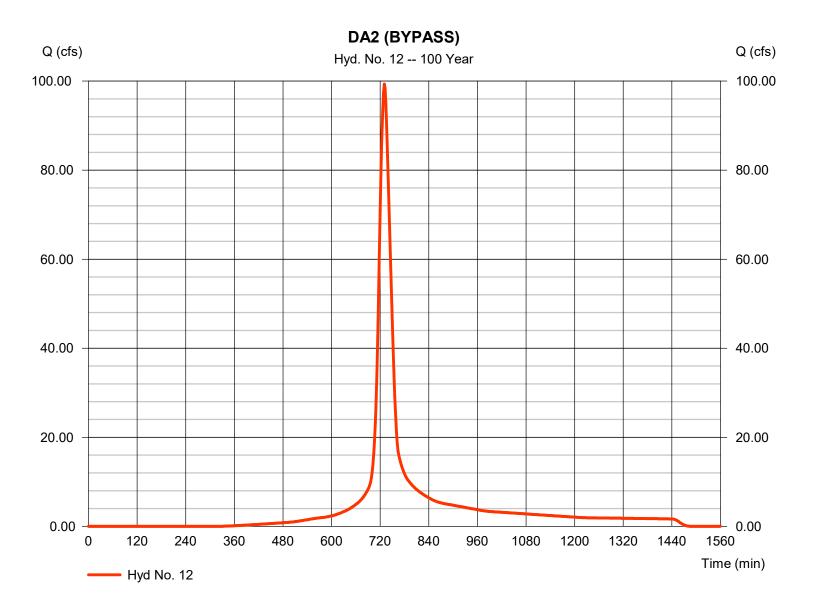

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 11

TO SCM 5

Hydrograph type	= SCS Runoff	Peak discharge	= 64.97 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 142,915 cuft
Drainage area	= 6.620 ac	Curve number	= 89*
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

* Composite (Area/CN) = [(1.380 x 98) + (2.000 x 98) + (3.240 x 80)] / 6.620

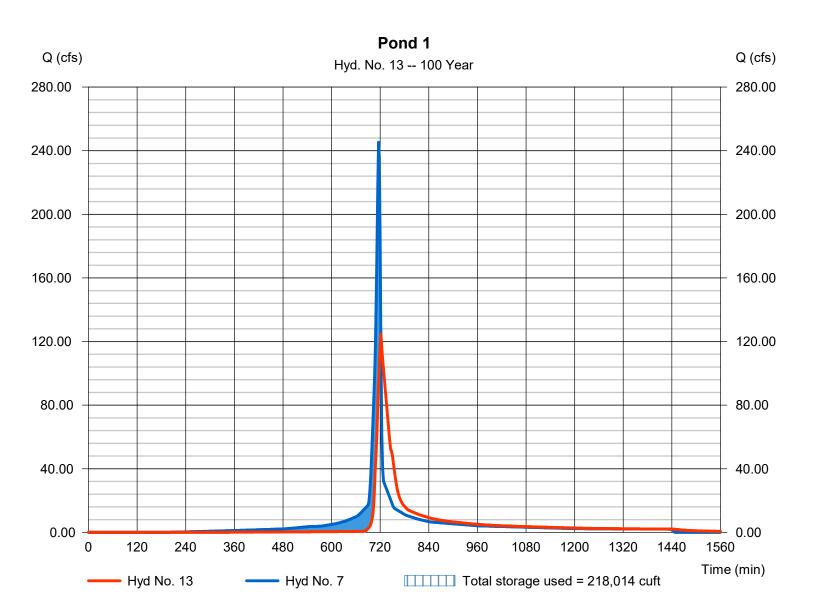


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 12

DA2 (BYPASS)

Hydrograph type	= SCS Runoff	Peak discharge	= 99.33 cfs
Storm frequency	= 100 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 399,610 cuft
Drainage area	= 20.780 ac	Curve number	= 80
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 30.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

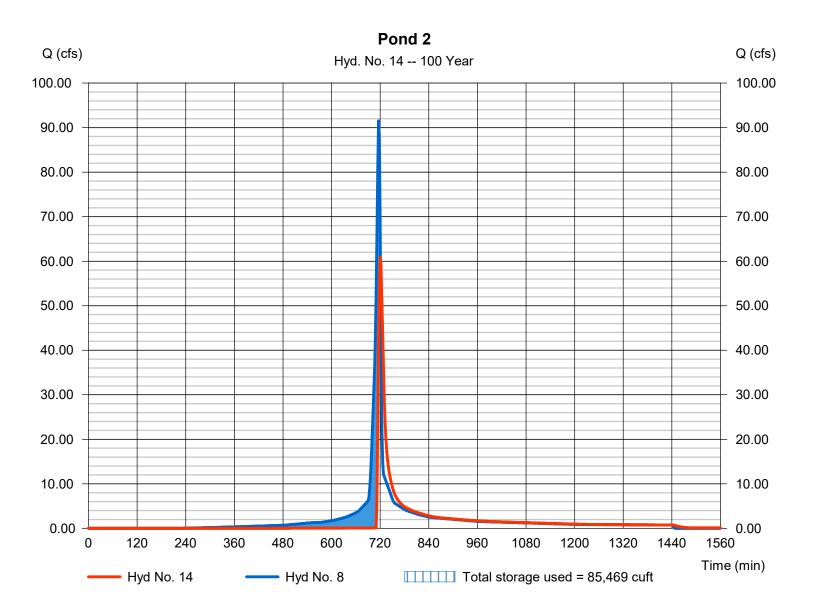


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 13

Pond 1

Hydrograph type	= Reservoir	Peak discharge	= 124.48 cfs
Storm frequency	= 100 yrs	Time to peak	= 722 min
Time interval	= 2 min	Hyd. volume	= 532,894 cuft
Inflow hyd. No.	= 7 - TO SCM 1	Max. Elevation	= 375.19 ft
Reservoir name	= Wet Pond 1	Max. Storage	= 218,014 cuft
2			

