

STORMWATER IMPACT ANALYSIS

ARDEN SENIOR LIVING CENTER / SPEC-23422 / DECEMBER 2023

ARDEN SENIOR LIVING CENTER

ROLESVILLE, NORTH CAROLINA

PRELIMINARY STORMWATER IMPACT ANALYSIS

SITE PLAN
PLANNING #: TBD

PROJECT NUMBER: SPEC-23422

DESIGNED BY: ASHLEY ABBOTT, PE

DATE: DECEMBER 2023

50.) Next submittal for Engineering to provide a complete full review we need

- storm package 10yr min/Culvert 25 yr/2yr gutter
- Drainage inlet maps
- pipe profiles

MCADAMS

2905 MERIDIAN PARKWAY

DURHAM, NORTH CAROLINA 27713

NC Lic. # C-0293

ARDEN SENIOR LIVING CENTER

Stormwater Impact Analysis

GENERAL DESCRIPTION

Arden Senior Living Center is a proposed residential development in Rolesville, North Carolina, located between Burlington Mills Road and S Main Street. The development is approximately 10 acres. The proposed development on this site consists of the construction of 28 townhome units, 136 apartment units, along with roadways, sidewalks and trails, utilities, one stormwater control measure, and other supporting infrastructure.

The project site is located in the Neuse River Basin, and drains to Milburnie Lake (Milburnie Creek) (BIMS # 27-31) and is classified as C;NSW. Per Town of Rolesville regulations, stormwater management on this site shall meet the stormwater management performance standards for development set forth in the Rolesville Unified Development Ordinance Article 7, Section 7.5.4 – Standards.

The regulations are as follows:

(A) Standards Based on Project Density

- (1) **Development Standards for High-Density Projects** High-Density Projects shall implement stormwater control measures that comply with each of the following standards, in addition to the General Standards found in subsection B of this Section:
 - (a) The measures shall control and treat runoff from the first inch of rain. Runoff volume drawdown time shall be a minimum of 48 hours, but not more than 120 hours.
 - (b) All structural stormwater treatment systems used to meet these requirements shall be designed to have a minimum of 85 percent average annual removal for Total Suspended Solids (TSS).
 - (c) All Development and Redevelopment projects required to manage storm water shall provide permanent onsite BMPs to lower the nitrogen export amounts as part of the storm water management plan. BMPs are to be in accordance with and as specified in the Design Manual.
 - (d) Structural and Non-structural BMPs shall be used to ensure there is no net increase in peak flow leaving the site from the pre-Development conditions for the one-year, 24-hour storm. Runoff volume drawdown time shall be a minimum of 48 hours, but not more than 120 hours.
 - (e) General engineering design criteria for all projects shall be in accordance with 15A NCAC 2H .1008(c), as explained in the Design Manual;
 - (f) All Development and Redevelopment shall be located outside the Riparian Buffer Zone and the Flood Protection Zone. These Zones shall be in accordance with the following provisions:
 - i. Except where other applicable buffer standards are more restrictive, the Riparian Buffer Zone shall extend a minimum of 50 feet landward of all Perennial and Intermittent Surface Waters. The most restrictive standards shall apply.
 - ii. The Riparian Buffer Zone shall remain undisturbed unless otherwise permitted by this section.
 - iii. The Flood Protection Zone shall extend throughout the FEMA 100-year floodplain as identified on the current Flood Insurance Rate Map (FIRM) published by FEMA. The Flood Protection Zone shall remain undisturbed unless otherwise permitted by this section.
 - iv. No Development or Redevelopment is permitted within the Riparian Buffer Zone or the Flood Protection Zone except for stream bank or shoreline restoration or stabilization, water dependent structures, and public or private projects such as road crossings and installations, utility crossings and installations, and greenways, where no practical alternatives exist.

- v. Permitted activities within the Riparian Buffer Zone and the Flood Protection Zone shall minimize impervious coverage, direct runoff away from surface waters to achieve diffuse flow, and maximize the utilization of Non-structural BMPs.
- vi. Where the Riparian Buffer Zone and the Flood Protection Zone both are present adjacent to surface waters, the more restrictive shall apply.
- (g) The approval of the stormwater permit shall require an enforceable restriction on property usage that runs with the land, such as recorded deed restrictions or protective covenants, to ensure that future Development and Redevelopment maintains the site consistent with the approved project plans. Buffer widths and locations shall be clearly delineated on all plans, final plat, and as-builts.

(B) General Standards

(1) **Downstream Impact Analysis** The downstream impact analysis must be performed in accordance with the "ten percent rule," and a copy of the analysis must be provided with the permit application. The purpose of the downstream impact analysis is to determine if the project will cause any impacts on flooding or channel degradation downstream of the project site. The analysis must include the assumptions, results and supporting calculations to show safe passage of post-Development design flows downstream. This analysis shall be performed at the outlet(s) of the site, and downstream at each tributary junction to the point(s) in the conveyance system where the area of the portion of the site draining into the system is less than or equal to ten percent of the total drainage area above that point.

(2) Standards for Stormwater Control Measures

- (a) Evaluation According to Contents of Design Manual All stormwater control measures and stormwater treatment practices (or BMPs) required under this ordinance shall be evaluated by the Stormwater Administrator according to the policies, criteria, and information, including technical specifications and standards and the specific design criteria for each stormwater practice, in the Design Manual. The Stormwater Administrator shall determine whether proposed BMPs will be adequate to meet the requirements of this ordinance.
- (b) **Determination of Adequacy; Presumptions and Alternatives** Stormwater treatment practices that are designed, constructed, and maintained in accordance with the criteria and specifications in the Design Manual will be presumed to meet the minimum water quality and quantity performance standards of this ordinance. Whenever an applicant proposes to utilize a practice or practices not designed and constructed in accordance with the criteria and specifications in the Design Manual, the applicant shall have the burden of demonstrating that the practice(s) will satisfy the minimum water quality and quantity performance standards of this ordinance. The Stormwater Administrator may require the applicant to provide the documentation, calculations, and examples necessary for the Stormwater Administrator to determine whether such an affirmative showing is made.
- (c) **Separation from Seasonal High Water Table** For BMPs that require a separation from the seasonal highwater table, the separation shall be provided by at least 12 inches of naturally occurring soil above the seasonal high-water table.

To meet the above Town of Rolesville standards, one stormwater control measure (SCM) has been proposed.

CALCULATION METHODOLOGY

Rainfall data for this area in the Rolesville, NC region is from NOAA Atlas 14. This data contains a depth-duration-frequency (DDF) table describing rainfall depth versus time for varying return periods in the area. These rainfall depths are input into the meteorological model within PondPack for peak flow rate calculations. Please reference the precipitation information within the Miscellaneous Site Information section of this report for additional information.

- Using Web Soil Survey, the on-site soils were determined to be hydrologic soil group (HSG) 'B' and 'C' soils. Since the method chosen to compute pre- and post-development peak flow rates and runoff volumes is dependent upon the soil type, care was taken when selecting the appropriate Soil Conservation Service Curve Number (SCS CN).
- Soil Conservation Service Curve Numbers (SCS CN) were selected from Table 2 of the USDA TR-55 for the land use that is most similar to the zoning type or cover condition.
- Land cover conditions for the pre-development condition were taken from aerial imagery for the site and survey information from Pennoni on October 6th, 2022. Land cover conditions for the post-development condition were taken from the proposed layout. Offsite cover conditions were based on aerial imagery.
- The time of concentration was calculated using SCS TR-55 (Segmental Approach, 1986). The Tc flow path can be divided into three segments: overland flow, concentrated flow, and channel flow. The travel time was then computed for each segment, from which the overall time of concentration was determined by taking the sum of each segmental time.
- Existing topographic information used in this analysis is from best available GIS sources and survey information from Pennoni on October 6th, 2022.
- PondPack Version 10.02 was used in determining the pre- & post-development peak flow rates for the 1-, 10- and 100-year storm events, as well as routing calculations for the proposed stormwater control measures.

To meet the above Town of Rolesville standards, one stormwater control measure (SCM) has been proposed.

DISCUSSION OF RESULTS

PEAK RUNOFF CONTROL REQUIREMENTS

As shown in the Summary of Results section of this SIA, the proposed stormwater control measures provide the necessary peak runoff control for the proposed build-out condition of the development such that there are no calculated increases in the 1- and 10-year storm events at any point of analysis leaving the site.

POLLUTANT AND NUTRIENT CONTROL REQUIREMENTS

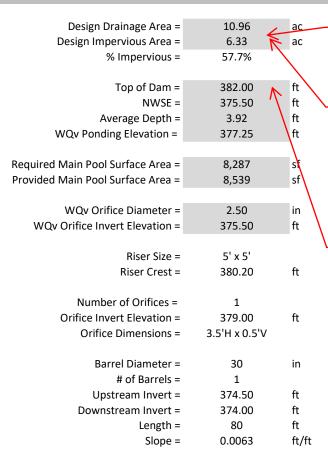
The proposed SCM is designed to meet 85% TSS removal and therefore, the proposed development is designed to meet TSS removal requirements.

CONCLUSION

If the development on this tract is built as proposed within this report, then the requirements set forth in Town of Rolesville regulations will be met without additional stormwater management facilities. However, modifications to the proposed development may require that this analysis be revised. Some modifications that would **require** this analysis to be revised include:

- 1. The proposed site impervious surface exceeds the amount accounted for in this report.
- 2. The post-development watershed breaks change significantly from those used to prepare this report.

The above modifications may result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward.


RELEASE RATE MANAGEMENT RESULTS

POINT OF ANALYSIS #1								
Return Period	Return Period Pre-Dev Post-Dev % Increase							
	[cfs]	[cfs]	[%]					
1-Year	3.81	1.89	-50%					
10-Year	12.04	11.46	-5%					

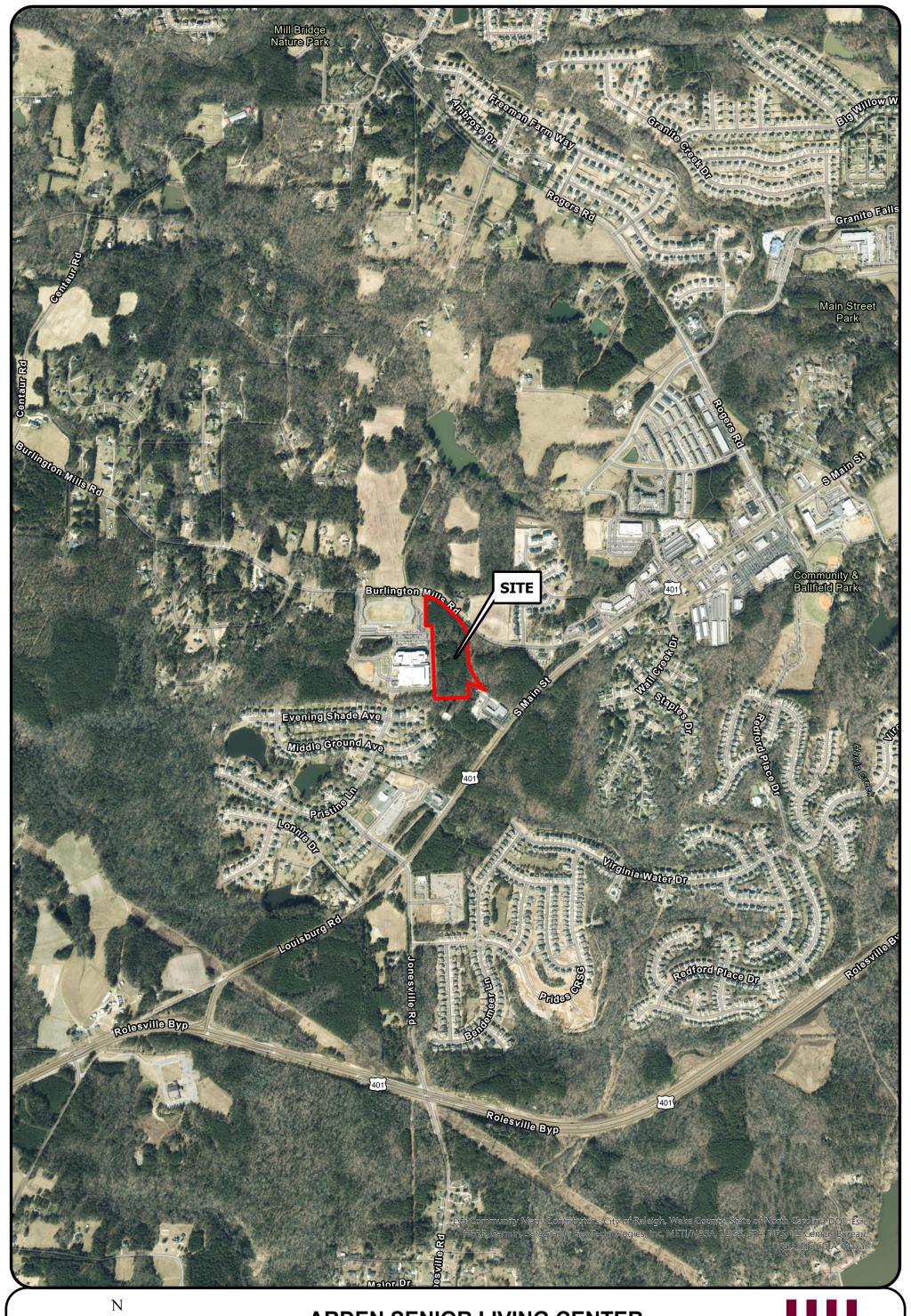
SUMMARY OF RESULTS

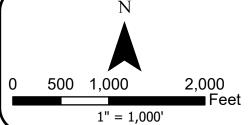
Wet Pond A

STORMWATER CONTROL MEASURE 'A' SUMMARY

50.)Does not match the cover

50.) Is this due to the additional roadway drainage being captured and routed to the pond? Provide Drainage area map of impervious to verify values.

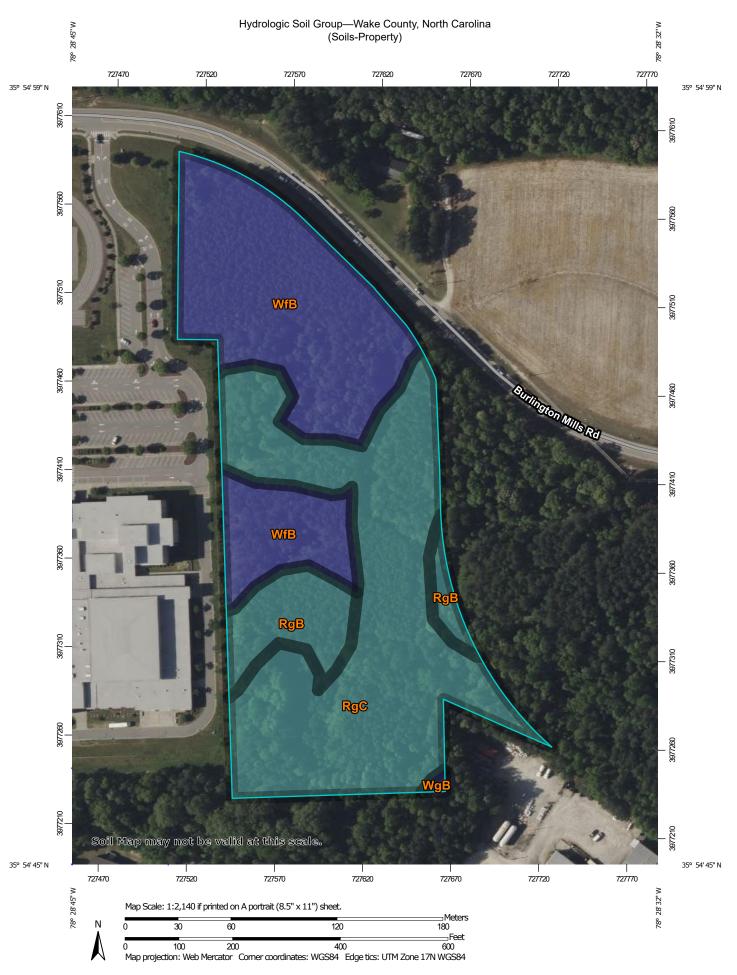

51.)The Top of the dam is designed to over top your retaining wall for your 100 year storm. Revise so the wall is not over topped.


