


## Memo

| То:   | Town of Rolesville Planning Board                                      |
|-------|------------------------------------------------------------------------|
| From: | Meredith Gruber, Planning Director / Michael Elabarger, Senior Planner |
| Date: | December 18, 2023                                                      |
| Re:   | Harris Creek Farms                                                     |
|       | Map Amendment Rezoning MA 22-08                                        |

## Background

The Town of Rolesville Planning Department received a Map Amendment (Rezoning) application in August of 2022 [MA 22-08] for approximately 93 acres consisting of nineteen (19) tracts of land on the West side of Jonesville Road near Universal Drive. This application requests rezoning from Wake County's R-30 Zoning District to the Town's Land Development Ordinance (LDO), with a combination of two (2) Zoning Districts; Residential Medium as a Conditional Zoning District (RM-CZ) for an approximately 63 acre portion, and; Residential High as a Conditional Zoning (RH-CZ) District for approximately 30 acres. See Attachments 6 and 7 for Proposed District Boundary map and legal descriptions. Below is Sheet C1.7 (#11 in Attachment 5) which details the RM-CZ in green, and the RH-CZ District in red. The specifics of the project include maximums of 149 total residential dwellings units (comprised of maximums of 68 single-family detached units and 81 single-family attached (Townhome) units, and a minimum of 40% gross acreage (~37 acres) preserved as undisturbed open space.



Harris Creek Farms Concept Site Plan – District Boundaries

A Voluntary Annexation Petition (ANX 22-05) has also been submitted and reviewed and processed simultaneously with this Rezoning application request. There will be a combined Legislative hearing at a future Town Board of Commissioners meeting.

The Rezoning application includes a set of Conditions of Approval (see Attachment 8) and a Concept/Sketch Plan (see Attachment 5).

### **Applicant Justification**

The Applicant provided this brief statement regarding the submittal (see Attachment 4 also).

The development is proposing two zoning districts, RM-CZ and RH-CZ. The Cluster Development afforded in LDO Section 3.1.B will be utilized in the RM-CZ section of the project which will consist of single family residential uses. The RH-CZ section of the property will consist of single family attached uses in the form of townhomes. While the RH-CZ zoning allows 6-12 dwelling units per acre, the proposed density is 5.77 units/acre. A condition of a maximum allowable density of 6.0 units/acre within the RH-CZ district is proposed in order to ensure future conformance to the Site Plan proposed in this Map Amendment. The developed area within the RH-CZ portion of the site will be less than 15 acres. The RM-CZ section of the property will consist of single family detached units, the proposed density is 1.11 units/acre, under the maximum allowable density of 5.0 units/acre. The project as a whole will have a density of 1.60 units/total site area. The proposed uses are in accordance with 3.1.A.1-3-Residential Districts by providing a variety of residential housing choices with varied densities, types and designs; creating neighborhoods and preserving existing character while allowing for new, compatible development; and providing for safe, appropriately located lands for residential development consistent with the Rolesville Comprehensive Plan. The Future Land Use Map designates the subject property for residential use. The requested zoning is consistent and compatible with the Future Land Use Map and with the Rolesville 2017 Comprehensive Plan. We request your support for the proposed Zoning Map Amendment.

## **Neighborhood Meetings**

The Applicant conducted a Neighborhood meeting on July 12, 2023, at which there were 24 attendees. The Applicant held an additional Meeting on October 24, 2023, at which there were 10 attendees; see Attachment 9.

### **Comprehensive Plan**

### Land Use

The 2017 Comprehensive Plan's Future Land Use Map designates the subject property, and the entire area south of Harris Creek to Mitchell Mill Road, as appropriate for Medium Density Residential development. Per the Plan, this is defined as:

Predominantly single-family residential uses with portion of duplex, townhouse, or multifamily residential. These are lots or tracts at a density range of three to five (3-5) dwelling units per gross acre including preserved open space areas along with limited non-residential uses under planned unit development or form base code provisions.

## Community Transportation Plan

The Town of Rolesville's Community Transportation Plan (CTP, adopted 2021) includes recommendations for Thoroughfares, Collectors, and intersections. There are no plans for new Collector roadways in the vicinity of the subject property, but there is this Thoroughfare Recommendation (page 79/131):

• Jonesville Road is planned to be a 2-lane (with Two Way Left Turn Lane), curb and gutter, bike lanes, and Sidewalks.

Per the Concept Site Plan, the project is proposing one new primary site access (Street A) to Jonesville Road, located south of where Universal Drive lies and the Harris Creek bridge crossing.

### Intersection Recommendations

- There are no intersection recommendations associated with the subject property.
- The closest intersection recommendations are located at Mitchell Mill and Rolesville Roads, for an intersection realignment.

<u>Transportation Improvements:</u> To address transportation impacts reasonably expected to be generated by the development, the following road improvements shall be installed in accordance with plans approved by NCDOT and the Town of Rolesville:

- US 401 BYPASS AND JONESVILLE ROAD
  - 1. Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.
- US401 BYPASS AND EASTERN U-TURN LOCATION
  - 1. Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.
- <u>MITCHELL MILL ROAD AND JONESVILLE ROAD/PEEBLES ROAD</u>
  - 1. Construct a Southbound (Jonesville Road) left-turn lane with at least 10 feet of storage and appropriate deceleration and taper.
  - 2. Construct a Westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate deceleration and taper.
  - 3. Construct an Eastbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate deceleration and taper.
  - 4. Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.
- JONESVILLE ROAD AND SITE DRIVE
  - 1. Construct the Eastbound approach (site drive) with one ingress land and one egress lane.
  - 2. Provide stop-control for the Eastbound approach (site drive).

## Greenway and Bike Plans

As per the 2022 Greenway and Bike Plans, proposed pedestrian routes are shown in the following locations:

• A ten-foot (10') private maintained greenway trail with public access easement, turns into a twenty-foot (20') trail easement before returning to a ten-foot (10') private maintained

greenway trail with public access easement is shown on the northwest side of the property, along Harris Creek.

## Consistency

The Applicant's rezoning request is consistent with the Town of Rolesville's Comprehensive Plan for the following reasons:

- The proposed mix of residential product types with a commercial element fits the Medium Density Residential land use description.
- The proposed vehicular circulation network is in harmony/no conflict with the Town's Community Transportation Plan.
- The proposed greenways will establish pedestrian connections as recommended by Rolesville's Greenway Plan.

## Traffic

## Traffic Impact Analysis

The consulting firm, Ramey Kemp Associates, performed the Traffic Impact Analysis (TIA) for this project on behalf of the Town; the study analyzed a development of 68 Single Family Detached and 81 Single family Attached (townhome) housing units. The Final Sealed Report dated May 08, 2023, is included as Attachment 10 to this memo. Traffic conditions during weekday AM and PM peak hours were looked at in four (4) scenarios: 2022 Existing Traffic Conditions, 2027 No-build Traffic Conditions, 2027 Build Traffic Conditions and 2027 Build-Improved Traffic Conditions. See excerpted Table E-1 from the TIA report:

| Land Use<br>(ITE Code)       | Intensity | Daily<br>Traffic<br>(vpd) Set of the se |       |      | Weekday<br>PM Peak Hour Trips<br>(vph) |       |      |            |
|------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|----------------------------------------|-------|------|------------|
|                              |           | (vpa)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Enter | Exit | Total                                  | Enter | Exit | Total      |
| Single-Family Home<br>(210)  | 68 DU     | 708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13    | 39   | 52                                     | 44    | 25   | 69         |
| Single Family Attached (215) | 81 DU     | 568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9     | 27   | 36                                     | 26    | 19   | 45         |
| <b>Total Primary Trips</b>   |           | 1,276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22    | 66   | 88                                     | 70    | 44   | <b>114</b> |

## Table E-1: Site Trip Generation

Four intersections were studied for capacity analysis and Level of Service (LOS) impact of this development – US 401 Bypass and Jonesville Road; US 401 Bypass and Eastern U-turn location; Mitchell Mill Road and Jonesville Road / Peebles Road and Jonesville Road and Universal Drive.