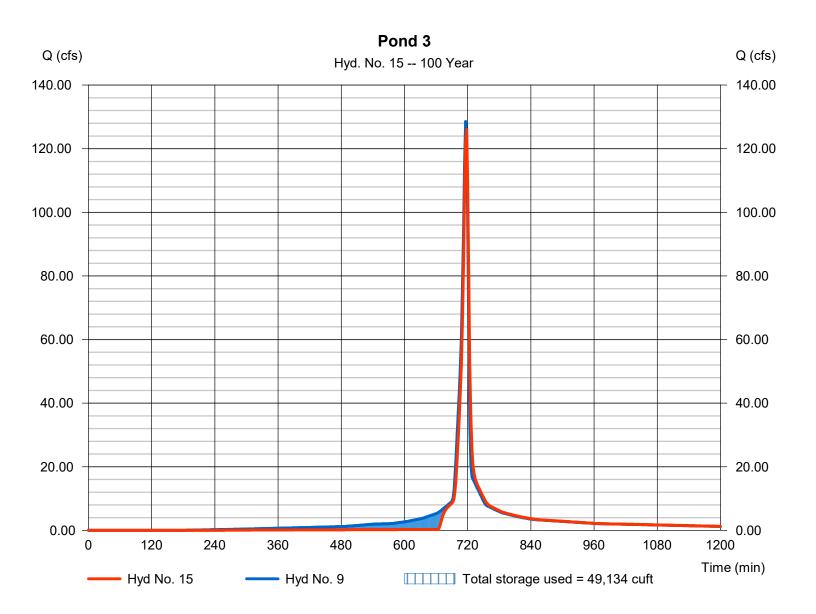

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 14

Pond 2

Hydrograph type	= Reservoir	Peak discharge	= 60.89 cfs
Storm frequency	= 100 yrs	Time to peak	= 720 min
Time interval	= 2 min	Hyd. volume	= 162,940 cuft
Inflow hyd. No.	= 8 - TO SCM 2	Max. Elevation	= 385.21 ft
Reservoir name	= Dry Pond 2	Max. Storage	= 85,469 cuft
,			

Storage Indication method used.

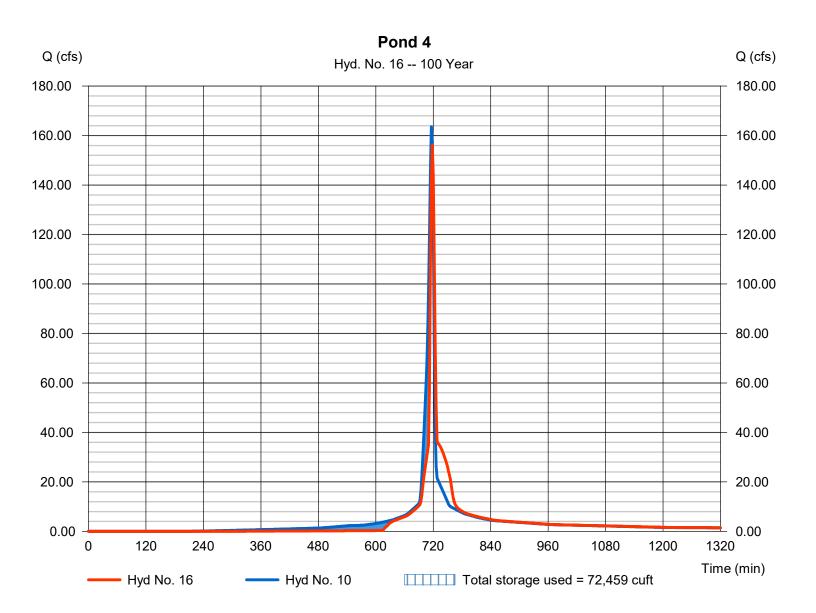

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 15

Pond 3

Hydrograph type	= Reservoir	Peak discharge	= 126.14 cfs
Storm frequency	= 100 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 282,264 cuft
Inflow hyd. No.	= 9 - TO SCM 3	Max. Elevation	= 350.48 ft
Reservoir name	= Dry Pond 3	Max. Storage	= 49,134 cuft

Storage Indication method used.

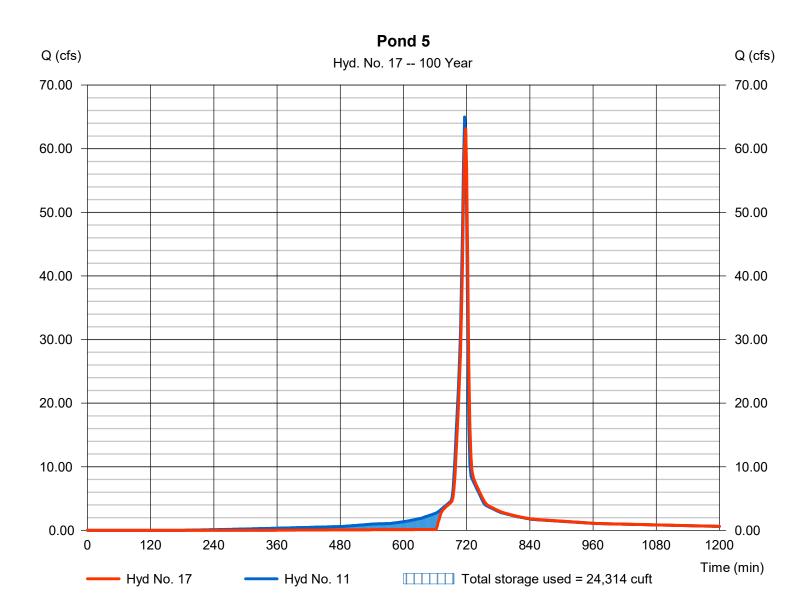

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 16

Pond 4

Reservoir	Peak discharge	= 156.07 cfs
= 100 yrs	Time to peak	= 718 min
2 min	Hyd. volume	= 354,306 cuft
= 10 - TO SCM 4	Max. Elevation	= 373.77 ft
Wet Pond 4	Max. Storage	= 72,459 cuft
	100 yrs 2 min 10 - TO SCM 4	100 yrsTime to peak2 minHyd. volume10 - TO SCM 4Max. Elevation

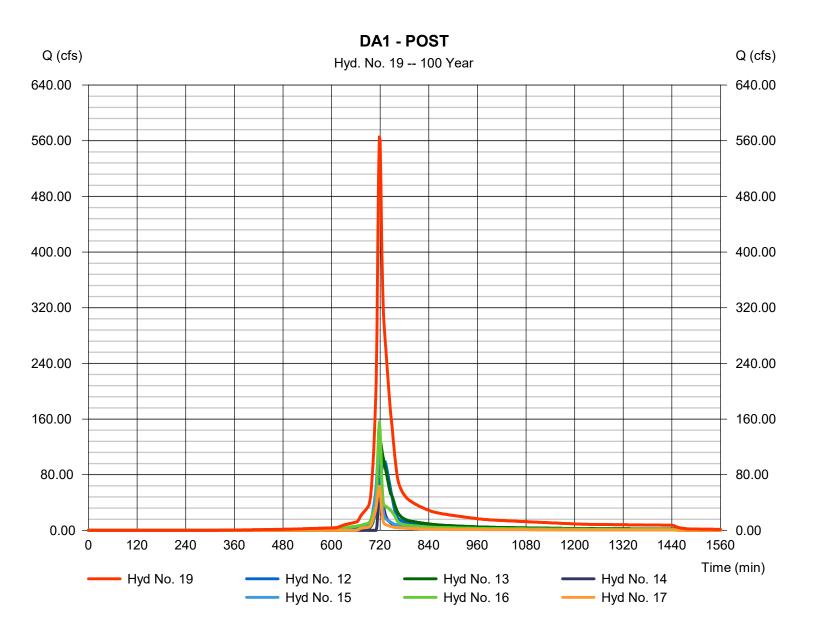
Storage Indication method used.


Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 17

Pond 5

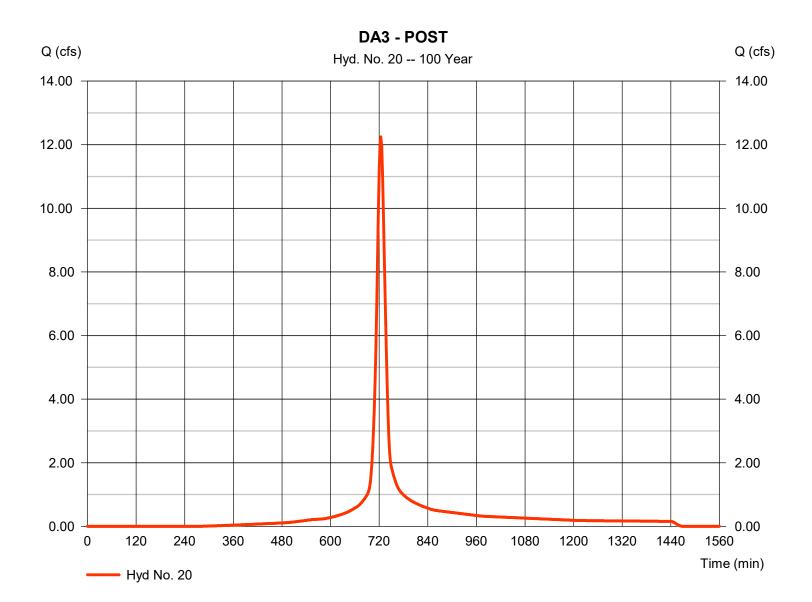
Hydrograph type	= Reservoir	Peak discharge	= 63.14 cfs
Storm frequency	= 100 yrs	Time to peak	= 718 min
Time interval	= 2 min	Hyd. volume	= 141,343 cuft
Inflow hyd. No.	= 11 - TO SCM 5	Max. Elevation	= 354.12 ft
Reservoir name	= Dry Pond 5	Max. Storage	= 24,314 cuft
	,	0	


Storage Indication method used.

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 19

DA1 - POST


Wednesday, 09 / 15 / 2021

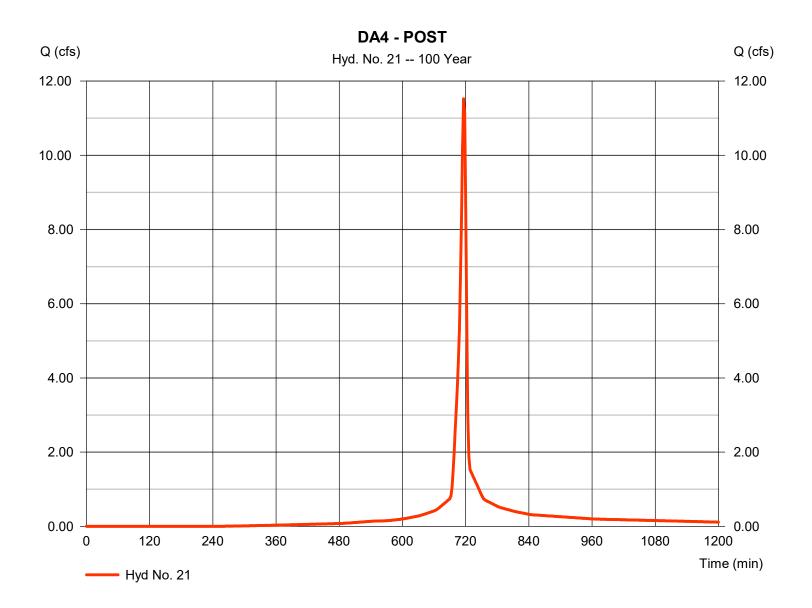
Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 20

DA3 - POST

Hydrograph type	= SCS Runoff	Peak discharge	= 12.25 cfs
Storm frequency	= 100 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 39,130 cuft
Drainage area	= 1.910 ac	Curve number	= 83
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

66


Wednesday, 09 / 15 / 2021

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Hyd. No. 21

DA4 - POST

Hydrograph type	= SCS Runoff	Peak discharge	= 11.52 cfs
Storm frequency	= 100 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 24,502 cuft
Drainage area	= 1.250 ac	Curve number	= 84
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 7.65 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Rainfall Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2021

Return Period	Intensity-Du	Intensity-Duration-Frequency Equation Coefficients (FHA)								
(Yrs)	В	D	E	(N/A)						
1	59.3109	12.3000	0.8785							
2	70.6470	12.8000	0.8790							
3	0.0000	0.0000	0.0000							
5	0.0000	0.0000	0.0000							
10	71.9967	12.5000	0.8049							
25	62.3565	11.1000	0.7398							
50	0.0000	0.0000	0.0000							
100	52.4893	9.2000	0.6566							
	1		1	1						