STORMWATER CONTROL MEASURE ROUTING RESULTS

Return Period	Inflow	Inflow Outflow		Freeboard	
	[cfs]	[cfs]	[ft]	[ft]	
1-Year	28.86	0.29	378.82	3.18	
10-Year	56.51	9.63	380.24	1.76	
100-Year	79.96	49.28	380.98	1.02	

1	MISCELLANEOUS SITE INFORMATION
2	PRE-DEVELOPMENT HYDROLOGIC CALCULATIONS
3	POST-DEVELOPMENT HYDROLOGIC CALCULATIONS
4	STORMWATER CONTROL MEASURE 'A' DESIGN CALCULATIONS
5	NUTRIENT LOADING CALCULATIONS

MISCELLANEOUS SITE INFORMATION



ARDEN SENIOR LIVING CENTER
SITE AERIAL MAP

PROJECT #: SPEC-23422TOWN OF ROLESVILLE, WAKE COUNTY, NORTH CAROLINA

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: Wake County, North Carolina Survey Area Data: Version 25, Oct 2, 2023 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Apr 24, 2022—May 9. 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
RgB	Rawlings-Rion complex, 2 to 6 percent slopes	С	1.0	9.9%
RgC	Rawlings-Rion complex, 6 to 10 percent slopes	С	5.2	49.5%
WfB	Wedowee-Saw complex, 2 to 6 percent slopes	В	4.2	40.3%
WgB	Wedowee-Urban land complex, 2 to 6 percent slopes	В	0.0	0.2%
Totals for Area of Inter	rest	1	10.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

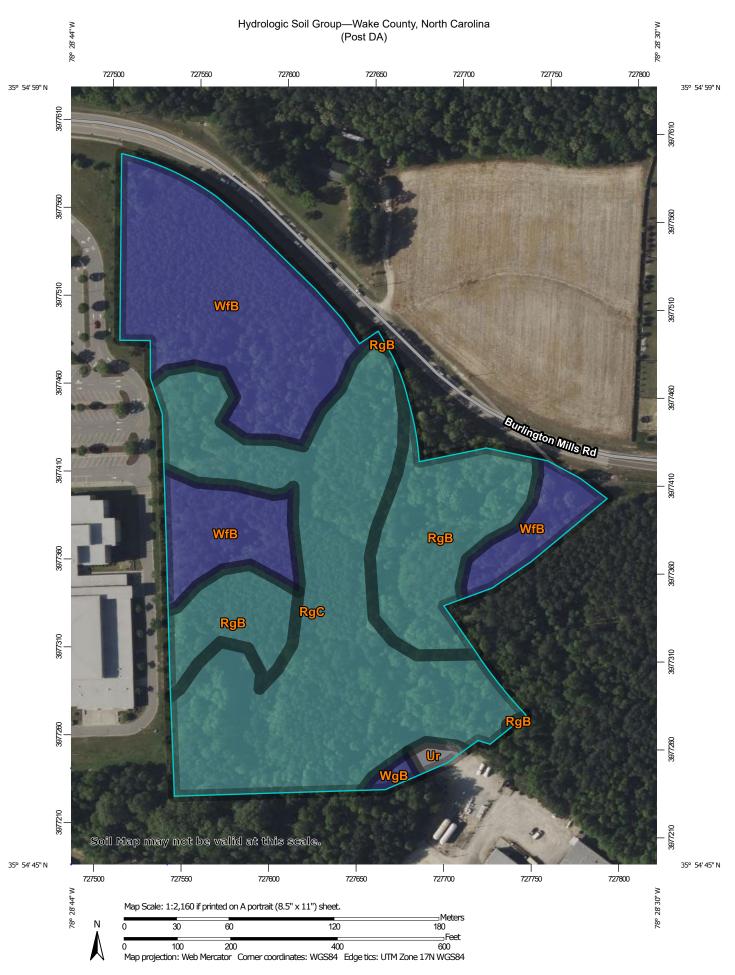
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D **Soil Rating Polygons** Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D contrasting soils that could have been shown at a more detailed Streams and Canals Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: Wake County, North Carolina Survey Area Data: Version 25, Oct 2, 2023 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. D Not rated or not available Date(s) aerial images were photographed: Apr 24, 2022—May 9. 2022 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
RgB	Rawlings-Rion complex, 2 to 6 percent slopes	С	2.7	19.5%
RgC	Rawlings-Rion complex, 6 to 10 percent slopes	С	6.0	44.1%
Ur	Urban land		0.1	0.6%
WfB	Wedowee-Saw complex, 2 to 6 percent slopes	В	4.8	35.2%
WgB	Wedowee-Urban land complex, 2 to 6 percent slopes	В	0.1	0.6%
Totals for Area of Inter	rest	1	13.7	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Name of Stream	Subbasin	Stream Index Number	Map Number	Class
Middle Bay	NEU13	27-154	F32SE9	SA;HQW,NSW
Middle Canal	NEU10	27-112-1-1-1	H31SW1	C;Sw,NSW
Middle Creek	NEU03	27-43-15-(1)	E23NE8	C;NSW
Middle Creek	NEU02	27-43-15-(4)	E23NE9	C;NSW
Middle Creek	NEU03	27-43-15-(4)	E23NE9	C;NSW
Middle Creek (Sunset Lake)	NEU03	27-43-15-(2)	E23NE8	B;NSW
Middle Swamp	NEU07	27-86-26-5	E28SW3	C;Sw,NSW
Milburnie Creek (Milburnie Lake)	NEU02	27-31	D24SE6	C;NSW
Mill Branch	NEU03	27-43-15-12	E24SE5	C;NSW
Mill Branch	NEU02	27-46-1	F25NE2	C;NSW
Mill Branch	NEU04	27-52-2.5-1	F25SW4	C;NSW
Mill Branch	NEU04	27-52-8	F25SE6	C;NSW
Mill Branch	NEU05	27-72-4	F27SE4	C;Sw,NSW
Mill Branch	NEU05	27-80-8	G28NE3	C;Sw,NSW
Mill Branch	NEU07	27-86-5.5	E26NE3	WS-IV;NSW
Mill Branch	NEU07	27-86-11-7-1	E27NE5	C;Sw,NSW
Mill Branch	NEU07	27-86-14-4	F27NE1	C;Sw,NSW
Mill Branch	NEU08	27-90-2	G29NE2	C;Sw,NSW
Mill Branch	NEU11	27-101-9	G29SW4	C;Sw,NSW
Mill Branch (Cliffs of Neuse Lake)	NEU05	27-69-1	G27NW3	B;NSW
Mill Creek	NEU01	27-13-0.4	C24SE5	WS-IV;NSW
Mill Creek	NEU04	27-52-(8.5)	F26SW1	WS-IV;NSW
Mill Creek	NEU06	27-52-(6.5)	E26SW3	C;NSW
Mill Creek	NEU06	27-57-10		WS-IV;NSW
Mill Creek	NEU07	27-86-3.4	F26NE3	
			E26NW3	C;NSW
Mill Creek	NEU11	27-101-26	H30NW2	C;Sw,NSW
Mill Creek	NEU10	27-112-5	H31NW6	SC;Sw,NSW
Mill Creek	NEU10	27-113	G31SE7	SC;Sw,NSW
Mill Creek	NEU10	27-141-9	G32SE1	SA;HQW,NSW
Mill Creek (at Selma)	NEU02	27-40	E25SE5	WS-IV;NSW
Mill Creek (Crystal Lake)	NEU01	27-2-17-1	C23SW5	WS-IV;NSW
Mill Creek (Moorewood Pond)	NEU04	27-52-(1)	F25SW7	C;NSW
Mill Creek (near Clayton)	NEU02	27-39	E25NE7	WS-IV;NSW
Mill Run	NEU05	27-72-1	F27NE9	C;Sw,NSW
Mill Run	NEU07	27-86-9-3.5	E27SW3	C;Sw,NSW
Mill Run	NEU07	27-86-16	E28SW8	C;Sw,NSW
Mill Run	NEU08	27-91-1	G30NW2	C;Sw,NSW
Mill Run	NEU11	27-101-23	G29SE8	C;Sw,NSW
Mill Swamp	NEU10	27-106-3	G30NE9	C;Sw,NSW
Mills Branch	NEU03	27-43-15-7	E24NW7	C;NSW
Mills Branch	NEU10	27-99.5	G30NE5	SC;Sw,NSW
Millstone Creek	NEU07	27-86-6-1	D26SE8	C;NSW
Mine Creek	NEU02	27-33-14	D24SW3	C;NSW
Mink Point Branch	NEU07	27-86-17-1.5	F28NW4	C;Sw,NSW
Mira (Mill Branch)	NEU05	27-68-1	F27SE4	C;NSW
Miry Branch	NEU02	27-47	F25NW6	C;NSW
Miry Branch	NEU10	27-112-6-3-1	H31NW5	SC;Sw,NSW
Miry Gut	NEU10	27-135-3	H32NE9	SA;HQW,NSW
Miry Hole Branch	NEU11	27-101-34	G30SW6	B;Sw,NSW
Mitchell Creek	NEURO	27-123-4	H31NE9	SA;HQW,NSW
	NEU10	21-125-4	11011120	
Moccasin Creek	NEU10 NEU12	27-53-(2)	F26NW5	WS-IV;NSW
Moccasin Creek Moccasin Creek (Bunn Lake)				
	NEU12	27-53-(2)	F26NW5	WS-IV;NSW

Page 13 of 22

NOAA Atlas 14, Volume 2, Version 3 Location name: Rolesville, North Carolina, USA* Latitude: 35.9146°, Longitude: -78.4774° Elevation: 390 ft**

source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

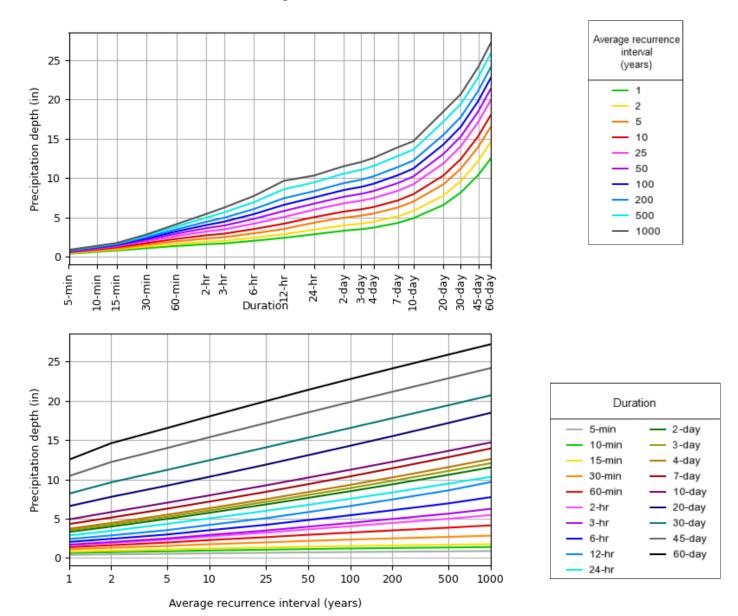
G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS	S-based p	oint preci	pitation fi				confiden	ce interva	als (in inc	hes) ¹
Duration	4				ge recurren			200	500	4000
	1	2	5	10	25	50	100	200	500	1000
5-min	0.403 (0.369-0.441)	0.468 (0.429-0.512)	0.534 (0.490-0.583)	0.599 (0.548-0.654)	0.665 (0.605-0.724)	0.717 (0.650-0.781)	0.763 (0.687-0.831)	0.803 (0.720-0.877)	0.848 (0.754-0.926)	0.888 (0.783-0.972
10-min	0.644 (0.590-0.704)	0.749 (0.687-0.818)	0.855 (0.784-0.933)	0.958 (0.877-1.04)	1.06 (0.965-1.15)	1.14 (1.04-1.24)	1.21 (1.09-1.32)	1.27 (1.14-1.39)	1.34 (1.19-1.46)	1.40 (1.23-1.53)
15-min	0.804 (0.738-0.880)	0.942 (0.863-1.03)	1.08 (0.992-1.18)	1.21 (1.11-1.32)	1.34 (1.22-1.46)	1.44 (1.31-1.57)	1.53 (1.38-1.67)	1.61 (1.44-1.75)	1.69 (1.50-1.84)	1.76 (1.55-1.92)
30-min	1.10 (1.01-1.21)	1.30 (1.19-1.42)	1.54 (1.41-1.68)	1.76 (1.61-1.92)	1.99 (1.81-2.17)	2.18 (1.97-2.37)	2.35 (2.12-2.56)	2.50 (2.24-2.73)	2.69 (2.39-2.93)	2.84 (2.51-3.11)
60-min	1.38 (1.26-1.50)	1.63 (1.50-1.78)	1.97 (1.81-2.15)	2.29 (2.09-2.50)	2.65 (2.41-2.89)	2.95 (2.67-3.21)	3.23 (2.91-3.52)	3.51 (3.14-3.83)	3.86 (3.43-4.21)	4.15 (3.66-4.54)
2-hr	1.61 (1.46-1.77)	1.91 (1.75-2.10)	2.34 (2.13-2.56)	2.74 (2.49-3.00)	3.22 (2.90-3.52)	3.64 (3.27-3.98)	4.04 (3.61-4.42)	4.46 (3.95-4.87)	4.99 (4.38-5.45)	5.46 (4.75-5.98)
3-hr	1.70 (1.55-1.89)	2.03 (1.85-2.24)	2.49 (2.26-2.74)	2.94 (2.67-3.23)	3.49 (3.14-3.83)	3.98 (3.56-4.36)	4.46 (3.96-4.89)	4.96 (4.38-5.44)	5.64 (4.92-6.18)	6.25 (5.39-6.86)
6-hr	2.04 (1.87-2.26)	2.44 (2.23-2.68)	2.99 (2.72-3.28)	3.53 (3.22-3.88)	4.21 (3.81-4.61)	4.82 (4.33-5.27)	5.43 (4.84-5.93)	6.07 (5.35-6.62)	6.94 (6.04-7.56)	7.73 (6.64-8.45)
12-hr	2.41 (2.21-2.66)	2.88 (2.64-3.15)	3.54 (3.24-3.88)	4.21 (3.84-4.61)	5.06 (4.58-5.52)	5.83 (5.24-6.34)	6.60 (5.88-7.18)	7.44 (6.55-8.08)	8.59 (7.44-9.32)	9.66 (8.24-10.5)
24-hr	2.86 (2.66-3.08)	3.45 (3.22-3.72)	4.34 (4.04-4.67)	5.04 (4.68-5.42)	5.99 (5.55-6.44)	6.75 (6.23-7.26)	7.53 (6.93-8.10)	8.34 (7.64-8.98)	9.44 (8.62-10.2)	10.3 (9.38-11.1)
2-day	3.32 (3.09-3.57)	3.99 (3.72-4.30)	4.97 (4.63-5.36)	5.75 (5.34-6.19)	6.80 (6.30-7.32)	7.63 (7.05-8.22)	8.49 (7.82-9.14)	9.37 (8.59-10.1)	10.6 (9.65-11.4)	11.5 (10.5-12.5)
3-day	3.52 (3.28-3.77)	4.22 (3.95-4.53)	5.24 (4.89-5.62)	6.04 (5.62-6.48)	7.13 (6.62-7.65)	8.00 (7.40-8.58)	8.89 (8.20-9.54)	9.80 (9.01-10.5)	11.1 (10.1-11.9)	12.0 (11.0-13.0)
4-day	3.72 (3.48-3.97)	4.46 (4.17-4.76)	5.51 (5.14-5.88)	6.33 (5.91-6.76)	7.47 (6.94-7.98)	8.37 (7.76-8.95)	9.29 (8.58-9.94)	10.2 (9.42-11.0)	11.5 (10.6-12.4)	12.6 (11.5-13.5)
7-day	4.31 (4.04-4.60)	5.14 (4.82-5.49)	6.27 (5.87-6.69)	7.17 (6.70-7.65)	8.40 (7.82-8.96)	9.37 (8.71-10.0)	10.4 (9.61-11.1)	11.4 (10.5-12.2)	12.8 (11.8-13.7)	13.9 (12.7-15.0)
10-day	4.90 (4.60-5.23)	5.84 (5.48-6.22)	7.03 (6.59-7.48)	7.96 (7.45-8.48)	9.22 (8.60-9.82)	10.2 (9.51-10.9)	11.2 (10.4-12.0)	12.2 (11.3-13.1)	13.6 (12.6-14.6)	14.7 (13.5-15.8)
20-day	6.58 (6.19-7.01)	7.77 (7.32-8.27)	9.20 (8.65-9.78)	10.3 (9.70-11.0)	11.9 (11.1-12.6)	13.1 (12.2-13.9)	14.3 (13.3-15.2)	15.5 (14.4-16.5)	17.2 (15.9-18.3)	18.5 (17.0-19.8)
30-day	8.17 (7.71-8.68)	9.61 (9.07-10.2)	11.2 (10.5-11.9)	12.4 (11.7-13.2)	14.0 (13.2-14.9)	15.3 (14.3-16.3)	16.5 (15.4-17.6)	17.8 (16.6-18.9)	19.4 (18.0-20.7)	20.7 (19.1-22.1)
45-day	10.4 (9.88-11.0)	12.2 (11.6-12.9)	14.0 (13.3-14.7)	15.4 (14.5-16.2)	17.1 (16.2-18.1)	18.5 (17.5-19.5)	19.8 (18.7-20.9)	21.1 (19.8-22.3)	22.8 (21.4-24.2)	24.1 (22.5-25.6)
60-day	12.5 (11.9-13.1)	14.6 (13.9-15.3)	16.5 (15.7-17.4)	18.0 (17.1-18.9)	19.9 (18.9-20.9)	21.4 (20.2-22.5)	22.7 (21.5-24.0)	24.1 (22.7-25.4)	25.8 (24.3-27.3)	27.2 (25.5-28.7)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