| TIA Summary – Intersection Improvements               |                                                                                                        |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                       | Recommendations                                                                                        |  |  |  |  |
| Future Traffic<br>Conditions                          | <ul> <li>Cobblestone Crossing Mixed-Use (Cobblestone)</li> <li>Young Street PUD (The Point)</li> </ul> |  |  |  |  |
| A growth rate of 0% was                               | Wheeler Tract (Rolesville Crossing)                                                                    |  |  |  |  |
| used due to the number of • Louisbury Road Assemblage |                                                                                                        |  |  |  |  |
| developments included in the background traffic and   | <ul> <li>Kalas / Watkins Family Property (Kalas Falls)</li> <li>5109 Mitchell Mill</li> </ul>          |  |  |  |  |
| the proximity of some of<br>these developments to     |                                                                                                        |  |  |  |  |

| the proposed<br>development. The<br>following adjacent<br>developments were<br>identified to be considered<br>under future conditions: |                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| US 401 Bypass and Jonesville Road                                                                                                      | <ul> <li>Conduct a full signal warrant analysis prior to Full Build-out of<br/>the proposed development and install a traffic signal if<br/>warranted and approved by NCDOT and Town.</li> </ul>                                                                                       |
| Mitchell Mill Road and<br>Jonesville Road / Peebles<br>Road                                                                            | <ul> <li>Construct a south-bound (Jonesville Rd) left-turn lane with at least 100 feet of storage and appropriate deceleration and taper.</li> <li>It should be noted that this improvement was also identified by the 5109 Mitchell Mill Rd and Hills at Harris Creek TIA.</li> </ul> |
|                                                                                                                                        | <ul> <li>Construct an eastbound (Mitchell Mill Rd) left-turn lane with at least 100 feet of storage and appropriate deceleration and taper.</li> <li>It should be noted that this improvement was also identified by the 5109 Mitchell Mill Rd TIA.</li> </ul>                         |
|                                                                                                                                        | <ul> <li>Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate deceleration and taper.</li> <li>It should be noted that this improvement was also identified by the Hills at Harris Creek TIA.</li> </ul>                       |
|                                                                                                                                        | <ul> <li>Conduct a full signal warrant analysis prior to Full Build-out of<br/>the proposed development and install a traffic signal if<br/>warranted and approved by NCDOT and Town.</li> </ul>                                                                                       |
| Jonesville Road and Site<br>Drive                                                                                                      | Construct the eastbound approach (Site Drive) with one ingress lane and one egress lane.                                                                                                                                                                                               |
|                                                                                                                                        | Provide stop control for the eastbound approach (Site Drive).                                                                                                                                                                                                                          |

## **Development Review**

The Technical Review Committee (TRC) reviewed three (4) versions of the Rezoning application, with all comments pertinent to the consideration of the proposed districts and the general development plan being resolved. Note that the TRC review of the Concept Plan (Attachment 5) was not an LDO subdivision and/or site development regulation review, as it is only a conceptual plan, and not an engineered and dimensioned layout. Should the proposed Zoning Districts be approved, the project would next process an Administratively reviewed/approved Major Preliminary Subdivision Plat (PSP) application, followed by Construction Infrastructure Drawings (CID).

### **Overall Analysis**

The proposed **Residential Medium (RM)** district (63.87 acres) entails developing a maximum of 68 single family detached (SFD) dwelling units, exercising the LDO Section 3.1.B. option of Cluster Development at the time of Major Preliminary Subdivision Plat to achieve that lot count. The resultant density – 68 dwelling units over 63.87 acres – is 0.93 dwelling units per acre. The theoretical by-right maximum density – 63.87 acres (2,782,177 SF)/15,000 SF minimum lot size = 185 dwelling units or a density of [185 units/63.87 acres =] 2.89 d/u per acre. The refore the proposed Density is approximately 1/3 that of the by-right density and will require a minimum of 40% preserved Open Space compared to the (LDO Section 6.2.1.D.1.) by-right minimum of 12%.

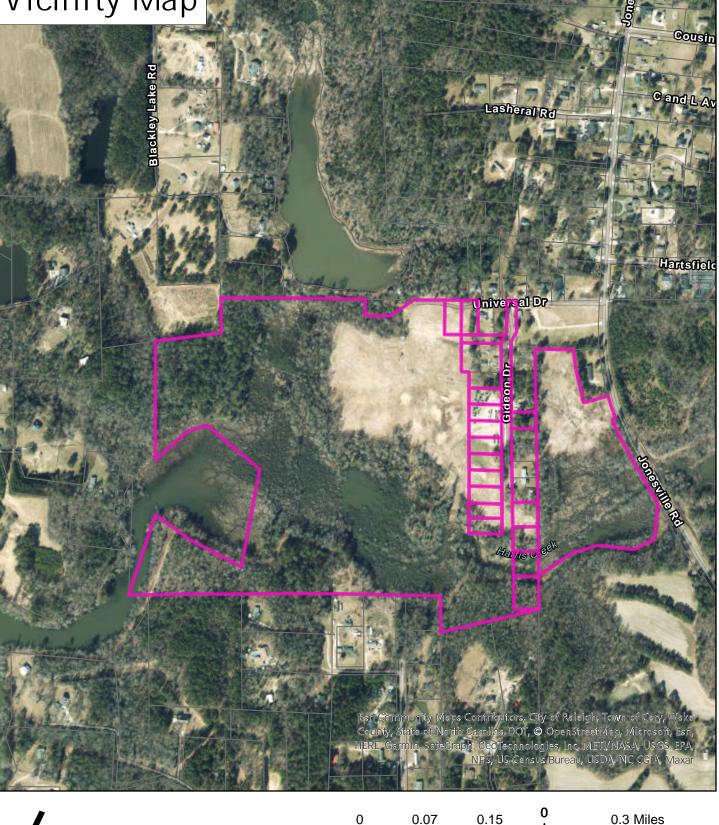
The proposed **Residential High (RH)** district (30.32 acres) entails developing a maximum of 81 single family attached (townhome) dwelling units; the Concept Site Plan is demonstrating that the project will comply with the LDO Section 3.1.3.B./Special Standard requirement that '*No more than 15 gross acres may be assigned to attached … uses.*' Note – this standard/requirement is not the same as the acreage of the RH District, but rather, the area physically supporting 'attached uses'. This requirement shall be accurately demonstrated at the time of Major Preliminary Subdivision Plat review. The resultant density – 81 dwelling units over 30.32 acres – is 2.67 dwelling Units per acre; when only contemplating the 81 units within the maximum of 15 acres maximum area used to support the use, the density calculation rises to 5.4 dwelling units per acre. Calculating a theoretical by-right lot yield for Townhomes in the RH district is more difficult than (SFD in the RM District) but using the minimum 2,000 SF lot size across the maximum of 15 acres, that yield would be 326 dwelling units; that number would be impossible to achieve given unique aspects like the minimum 30' separation requirements be Townhome buildings.

Individually, the proposed RM and RH Districts are committing to far less than the LDO stated maximum densities and far less than the theoretical by-right subdivision yields. Collectively, the gross density of the proposed combined 149 dwelling units over 93 acres = **1.6 units per acre**. In summary, the proposed housing types are consistent with the Comprehensive Plan Future Land Use designation of Medium Density Residential, and the proposed density actually matches the **Low** Density Future Land Use category.

### Staff Recommendation

Staff finds the proposed Rezoning request MA 22-08 is consistent with the Comprehensive Plan and recommends Approval.

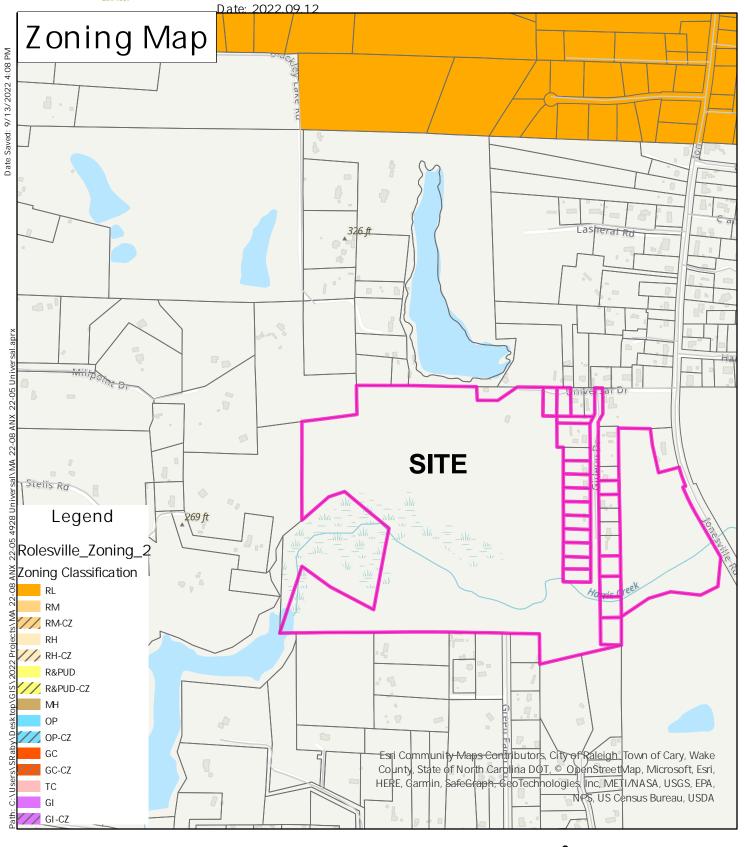
### Proposed Motion


Motion to recommend to the Town Board of Commissioners (approval or denial) of Rezoning request MA 22-08 – Harris Creek Farms.