File name: 43398.IDF

Intensity = B / (Tc + D)^E

Intensity Values (in/hr)											
5 min	10	15	20	25	30	35	40	45	50	55	60
4.85	3.88	3.25	2.80	2.47	2.21	2.00	1.83	1.69	1.57	1.47	1.38
5.62	4.52	3.80	3.29	2.90	2.60	2.36	2.16	2.00	1.86	1.74	1.63
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
7.19	5.87	5.00	4.37	3.89	3.52	3.22	2.97	2.76	2.58	2.43	2.29
7.98	6.53	5.58	4.90	4.39	3.99	3.67	3.40	3.17	2.98	2.81	2.66
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
9.19	7.54	6.48	5.73	5.16	4.72	4.36	4.07	3.82	3.60	3.41	3.25
	4.85 5.62 0.00 0.00 7.19 7.98 0.00	4.85 3.88 5.62 4.52 0.00 0.00 0.00 0.00 7.19 5.87 7.98 6.53 0.00 0.00	4.85 3.88 3.25 5.62 4.52 3.80 0.00 0.00 0.00 0.00 0.00 0.00 7.19 5.87 5.00 7.98 6.53 5.58 0.00 0.00 0.00	4.85 3.88 3.25 2.80 5.62 4.52 3.80 3.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5.87 5.00 4.37 7.98 6.53 5.58 4.90 0.00 0.00 0.00 0.00	5 min 10 15 20 25 4.85 3.88 3.25 2.80 2.47 5.62 4.52 3.80 3.29 2.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.19 5.87 5.00 4.37 3.89 7.98 6.53 5.58 4.90 4.39 0.00 0.00 0.00 0.00 0.00	5 min 10 15 20 25 30 4.85 3.88 3.25 2.80 2.47 2.21 5.62 4.52 3.80 3.29 2.90 2.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.19 5.87 5.00 4.37 3.89 3.52 7.98 6.53 5.58 4.90 4.39 3.99 0.00 0.00 0.00 0.00 0.00 0.00	5 min 10 15 20 25 30 35 4.85 3.88 3.25 2.80 2.47 2.21 2.00 5.62 4.52 3.80 3.29 2.90 2.60 2.36 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.19 5.87 5.00 4.37 3.89 3.52 3.22 7.98 6.53 5.58 4.90 4.39 3.99 3.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5 min 10 15 20 25 30 35 40 4.85 3.88 3.25 2.80 2.47 2.21 2.00 1.83 5.62 4.52 3.80 3.29 2.90 2.60 2.36 2.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.19 5.87 5.00 4.37 3.89 3.52 3.22 2.97 7.98 6.53 5.58 4.90 4.39 3.99 3.67 3.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5 min 10 15 20 25 30 35 40 45 4.85 3.88 3.25 2.80 2.47 2.21 2.00 1.83 1.69 5.62 4.52 3.80 3.29 2.90 2.60 2.36 2.16 2.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.19 5.87 5.00 4.37 3.89 3.52 3.22 2.97 2.76 7.98 6.53 5.58 4.90 4.39 3.99 3.67 3.40 3.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5 min 10 15 20 25 30 35 40 45 50 4.85 3.88 3.25 2.80 2.47 2.21 2.00 1.83 1.69 1.57 5.62 4.52 3.80 3.29 2.90 2.60 2.36 2.16 2.00 1.83 0.00 0.0	5 min 10 15 20 25 30 35 40 45 50 55 4.85 3.88 3.25 2.80 2.47 2.21 2.00 1.83 1.69 1.57 1.47 5.62 4.52 3.80 3.29 2.90 2.60 2.36 2.16 2.00 1.86 1.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Tc = time in minutes. Values may exceed 60.

		F	Rainfall F	Precipitat	tion Tab	le (in)	in)						
Storm Distribution	1-yr	2-yr	3-yr	5-yr	10-yr	25-yr	50-yr	100-yr					
SCS 24-hour	2.86	3.46	0.00	0.00	5.07	6.05	0.00	7.65					
SCS 6-Hr	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-1st	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-2nd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-3rd	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-4th	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Huff-Indy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					
Custom	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00					

Precip. file name: S:\332\43398-Wheeler_Tract\Calc\Stm\1_Hydraflow\43398.pcp

Maps

NOAA Rainfall Data

USGS Map

FEMA FIRM Maps

Wake County 1970 Soil Map

Pre/Post Development Drainage Area Maps

6 | www.timmons.com

Precipitation Frequency Data Server

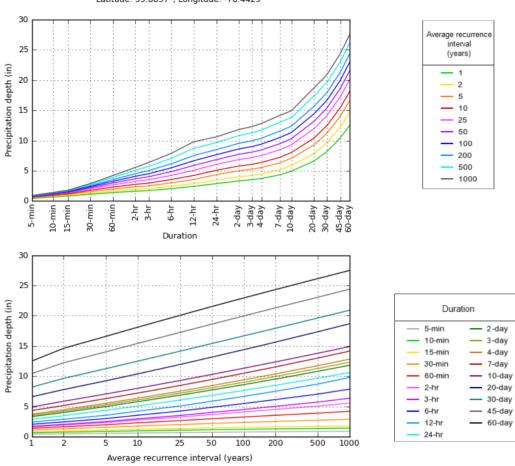
POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