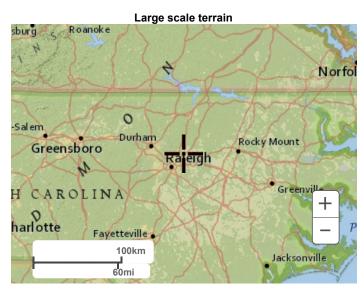
Please refer to NOAA Atlas 14 document for more information.

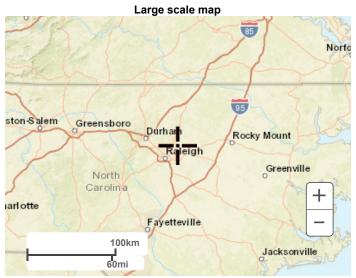
Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 35.9146°, Longitude: -78.4774°

NOAA Atlas 14, Volume 2, Version 3


Created (GMT): Wed Nov 29 19:02:36 2023


Back to Top

Maps & aerials

Small scale terrain

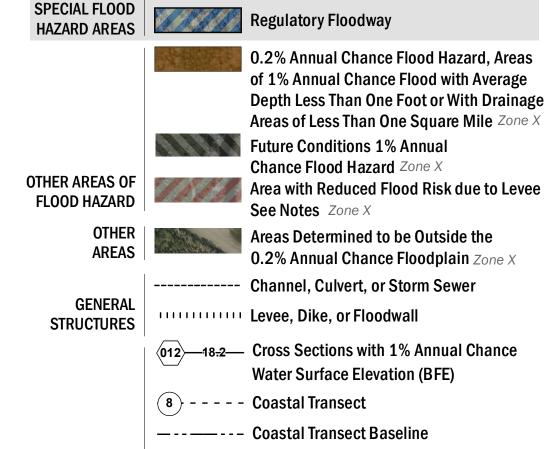
Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

cooperative partnership between the State of North Carolina and the Federal Emergency Management Agency (FEMA). The State of North Carolina has implemented a long term approach to floodplain management to decrease the costs associated with flooding. This is demonstrated by the State's commitment to map flood hazard areas at the local level. As a part of this effort, the State of North Carolina has joined in a Cooperating Technical State agreement with FEMA to produce and maintain this digital FIRM.


FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP **FOR FIRM PANEL LAYOUT**

THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING **DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT** HTTPS://FRIS.NC.GOV/FRIS HTTPS://MSC.FEMA.GOV

Without Base Flood Elevation (BFE) Zone A,V, A99

With BFE or Depth Zone AE, AO, AH, VE, AR

Profile Baseline

Limit of Study

OTHER FEATURES **Hydrographic Feature**

Jurisdiction Boundary

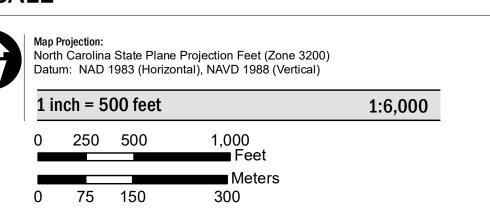
NOTES TO USERS

For information and questions about this map, available products associated with this FIRM including historic versions of this FIRM, how to order products or the National Flood Insurance Program in general please call the FEMA Map Information eXchange at 1-877-FEMA-MAP (1-877-336-2627) or visit the FEMA Map Service Center website at https://msc.fema.gov. An accompanying Flood Insurance Study report, Letter of Map Revision (LOMR) or Letter of Map Amendment (LOMA) revising portions of this panel, and digital versions of this FIRM may be available. Visit the North Carolina Floodplain Mapping Program website at https://flood.nc.gov/ncflood, or contact the FEMA Map Service Center.

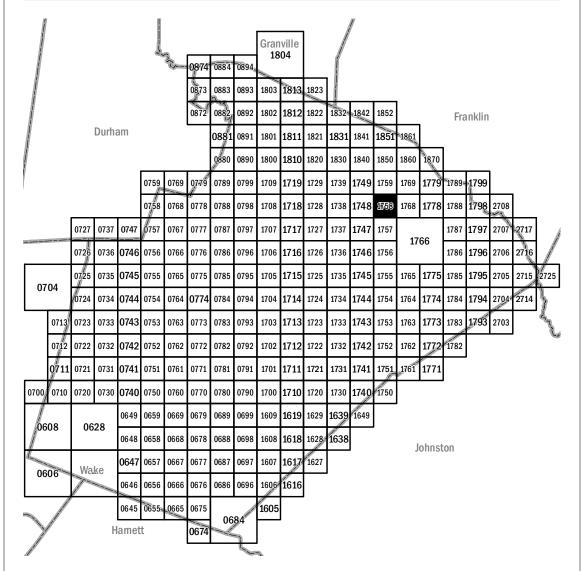
Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Map Service Center at the number listed above. For community and countywide map dates refer to the Flood Insurance Study report for this jurisdiction.

To determine if flood insurance is available in the community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Flood Insurance Study (FIS) means an examination, evaluation, and determination of flood hazards, corresponding water surface elevations, flood hazard risk zones, and other flood data in a community issued by the North Carolina Floodplain Mapping Program (NCFMP). The Flood Insurance Study (FIS) is comprised of the following products used together: the Digital Flood Hazard Database, the Water Surface Elevation Rasters, the digitally derived, autogenerated Flood Insurance Rate Map and the Flood Insurance Survey Report. A Flood Insurance Survey is a compilation and presentation of flood risk data for specific watercourses, lakes, and coastal flood hazard areas within a community. This report contains detailed flood elevation data, data tables and FIRM indices. When a flood study is completed for the NFIP, the digital information, reports and maps are assembled into an FIS. Information shown on this FIRM is provided in digital format by the NCFMP. Base map information shown on this FIRM was provided in digital format by the NCFMP. The source of this information can be determined from the metadata available in the digital FLOOD database and in the Technical Support Data Notebook (TSDN).


ACCREDITED LEVEE NOTES TO USERS: If an accredited levee note appears on this panel check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection for areas on this panel. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA Website at https://www.fema.gov/national-flood-insurance-program.

PROVISIONALLY ACCREDITED LEVEE NOTES TO USERS: If a Provisionally Accredited Levee (PAL) note appears on this panel, check with your local community to obtain more information, such as the estimated level of protection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, on the levee system(s) shown as providing protection for areas on this panel. To maintain accreditation, the levee owner or community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations. If the community or owner does not provide the necessary data and documentation or if the data and documentation provided indicate the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To mitigate flood risk in residual risk areas, property owners and residents are encouraged to consider flood insurance and floodproofing or other protective measures. For more information on flood insurance, interested parties should visit the FEMA Website at https://www.fema.gov/national-flood-insurance-program.


LIMIT OF MODERATE WAVE ACTION NOTES TO USERS: For some coastal flooding zones the AE Zone category has been divided by a Limit of Moderate Wave Action (LiMWA). The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave. The effects of wave hazards between the VE Zone and the LiMWA (or between the shoreline and the LiMWA for areas where VE Zones are not identified) will be similar to, but less severe than those in the VE Zone.

Limit of Moderate Wave Action (LiMWA)

SCALE

PANEL LOCATOR

Program NORTH CAROLINA FLOODPLAIN MAPPING PROGRAM NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP

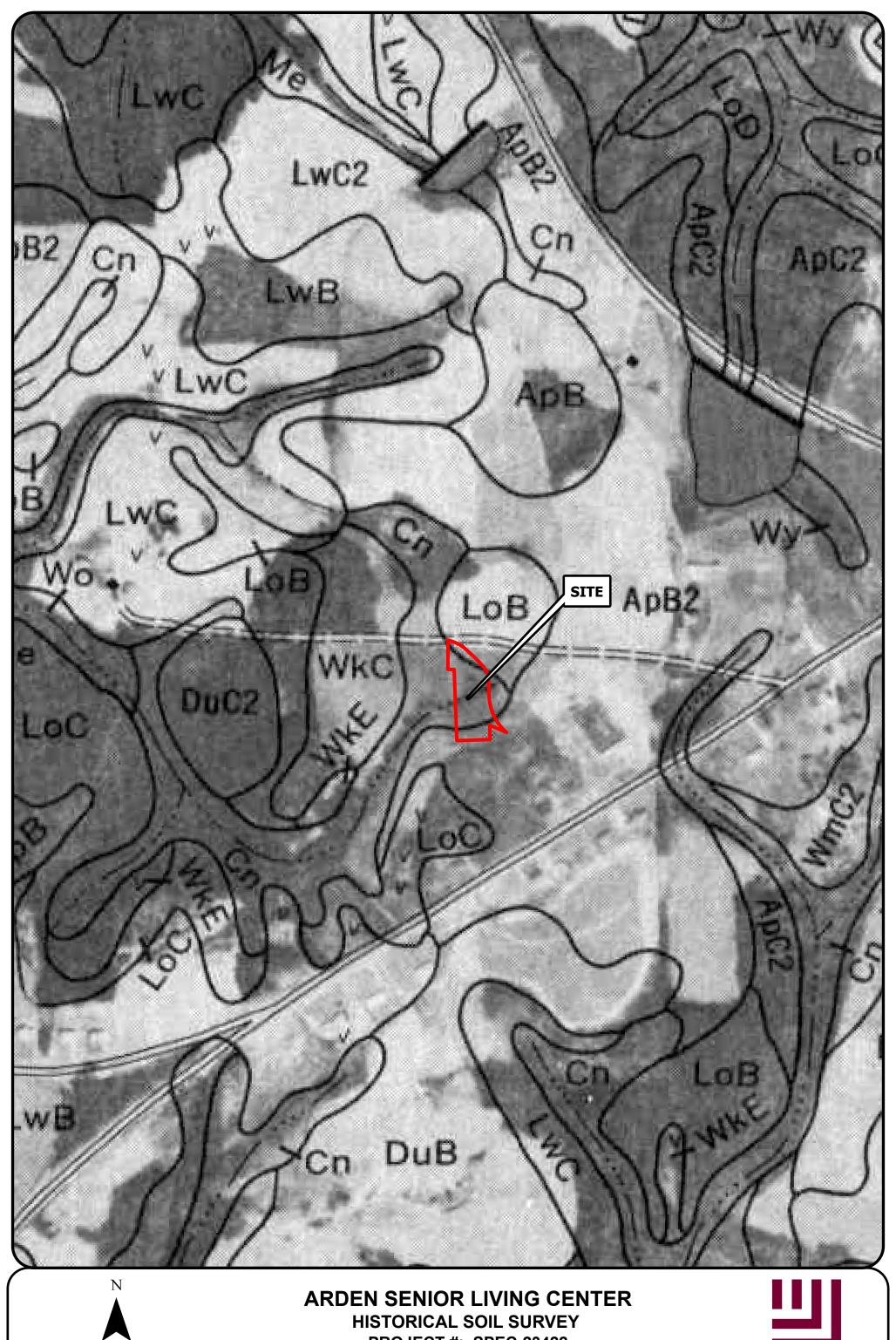
NORTH CAROLINA

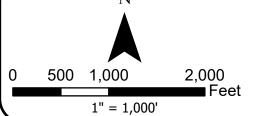
PANEL **1758**

Panel Contains:

COMMUNITY ROLESVILLE, TOWN OF WAKE COUNTY

Insurance


National Flood


CID PANEL SUFFIX 370468 1758

370368 1758

VERSION NUMBER 2.3.3.2 **MAP NUMBER** 3720175800K **MAP REVISED** July 19, 2022

PROJECT #: SPEC-23422

TOWN OF ROLESVILLE, WAKE COUNTY, NORTH CAROLINA

PRE-DEVELOPMENT HYDROLOGIC CALCULATIONS

ARDEN SENIOR LIVING CENTER SPEC-23422 Summary of Results A. ABBOTT 12/08/2023

HYDROLOGY INPUT SUMMARY

Sub-basin ID	havin ID		Onsite Area [acres]			Offsite Area [acres]				Total Area	SCS CN	Tc [min]	
Sub-basin ID	Impervious	Open	Wooded	Pond	Total	Impervious	Open	Wooded	Pond	Total	[acres]	SCS CIV	ic (min)
1	0.00	0.00	4.57	0.00	4.57	0.30	0.14	0.58	0.00	1.01	5.59	71	#REF!
2	0.00	0.00	5.29	0.00	5.29	0.35	0.43	1.50	0.00	2.28	7.57	64	0.00
3	0.00	0.00	0.23	0.00	0.23	0.00	0.00	0.00	0.00	0.00	0.23	55	0.00
4	0.00	0.00	0.32	0.00	0.32	0.00	0.00	0.00	0.00	0.00	0.32	55	0.00
Totals =	0.00	0.00	10.41	0.00	10.41	0.65	0.57	2.08	0.00	3.30	13.70		