| Attach | Attachments                                                      |  |  |  |  |
|--------|------------------------------------------------------------------|--|--|--|--|
| 1      | Vicinity Map                                                     |  |  |  |  |
| 2      | Zoning Map                                                       |  |  |  |  |
| 3      | Future Land Use Map                                              |  |  |  |  |
| 4      | Map Amendment Application                                        |  |  |  |  |
| 5      | Concept Site Plan, December 15, 2023                             |  |  |  |  |
| 6      | Zoning District Boundaries                                       |  |  |  |  |
| 7      | Zoning District Legal Descriptions                               |  |  |  |  |
| 8      | Proposed Conditions of Approval                                  |  |  |  |  |
| 9      | Neighborhood Meeting Package, July 12, 2023 and October 14, 2023 |  |  |  |  |
| 10     | Traffic Impact Analysis (TIA), May 8, 2023                       |  |  |  |  |



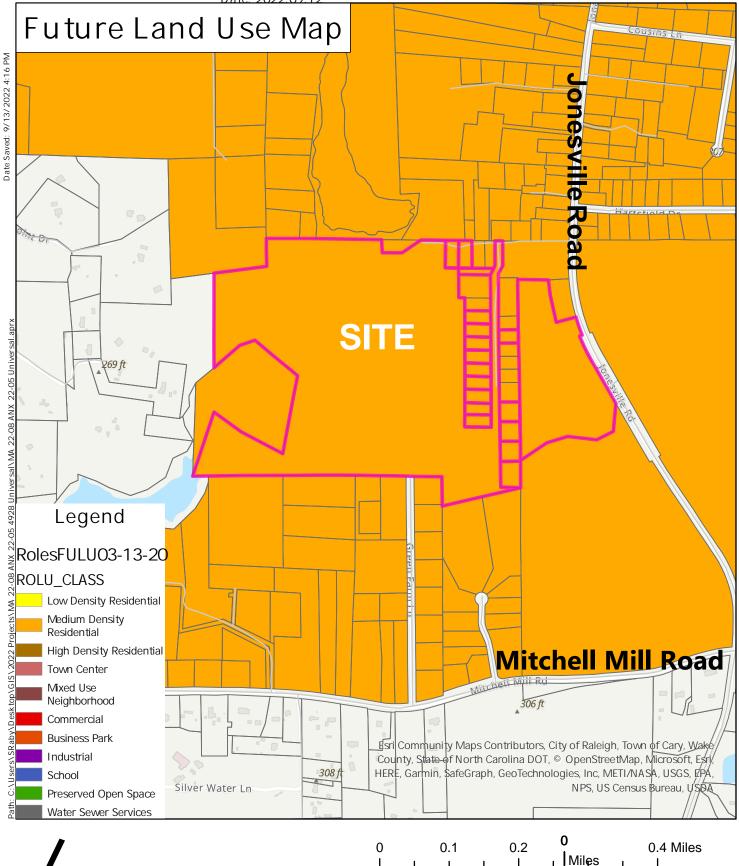
Case: MA 22-08 ANX 22-05 Harris Creek Farms Address: 4928 Universal PIN: 1757277811, 1757375276, 1757375365, 1757375464, 1757375575, 1757375665, 1757375765, 1757375865, 1757375975, 1757385064, 1757384572, 1757383572, 1757368816, 1757378013, 1757378109, 1757378303, 1757377990, 1757471559, 1757385349 Date: 2022.09.12


## Vicinity Map



Miles




Case: MA 22-08 ANX 22-05 Harris Creek Farms Address: 4928 Universal PIN: 1757277811, 1757375276, 1757375365, 1757375464, 1757375575, 1757375665, 1757375765, 1757375865, 1757375975, 1757385064, 1757384572, 1757383572, 1757368816, 1757378013, 1757378109, 1757378303, 1757377990, 1757471559, 1757385349



\*Site is approximately 1 mile from Carlton Pointe 00.04 0.08 0.16 Miles



Case: MA 22-08 ANX 22-05 Harris Creek Farms Address: 4928 Universal PIN: 1757277811, 1757375276, 1757375365, 1757375464, 1757375575, 1757375665, 1757375765, 1757375865, 1757375975, 1757385064, 1757384572, 1757383572, 1757368816, 1757378013, 1757378109, 1757378303, 1757377990, 1757471559, 1757385349 Date: 2022.09.12





## **Map Amendment Application**

## **Contact Information**

| Property Owner CHE NP ING                         |                                   |  |  |
|---------------------------------------------------|-----------------------------------|--|--|
| Address 10030 GREEN LEVEL CHUR CH RD STE 802 #149 | City/State/Zip CARY NC 27519-8195 |  |  |
| Phone 919-798-0429                                | Email plng@thecscgrp.com          |  |  |
| Developer The CSC Group, LL C                     |                                   |  |  |
| Contact Name Ping Chen                            |                                   |  |  |
| Address GREEN LEVEL CHUR CH RD STE 802 #149       | City/State/Zip CARY NC 27519-8195 |  |  |
| Phone 919-798-0429                                | Email ping@thecscgrp.com          |  |  |
|                                                   |                                   |  |  |

## **Property Information**

| Address 4928 UNIVERSAL DR. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Wake County PIN(s)         | 57277811, 1757355276, 1757375383, 1757375464, 1757375575, 1757375585, 1757375785, 1757375865, 1757376975, 1757378075, 1757386572, 1757386372, 1757386818, 1757378013, 1757378108, 1757378303, 1757377380, 1757377380, 1757377380, 1757377380, 1757377380, 1757377380, 1757377380, 1757377380, 1757377380, 1757377380, 1757377380, 1757377380, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 1757378302, 175737 |  |  |  |  |
| Current Zoning District    | R-30 Requested Zoning District RM-C Z an RH C :Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Total Acreage 93.22        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |

## **Owner Signature**

I hereby certify that the information contained herein is true and completed. I understand that if any item is found to be otherwise after evidentiary hearing before the Town Board of Commissioners, that the action of the

| Board may be invalidated                 |                                       |                                         |
|------------------------------------------|---------------------------------------|-----------------------------------------|
| Signature                                | ~                                     | Date <u>[2/01/202</u> 2                 |
|                                          |                                       |                                         |
| STATE OF NORTH CAROLINA                  |                                       |                                         |
| COUNTY OF Matt                           |                                       |                                         |
| I, a Notary Public, do hereby certify th | nat Ting Chen                         |                                         |
| personally appeared before me this d     | ay and acknowledged the due exect     | ution of the foregoing instrument. This |
| the                                      | willing of Vecent                     | <u>ep2022</u> .                         |
| My commission expires                    | 202 THICK A BARS                      |                                         |
| Signature                                |                                       |                                         |
|                                          | 08-18-27                              |                                         |
| 0                                        | Town of Roles wile Planning           |                                         |
| PO Box 250 / Rolesvill                   | e, North Carolilla 27571 / Rolesville | NC.gov / 919.554.6517                   |