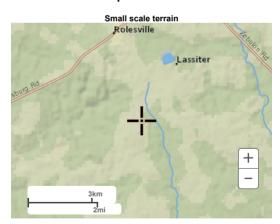

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹										
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.404	0.469	0.534	0.600	0.666	0.720	0.767	0.809	0.856	0.898
	(0.370-0.442)	(0.430-0.512)	(0.489-0.583)	(0.549-0.655)	(0.607-0.727)	(0.652-0.784)	(0.691-0.835)	(0.725-0.883)	(0.760-0.935)	(0.791-0.983)
10-min	0.645	0.750	0.855	0.960	1.06	1.15	1.22	1.28	1.35	1.41
	(0.591-0.706)	(0.687-0.819)	(0.783-0.933)	(0.878-1.05)	(0.967-1.16)	(1.04-1.25)	(1.10-1.33)	(1.15-1.40)	(1.20-1.48)	(1.25-1.55)
15-min	0.806	0.942	1.08	1.21	1.35	1.45	1.54	1.62	1.70	1.78
	(0.738-0.883)	(0.864-1.03)	(0.991-1.18)	(1.11-1.32)	(1.23-1.47)	(1.32-1.58)	(1.39-1.68)	(1.45-1.77)	(1.51-1.86)	(1.56-1.94)
30-min	1.11	1.30	1.54	1.76	1.99	2.19	2.36	2.52	2.71	2.88
	(1.01-1.21)	(1.19-1.42)	(1.41-1.68)	(1.61-1.92)	(1.82-2.17)	(1.98-2.38)	(2.13-2.57)	(2.26-2.75)	(2.41-2.96)	(2.53-3.15)
60-min	1.38	1.63	1.97	2.29	2.66	2.96	3.25	3.53	3.89	4.20
	(1.26-1.51)	(1.50-1.79)	(1.81-2.15)	(2.10-2.50)	(2.42-2.90)	(2.69-3.23)	(2.93-3.54)	(3.17-3.86)	(3.46-4.25)	(3.70-4.59)
2-hr	1.61	1.92	2.34	2.75	3.24	3.67	4.08	4.51	5.06	5.55
	(1.46-1.78)	(1.75-2.10)	(2.13-2.57)	(2.49-3.02)	(2.92-3.54)	(3.29-4.01)	(3.64-4.46)	(3.99-4.93)	(4.44-5.53)	(4.83-6.09)
3-hr	1.71	2.03	2.49	2.95	3.50	4.00	4.50	5.02	5.72	6.35
	(1.55-1.89)	(1.86-2.24)	(2.26-2.74)	(2.67-3.24)	(3.16-3.85)	(3.59-4.39)	(4.00-4.94)	(4.43-5.50)	(4.99-6.27)	(5.48-6.98)
6-hr	2.05	2.44	2.99	3.54	4.23	4.85	5.48	6.14	7.03	7.86
	(1.87-2.26)	(2.23-2.69)	(2.72-3.28)	(3.22-3.89)	(3.82-4.63)	(4.36-5.31)	(4.88-5.98)	(5.41-6.69)	(6.12-7.67)	(6.75-8.59)
12-hr	2.41	2.87	3.54	4.22	5.07	5.86	6.65	7.51	8.70	9.80
	(2.21-2.66)	(2.64-3.15)	(3.24-3.88)	(3.85-4.62)	(4.59-5.54)	(5.26-6.38)	(5.92-7.24)	(6.61-8.16)	(7.53-9.45)	(8.36-10.7)
24-hr	2.86 (2.66-3.09)	3.46 (3.22-3.73)	4.36 (4.05-4.70)	(4.70-5.46)	6.05 (5.59-6.52)	6.83 (6.29-7.36)	7.65 (7.01-8.24)	8.49 (7.76-9.16)	9.66 (8.78-10.4)	10.6 (9.58-11.5)
2-day	3.32 (3.08-3.57)	3.99 (3.72-4.30)	4.99 (4.64-5.38)	5.78 (5.36-6.22)	6.86 (6.34-7.39)	7.72 (7.11-8.31)	8.61 (7.90-9.27)	9.53 (8.71-10.3)	10.8 (9.81-11.7)	11.8 (10.7-12.8)
3-day	3.52	4.23	5.26	6.07	7.19	8.08	9.00	9.95	11.3	12.3
	(3.28-3.77)	(3.94-4.54)	(4.90-5.64)	(5.64-6.51)	(6.66-7.71)	(7.46-8.67)	(8.28-9.67)	(9.12-10.7)	(10.3-12.1)	(11.2-13.3)
4-day	3.72 (3.47-3.98)	4.46 (4.17-4.77)	5.52 (5.16-5.90)	6.36 (5.93-6.80)	7.52 (6.98-8.04)	8.45 (7.81-9.03)	9.40 (8.66-10.1)	10.4 (9.53-11.1)	11.7 (10.7-12.6)	12.8 (11.6-13.8)
7-day	4.32	5.15	6.30	7.21	8.46	9.46	10.5	11.5	13.0	14.2
	(4.04-4.61)	(4.82-5.50)	(5.89-6.72)	(6.73-7.69)	(7.87-9.03)	(8.78-10.1)	(9.70-11.2)	(10.6-12.4)	(11.9-14.0)	(12.9-15.2)
10-day	4.92 (4.61-5.24)	5.85 (5.49-6.24)	7.06 (6.61-7.52)	8.00 (7.48-8.52)	9.28 (8.66-9.89)	10.3 (9.58-11.0)	11.3 (10.5-12.1)	12.4 (11.4-13.2)	13.8 (12.7-14.8)	14.9 (13.7-16.0)
20-day	6.59 (6.20-7.02)	7.79 (7.33-8.30)	9.24 (8.68-9.83)	10.4 (9.74-11.0)	11.9 (11.2-12.7)	13.2 (12.3-14.0)	14.4 (13.4-15.3)	15.6 (14.5-16.7)	17.4 (16.0-18.6)	18.7 (17.2-20.0)
30-day	8.19 (7.72-8.70)	9.64 (9.09-10.2)	11.2 (10.6-11.9)	12.5 (11.7-13.3)	14.1 (13.3-15.0)	15.4 (14.4-16.4)	16.7 (15.6-17.7)	17.9 (16.7-19.1)	19.6 (18.2-21.0)	20.9 (19.3-22.4)
45-day	10.4 (9.89-11.0)	12.2 (11.6-12.9)	14.0 (13.3-14.8)	15.4 (14.6-16.3)	17.2 (16.3-18.2)	18.6 (17.6-19.7)	20.0 (18.8-21.1)	21.3 (20.0-22.5)	23.1 (21.6-24.5)	24.4 (22.8-25.9)
60-day	12.5 (11.9-13.2)	14.6 (13.9-15.4)	16.6 (15.7-17.4)	18.1 (17.2-19.0)	20.1 (19.0-21.1)	21.5 (20.4-22.7)	22.9 (21.7-24.2)	24.3 (22.9-25.7)	26.1 (24.6-27.7)	27.5 (25.8-29.1)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probabile maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical


PDS-based depth-duration-frequency (DDF) curves Latitude: 35.8857°, Longitude: -78.4429°

NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Thu Jan 21 12:15:12 2021

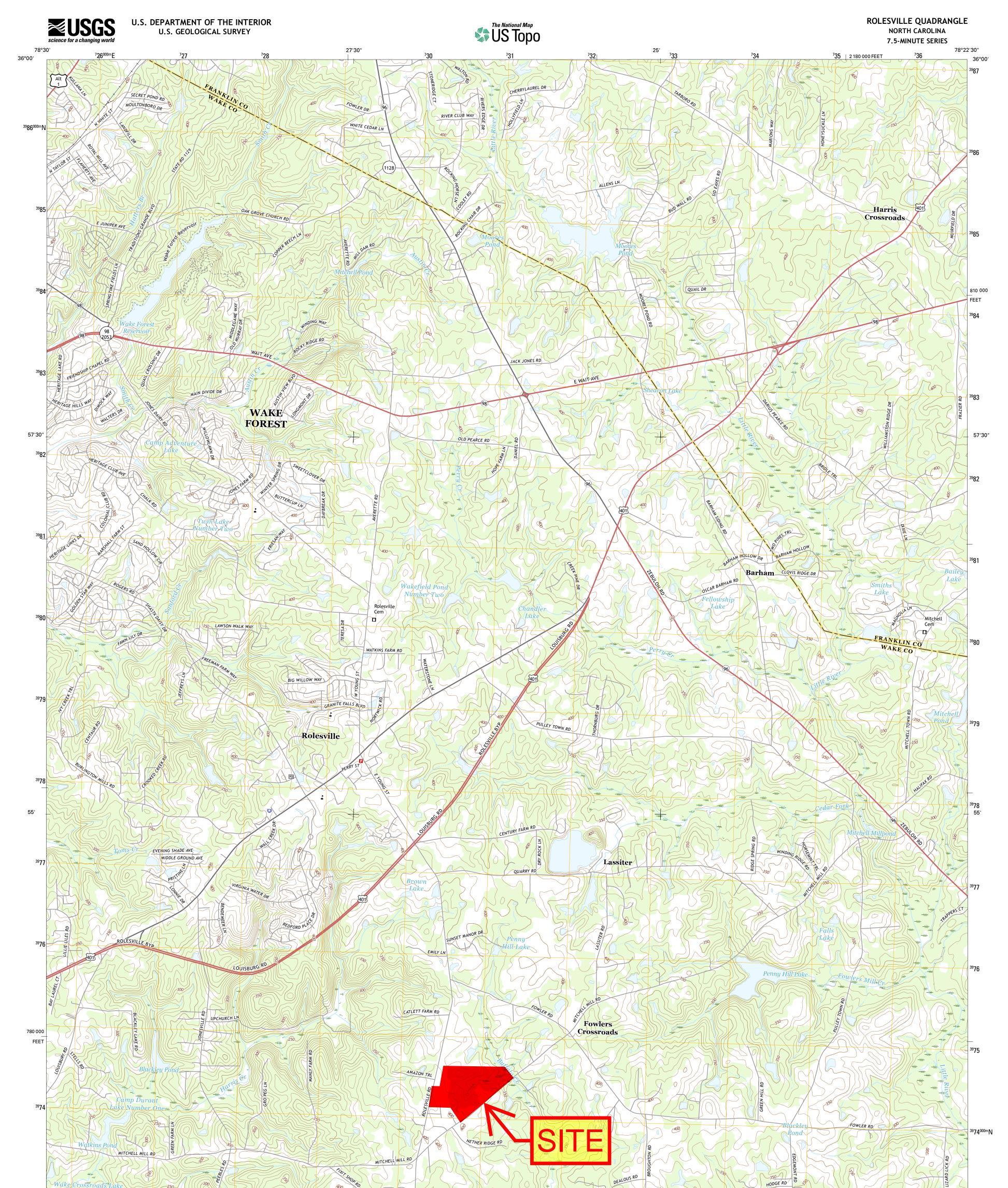
Back to Top

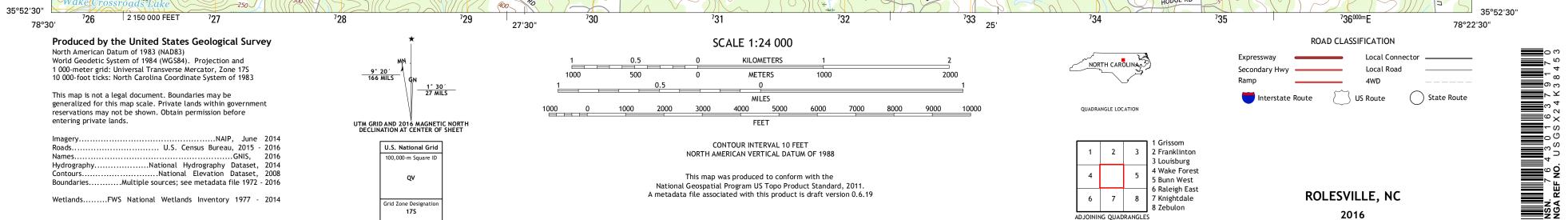
Maps & aerials

Large scale terrain

Precipitation Frequency Data Server

Large scale map


Large scale aerial



Back to Top

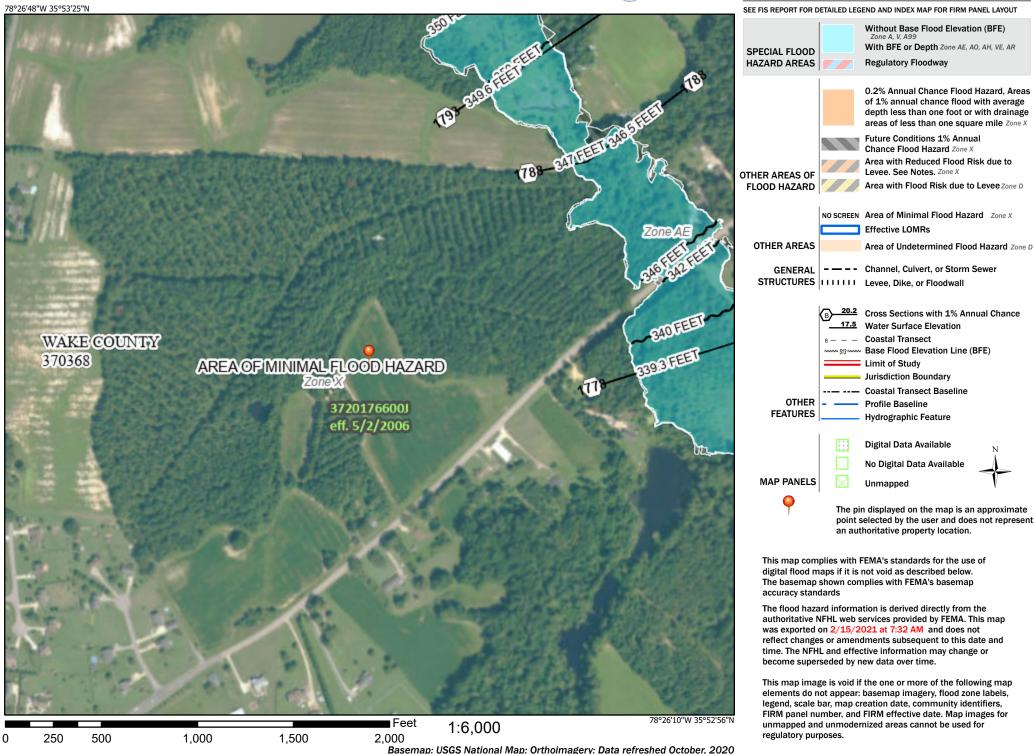
US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC Questions@noaa.gov</u>