Subbasin 1

I. SCS CURVE NUMBERS

Soils from WebSoilSurvey are only inclusive of indirectly connected areas

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = 8.1% HSG 'C' = 90.5%

HSG 'D' = 1.5% *Urban Land

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	73	Assume good condition
Wooded	69	Assume good condition

II. PRE-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roof	0	0.00
Roadway Area	0	0.00
Driveway / Parking Lot	0	0.00
Sidewalk / Patio	0	0.00
Other	0	0.00
Totals	0	0.00

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	0	0.00	-
Onsite open	73	0	0.00	Assume good condition
Onsite wooded	69	199,228	4.57	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	12,879	0.30	-
Offsite open	73	6,144	0.14	Assume good condition
Offsite wooded	69	25,114	0.58	Assume good condition
Offsite pond	100	0	0.00	-

Total Area = 5.59 acres 243,365 sf

Composite SCS CN = 71

% Impervious = 5.3%

Subbasin 1

III. TIME OF CONCENTRATION INFORMATION

Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment Time =

Segment 1: Overland Flow Length = 100 ft Top Elev = 404.00 ft Bot Elev = 398.00 ft Height = 6 ft ft/ft Slope = 0.0601 Manning's n = 0.40 Wooded P (2-year/24-hour) = inches (Durham, NC) 3.5 Segment Time = 13.22 minutes Segment 2: Concentrated Flow Length = 380 ft Top Elev = 398.00 ft Bot Elev = 377.00 ft Height = 21 ft Slope = 0.0553 ft/ft Paved ? = No Velocity = 3.79 ft/sec Segment Time = 1.67 minutes Segment 3: Channel Flow Length = 142 ft Top Elev = 377.00 ft Bot Elev = 372.00 ft Height = 5 ft Slope = 0.0352 ft/ft Manning's n = 0.045 natural channel 4.00 sf (assume 2'w x 2'h channel) Flow Area = Wetted Perimeter = 6.00 If (assume 2' x 2' channel) Channel Velocity = 4.74 ft/sec

0.50

Time of Concentration =	15.38	minutes
SCS Lag Time =	9.23	minutes (SCS Lag = 0.6* Tc)
Time Increment =	2.68	minutes (= 0.29*SCS Lag)

minutes

Subbasin 2

A. ABBOTT 12/08/2023

I. SCS CURVE NUMBERS

Soils from WebSoilSurvey are only inclusive of indirectly connected areas

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = 51.8% HSG 'C' = 48.2% HSG 'D' = 0.0%

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	67	Assume good condition
Wooded	62	Assume good condition

II. PRE-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roadway Area	0	0.00
Driveway / Parking Lot	0	0.00
Roof	0	0.00
Sidewalk / Patio	0	0.00
Other	0	0.00
Totals	0	0.00

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	0	0.00	-
Onsite open	67	0	0.00	Assume good condition
Onsite wooded	62	230,290	5.29	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	15,364	0.35	-
Offsite open	67	18,521	0.43	Assume good condition
Offsite wooded	62	65,515	1.50	Assume good condition
Offsite pond	100	0	0.00	-

Total Area = 7.57 acres 329,690 sf

Composite SCS CN = 64

% Impervious = 4.7%

A. ABBOTT 12/08/2023

Subbasin 2

III. TIME OF CONCENTRATION INFORMATION

Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow		
Length =	100	ft
Top Elev =	402.00	ft
Bot Elev =	396.00	ft
Height =	6	ft
Slope =	0.0601	ft/ft
Manning's n =	0.40	Wooded
P (2-year/24-hour) =	3.5	inches (Durham, NC)
Seament Time =	13.22	minutes

Segment 2: Concentrated Flow

Segment Time =	1.49	minutes
Velocity =	3.60	ft/sec
Paved ? =	No	
Slope =	0.0497	ft/ft
Height =	16	ft
Bot Elev =	380.00	ft
Top Elev =	396.00	ft
Length =	322	ft

Time of Concentration =	14.71	minutes	
SCS Lag Time =	8.82	minutes (SCS Lag = 0.6* Tc)	
Time Increment =	2.56	minutes (= 0.29*SCS Lag)	

A. ABBOTT 12/08/2023

Subbasin 3

I. SCS CURVE NUMBERS

Soils from WebSoilSurvey are only inclusive of indirectly connected areas

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = 100.0% HSG 'C' = 0.0% HSG 'D' = 0.0%

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	61	Assume good condition
Wooded	55	Assume good condition

II. PRE-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roadway Area	0	0.00
Driveway / Parking Lot	0	0.00
Roof	0	0.00
Sidewalk / Patio	0	0.00
Other	0	0.00
Totals	0	0.00

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	0	0.00	-
Onsite open	61	0	0.00	Assume good condition
Onsite wooded	55	9,953	0.23	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	0	0.00	-
Offsite open	61	0	0.00	Assume good condition
Offsite wooded	55	0	0.00	Assume good condition
Offsite pond	100	0	0.00	-

Total Area = 0.23 acres 9,953 sf

Composite SCS CN = 55

% Impervious = 0.0%

A. ABBOTT 12/08/2023

Subbasin 3

III. TIME OF CONCENTRATION INFORMATION

Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow

Seament Time =	17.44	minutes
P (2-year/24-hour) =	3.5	inches (Durham, NC)
Manning's n =	0.40	Wooded
Slope =	0.0300	ft/ft
Height =	3	ft
Bot Elev =	385.00	ft
Top Elev =	388.00	ft
Length =	100	ft

Segment 2: Concentrated Flow

Length =	120	ft
Top Elev =	385.00	ft
Bot Elev =	383.00	ft
Height =	2	ft
Slope =	0.0167	ft/ft
Paved ? =	No	
Velocity =	2.08	ft/sec
Segment Time =	0.96	minutes

Time of Concentration =	18.40	minutes	
SCS Lag Time =	11.04	minutes (SCS Lag = 0.6* Tc)	
Time Increment =	3.20	minutes (= 0.29*SCS Lag)	

A. ABBOTT 12/08/2023

Subbasin 4

I. SCS CURVE NUMBERS

Soils from WebSoilSurvey are only inclusive of indirectly connected areas

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = 100.0% HSG 'C' = 0.0% HSG 'D' = 0.0%

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	61	Assume good condition
Wooded	55	Assume good condition

II. PRE-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roadway Area	0	0.00
Driveway / Parking Lot	0	0.00
Roof	0	0.00
Sidewalk / Patio	0	0.00
Other	0	0.00
Totals	0	0.00

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	0	0.00	-
Onsite open	61	0	0.00	Assume good condition
Onsite wooded	55	13,799	0.32	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	0	0.00	-
Offsite open	61	0	0.00	Assume good condition
Offsite wooded	55	0	0.00	Assume good condition
Offsite pond	100	0	0.00	-

Total Area = 0.32 acres 13,799 sf

Composite SCS CN = 55

% Impervious = 0.0%

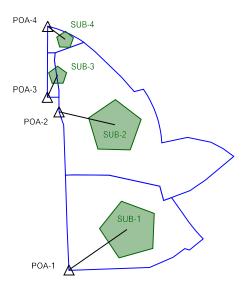
A. ABBOTT 12/08/2023

Subbasin 4

III. TIME OF CONCENTRATION INFORMATIONTime of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow

Length =	100	ft
Top Elev =	388.00	ft
Bot Elev =	384.00	ft
Height =	4	ft
Slope =	0.0400	ft/ft
Manning's n =	0.40	Wooded
P (2-year/24-hour) =	3.5	inches (Durham, NC)
Segment Time =	15.54	minutes


Segment 2: Concentrated Flow

Segment Time =	0.21	minutes
Velocity =	2.73	ft/sec
Paved ? =	No	
Slope =	0.0286	ft/ft
Height =	1	ft
Bot Elev =	383.00	ft
Top Elev =	384.00	ft
Length =	ngth = 35	

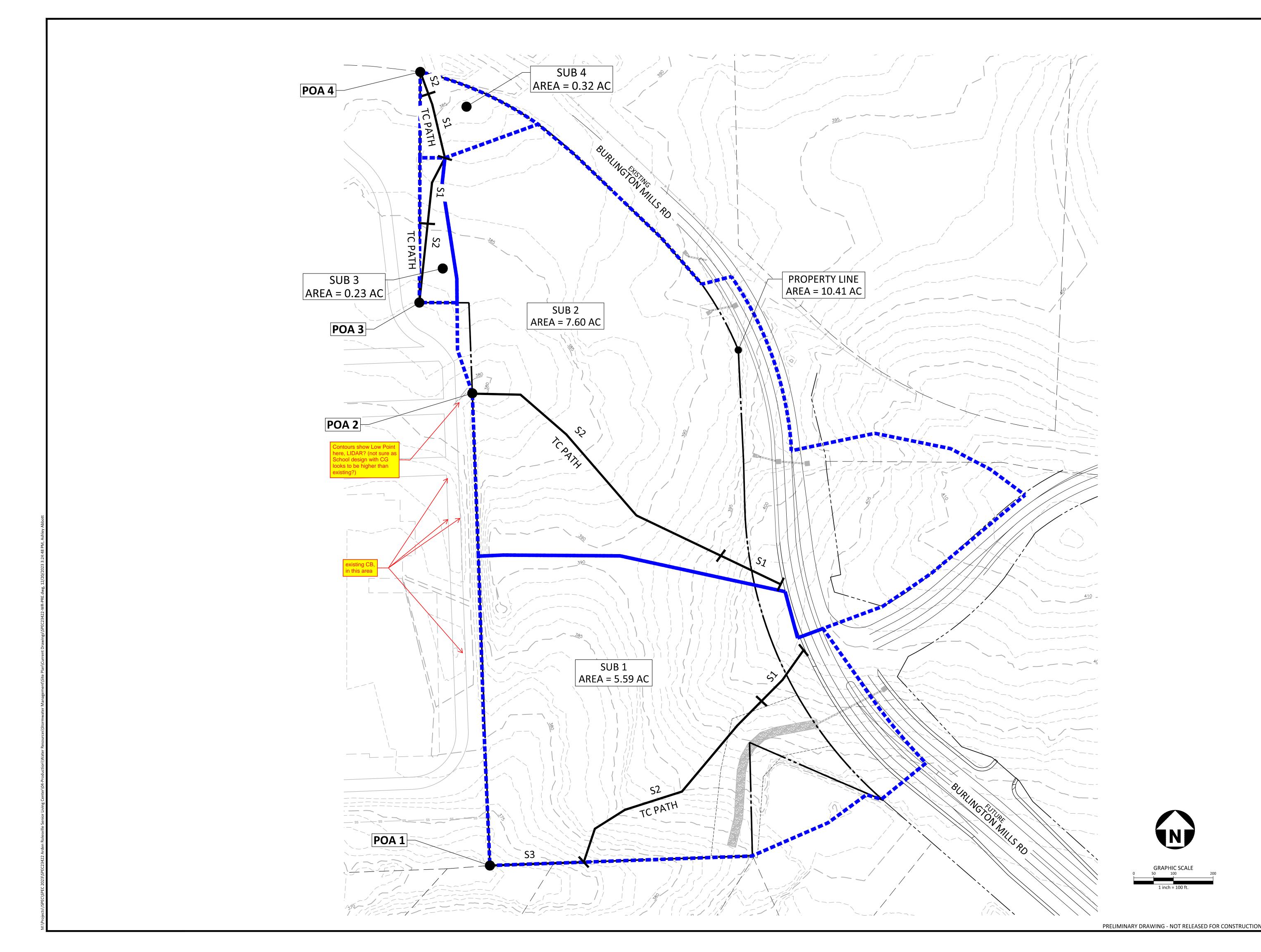
Time of Concentration =	15.76	minutes	
SCS Lag Time =	9.45	minutes (SCS Lag = 0.6* Tc)	
Time Increment =	2.74	minutes (= 0.29*SCS Lag)	

Scenario: Pre- 1 year

FlexTable: Catchment Table (Arden Senior Living Peak Flow.ppc)

Current Time: 0.000 min

Area (ft²)	SCS CN	Time of Concentration (min)	Notes
243,365.000	71.000	15.380	PRE
329,690.000	64.000	14.710	PRE
477,293,000	85,000	5.000	POST
02,660,000	72.000	42.00	500
, , , , , , , , , , , , , , , , , , ,		12.990	PUS1
13,053.000	55.000	15.760	POST
14,637.000	65.000	14.040	POST
13,799.000	55.000	15.760	PRE
9,953.000	55.000	18.400	PRE
9,164.000	55.000	10.100	
	243,365.000 329,690.000 477,293.888 82,660.000 13,053.000 14,637.000 13,799.000 9,953.000	(ft²) 243,365.000 71.000 329,690.000 64.000 477,293.888 85.888 82,660.888 73.888 13,053.888 55.888 14,637.000 65.000 13,799.000 55.000 9,953.000 55.000	(ft²) Concentration (min) 243,365.000 71.000 15.380 329,690.000 64.000 14.710 477,293.000 85.000 5.000 82,660.000 73.000 12.990 13,053.000 55.000 14.040 13,799.000 55.000 15.760 9,953.000 55.000 18.400 0.164.000 55.000 19.400



Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
SUB-1	Pre- 1 year	1	0.315	730.000	3.81
SUB-1	Pre- 10 year	10	0.995	728.000	12.04
SUB-1	Pre- 100 year	100	1.937	728.000	20.69
SUB-2	Pre- 1 year	1	0.256	731.000	2.32
SUB-2	Pre- 10 year	10	1.008	728.000	11.72
SUB-2	Pre- 100 year	100	2.143	728.000	22.86
SUB-4	Pre- 1 year	1	0.004	754.000	0.02
SUB-4	Pre- 10 year	10	0.026	731.000	0.25
SUB-4	Pre- 100 year	100	0.065	729.000	0.64
SUB-3	Pre- 1 year	1	0.003	755.000	0.01
SUB-3	Pre- 10 year	10	0.019	733.000	0.16
SUB-3	Pre- 100 year	100	0.047	731.000	0.43

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
POA-1	Pre- 1 year	1	0.315	730.000	3.81
POA-1	Pre- 10 year	10	0.995	728.000	12.04
POA-1	Pre- 100 year	100	1.937	728.000	20.69
POA-2	Pre- 1 year	1	0.256	731.000	2.32
POA-2	Pre- 10 year	10	1.008	728.000	11.72
POA-2	Pre- 100 year	100	2.143	728.000	22.86
POA-3	Pre- 1 year	1	0.003	755.000	0.01
POA-3	Pre- 10 year	10	0.019	733.000	0.16
POA-3	Pre- 100 year	100	0.047	731.000	0.43
POA-4	Pre- 1 year	1	0.004	754.000	0.02
POA-4	Pre- 10 year	10	0.026	731.000	0.25
POA-4	Pre- 100 year	100	0.065	729.000	0.64