## **Map Amendment Application**

## Metes and Bounds Description of Property



## **Map Amendment Application**

## **Rezoning Justification**

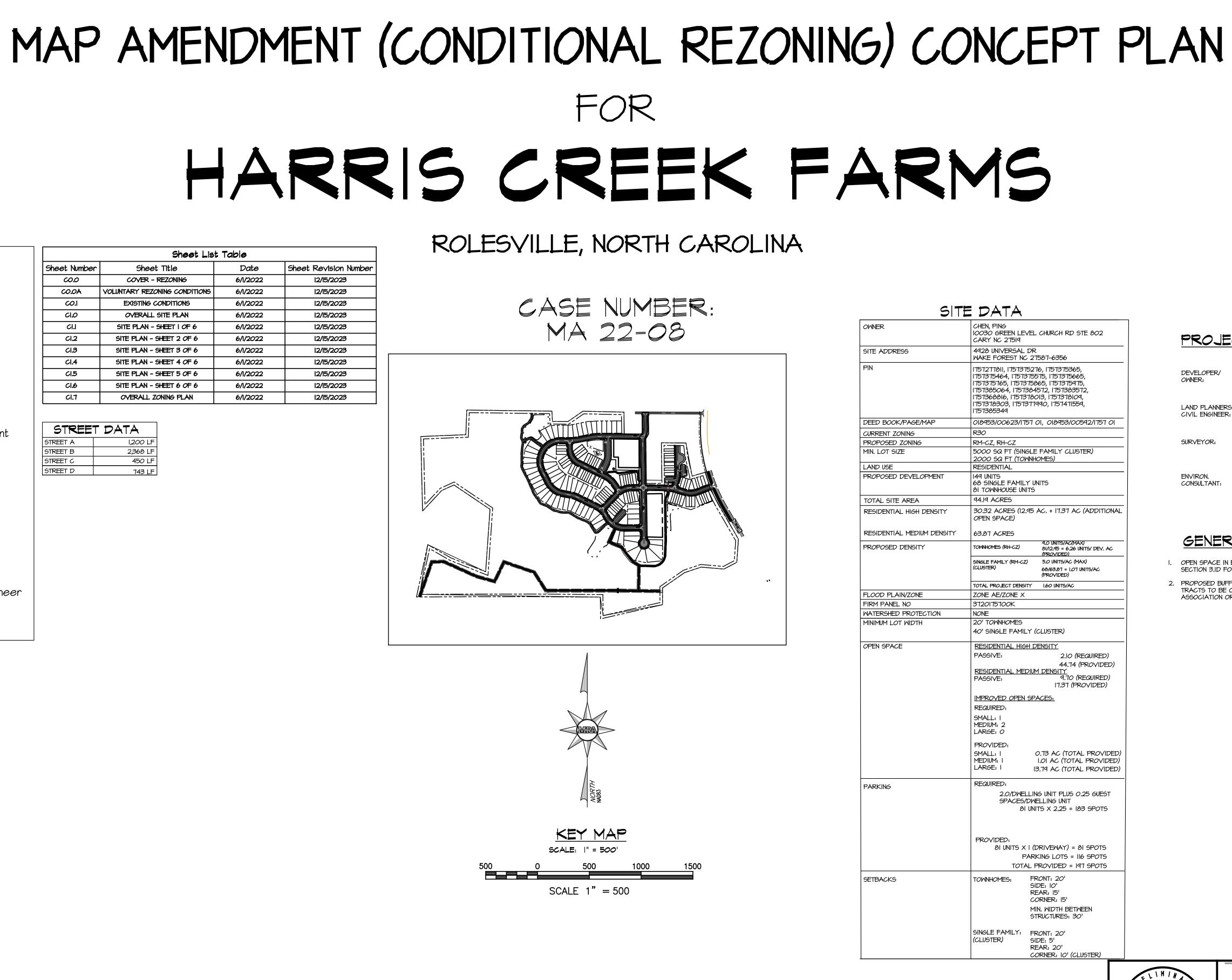
The applicant is proposing a Conditional Rezoning Map Amendment Application to zone the subject property to Residential Medium Density Conditional Zoning (RM-CZ) and Residential High Density Conditional Zoning (RH-CZ) Zoning Districts. In support of this request the applicant offers the following information and conditions:

The subject property is approximately 93 +/- acres located west of Jonesville Road north of it's intersection of Mitchell Mill Road and bordered by Harris Creek. The property is currently zoned R-30 by Wake County, a rural holding district. The subject property is planned to come into the Town of Rolesville and to be developed as a part of the town. The subject property was included in the 2017 Rolesville Comprehensive Plan.



## **Map Amendment Application**

## **Property Owner Information**


| Wake County PIN | Property Owner | Mailing Address | Zip Code |
|-----------------|----------------|-----------------|----------|
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |
|                 |                |                 |          |

## AGENCY CONTACTS

- A. Town of Rolesville Planning Department 502 Southtown Circle Rolesville, NC 27571
- B. Wake County Watershed Management Waverly F. Akins Building 337 S. Salisbury St Raleigh, NC 27601 Contact: Karyn Pageau Phone: (919)-796-8769 Email: karyn.pageau@wakegov.com
- C. City of Raleigh Public Utilities Department One Exchange Plaza Suite 620 Raleigh, NC 27601 P.O. Box 590 Raleigh, NC 27602 Phone: 919-996-3245 Email: publicutilityinfo@raleighnc.gov
- D. NCDOT Division 5, District | Office 4009 District Drive Raleigh, NC 27607 Contact: Amy Neidringhaus, District Engineer Phone: 919-733-3213 Email: anneidringhaus@ncdot.gov

|              | Sheet List Table              |          |       |  |
|--------------|-------------------------------|----------|-------|--|
| Sheet Number | Sheet Title                   | Date     | Sheet |  |
| 0.00         | COVER - REZONING              | 6/1/2022 |       |  |
| CO.OA        | VOLUNTARY REZONING CONDITIONS | 6/1/2022 |       |  |
| <i>CO</i> .I | EXISTING CONDITIONS           | 6/1/2022 |       |  |
| 0.10         | OVERALL SITE PLAN             | 6/1/2022 |       |  |
| CI.I         | SITE PLAN - SHEET I OF 6      | 6/1/2022 |       |  |
| CI.2         | SITE PLAN - SHEET 2 OF 6      | 6/1/2022 |       |  |
| CI.3         | SITE PLAN - SHEET 3 OF 6      | 6/1/2022 |       |  |
| Cl.4         | SITE PLAN - SHEET 4 OF 6      | 6/\/2022 |       |  |
| CI.5         | SITE PLAN - SHEET 5 OF 6      | 6/\/2022 |       |  |
| CI <b>.6</b> | SITE PLAN - SHEET 6 OF 6      | 6/\/2022 |       |  |
| <b>CI.</b> 7 | OVERALL ZONING PLAN           | 6/\/2022 |       |  |

| STREET DATA |          |  |  |  |
|-------------|----------|--|--|--|
| STREET A    | 1,200 LF |  |  |  |
| STREET B    | 2,368 LF |  |  |  |
| STREET C    | 450 LF   |  |  |  |
| STREET D    | 743 LF   |  |  |  |