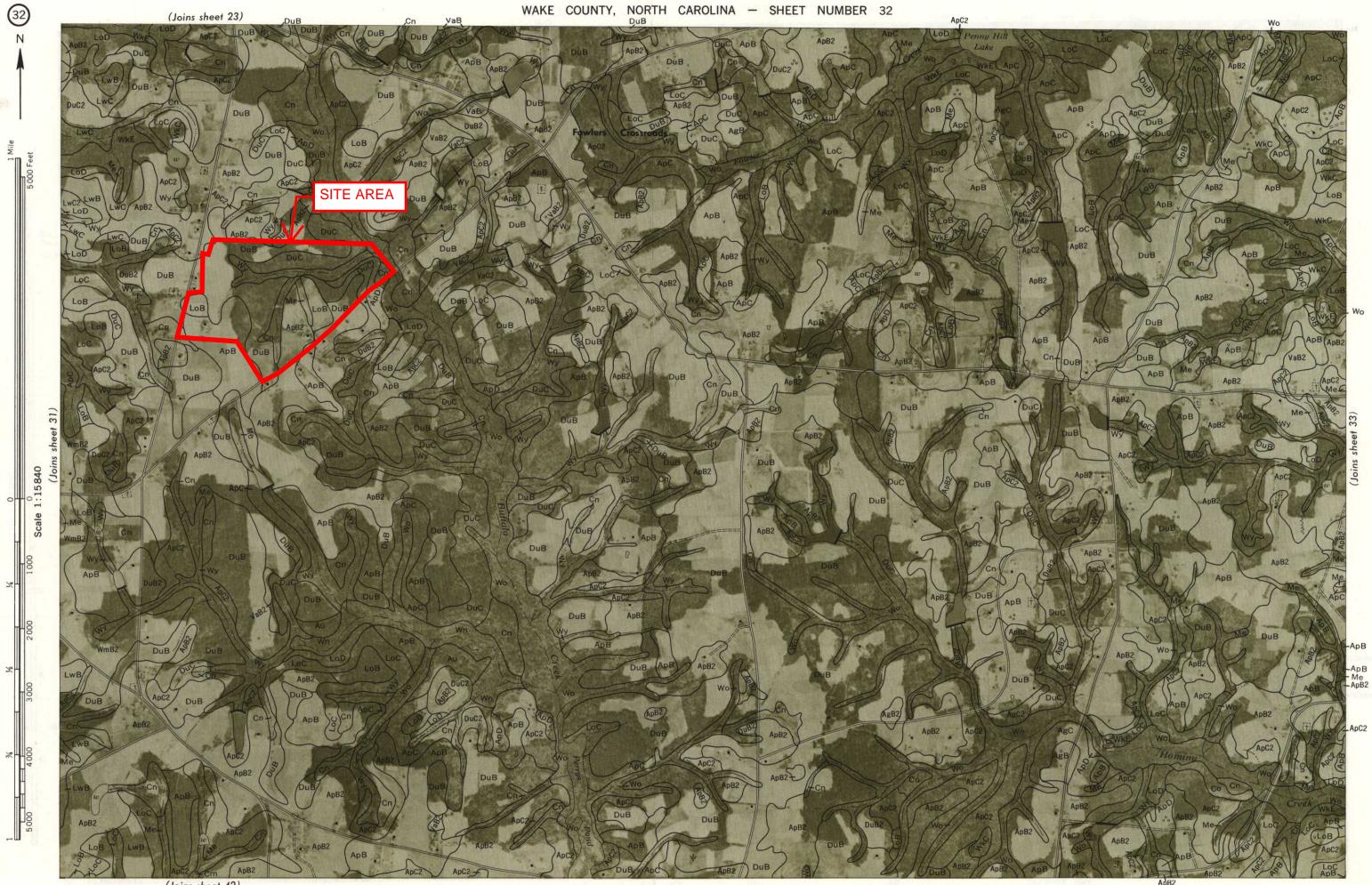
Disclaimer

Wetlands......FWS National Wetlands Inventory 1977 - 2014

Grid Zone Designatic 17S

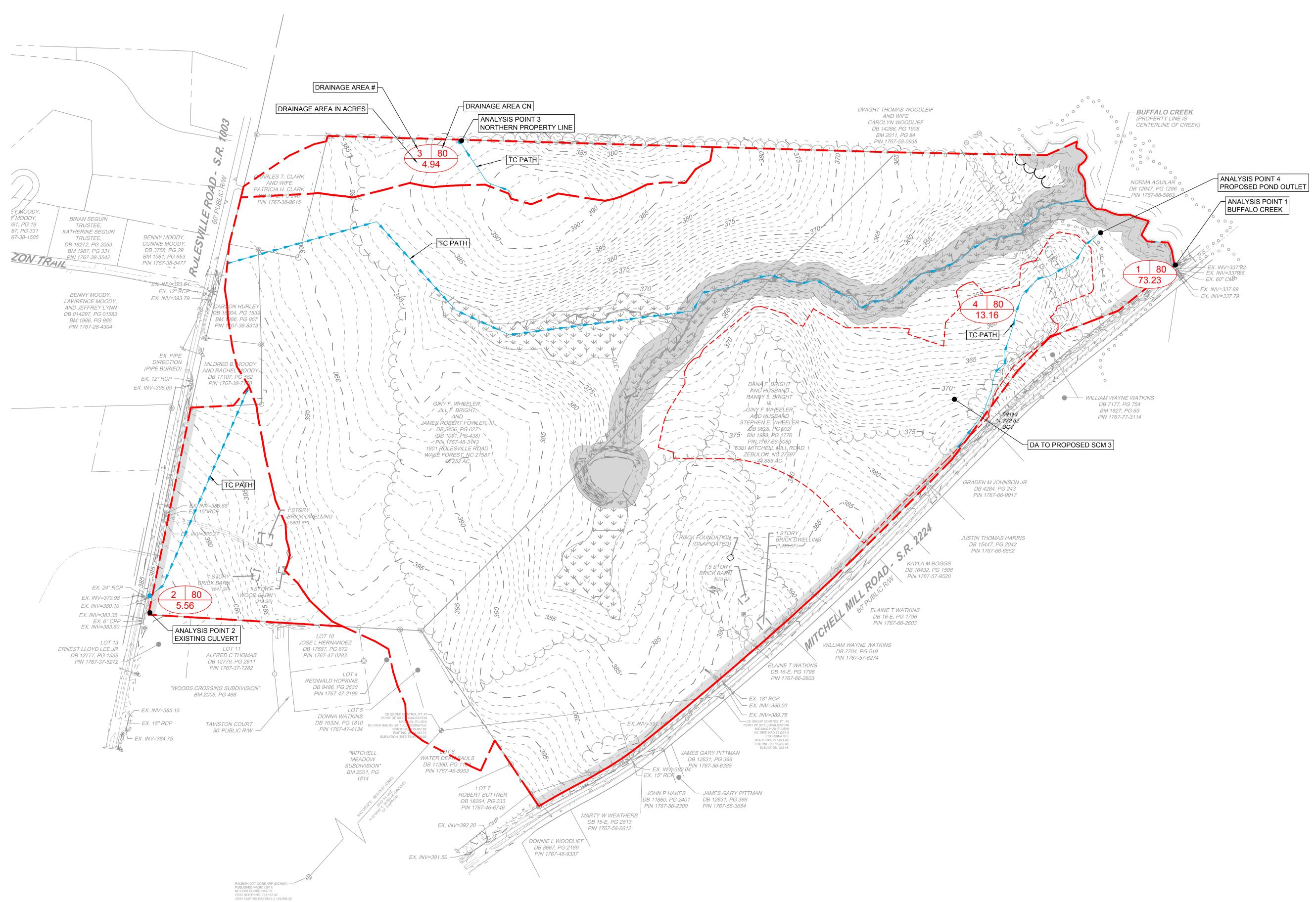
8


ADJOINING QUADRANGLES

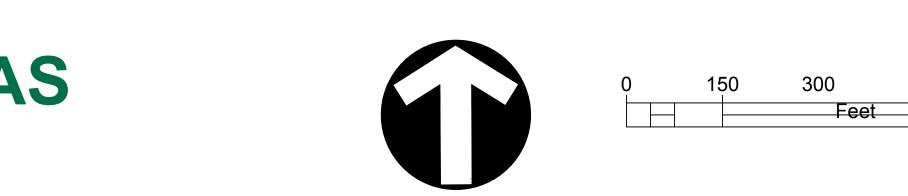

8 Zebulon

National Flood Hazard Layer FIRMette

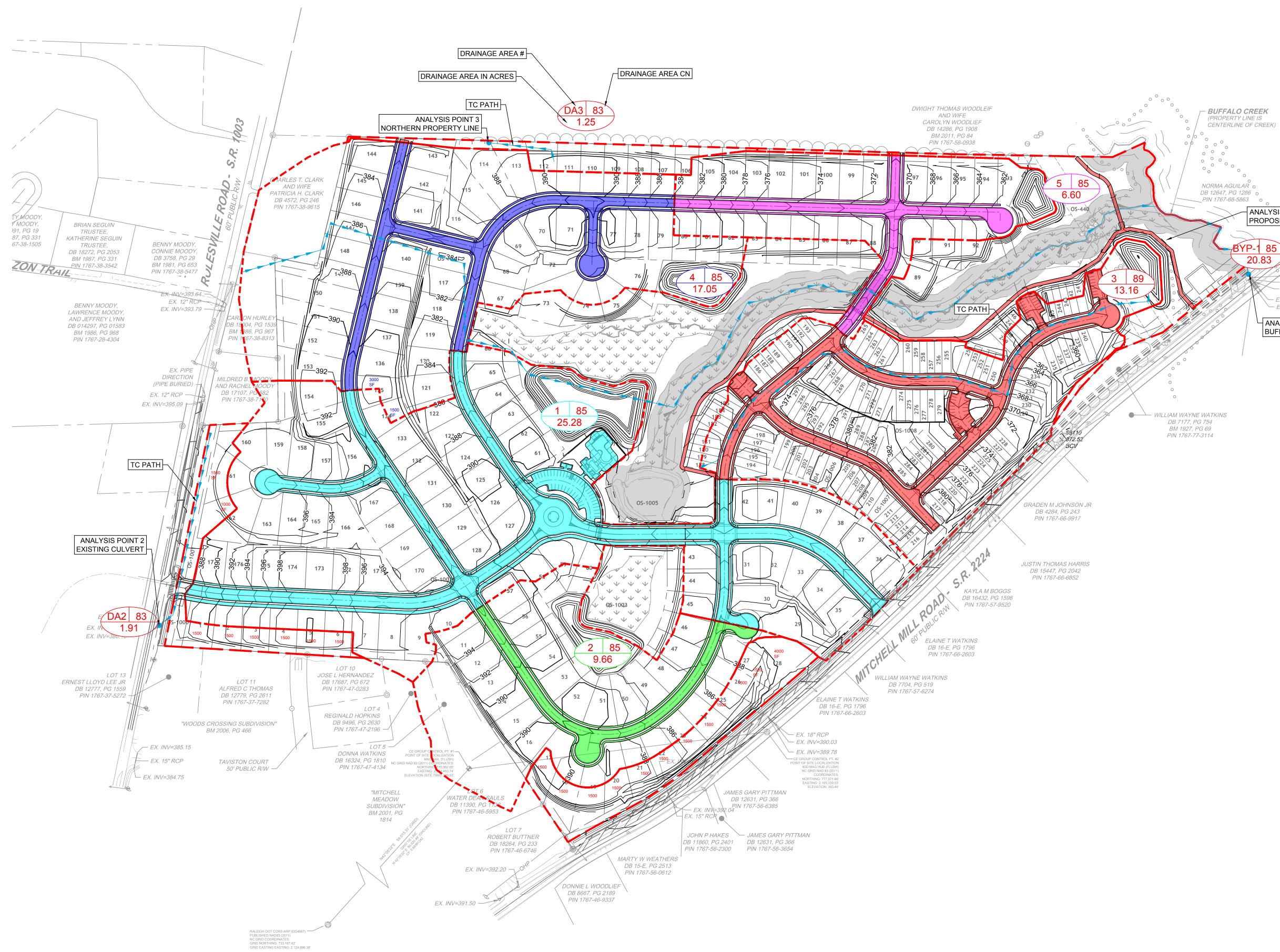
Legend



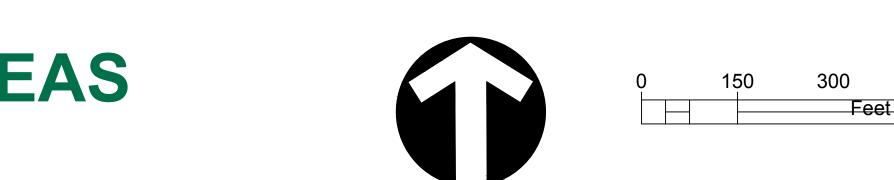
(Joins sheet 42)


Mile

*


PRE-DEVELOPMENT DRAINAGE AREAS

WHEELER TRACT - July 12, 2021



S:\332\43398-Wheeler_Tract\DWG\Sheet\Exhibit\43398-332C-EX-HYDR-PRE.dwg | Plotted on 7/12/2021 4:01 PM | by April Blye

POST-DEVELOPMENT DRAINAGE AREAS

WHEELER TRACT - July 12, 2021

ANALYSIS POINT 4 PROPOSED POND OUTLET 'P-1 85 20.83 EX. INV=337.82 - EX. INV=337986 — EX. 60" CMP EX. INV=337.89 EX. INV=337.79 ANALYSIS POINT 1 BUFFALO CREEK

S:\332\43398-Wheeler_Tract\DWG\Sheet\Exhibit\43398-332C-EX-HYDR-POST.dwg | Plotted on 7/12/2021 3:19 PM | by April Blye