McAdams

The John R. McAdams Company, Inc. 2905 Meridian Parkway Durham, NC 27713

fax 919. 361. 2269 license number: C-0293, C-187

www.mcadamsco.com

phone 919. 361. 5000

CLIENT

BUVERMO INVESTMENTS, INC 7315 WISCONSIN AVENUE SUITE 925W BETHESDA, MARYLAND, 20814

DEN SENIOR LIVING CENTER PRELIMINARY PLAT PLAN

REVISIONS

NO. DATE

PLAN INFORMATION

PROJECT NO. SPEC-23422

FILENAME SPEC23422-WR-P

CHECKED BY MT

DRAWN BY AA

SCALE 1"=60'

DATE 01.02.2024

SHEET

PRE-DEVELOPMENT HYDROLOGY MAP

PRE

POST-DEVELOPMENT HYDROLOGIC CALCULATIONS

ARDEN SENIOR LIVING CENTER SPEC-23422

POST-DEVELOPMENT HYDROLOGY

A. ABBOTT 12/08/2023

Summary of Results

HYDROLOGY INPUT SUMMARY

Sub-basin ID		Onsite	Area [acres]				Offs	ite Area [acr	es]		Total Area	SCS CN	To [mim]
Sub-basin ID	Impervious	Open	Wooded	Pond	Total	Impervious	Open	Wooded	Pond	Total	[acres]	3C3 CN	Tc [min]
Sub 1 Bypass	0.00	0.57	0.49	0.00	1.06	0.28	0.14	0.42	0.00	0.84	1.90	73	0.00
Sub 1 to SCM A	5.93	2.02	0.60	0.00	8.55	0.40	0.39	1.62	0.00	2.41	10.96	85	minutes
Sub 2	0.00	0.29	0.00	0.00	0.29	0.00	0.00	0.05	0.00	0.05	0.34	55	0.00
Sub 3	0.00	0.00	0.21	0.00	0.21	0.00	0.00	0.00	0.00	0.00	0.21	55	0.00
Sub 4	0.00	0.00	0.30	0.00	0.30	0.00	0.00	0.00	0.00	0.00	0.30	55	0.00
Totals =	5 93	2 88	1 60	0.00	10 41	0.68	0.53	2 08	0.00	3 30	13.70		

lotais

ARDEN SENIOR LIVING CENTER SPEC-23422

POST-DEVELOPMENT HYDROLOGY

I. SCS CURVE NUMBERS

Subbasin 1	to SCIVI i
------------	------------

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = HSG 'C' = 36.8% 63.2% HSG 'D' = 0.0%

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	69	Assume good condition
Wooded	64	Assume good condition

II. POST-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roof	92,809	2.13
Roadway Area	0	0.00
Driveway / Parking Lot	98,920	2.27
Sidewalk / Patio	35,710	0.82
Other	30,757	0.71
Totals	258,196	5.93

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	258,196	5.93	-
Onsite open	69	88,144	2.02	Assume good condition
Onsite wooded	64	26,016	0.60	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	17,405	0.40	-
Offsite open	69	17,129	0.39	Assume good condition
Offsite wooded	64	70,403	1.62	Assume good condition
Offsite pond	100	0	0.00	-

Total area =

10.96 477,293

acres

Composite SCS CN =

85

% Impervious =

57.7%

III. TIME OF CONCENTRATION INFORMATION

Time of concentration is assumed to be 5 minutes

Time of Concentration =	5.00	minutes	
SCS Lag Time =	3.00	minutes (SCS Lag = 0.6* Tc)	
Time Increment =	0.87	minutes (= 0.29*SCS Lag)	

A. ABBOTT 12/08/2023

POST-DEVELOPMENT HYDROLOGY

A. ABBOTT 12/08/2023

Subbasin 1 Bypass

I. SCS CURVE NUMBERS

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = 34.1% HSG 'C' = 41.0%

HSG 'D' = 25.0% *Urban Land

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	71	Assume good condition
Wooded	67	Assume good condition

II. POST-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roof	0	0.00
Roadway Area	0	0.00
Driveway / Parking Lot	0	0.00
Sidewalk / Patio	0	0.00
Other	0	0.00
Totals	0	0.00

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	0	0.00	-
Onsite open	71	24,684	0.57	Assume good condition
Onsite wooded	67	21,383	0.49	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	12,068	0.28	-
Offsite open	71	6,144	0.14	Assume good condition
Offsite wooded	67	18,381	0.42	Assume good condition
Offsite pond	100	0	0.00	-

Total area = 1.90

1.90 acres 82,660 sf

Composite SCS CN = 73

% Impervious = 14.6%

Subbasin 1 Bypass

III. TIME OF CONCENTRATION INFORMATIONTime of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow			
Length =	100	ft	
Top Elev =	399.00	ft	
Bot Elev =	389.00	ft	
Height =	10	ft	
Slope =	0.1001	ft/ft	
Manning's n =	0.40	Wooded	
P (2-year/24-hour) =	3.5	inches (Durham, NC)	
Segment Time =	10.77	minutes	
Segment 3: Concentrated Flow			
Length =	172	ft	
Top Elev =	389.00	ft	
Bot Elev =	384.00	ft	
Height =	5	ft	
Slope =	0.0291	ft/ft	
Paved ? =	No		
Velocity =	2.75	ft/sec	
Segment Time =	1.04	minutes	
Segment 6: Channel Flow			
Length =	376	ft	pre
Top Elev =	384.00	ft	
Bot Elev =	372.00	ft	
Height =	12	ft	
Slope =	0.0319	ft/ft	
Manning's n =	0.045	natural channel	
Flow Area =	6.00	sf (assume 3' x 2'h channel)	
Wetted Perimeter =	7.00	sf (assume 3' x 2'h channel)	
Channel Velocity =	5.34	ft/sec	
Segment Time =	1.17	minutes	

Time of Concentration =	12.99	minutes	
SCS Lag Time =	7.79	minutes (SCS Lag = 0.6* Tc)	
Time Increment =	2.26	minutes (= 0.29*SCS Lag)	

ARDEN SENIOR LIVING CENTER SPEC-23422

POST-DEVELOPMENT HYDROLOGY

Subbasin 2

I. SCS CURVE NUMBERS

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = 60.8% HSG 'C' = 39.2% HSG 'D' = 0.0%

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	66	Assume good condition
Wooded	61	Assume good condition

II. POST-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roof	0	0.00
Roadway Area	0	0.00
Driveway / Parking Lot	0	0.00
Sidewalk / Patio	0	0.00
Other	0	0.00
Totals	0	0.00

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	0	0.00	-
Onsite open	66	12,633	0.29	Assume good condition
Onsite wooded	61	0	0.00	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	0	0.00	-
Offsite open	66	0	0.00	Assume good condition
Offsite wooded	61	2,004	0.05	Assume good condition
Offsite pond	100	0	0.00	-

Total area = 0.34 acres 14,637 sf

Composite SCS CN = 65

% Impervious = 0.0%

A. ABBOTT 12/08/2023

Subbasin 2

III. TIME OF CONCENTRATION INFORMATION

Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow

Overland Flow		
Length =	100	ft
Top Elev =	390.00	ft
Bot Elev =	384.00	ft
Height =	6	ft
Slope =	0.0601	ft/ft
Manning's n =	0.40	Wooded
P (2-year/24-hour) =	3.5	inches (Durham, NC)
Seament Time =	13.22	minutes

Segment 2: Concentrated Flow

Length =	137	ft
Top Elev =	384.00	ft
Bot Elev =	380.00	ft
Height =	4	ft
Slope =	0.0292	ft/ft
Paved ? =	No	
Velocity =	2.76	ft/sec
Segment Time =	0.83	minutes

			\neg
Time of Concentration =	14.04	minutes	
SCS Lag Time =	8.43	minutes (SCS Lag = 0.6* Tc)	
Time Increment =	2.44	minutes (= 0.29*SCS Lag)	

POST-DEVELOPMENT HYDROLOGYSubbasin 3

DROLOGYA. ABBOTT 12/08/2023

I. SCS CURVE NUMBERS

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = 100.0% HSG 'C' = 0.0% HSG 'D' = 0.0%

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	61	Assume good condition
Wooded	55	Assume good condition

II. POST-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roof	0	0.00
Roadway Area	0	0.00
Driveway / Parking Lot	0	0.00
Sidewalk / Patio	0	0.00
Other	0	0.00
Totals	0	0.00

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	0	0.00	-
Onsite open	61	0	0.00	Assume good condition
Onsite wooded	55	9,164	0.21	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	0	0.00	-
Offsite open	61	0	0.00	Assume good condition
Offsite wooded	55	0	0.00	Assume good condition
Offsite pond	100	0	0.00	-

Total area = 0.21 acres 9,164 sf

Composite SCS CN = 55

% Impervious = 0.0%

POST-DEVELOPMENT HYDROLOGY

A. ABBOTT 12/08/2023

Subbasin 3

III. TIME OF CONCENTRATION INFORMATION

Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Paved ? =

Velocity =

Segment Time =

Segment 1: Overland Flow Length =

Segment 1. Overland Flow		
Length =	100	ft
Top Elev =	388.00	ft
Bot Elev =	385.00	ft
Height =	3	ft
Slope =	0.0300	ft/ft
Manning's n =	0.40	Wooded
P (2-year/24-hour) =	3.5	inches (Durham, NC)
Segment Time =	17.44	minutes
Segment 2: Concentrated Flow		
Length =	120	ft
Top Elev =	385.00	ft
Bot Elev =	383.00	ft
Height =	2	ft
Slope =	0.0167	ft/ft

No

2.08

0.96

Time of Concentration =	18.40	minutes	
SCS Lag Time =	11.04	minutes (SCS Lag = 0.6* Tc)	
Time Increment =	3.20	minutes (= 0.29*SCS Lag)	

ft/sec

minutes

POST-DEVELOPMENT HYDROLOGY

A. ABBOTT 12/08/2023

I. SCS CURVE NUMBERS

Subbasin 4

HSG	Impervious	Open	Wooded
A	98	39	30
В	98	61	55
С	98	74	70
D	98	80	77

Assume:

HSG 'A' = 0.0% HSG 'B' = 100.0% HSG 'C' = 0.0% HSG 'D' = 0.0%

Cover Condition	SCS CN	Comments
Impervious	98	-
Open	61	Assume good condition
Wooded	55	Assume good condition

II. POST-DEVELOPMENT

A. Onsite Impervious Breakdown

Contributing Area	Area [sf]	Area [ac]
Roof	0	0.00
Roadway Area	0	0.00
Driveway / Parking Lot	0	0.00
Sidewalk / Patio	0	0.00
Other	0	0.00
Totals	0	0.00

B. Watershed Land Use Breakdown

Contributing Area	SCS CN	Area [sf]	Area [acres]	Comments
Onsite impervious	98	0	0.00	-
Onsite open	61	0	0.00	Assume good condition
Onsite wooded	55	13,053	0.30	Assume good condition
Onsite pond	100	0	0.00	-
Offsite impervious	98	0	0.00	-
Offsite open	61	0	0.00	Assume good condition
Offsite wooded	55	0	0.00	Assume good condition
Offsite pond	100	0	0.00	-

Total area = 0.30 acres 13,053 sf

Composite SCS CN = 55

% Impervious = 0.0%

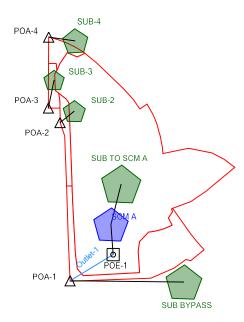
Subbasin 4

III. TIME OF CONCENTRATION INFORMATION

Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow Length = 100 ft

Lengui -	100	11.
Top Elev =	388.00	ft
Bot Elev =	384.00	ft
Height =	4	ft
Slope =	0.0400	ft/ft
Manning's n =	0.40	Wooded
P (2-year/24-hour) =	3.5	inches (Durham, NC)
Segment Time =	15.54	minutes


Segment 2: Concentrated Flow

Segment Time =	0.21	minutes
Velocity =	2.73	ft/sec
Paved ? =	No	
Slope =	0.0286	ft/ft
Height =	1	ft
Bot Elev =	383.00	ft
Top Elev =	384.00	ft
Length =	35	ft

Time of Concentration =	15.76	minutes	
SCS Lag Time =	9.45	minutes (SCS Lag = 0.6* Tc)	
Time Increment =	2.74	minutes (= 0.29*SCS Lag)	

Scenario: Post- 1 year

FlexTable: Catchment Table (Arden Senior Living Peak Flow.ppc)

Current Time: 0.000 min

Label	Area (ft²)	SCS CN	Time of Concentration (min)	Notes
SUB 1	243,365.000	71.000	15.380	PRE
SUB 2	329,690.000	61.000	14.710	PRE
SUB TO SCM A	477,293.000	85.000	5.000	POST
SUB BYPASS	82,660.000	73.000	12.990	POST
SUB-4	13,053.000	55.000	15.760	POST
SUB-2	14,637.000	65.000	14.040	POST
SUB-4	13,799.000	55.000	15./60	PRE
+ SUB-3	9,953.000	55.000	18.400	PRE
SUB-3	9,164.000	55.000	18.400	POST

Catchments Summary


Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
SUB TO SCM A	Post- 1 year	1	1.342	721.000	28.86
SUB TO SCM A	Post- 10 year	10	3.105	721.000	56.51
SUB TO SCM A	Post- 100 year	100	5.256	721.000	79.96
SUB BYPASS	Post- 1 year	1	0.122	728.000	1.67
SUB BYPASS	Post- 10 year	10	0.364	727.000	4.78
SUB BYPASS	Post- 100 year	100	0.693	726.000	7.91
SUB-4	Post- 1 year	1	0.004	754.000	0.02
SUB-4	Post- 10 year	10	0.025	731.000	0.23
SUB-4	Post- 100 year	100	0.061	729.000	0.60
SUB-2	Post- 1 year	1	0.012	730.000	0.12
SUB-2	Post- 10 year	10	0.047	728.000	0.57
SUB-2	Post- 100 year	100	0.098	728.000	1.07
SUB-3	Post- 1 year	1	0.003	755.000	0.01
SUB-3	Post- 10 year	10	0.017	733.000	0.15
SUB-3	Post- 100 year	100	0.043	731.000	0.39

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)
POA-1	Post- 1 year	1	0.410	728.000	1.89
POA-1	Post- 10 year	10	2.329	753.000	11.46
POA-1	Post- 100 year	100	4.804	726.000	57.19
POA-2	Post- 1 year	1	0.012	730.000	0.12
POA-2	Post- 10 year	10	0.047	728.000	0.57
POA-2	Post- 100 year	100	0.098	728.000	1.07
POA-3	Post- 1 year	1	0.003	755.000	0.01
POA-3	Post- 10 year	10	0.017	733.000	0.15
POA-3	Post- 100 year	100	0.043	731.000	0.39
POA-4	Post- 1 year	1	0.004	754.000	0.02
POA-4	Post- 10 year	10	0.025	731.000	0.23
POA-4	Post- 100 year	100	0.061	729.000	0.60

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow (ft³/s)	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
SCM A (IN)	Post- 1 year	1	1.342	721.000	28.86	(N/A)	(N/A)
SCM A (OUT)	Post- 1 year	1	0.288	1,440.000	0.29	378.82	1.053
SCM A (IN)	Post- 10 year	10	3.105	721.000	56.51	(N/A)	(N/A)
SCM A (OUT)	Post- 10 year	10	1.965	753.000	9.63	380.24	1.615
SCM A (IN) SCM A (OUT)	Post- 100 year Post- 100 year	100 100	5.256 4.111	721.000 726.000	79.96 49.28	(N/A) 380.98	(N/A) 1.933