|        |                        | SIT                                                                              | E DATA                                                                                                                                                                                          |                                                                                                                                                                  |
|--------|------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        |                        | OWNER                                                                            | CHEN, PING<br>10030 GREEN LEVEL CHURCH RD STE 802<br>CARY NC 27519                                                                                                                              | PROJECT TEAM                                                                                                                                                     |
|        |                        | SITE ADDRESS                                                                     | 4928 UNIVERSAL DR<br>WAKE FOREST NC 27587-6356                                                                                                                                                  |                                                                                                                                                                  |
|        |                        | PIN                                                                              | 1757277811, 1757375276, 1757375365,<br>1757375464, 1757375575, 1757375665,<br>1757375765, 1757375865, 1757375975,<br>1757385064, 1757384572, 1757383572,<br>1757368816, 1757378013, 1757378109, | THE CSC GROUP LLC<br>DEVELOPER/ 10030 GREEN LEVEL CHURCH RD STE 802<br>OWNER: CARY NC 27519<br>ATTN: PING CHENG<br>919-798-0429                                  |
|        |                        | DEED BOOK/PAGE/MAP                                                               | 1757378303, 1757377990, 1757471559,<br> 1757385349<br> 018953/00623/1757 01, 018953/00592/1757 0                                                                                                | LAND PLANNERS,<br>CIVIL ENGINEER:<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01<br>01                                                                    |
|        |                        | CURRENT ZONING<br>PROPOSED ZONING<br>MIN. LOT SIZE                               | R30<br>RM-CZ, RH-CZ<br>5000 SQ FT (SINGLE FAMILY CLUSTER)<br>2000 SQ FT (TOWNHOMES)                                                                                                             | SURVEYOR: GIL CLARK SURVEYING.<br>P.O. BOX 1243<br>KNIGHTDALE, NORTH CAROLINA 27545<br>ATTN: WALLACE G. CLARK, JR                                                |
|        |                        | LAND USE<br>PROPOSED DEVELOPMENT                                                 | RESIDENTIAL<br>149 UNITS<br>68 SINGLE FAMILY UNITS<br>81 TOWNHOUSE UNITS                                                                                                                        | ENVIRON. MORRIS & RITCHIE ASSOCIATES OF NC, PC.<br>CONSULTANT: 530 HINTON POND ROAD, SUITE 104<br>KNIGHTDALE, NC 27545<br>ATTN: MR. JAMIE B. GUERRERO, PE, CPSWQ |
|        |                        | TOTAL SITE AREA<br>RESIDENTIAL HIGH DENSITY                                      | 94.19 ACRES<br>30.32 ACRES (12.95 AC. + 17.37 AC (ADDITIO<br>OPEN SPACE)                                                                                                                        |                                                                                                                                                                  |
| ;//#   | Ŕ                      | RESIDENTIAL MEDIUM DENSITY                                                       | 63.87 ACRES                                                                                                                                                                                     | - GENERAL NOTES                                                                                                                                                  |
|        |                        | PROPOSED DENSITY                                                                 | TOWNHOMES (RH-CZ)         8//12.45 = 6.26 UNITS/ DEV. AG           (PROVIDED)         SINGLE FAMILY (RM-CZ)         5.0 UNITS/AC (MAX)                                                          | I. OPEN SPACE IN EXCESS OF 40% PROPOSED ON SITE PER LDO                                                                                                          |
| /      |                        |                                                                                  | (CLUSTER) 68/63,87 = I.OT UNITS/AC<br>(PROVIDED)                                                                                                                                                | SECTION 3.ID FOR CLUSTER DEVELOPMENTS                                                                                                                            |
|        | **                     | FLOOD PLAIN/ZONE                                                                 | TOTAL PROJECT DENSITY     1.60 UNITS/AC       ZONE AE/ZONE X                                                                                                                                    | 2. PROPOSED BUFFERS SHALL BE PLATTED AS SEPARATE     TRACTS TO BE OWNED AND MAINTAINED BY THE HOMEOWNERS     ASSOCIATION OR SIMILAR                              |
|        |                        | FIRM PANEL NO                                                                    | 3720175700K<br>NONE                                                                                                                                                                             |                                                                                                                                                                  |
|        |                        | WATERSHED PROTECTION<br>MINIMUM LOT WIDTH                                        | 20' TOWNHOMES<br>40' SINGLE FAMILY (CLUSTER)                                                                                                                                                    |                                                                                                                                                                  |
|        |                        | OPEN SPACE                                                                       | RESIDENTIAL HIGH DENSITY         PASSIVE:       2.10 (REQUIRED)                                                                                                                                 |                                                                                                                                                                  |
|        |                        |                                                                                  | 44.74 (PROVIDED<br>RESIDENTIAL MEDIUM DENSITY<br>PASSIVE: 9.70 (REQUIRED)<br>I7.37 (PROVIDED)                                                                                                   |                                                                                                                                                                  |
|        |                        |                                                                                  | IMPROVED OPEN SPACES:<br>REQUIRED:<br>SMALL: 1<br>MEDIUM: 2<br>LARGE: 0<br>PROVIDED:                                                                                                            |                                                                                                                                                                  |
|        |                        |                                                                                  | SMALL: I0.73 AC (TOTAL PROVIDMEDIUM: II.OI AC (TOTAL PROVIDLARGE: II3.79 AC (TOTAL PROVID                                                                                                       |                                                                                                                                                                  |
|        |                        | PARKING                                                                          | REQUIRED:<br>2.0/DWELLING UNIT PLUS 0.25 GUEST<br>SPACES/DWELLING UNIT<br>81 UNITS X 2.25 = 183 SPOTS                                                                                           |                                                                                                                                                                  |
|        |                        |                                                                                  | PROVIDED:<br>81 UNITS X I (DRIVEWAY) = 81 SPOTS<br>PARKING LOTS = 116 SPOTS<br>TOTAL PROVIDED = 197 SPOTS                                                                                       |                                                                                                                                                                  |
|        |                        | SETBACKS                                                                         | TOWNHOMES:<br>FRONT: 20'<br>SIDE: IO'<br>REAR: I5'<br>CORNER: I5'<br>MIN. WIDTH BETWEEN<br>STRUCTURES: 30'<br>SINGLE FAMILY:<br>(CLUSTER)<br>FRONT: 20'<br>SIDE: 5'                             | FOR SITE PLAN REVIEW ONLY<br>NOT FOR CONSTRUCTION<br>PLAN IS SUBJECT TO REVISIONS<br>DURING THE CONSTRUCTION<br>APPROVAL PROCESS                                 |
|        |                        |                                                                                  | REAR: 20'<br>CORNER: 10' (CLUSTER)                                                                                                                                                              | COVER - REZONING                                                                                                                                                 |
|        |                        |                                                                                  |                                                                                                                                                                                                 | NOT FOR<br>CONSTRUCTION                                                                                                                                          |
|        |                        |                                                                                  |                                                                                                                                                                                                 | ENGINEER'S SEAL                                                                                                                                                  |
| No.    | DATE                   | REVISIONS                                                                        |                                                                                                                                                                                                 | MORRIS & RITCHIE ASSOCIATES OF NC, PC                                                                                                                            |
| 0      | 06/01/2022             | ORIGINAL SUBMITTAL                                                               |                                                                                                                                                                                                 | ENGINEERS, ARCHITECTS, PLANNERS, SURVEYORS AND LANDSCAPE ARCHITECTS                                                                                              |
| A      | 09/30/2022             | REVISED PER TOWN OF ROLESVILLE COMMENT                                           |                                                                                                                                                                                                 | 530 HINTON POND RD., STE 104<br>KNIGHTDALE, NC 27545                                                                                                             |
| B<br>C | 12/01/2022<br>8/1/2023 | REVISED PER TOWN OF ROLESVILLE COMMENT<br>REVISED PER TOWN OF ROLESVILLE COMMENT |                                                                                                                                                                                                 | (984) 200-2103<br>LICENSE # C-4182                                                                                                                               |
| D      | 12/15/2023             | REVISED PER PLANNING BOARD & TOWN STAF                                           |                                                                                                                                                                                                 | LICENSE # C-4182<br>WWW.MRAGTA.COM<br>© 2023 MORRIS & RITCHIE ASSOCIATES, INC.                                                                                   |
|        |                        |                                                                                  | DESIGN BY:PKNREVIEW BY:PKN                                                                                                                                                                      | PRELIMINARY NOT FOR CONSTRUCTION D SHEET: CO.O                                                                                                                   |



- The subject property shall be developed in general compliance with the map amendment (conditional rezoning) concept plan, dated 12/15/2023.
- The maximum allowable density within the RH-CZ zoning shall be 6.0 units/acre.
- All garage doors shall either contain windows or carriage style adornments.
- Single-family detached dwelling units shall:
  - Be a minimum of 1,500 heated square feet.
  - Have cementitious siding that shall vary in type and color with brick, shakes, board and batten, or stone accents provided as decorative features В.
- Have at least two types of finishes on the front: lap siding, masonry, shakes, and board and batten. С.
- Single-family attached (townhomes) shall have:
- Cementitious siding that shall vary in type and color with brick, shakes, board and batten, or stone accents provided as decorative features.
- Articulation in the end unit side elevations, which includes two of the following: В.
- First floor glazing which shall consist of one or more of the following: garage doors with glass windows, or front doors with windows or sidelights. С.
- 8" minimum eaves and rakes on front, rear, and sides. D.
- 10.
- a dog park. Amenities shall be built prior to the issuance of the building permit for the 70<sup>th</sup> lot.
- construction to the Town of Rolesville. The fee-in-lieu shall be paid prior to the issuance of the one hundredth (100<sup>th</sup>) building permit.
- Prior to issuance of the first building permit for a dwelling unit, the development shall donate thirty-five thousand dollars and no cents (\$35,000.00) to Homes for Heroes.