McAdams

The John R. McAdams Company, Inc. 2905 Meridian Parkway Durham, NC 27713

fax 919. 361. 2269 license number: C-0293, C-187

www.mcadamsco.com

phone 919. 361. 5000

CLIENT

BUVERMO INVESTMENTS, INC 7315 WISCONSIN AVENUE SUITE 925W BETHESDA, MARYLAND, 20814

DEN SENIOR LIVING CENTER PRELIMINARY PLAT PLAN

REVISIONS

NO. DATE

PLAN INFORMATION

PROJECT NO. SPEC-23422

FILENAME SPEC23422-WR-POST

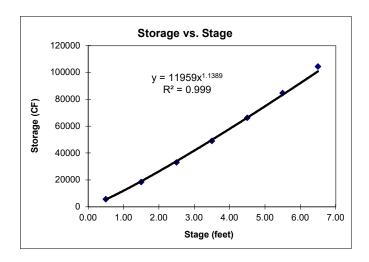
CHECKED BY MT

DRAWN BY AA

 DRAWN BY
 AA

 SCALE
 1"=60"

 DATE
 01.02.2024

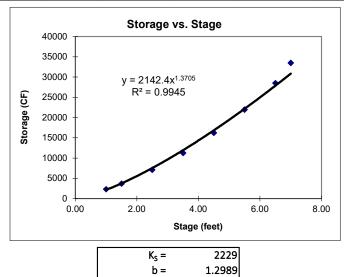

POST-DEVELOPMENT

POST

STORMWATER CONTROL MEASURE A DESIGN CALCULATIONS

STAGE-STORAGE FUNCTION - ABOVE NORMAL POOL

Contour (feet)	Stage (feet)	Contour Area (SF)	Average Contour Area (SF)	Incremental Contour Volume (CF)	Accumulated Contour Volume (CF)	Estimated Stage w/ S-S Fxn (feet)
375.50	0.00	10,420				
376.00	0.50	12,006	11213	5607	5607	0.51
377.00	1.50	13,650	12828	12828	18435	1.46
378.00	2.50	15,352	14501	14501	32936	2.43
379.00	3.50	16,585	15969	15969	48904	3.44
380.00	4.50	17,829	17207	17207	66111	4.49
381.00	5.50	19,099	18464	18464	84575	5.57
382.00	6.50	20,417	19758	19758	104333	6.70

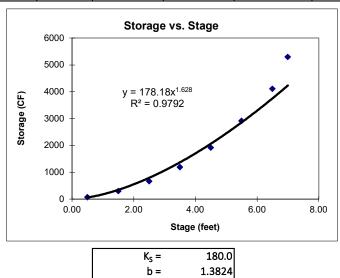

K _s =	11959
b =	1.1389

STORMWATER CONTROL MEASURE A

SSFxn Main Pool

STAGE-STORAGE FUNCTION - MAIN POOL

Contour (feet)	Stage (feet)	Contour Area (SF)	Average Contour Area (SF)	Incremental Contour Volume (CF)	Accumulated Contour Volume (CF)	Estimated Stage w/ S-S Fxn (feet)
368.00	-0.50	1,862		Sadiman	t Storage	
368.50	0.00	2,145		Sedimen	it storage	
369.50	1.00	2,452	2299	2299	2299	1.02
370.00	1.50	3,087	2770	1385	3683	1.47
371.00	2.50	3,768	3428	3428	7111	2.44
372.00	3.50	4,497	4133	4133	11243	3.48
373.00	4.50	5,280	4184	12551	16234	4.61
374.00	5.50	6,111	4940	14819	21929	5.81
375.00	6.50	7,003	5750	17250	28493	7.11
375.50	7.00	8,539	6910	17274	33508	8.06



STORMWATER CONTROL MEASURE A

SSFxn Forebay

STAGE-STORAGE FUNCTION - FOREBAY

Contour (feet)	Stage (feet)	Contour Area (SF)	Average Contour Area (SF)	Incremental Contour Volume (CF)	Accumulated Contour Volume (CF)	Estimated Stage w/ S-S Fxn (feet)
368.00	-0.50	71		Sadiman	t Storage	
368.50	0.00	114		Sedimen	it Storage	
369.00	0.50	167	141	70	70	0.51
370.00	1.50	289	228	228	298	1.44
371.00	2.50	441	365	365	663	2.57
372.00	3.50	620	531	531	1194	3.93
373.00	4.50	826	723	723	1917	5.54
374.00	5.50	1,061	751	2253	2916	7.50
375.00	6.50	1,324	972	2916	4110	9.61
375.50	7.00	1,878	1352	3380	5297	11.55

TOTAL VOLUME OF FACILITY

Volume of Main Pool below Normal Pool= 33,508 cf

Volume of Forebay below Normal Pool= 5,297 cf

Total Volume Below Normal Pool = 38,804 cf

Total Volume Above Normal Pool= 104,333 cf

Total Volume of Facility = 143,137 cf

FOREBAY PERCENTAGE OF PERMANENT POOL VOLUME

Per NCDEQ Minimum Design Criteria, the forebay volume should equal approximately 15-20% of the main pool volume.

Total Main Pool Volume = 33,508 cf

Provided Forebay Volume = 5,297 cf

Provided Forebay Volume % = 16%

AVERAGE DEPTH OF MAIN POOL

Main Pool Volume at Normal Pool = 33,508 cf

Main Pool Area at Normal Pool = 8,539 sf

Average Depth = 3.92 ft

STORMWATER CONTROL MEASURE A

A. Abbott 12/26/2023

Surface Area Calculation

WET DETENTION BASIN SUMMARY

Enter the drainage area characteristics ==>

Total drainage area to pond = 10.96 acres Total impervious area to pond = 6.33 acres

<u>Note</u> The basin must be sized to treat all impervious surface runoff draining into the pond, not just the impervious surface from on-site development.

Drainage area = 10.96 acres @ 57.7% impervious

Estimate the surface area required at pond normal pool elevation ==>

Wet Detention Basins are based on an minimum average depth of = 3.92 feet (Calculated)

		3.0	3.92	4.0
Lower Boundary =>	50.0	1.79		1.51
Site % impervious =>	57.7	2.02	1.74	1.71
Upper Boundary =>	60.0	2.09		1.77

Therefore, SA/DA required =	1.74
-----------------------------	------

Surface area required for main pool at normal pool = 8,287 ft²

Surface area provided for main pool at normal pool = 8,539 ft²

DETERMINATION OF WATER QUALITY VOLUME

 $WQ_V = (P)(R_V)(A)/12$

where,

WQ_V = water quality volume (in acre-ft)

 $R_V = 0.05 + 0.009(I)$ where I is percent impervious cover

A = area in acres

P = rainfall (in inches)

Input data:

Total area, A = 10.96 acres Impervious area = 6.33 acres Percent impervious cover, I = 57.7 % Rainfall, P = 1.00 inches

Calculated values:

 $R_V = 0.57$

 $WQ_V = 0.52$ acre-ft = 22659 cf.

ASSOCIATED DEPTH IN POND

 $WQ_V = 22659$ cf.

Stage / Storage Data:

Ks = 11959 b = 1.139 Zo = 375.50

Volume in 1" rainfall = 22659 cf.

Calculated values:

Depth of WQv in Basin = 1.75 ft

= 21.03 inches

Elevation = 377.25 ft

WQV Drawdown Calculation

DRAWDOWN ORIFICE DESIGN

Per NCDEQ "Stormwater Design Manual" Part B. Stormwater Calculations

Orifice Equation for WQv Flow:

$Q = C_d A (2 g Ho)^{0.5}$

 $\begin{array}{cccc} C_{d} \ orifice = & 0.60 \\ D \ orifice = & 2.5 \ inch \\ \# \ orifice = & 1 \\ Area \ orifice = & 0.034 \ sf \\ g = & 32.2 \ ft/s^{c} \\ Orifice \ Invert = & 375.50 \ ft \\ WSEL @ 1" \ Runoff \ Volume = & 377.25 \ ft \\ \end{array}$

*Average head over the orifice (assuming average head is 1/3 the total depth)

Q = 0.1217 cfs

0.550 ft*

Drawdown Time = Volume / Flowrate / 86400 (sec/day)

Volume in 1" rainfall = 22,659 cf

Ho=

Drawdown Time = 2.16 days

Subsection: Elevation-Area Volume Curve

Label: SCM A

Scenario: Post- 1 year

Elevation (ft)	Planimeter (ft²)	Area (ft²)	A1+A2+sqr (A1*A2) (ft²)	Volume (ac-ft)	Volume (Total) (ac-ft)
375.50	0.0	10,420.000	0.000	0.000	0.000
376.00	0.0	12,006.000	33,610.924	0.129	0.129
377.00	0.0	13,650.000	38,457.637	0.294	0.423
378.00	0.0	15,352.000	43,478.008	0.333	0.756
379.00	0.0	16,585.000	47,893.595	0.367	1.122
380.00	0.0	17,829.000	51,609.754	0.395	1.517
381.00	0.0	19,099.000	55,381.078	0.424	1.941
382.00	0.0	20,417.000	59,263.007	0.453	2.394

Return Event: 1 years

Storm Event: 1-Year

Subsection: Outlet Input Data

Label: SCM A

Scenario: Post- 1 year

Return Event: 1 years Storm Event: 1-Year

Requested Pond Water Surface Elevations			
Minimum (Headwater)	375.50 ft		
Increment (Headwater)	0.10 ft		
Maximum (Headwater)	382.00 ft		

Outlet Connectivity

Structure Type	Outlet ID	Direction	Outfall	E1 (ft)	E2 (ft)
Orifice-Area	Orifice - 1	Forward	Culvert - 1	379.00	382.00
Inlet Box	Riser - 1	Forward	Culvert - 1	380.20	382.00
Orifice-Circular	Orifice - WQ	Forward	Culvert - 1	375.50	382.00
Culvert-Circular	Culvert - 1	Forward	TW	374.50	382.00
Tailwater Settings	Tailwater			(N/A)	(N/A)

Scenario: Post- 1 year

Storm Event: 1-Year

Structure ID: Riser - 1 Structure Type: Inlet Box				
Number of Openings	1			
Elevation	380.20 ft			
Orifice Area	25.0 ft ²			
Orifice Coefficient	0.600			
Weir Length	20.00 ft			
Weir Coefficient	3.00 (ft^0.5)/s			
K Reverse	1.000			
Manning's n	0.000			
Kev, Charged Riser	0.000			
Weir Submergence	False			
Orifice H to crest	False			

Return Event: 1 years

Subsection: Outlet Input Data

Label: SCM A

Scenario: Post- 1 year

Return Event: 1 years Storm Event: 1-Year

Structure ID: Culvert - 1 Structure Type: Culvert-Circular					
Number of Barrels	1				
Diameter	30.0 in				
Length	80.00 ft				
Length (Computed Barrel)	80.00 ft				
Slope (Computed)	0.006 ft/ft				
Outlet Control Data					
Manning's n	0.013				
Ke	0.500				
Kb	0.009				
Kr	0.500				
Convergence Tolerance	0.00 ft				
Inlet Control Data					
Equation Form	Form 1				
K	0.0098				
М	2.0000				
С	0.0398				
Υ	0.6700				
T1 ratio (HW/D)	1.157				
T2 ratio (HW/D)	1.304				
Slope Correction Factor	-0.500				

Use unsubmerged inlet control 0 equation below T1 elevation. Use submerged inlet control 0 equation above T2 elevation

In transition zone between unsubmerged and submerged inlet control,

interpolate between flows at T1 & T2...

T1 Elevation	377.39 ft	T1 Flow	27.16 ft ³ /s
T2 Elevation	377.76 ft	T2 Flow	31.05 ft ³ /s

Subsection: Outlet Input Data

Label: SCM A

Scenario: Post- 1 year

Return Event: 1 years Storm Event: 1-Year

	Structure ID: Orifice - WQ Structure Type: Orifice-Circular				
	Number of Openings	1			
	Elevation	375.50 ft			
	Orifice Diameter	2.5 in 0.600			
	Orifice Coefficient				
	Structure ID: Orifice - 1		_		
_	Structure Type: Orifice-Area				
	Number of Openings	1			
	Elevation	379.00 ft			
	Orifice Area	1.8 ft ²			
	Top Elevation	379.50 ft			
	Datum Elevation	379.25 ft			
	Orifice Coefficient	0.600			
-	Structure ID: TW		_		
_	Structure Type: TW Setup, DS	Channel			
_	Tailwater Type	Free Outfall			
•			_		
	Convergence Tolerances				
-	Convergence Tolerances Maximum Iterations	30			
-		30 0.01 ft			
-	Maximum Iterations Tailwater Tolerance				
	Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance	0.01 ft			
	Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance	0.01 ft 0.50 ft			
	Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance	0.01 ft 0.50 ft 0.01 ft			
-	Maximum Iterations Tailwater Tolerance (Minimum) Tailwater Tolerance (Maximum) Headwater Tolerance (Minimum) Headwater Tolerance (Minimum)	0.01 ft 0.50 ft 0.01 ft 0.50 ft			

Scenario: Post- 1 year

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)	Contributing Structures
375.50	0.00	(N/A)	0.00	(no Q: Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1)
375.60	0.01	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
375.70	0.05	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
375.80	0.07	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
375.90	0.09	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.00	0.10	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.10	0.12	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.20	0.13	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.30	0.14	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.40	0.15	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.50	0.15	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.60	0.16	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.70	0.17	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.80	0.18	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
376.90	0.19	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.00	0.19	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.10	0.20	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)

Return Event: 1 years

Storm Event: 1-Year

Scenario: Post- 1 year

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)	Contributing Structures
377.20	0.21	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.30	0.21	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.40	0.22	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.50	0.23	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.60	0.23	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.70	0.24	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.80	0.24	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
377.90	0.25	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.00	0.25	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.10	0.26	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.20	0.26	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.30	0.27	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.40	0.27	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.50	0.28	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.60	0.28	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.70	0.29	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
378.80	0.29	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)

Return Event: 1 years Storm Event: 1-Year

Scenario: Post- 1 year

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)	Contributing Structures
378.90	0.30	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
379.00	0.30	(N/A)	0.00	Orifice - WQ,Culvert - 1 (no Q: Orifice - 1,Riser - 1)
379.10	1.17	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
379.20	2.04	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
379.30	2.91	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
379.40	3.78	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
379.50	4.66	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
379.60	5.45	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
379.70	6.14	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
379.80	6.75	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
379.90	7.31	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
380.00	7.83	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
380.10	8.31	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
380.20	8.78	(N/A)	0.00	Orifice - 1,Orifice - WQ,Culvert - 1 (no Q: Riser - 1)
380.30	11.11	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1
380.40	14.97	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1
380.50	19.83	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1
380.60	25.54	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1
380.70	31.90	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1