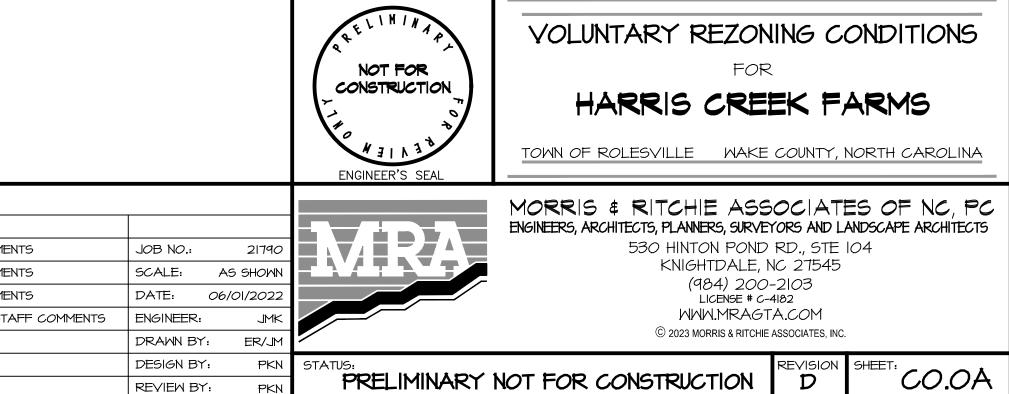
# VOLUNTARY REZONING CONDITIONS

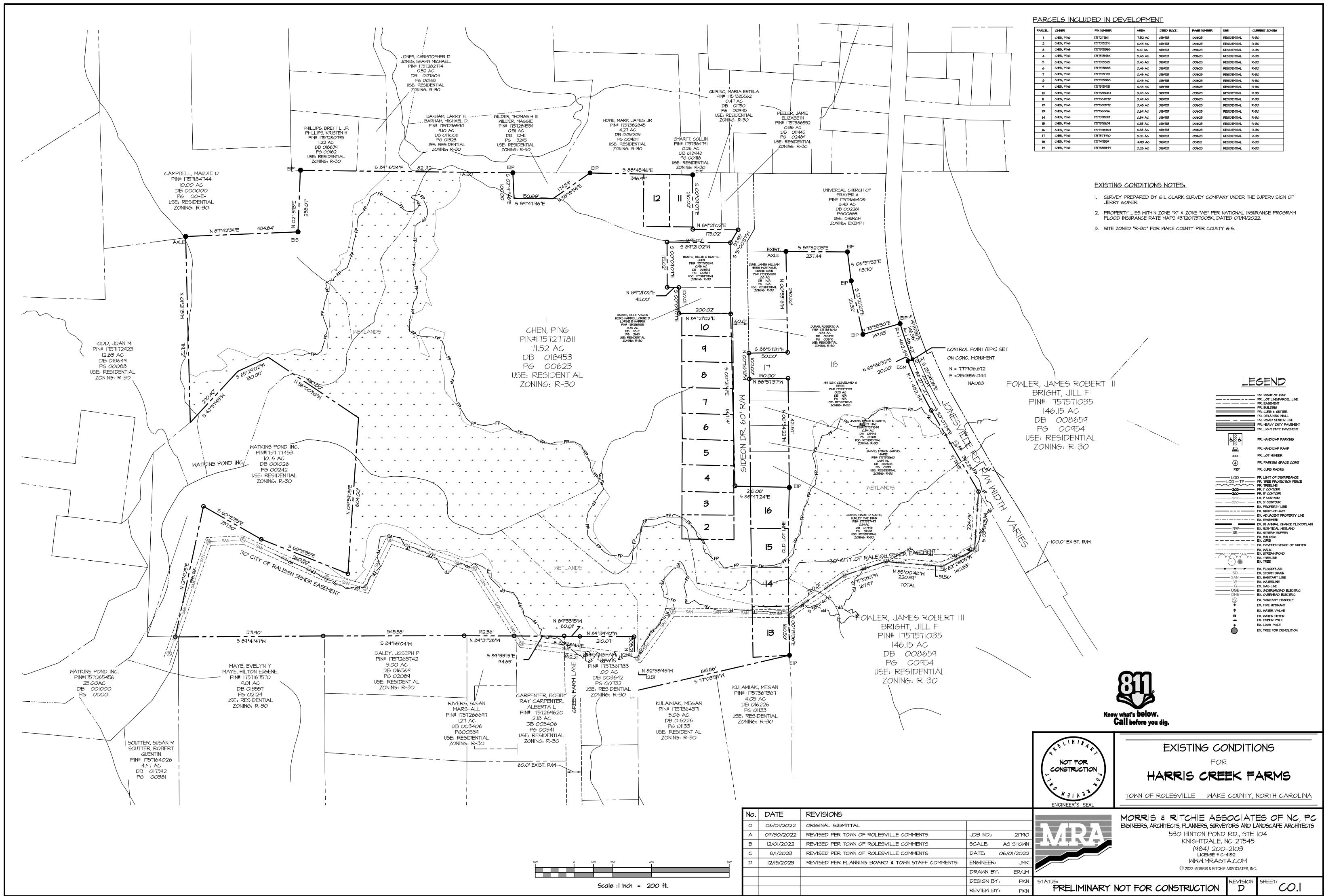
The development shall consist of maximums of 68 single-family detached dwelling units/lots and 81 single-family attached (townhome) dwelling units/lots as detailed in the map amendment (conditional rezoning) concept plan, dated 12/15/2023.

Single family detached dwelling unit facade anti-monotony: in order to promote variation in home appearance, no single-family front façade shall be duplicated for three (3) lots in a row, or directly across the street. For corner lots, this shall apply to the lots diagonally across the intersection.

side entry, windows (two or more), partial masonry, two types of finishes (i.e., Horizontal siding with board and batten or shakes in gables), and roofline changes.

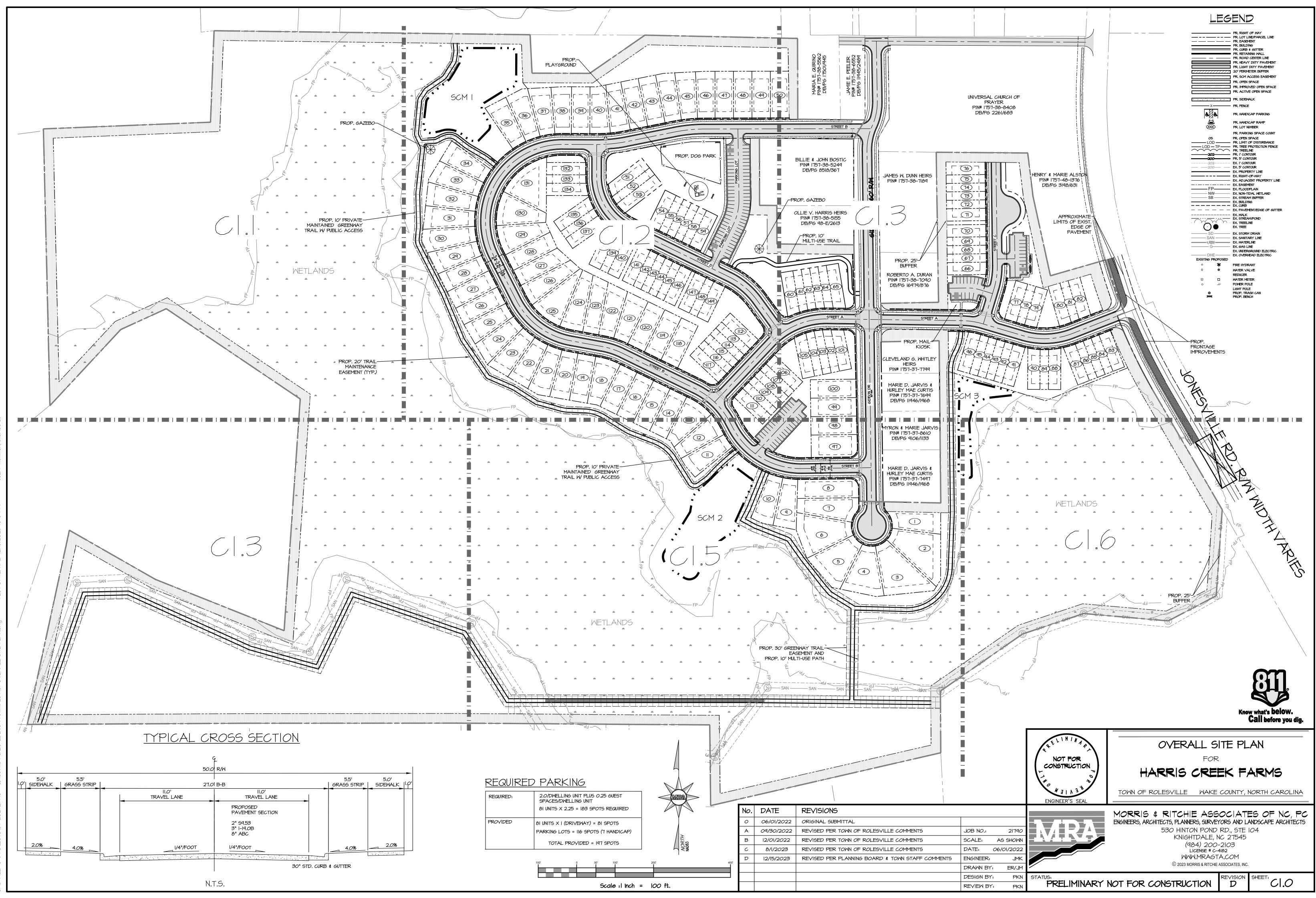
A homeowners' association (HOA) shall be created, and all open spaces observed in map amendment (conditional rezoning) concept plan, dated 7/24/2023, shall be owned and maintained by the HOA.

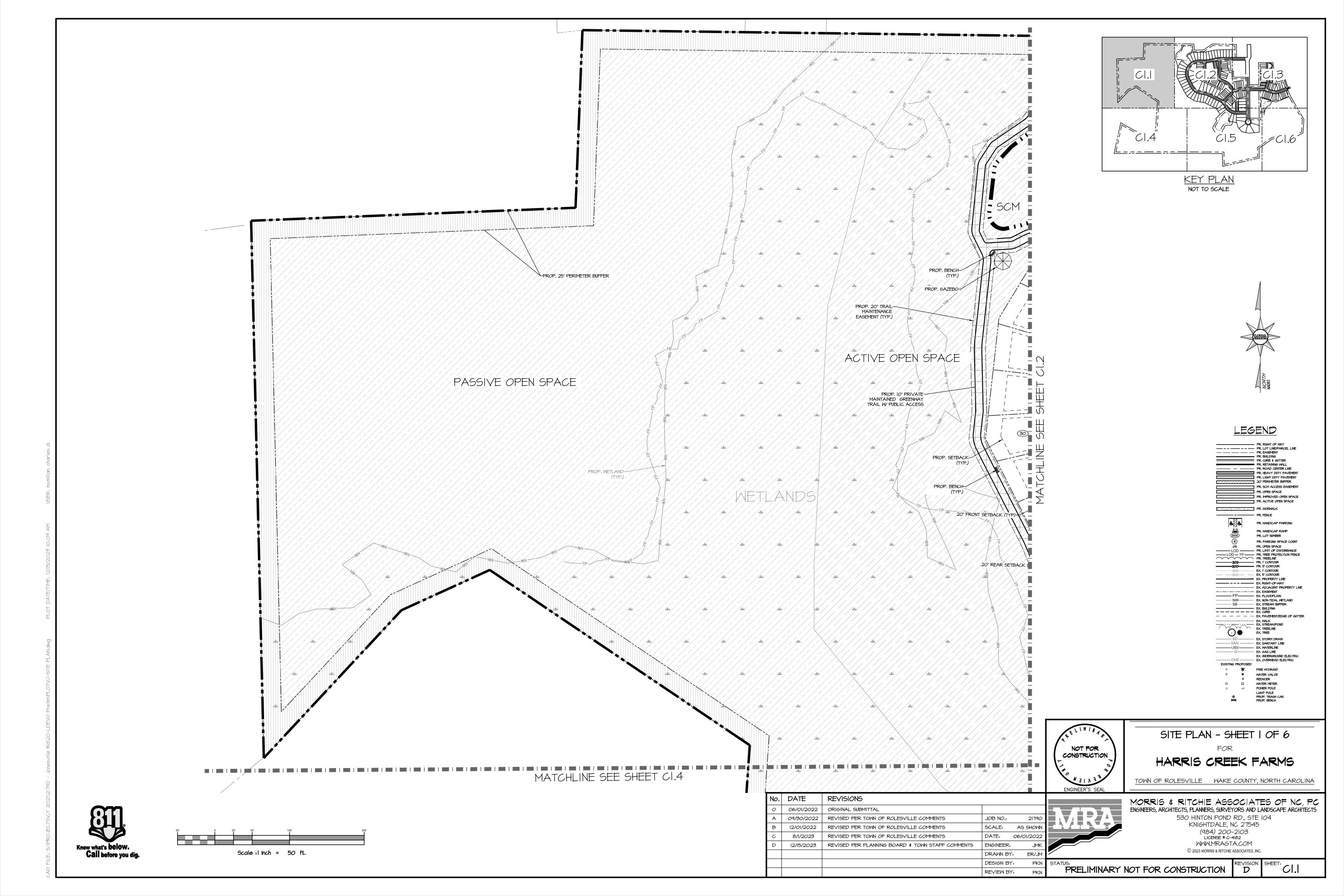

Foundations: All foundations are to be monolithic poured slab foundations. Top of slabs shall be elevated a minimum of 18 inches above finished grade for all dwelling units. All foundations shall be treated with masonry on the front and street-facing sides for a minimum of 10". Recreational amenities: the following recreational amenities shall be constructed as observed in map amendment (conditional rezoning) concept plan, dated 12/15/2023. Public greenway (approximately 5,600 linear feet), private multi-use paths (approximately 410 linear feet), gazebos, playgrounds, and

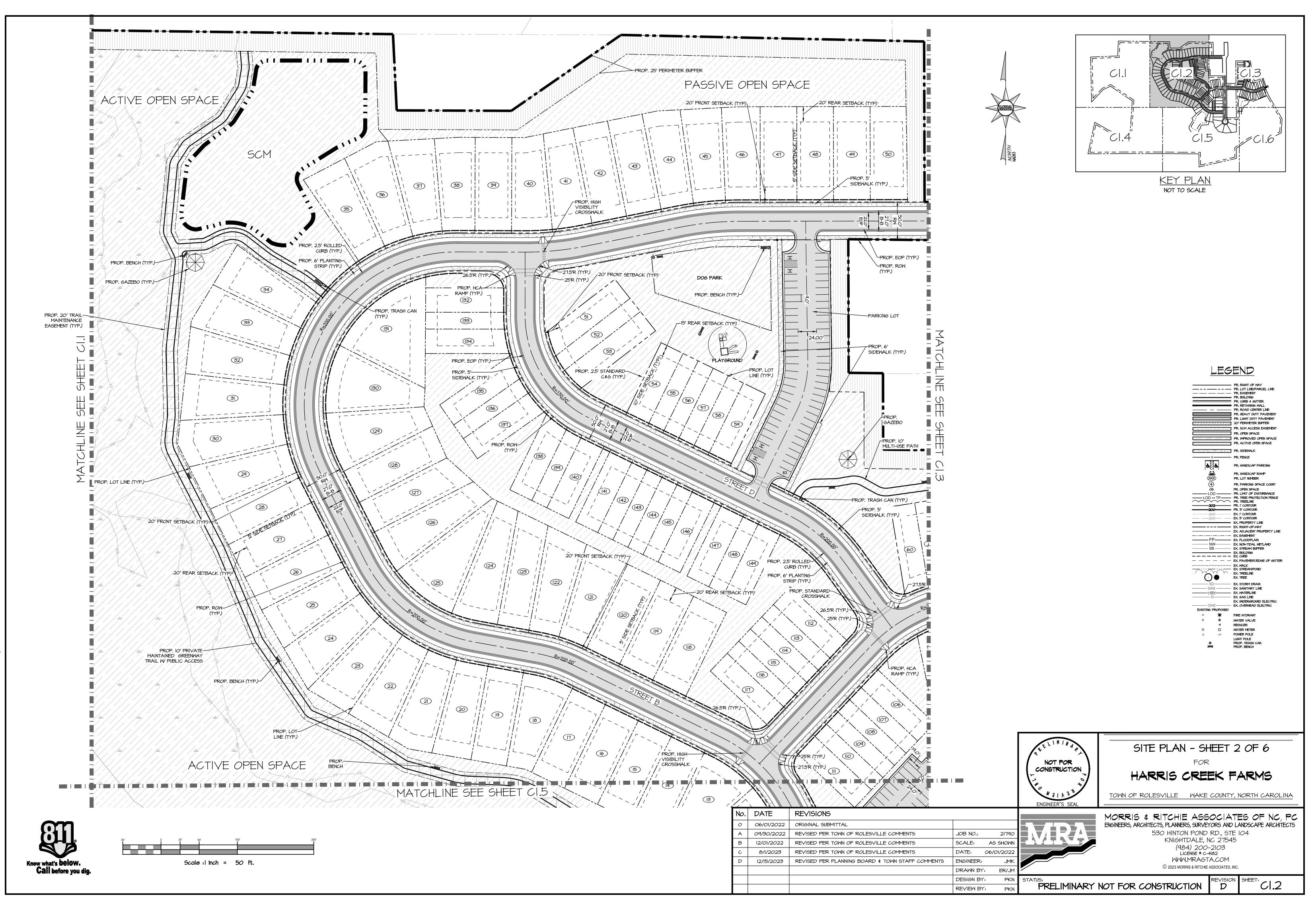

Landscaping. At least twenty percent (20%) of all landscaping required by the LDO, that does not already qualify under LDO Section 6.2, shall utilize plant materials that are listed as native pollinator plants by the North Carolina Wildlife Federation. Where evergreen plantings or street trees are required by the LDO, native pollinator plantings shall not be required. Such plantings shall be clearly shown in constructure. Nothing herein shall be constructed to limit the plant materials permitted on individual residential lots. Sidewalk Easement. The development shall attempt to procure an easement from the owners of those properties with PINs 1757-48-1376 (Deed Book 19407, Page 984, Wake County Registry) and 1757-38-8408 (Deed Book 19407, Page 984, Wake County Registry), in order to provide a 5'-wide sidewalk running from the development's proposed access to Jonesville Road to the intersection with Universal Drive. If the development procures easements and constructed consistent with the Town of Rolesville Transportation Plan, and shall be completed prior to the issuance of the one hundredth (100<sup>th</sup>) building permit. If the development is unable to procure an easement from either property owner prior to the issuance of the first (1<sup>st</sup>) building permit, then the development is unable to procure an easement from either property owner prior to the sidewalk