Return Event: 1 years

Storm Event: 1-Year

Scenario: Post- 1 year

Composite Outflow Summary

Water Surface Elevation (ft)	Flow (ft³/s)	Tailwater Elevation (ft)	Convergence Error (ft)	Contributing Structures
380.80	38.89	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1
380.90	45.36	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1
381.00	50.18	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1
381.10	54.09	(N/A)	0.00	Orifice - 1,Riser - 1,Orifice - WQ,Culvert - 1
381.20	55.19	(N/A)	0.00	Riser - 1,Culvert - 1 (no Q: Orifice - 1,Orifice - WQ)
381.30	55.74	(N/A)	0.00	Riser - 1,Culvert - 1 (no Q: Orifice - 1,Orifice - WQ)
381.40	56.29	(N/A)	0.00	Riser - 1,Culvert - 1 (no Q: Orifice - 1,Orifice - WQ)
381.50	56.82	(N/A)	0.00	Riser - 1,Culvert - 1 (no Q: Orifice - 1,Orifice - WO)
381.60	57.35	(N/A)	0.00	Riser - 1,Culvert - 1 (no Q: Orifice - 1,Orifice - WQ)
381.70	57.88	(N/A)	0.00	Riser - 1,Culvert - 1 (no Q: Orifice - 1,Orifice - WQ)
381.80	58.40	(N/A)	0.00	Riser - 1,Culvert - 1 (no Q: Orifice - 1,Orifice - WQ)
381.90	58.91	(N/A)	0.00	
382.00	59.43	(N/A)	0.00	Riser - 1,Culvert - 1 (no Q: Orifice - 1,Orifice - WQ)

Return Event: 1 years

Storm Event: 1-Year

Label: SCM A (IN) Scenario: Post- 1 year

Infiltration				
Infiltration Method (Computed)	No Infiltration			
Initial Conditions				
Elevation (Water Surface, Initial)	375.50 ft			
Volume (Initial)	0.000 ac-ft			
Flow (Initial Outlet)	$0.00 \text{ ft}^3/\text{s}$			
Flow (Initial Infiltration)	0.00 ft ³ /s			
Flow (Initial, Total)	$0.00 \text{ ft}^3/\text{s}$			
Time Increment	1.000 min			

Time merement	1.000 111111	
Inflow/Outflow Hydrograph Sum	mary	
Flow (Peak In) Flow (Peak Outlet)	28.86 ft ³ /s 0.29 ft ³ /s	Time to Peak (Flow, In) Time to Peak (Flow, Outlet)
Tiow (Feak Oddiet)	0.23 1075	Time to reak (Flow, Outlet)
Elevation (Water Surface, Peak)	378.82 ft	
Volume (Peak)	1.053 ac-ft	
Mass Balance (ac-ft)		
Volume (Initial)	0.000 ac-ft	
Volume (Total Inflow)	1.342 ac-ft	
Volume (Total Infiltration)	0.000 ac-ft	
Volume (Total Outlet Outflow)	0.288 ac-ft	
Volume (Retained)	1.053 ac-ft	
Volume (Unrouted)	0.000 ac-ft	
Error (Mass Balance)	0.0 %	

Return Event: 1 years

721.000 min

1,440.000 min

Storm Event: 1-Year

Label: SCM A (IN) Scenario: Post- 10 year

Infiltration	
Infiltration Method (Computed)	No Infiltration
1 ::: 10 1:::	
Initial Conditions	
Elevation (Water Surface, Initial)	375.50 ft
Volume (Initial)	0.000 ac-ft
Flow (Initial Outlet)	0.00 ft ³ /s
Flow (Initial Infiltration)	0.00 ft ³ /s
Flow (Initial, Total)	0.00 ft ³ /s
Time Increment	1.000 min

Time Increment	1.000 min	
Inflow/Outflow Hydrograph Sun	nmary	
Flow (Peak In)	56.51 ft³/s	Time to Peak (Flow, In)
Flow (Peak Outlet)	9.63 ft ³ /s	Time to Peak (Flow, Outlet)
Elevation (Water Surface, Peak)	380.24 ft	
Volume (Peak)	1.615 ac-ft	<u></u>
Mass Balance (ac-ft)		
Volume (Initial)	0.000 ac-ft	
Volume (Total Inflow)	3.105 ac-ft	
Volume (Total Infiltration)	0.000 ac-ft	
Volume (Total Outlet Outflow)	1.965 ac-ft	
Volume (Retained)	1.139 ac-ft	
Volume (Unrouted)	-0.001 ac-ft	
Error (Mass Balance)	0.0 %	

Return Event: 10 years

721.000 min

753.000 min

Storm Event: 10-Year

Label: SCM A (IN) Scenario: Post- 100 year

Infiltration			
Infiltration Method (Computed) No Infiltration			
Initial Conditions			
Elevation (Water Surface, Initial)	375.50 ft		
Volume (Initial)	0.000 ac-ft		
Flow (Initial Outlet)	0.00 ft ³ /s		
Flow (Initial Infiltration)	0.00 ft ³ /s		
Flow (Initial, Total)	0.00 ft ³ /s		
Time Increment	1.000 min		

Inflow/Outflow Hydrograph Sumn	nary	
Flow (Peak In)	79.96 ft³/s	Time to Peak (Flow, In)
Flow (Peak Outlet)	49.28 ft ³ /s	Time to Peak (Flow, Outlet)
		<u>—</u>
Elevation (Water Surface, Peak)	380.98 ft	
Volume (Peak)	1.933 ac-ft	
Mass Balance (ac-ft)		
Volume (Initial)	0.000 ac-ft	
Volume (Total Inflow)	5.256 ac-ft	
Volume (Total Infiltration)	0.000 ac-ft	
Volume (Total Outlet Outflow)	4.111 ac-ft	
Volume (Retained)	1.144 ac-ft	
Volume (Unrouted)	-0.001 ac-ft	
Error (Mass Balance)	0.0 %	

Return Event: 100 years

721.000 min

726.000 min

Storm Event: 100-Year

NUTRIENT LOADING CALCULATIONS

SITE DATA

Project Information				
	Project Name:	Arden Senior Living Center		
	Applicant:	Juan Montes		
	Applicant Contact Name:	Juan Montes		
	Applicant Contact Number:	919-361-5000		
	Contact Email:	montes@Mcadamsco.com		
	Municipal Jurisdiction (Select from dropdown menu):	Rolesville		
	Last Updated:	Wednesday, January 3, 2024		
		Site Data:		
	Total Site Area (Ac):	10.41		
	Existing Lake/Pond Area (Ac):	0.00		
	Proposed Disturbed Area (Ac):	8.26		
	Impervious Surface Area (acre):	5.93		
	Type of Development (Select from Dropdown menu):	Residential		
	Percent Built Upon Area (BUA):	57%		
	Project Density:	High		
	Is the proposed project a site expansion?	No		
	Number of Drainage Areas on Site:	4		
	1-Year, 24-Hour Storm (inches) (See NOAA Website):	2.86		
NOAA	2-Year, 24-Hour Storm (inches) (See NOAA Website):	3.46		
	10-Year, 24-Hour Storm (inches) (See NOAA Website):	5.04		
		Lot Data (if applicable):		
	Total Acreage in Lots:			
	Number of Lots:			
	Average Lot Size (SF): Total Impervious Surface Area on Lots (SF):			
	Average Impervious Surface Area Per Lot (SF):	about the state of additional accountable to the state of		
	Stormwater Narrative (minit to 1,200	characters - attach additional pages with submittal if necessary):		
Arden Senior Liv Stormwater Calc		The existing site is an undveloped forrest. This site utilitizes one stormwater control measure. For more detail see the		

SITE DATA Page 1

Arden Senior Living Center

<u>DRAINAGE AREA 1</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

LAND USE & SITE DATA	PRE-DEVELOPMENT POST-DEVELOPM					ELOPME	NT		
Drainage Area (Acres)=		5.	59		12.86				
Site Acreage within Drainage=	4.57 9.61								
One-year, 24-hour rainfall (in)=	2.86								
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=	5.04								
Total Lake/Pond Area (Acres)=									
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	Α	В	С	D	Α	В	С	D	
Pasture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Fair Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Good Condition	0.00	0.36	4.14	0.07	0.00	0.39	0.58	0.12	
Open Space, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Fair condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Good Condition	0.00	0.00	0.00	0.00	0.00	0.94	1.51	0.14	
Reforestation (in dedicated OS)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Connected Impervious	0.00	0.00	0.00	0.00	0.00	2.18	3.75	0.00	
Disconnected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SITE FLOW	PR	E-DEVEL	OPMENT	ГТс	POS	T-DEVE	LOPMEN	T Tc	
Sheet Flow									
Length (ft)=		100	.00			100	0.00		
Slope (ft/ft)=		0.0	60			0.0	0.035		
Surface Cover:		Wo	ods			Wo	ods		
n-value=		0.4	.00			0.4	100	00	
T _t (hrs)=		0.2	:44			0.3	303		
Shallow Flow									
Length (ft)=		380	.00			686	6.00		
Slope (ft/ft)=		0.0	55			0.0)36		
Surface Cover:		Unpa	aved			Unp	aved		
Average Velocity (ft/sec)=		3.	78			3.	06		
T _t (hrs)=		0.0	03			0.	06		
Channel Flow 1									
Length (ft)=		142	.00			103	3.00		
Slope (ft/ft)=		0.0	35			0.0)19		
Cross Sectional Flow Area (ft²)=		4.	00			10	.50		
Wetted Perimeter (ft)=		6.	00			9.	50		
Channel Lining:		Gra	ass			Gr	ass		
n-value=		0.0	35			0.0)35		
				1.11					
Hydraulic Radius (ft)=									
Hydraulic Radius (ft)= Average Velocity (ft/sec)=			08				27		

DA1 Page 1

<u>DRAINAGE AREA 1</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Channel Flow 2		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft²)=	0.00	0.00
Wetted Perimeter (ft)=	0.00	0.00
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft²)=	0.00	0.00
· · ·	0.00	0.00
Wetted Perimeter (ft)= Channel Lining:	5.03	0.00
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.28	0.37
RESULTS		POST-DEVELOPMENT
11200210	PRE-DEVELOPMENT	POST-DEVELORIVENT
Composite Curve Number=	69	
Composite Curve Number=	69	87
Disconnected Impervious Adjustment	69	
Disconnected Impervious Adjustment Disconnected impervious area (acre) =	69	87
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		87
Disconnected Impervious Adjustment Disconnected impervious area (acre) =		87 7
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	8	87 7
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	8	87 7
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	21,	87 7 707
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	21,	7 707 1.59 55,507
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	0.59 9,841	7 707 1.59 55,507
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³)	0.59 9,841	7 707 1.59 55,507
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} =	0.59 9,841	7 707 1.59 55,507
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	0.59 9,841 45,0	7 707 1.59 55,507
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	0.59 9,841 45,6	77 707 1.59 55,507
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*1-year = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q1-year = 2-year, 24-hour storm (LID) Runoff (inches) = Q*2-year = Volume of runoff (ft³) =	0.59 9,841 45,6	77 707 1.59 55,507
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} =	0.59 9,841 45,6	77 707 1.59 55,507
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ff³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA)	0.59 9,841 45,6	77 707 1.59 55,507 666 2.12 73,851
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	0.59 9,841 45,6 0.93 15,368	77 707 1.59 55,507 366

DA1 Page 2

<u>DRAINAGE AREA 2</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

LAND USE & SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT			
Drainage Area (Acres)=					0.34			
Site Acreage within Drainage=	5.29 0.29							
One-year, 24-hour rainfall (in)=	2.86							
Two-year, 24-hour rainfall (in)=	3.46							
Ten-year, 24-hour storm (in)=	5.04							
Total Lake/Pond Area (Acres)=								
Lake/Pond Area not in the Tc flow path (Acres)=								
Site Land Use (acres):	Α	В	С	D	Α	В	С	D
Pasture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Woods, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Woods, Fair Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Woods, Good Condition	0.00	2.74	2.55	0.00	0.00	0.18	0.11	0.00
Open Space, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Open Space, Fair condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Open Space, Good Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Reforestation (in dedicated OS)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Connected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Disconnected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
SITE FLOW	PR	E-DEVEL	OPMEN	ΓT _c	POS	ST-DEVE	LOPMEN	T Tc
Sheet Flow								
Length (ft)=		100	0.00			100	0.00	
Slope (ft/ft)=		0.0	060			0.0	060	
Surface Cover:		Wo	ods			Wo	ods	
n-value=		0.4	100			0.4	100	
T _t (hrs)=		0.2	244			0.2	244	
Shallow Flow								
Length (ft)=		322	2.00			137	7.00	
Slope (ft/ft)=		0.0)49			0.0	029	
Surface Cover:		Unp	aved			Unp	aved	
Average Velocity (ft/sec)=		3.	57			2.	75	
T _t (hrs)=		0.	03			0.	01	
Channel Flow 1								
Length (ft)=			00				00	
Slope (ft/ft)=		0.0					000	
Cross Sectional Flow Area (ft²)=			00				00	
Wetted Perimeter (ft)=		0.	00			0.	00	
Channel Lining:								
n-value=								
Hydraulic Radius (ft)=								
Average Velocity (ft/sec)=								
T _t (hrs)=								

DA2 Page 1

<u>DRAINAGE AREA 2</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Channel Flow 2		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
	0.00	0.00
Cross Sectional Flow Area (ft²)= Wetted Perimeter (ft)=	0.00	0.00
Channel Lining:	0.00	0.00
n-value= Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft²)=	0.00	0.00
	0.00	0.00
Wetted Perimeter (ft)= Channel Lining:	0.00	0.00
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)= T _t (hrs)=		
Tc (hrs)=	0.27	0.26
RESULTS		
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Composite Curve Number=		
Composite Curve Number=	62	61
Disconnected Impervious Adjustment		
Disconnected Impervious Adjustment Disconnected Impervious area (acre) =	62	61
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =		61
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only	62 6	61 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	62	61 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	62 6	61 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	62 6	61 1
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	62 6	61
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	62 6 0.35	61 1 2 0.30
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	62 6 0.35	61 1 2 0.30
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	62 6 0.35	61 1 2 0.30
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} =	62 6 0.35	61 1 2 0.30
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	62 6 0.35 6,744	0.30 320
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	62 6 0.35 6,744	0.30 320
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*1-year = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q1-year = 2-year, 24-hour storm (LID) Runoff (inches) = Q*2-year = Volume of runoff (ft³) =	62 6 0.35 6,744	0.30 320
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Peak Discharge (cfs) = Q _{2-year} =	62 6 0.35 6,744	0.30 320
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} =	62 6 0.35 6,744 0.61 11,650	0.30 320 0.54 571
Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year) = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	62 6 0.35 6,744 0.61 11,650	0.30 320 0.54 571

DA2 Page 2

<u>DRAINAGE AREA 3</u> STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT				POST-DEVELOPMENT				
Drainage Area (Acres)=	0.23				0.21				
Site Acreage within Drainage=	0.23 0.21								
One-year, 24-hour rainfall (in)=	2.86								
Two-year, 24-hour rainfall (in)=	3.46								
Ten-year, 24-hour storm (in)=	5.04								
Total Lake/Pond Area (Acres)=									
Lake/Pond Area not in the Tc flow path (Acres)=									
Site Land Use (acres):	Α	В	С	D	Α	В	С	D	
Pasture	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Fair Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Woods, Good Condition	0.00	0.23	0.00	0.00	0.00	0.21	0.00	0.00	
Open Space, Poor Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Fair condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Open Space, Good Condition	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Reforestation (in dedicated OS)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Connected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Disconnected Impervious	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
SITE FLOW	PR	E-DEVEL	OPMEN1	ГТс	POS	POST-DEVELOPMENT Tc			
Sheet Flow									
Length (ft)=		100	0.00			100	0.00		
Slope (ft/ft)=		0.0	30		0.030				
Surface Cover:		Wo	ods		Woods				
n-value=		0.4	100		0.400				
T _t (hrs)=		0.3	322		0.322				
Shallow Flow									
Length (ft)=		120	0.00			120	0.00		
Slope (ft/ft)=		0.0)17			0.0)17		
Surface Cover:		Unp	aved			Unp	aved		
Average Velocity (ft/sec)=		2.	10			2.	10		
T _t (hrs)=		0.	02			0.	02		
Channel Flow 1									
Length (ft)=		0.	00			0.	00		
Slope (ft/ft)=		0.0	000			0.0	000		
Cross Sectional Flow Area (ft ²)=		0.	00			0.	00		
Wetted Perimeter (ft)=		0.	00			0.	00		
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=									
Average Velocity (ft/sec)=									
T _t (hrs)=									

DA3 Page 1

<u>DRAINAGE AREA 3</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Channel Flow 2		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft²)=	0.00	0.00
Wetted Perimeter (ft)=	0.00	0.00
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft²)=	0.00	0.00
` , ,	0.00	0.00
Wetted Perimeter (ft)= Channel Lining:	0.00	0.00
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.34	0.34
RESULTS		
	PRE-DEVELOPMENT 55	POST-DEVELOPMENT 55
Composite Curve Number=	55	55
Composite Curve Number= Disconnected Impervious Adjustment		
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	55	55
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)=		55
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	55	55 5
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	55 5	55 5
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	55 5	55 5
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	55 5 0.16	55 5 8
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow)	55 5	55 5
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) =	55 5 0.16	55 5 8
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	55 5 0.16	55 5 8
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} =	55 5 0.16	55 5 8
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID)	55 5 0.16 133	55 8 0.16 121
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	55 5 0.16 133	55 8 0.16 121
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	55 5 0.16 133	55 8 0.16 121
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} =	55 5 0.16 133	55 5 8 0.16 121
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs)= Q _{2-year} = 10-year, 24-hour storm (DIA)	55 5 5 0.16 133 0.33 278	55 5 8 0.16 121 0.33 253
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) = Peak Discharge (cfs) = Q _{2-year} = 10-year, 24-hour storm (DIA) Runoff (inches) = Q* _{10-year} =	0.16 133 0.33 278	55 5 8 0.16 121 0.33 253

DA3 Page 2

<u>DRAINAGE AREA 4</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Drainage Area (Acres)= Site Acreage within Drainage= One-year, 24-hour rainfall (in)= Two-year, 24-hour rainfall (in)=			32				20				
One-year, 24-hour rainfall (in)=			0.32			POST-DEVELOPMENT 0.30					
		0.3	32		0.30						
Two-year, 24-hour rainfall (in)=	2.8					86					
	3.46										
Ten-year, 24-hour storm (in)=				04							
Total Lake/Pond Area (Acres)=											
Lake/Pond Area not in the Tc flow path (Acres)=											
Site Land Use (acres):	A B C D					В	С	D			
Pasture 0.	0.00 0.00 0.00 0.00			0.00	0.00	0.00	0.00				
Woods, Poor Condition 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Woods, Fair Condition 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Woods, Good Condition 0.	0.00	0.32	0.00	0.00	0.00	0.30	0.00	0.00			
Open Space, Poor Condition 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Open Space, Fair condition 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Open Space, Good Condition 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Reforestation (in dedicated OS) 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Connected Impervious 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Disconnected Impervious 0.	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
SITE FLOW	PRE	-DEVEL	OPMENT	T _c	POST-DEVELOPMENT To						
Sheet Flow											
Length (ft)=		100	.00			100	0.00				
Slope (ft/ft)=		0.0	40		0.040						
Surface Cover:		Woo	ods		Woods						
n-value=		0.4	00		0.400						
T _t (hrs)=		0.2	87		0.287						
Shallow Flow											
Length (ft)=	35.00					35.00					
Slope (ft/ft)=		0.0	29			0.0	29				
Surface Cover:		Unpa	ved		Unpaved						
Average Velocity (ft/sec)=		2.7	73		2.75						
T _t (hrs)=		0.0	00		0.00						
Channel Flow 1											
Length (ft)=	0.00					0.00					
Slope (ft/ft)=	0.000				0.000						
Cross Sectional Flow Area (ft ²)=		0.0	00		0.00						
Wetted Perimeter (ft)=		0.0	00			0.0	00				
Channel Lining:											
n-value=											
Hydraulic Radius (ft)=											
Average Velocity (ft/sec)=											
T _t (hrs)=											

DA4 Page 1

<u>DRAINAGE AREA 4</u> <u>STORMWATER PRE-POST CALCULATIONS</u>

Channel Flow 2		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft²)=	0.00	0.00
Wetted Perimeter (ft)=	0.00	0.00
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Channel Flow 3		
Length (ft)=	0.00	0.00
Slope (ft/ft)=	0.000	0.000
Cross Sectional Flow Area (ft²)=	0.00	0.00
Wetted Perimeter (ft)=	0.00	0.00
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=		
Average Velocity (ft/sec)=		
T _t (hrs)=		
Tc (hrs)=	0.29	0.30
10 (1115)-	0.29	0.29
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
· ·		
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number=	PRE-DEVELOPMENT	POST-DEVELOPMENT
RESULTS Composite Curve Number= Disconnected Impervious Adjustment	PRE-DEVELOPMENT 55	POST-DEVELOPMENT
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) =	PRE-DEVELOPMENT 55	POST-DEVELOPMENT 55
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} =	PRE-DEVELOPMENT 55	POST-DEVELOPMENT 55
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA	PRE-DEVELOPMENT 55	POST-DEVELOPMENT 55
Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) =	PRE-DEVELOPMENT 55	POST-DEVELOPMENT 55
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow)	PRE-DEVELOPMENT 55 5	POST-DEVELOPMENT 55
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} =	PRE-DEVELOPMENT 55 50 0.16	POST-DEVELOPMENT 55 55 0.16
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT 55 50 0.16	POST-DEVELOPMENT 55 55 0.16
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} = 2-year, 24-hour storm (LID)	PRE-DEVELOPMENT 55 50 0.16 185	POST-DEVELOPMENT 55 56 4 0.16 173
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted (1-year)} = High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs) = Q _{1-year} =	PRE-DEVELOPMENT 55 50 0.16 185	POST-DEVELOPMENT 55 56 4 0.16 173
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} = Volume of runoff (ft³) =	PRE-DEVELOPMENT 55 50 0.16 185	POST-DEVELOPMENT 55 55 4 0.16 173 0.022
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CN _{adjusted} (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft ³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q* _{1-year} = Volume of runoff (ft ³) = Volume change (ft ³) = Peak Discharge (cfs)= Q _{1-year} = 2-year, 24-hour storm (LID) Runoff (inches) = Q* _{2-year} =	PRE-DEVELOPMENT 55 5 0.16 185 0.024	POST-DEVELOPMENT 55 4 0.16 173 0.022
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q_1-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q2-year= 10-year, 24-hour storm (DIA)	PRE-DEVELOPMENT 55 50 0.16 185 0.024 0.33 386	POST-DEVELOPMENT 55 65 4 0.16 173 0.022 0.33 362
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q_1-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q2-year=	PRE-DEVELOPMENT 55 50 0.16 185 0.024 0.33 386	POST-DEVELOPMENT 55 65 64 0.16 173 0.022 0.33 362
RESULTS Composite Curve Number= Disconnected Impervious Adjustment Disconnected impervious area (acre) = CNadjusted (1-year)= High Density Only Volume of runoff from 1" rainfall for DA HIGH DENSITY REQUIREMENT = (ft³) = 1-year, 24-hour storm (Peak Flow) Runoff (inches) = Q*_1-year= Volume of runoff (ft³) = Volume change (ft³) = Peak Discharge (cfs)= Q_1-year= Volume of runoff (ft²) = Peak Discharge (cfs)= Q2-year= 10-year, 24-hour storm (DIA)	PRE-DEVELOPMENT 55 55 0.16 185 0.024 0.33 386 0.050	POST-DEVELOPMENT 55 4 0.16 173 0.022 0.33 362 0.047

DA4 Page 2

DA SITE SUMMARY STORMWATER PRE-POST CALCULATIONS

		SITE	SUMMAR	Y							
DRAINAGE AREA SUMMARIES				-							
DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6	DA7	DA8	DA9	DA10	
2 7 7 2			(1-year, 24		m)	I				l	
Runoff (in) = Q _{pre,1-year} =	0.59	0.35	0.16	0.16							
Peak Flow (cfs)=Q _{1-year} =	D D.			0.024	>						
			t (1-year, 24		rm)	ı	ı	Ι	I	I	
Proposed Impervious Surface (acre) =	5.93	0.00	0.00	0.00							
Runoff (in)=Q _{1-year} =	1.59	0.48	0.16	0.16							
Peak Flow (cfs)=Q _{1-year} =				0.022							
Increase in volume per DA (ft³)_1-yr storm= Minimum Volume to be Managed for DA	45,666										
HIGH DENSITY REQUIREMENT = (ft ³) =	21,707	62	38	54							
TARGET CURVE NUMBER (TCN)											
		s	ite Data								
	;	SITE \SOIL	COMPOSI	TION							
HYDROLOGIC SOIL GRO	UP			Site	Area		<u>%</u>	Target CN			
А				0.	.00	()%		N/A		
В				4.	20	4	0%		N/A		
С				5.	95	57%			N/A		
D				0.	26	2	2%		N/A		
		To	otal Site Area	a (acres) =) = 10.41						
Percent E	BUA (Include	udes Existing Lakes/Pond Areas) = 57%									
		Project Density = High									
		Target C	Curve Numbe	er (TCN) =	N/A						
			CN _{adju}	sted (1-year)	= 85						
Minimum Volume to be Mana	ged (Total	Site) Per TCN Requirement= ft ³ = N/A									
		Site Nitrog	en Loading	Data							
HSG		TN export coefficient (lbs/ac/yr)			Site Acreage		N Export				
Pasture		1.2			0.00			0.00			
Woods, Poor Condition		1.6				0.00			0.00		
Woods, Fair Condition		1.2			0.00		0.00				
Woods, Good Condition		0.8			1.60		1.28				
Open Space, Poor Condition		1.0			0.00		0.00				
Open Space, Fair Condition		0.8				0.00		0.00			
Open Space, Good Condition		0.6				2.88		1.73			
Reforestation (in dedicated OS)		0.6				0.00			0.00		
Impervious		21.2 5.93 125.72									
SITE NITROGEN LOADING RATE	(lbs/ac/yr)=	ac/yr)= 12.37									
Nitrogen Load (lbs/yr)=			128.72								
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)_We	ndell Only=					91.25					
•	Site Nitroge	n Loading	Data For E	xpansion	s Only						
	Existing				New						
Impervious(acres)=			NA					NA			
"Expansion Area" (acres=)											
Nitrogen Load (lbs/yr)=			NA					NA			
SITE NITROGEN LOADING RATE (lbs/ac/yr)=		NA NA									
Total Site loading rate (lbs/ac/yr)											
TOTAL SITE NITROGEN TO MITIGATE (lbs/yr)=		NA									

SITE SUMMARY Page 1

Project Name:

Arden Senior Living Center

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES AN	ND ADJUSTMENTS											
DA1 Site Acreage=	9.61											
DA1 Off-Site Acreage=		3.25										
Total Required Storage Volume for Site	N/A											
TCN Requirement (ft ³)=				14// (
Total Required Storage Volume for DA1 1" Rainfall for High Density (ft³)=				21,70)7							
Will site use underground detention/cistern?		No Enter % of the year water will be reused= 0%				0%		Note: Supporting information/details should be submitted to demonstrate water usage.				
ENTER ACREAGE FOR ALL SUB-DRAINAGE	AREAS IN DA											
	HSG	(A	DA1(a) Ac)		DA1(b) Sub-DA1(c) Ac) (Ac)		Sub-DA1(d) (Ac)		(A	DA1(e) Ac)		
Deathire		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
Pasture												
Woods, Poor Condition												
Woods, Fair Condition												
Woods, Good Condition		0.60		0.49	0.42							
Open Space, Poor Condition												
Open Space, Fair Condition												
Open Space, Good Condition		2.02		0.57	0.14							
Reforestation (in dedicated OS)												
Impervious		5.93			0.28							
Sub-DA1(a) BMP(s)			-			-						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft³)			Provided Volume that will drawdown 2-5 days (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)	
SCM A	Wet Detention Basin							25%	127.41	31.85	54.04	
	Wet Determinen Datem							0%	95.56	0.00	51.84	
			17,403			22,659		0%	95.56	0.00		
			17,403			22,009						
								0%	95.56	0.00		
						95.56 0.00						
	tal Nitrogen remaining leaving the subbasin (lbs):					95	.56					
Sub-DA1(b) BMP(s)												
enter	If Sub-DA1(b) is connected to upstream subbasin(s), the nitrogen leaving the most upstream subbasin(lbs):											
Device Name (As Shown on Plan)	Device Type	Water Quality Volume Volume that for Sub-DA (ft³)		awdown 2-5 c		Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)			
Bypass								0%	7.09	0.00		
							0%	7.09	0.00			
			511					0%	7.09	0.00		
								0%	7.09	0.00		
								0%	7.09	0.00		
То	tal Nitrogen remaining leaving the subbasin (lbs):					7.	09		l .			
Sub-DA1 (c) BMP(s)												
enter	If Sub-DA1(c) is connected to upstream subbasin(s), the nitrogen leaving the most upstream subbasin(lbs):											
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)			Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)			Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)	
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%	0.00	0.00		
								0%		0.00		
								0%	0.00	0.00		

DA1_BMPs Page 1

Project Name:

Arden Senior Living Center

DRAINAGE AREA 1 BMP CALCULATIONS

NORTH CAROLINA							
Sub-DA1(d) BMP(s)							
If Sub-DA1(d) is connected to upstream sub	basin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
To	otal Nitrogen remaining leaving the subbasin (lbs):						
Sub-DA1(e) BMP(s)							
If Sub-DA1(e) is connected to upstream sub	basin(s), enter the nitrogen leaving the most upstream subbasin(lbs):						
Device Name (As Shown on Plan)	Device Type	Water Quality Volume for Sub-DA (ft ³)	Provided Volume that will <u>drawdown 2-5 days</u> (ft ³)	Nitrogen Removal Efficiency	Sub-DA Nitrogen (lbs)	Nitrogen Removed (lbs)	Drawdowr Time (hours)
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
				0%	0.00	0.00	
Тс	otal Nitrogen remaining leaving the subbasin (lbs):						
	DA	A1 BMP SUMMARY					
	Total Volume Treated (ft³)=		#VALUE!				
	Nitrogen Mitigated(lbs)=		31.85				
1-year, 24-hour storm							
	Post BMP Volume of Runoff (ft ³) _(1-year) =						
	Post BMP Runoff (inches) = Q* _(1-year) =						
	Post BMP CN _(1-year) =						
	Post BMP Peak Discharge (cfs)= Q _{1-year} =						
2-year, 24-hour storm (LID)							
	Post BMP Volume of Runoff (ft3) _(2-year) =						
	Post BMP Runoff (inches) = Q* _(2-year) =						
	Post BMP CN _(2-year) =						
	Post BMP Peak Discharge (cfs)= Q _(2-year) =						
10-year, 24-hour storm (DIA)							
	Post BMP Volume of Runoff (ft ³) _(10-year) =						
	Post BMP Runoff (inches) = Q* _(10-year) =						
	Post BMP CN(_{10-year})=						
	Post BMP Peak Discharge (cfs)= Q _(10-year) =						

DA1_BMPs Page 2