Universal Drive. The development shall attempt to procure a minimum 20'-wide access easement (the @Easement4) from the owner of that property with PIN 1757-38-8408 (Deed Book 2261, Page 683, Wake County Registry) for vehicular ingress and eqress to and from Gideon Drive and Jonesville Road (the @Easement Area^). This Easement shall be recorded with the Wake County Registry. If the Easement area with a 20'-wide asphalt surface coat over top of the existing private gravel access drive. The paving shall be completed prior to the issuance of the development's one hundredth (100<sup>th</sup>) building permits. Following completion of the Easement Area; this maintenance responsibility shall expire if Columbia Drive is dedicated as public right-of-way. If the development can not obtain and record the Easement before the issuance of the first (1<sup>st</sup>) building permit, then the development shall have no obligation to perform any work described in this Condition.

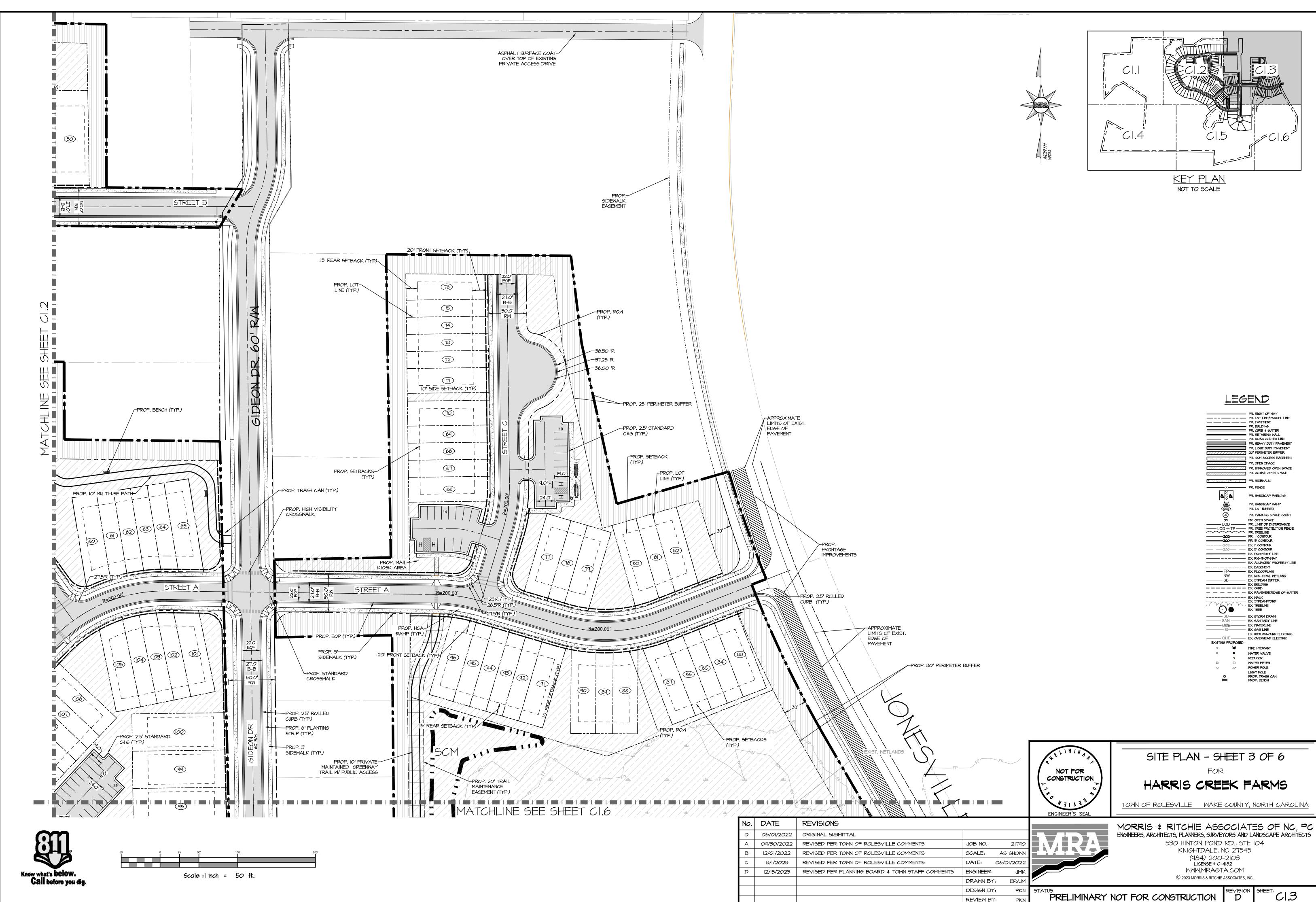
| No. | DATE       | REVISIONS                           |
|-----|------------|-------------------------------------|
| 0   | 06/01/2022 | ORIGINAL SUBMITTAL                  |
| А   | 09/30/2022 | REVISED PER TOWN OF ROLESVILLE COMM |
| в   | 12/01/2022 | REVISED PER TOWN OF ROLESVILLE COMM |
| С   | 8/1/2023   | REVISED PER TOWN OF ROLESVILLE COMM |
| D   | 12/15/2023 | REVISED PER PLANNING BOARD & TOWN S |
|     |            |                                     |
|     |            |                                     |
|     |            |                                     |

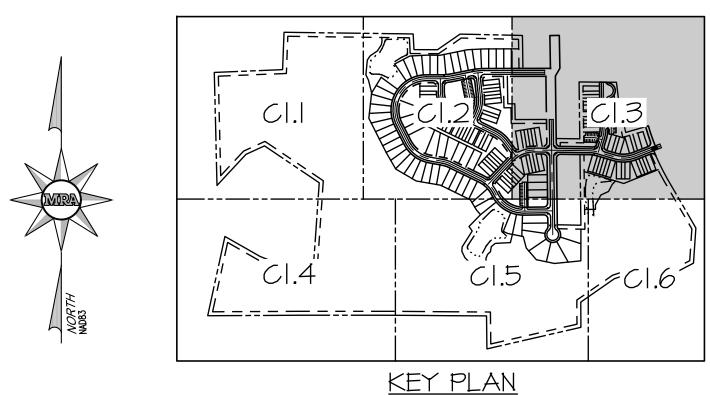


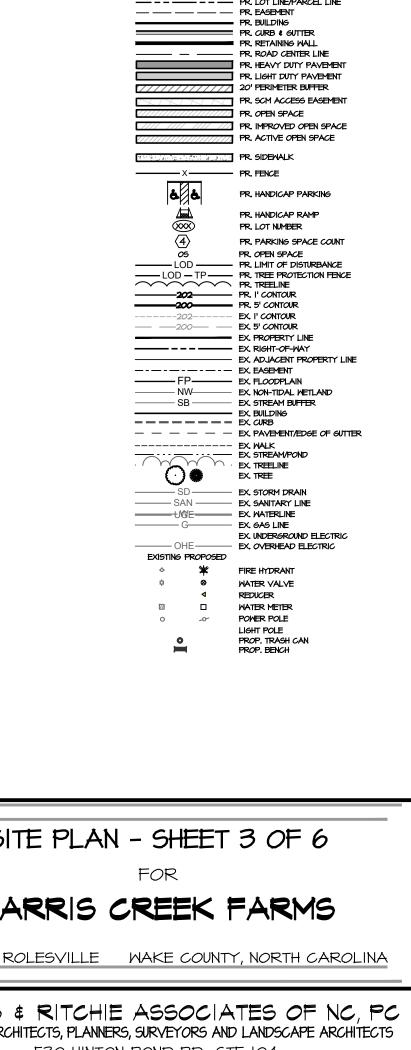




EVIO Prelim\PLOT\CO.I-EXISTING CONDITIONS.dwg PLOT DATE/TIME: 12/15/2023 10:08 AM USER: mcmillan, charle

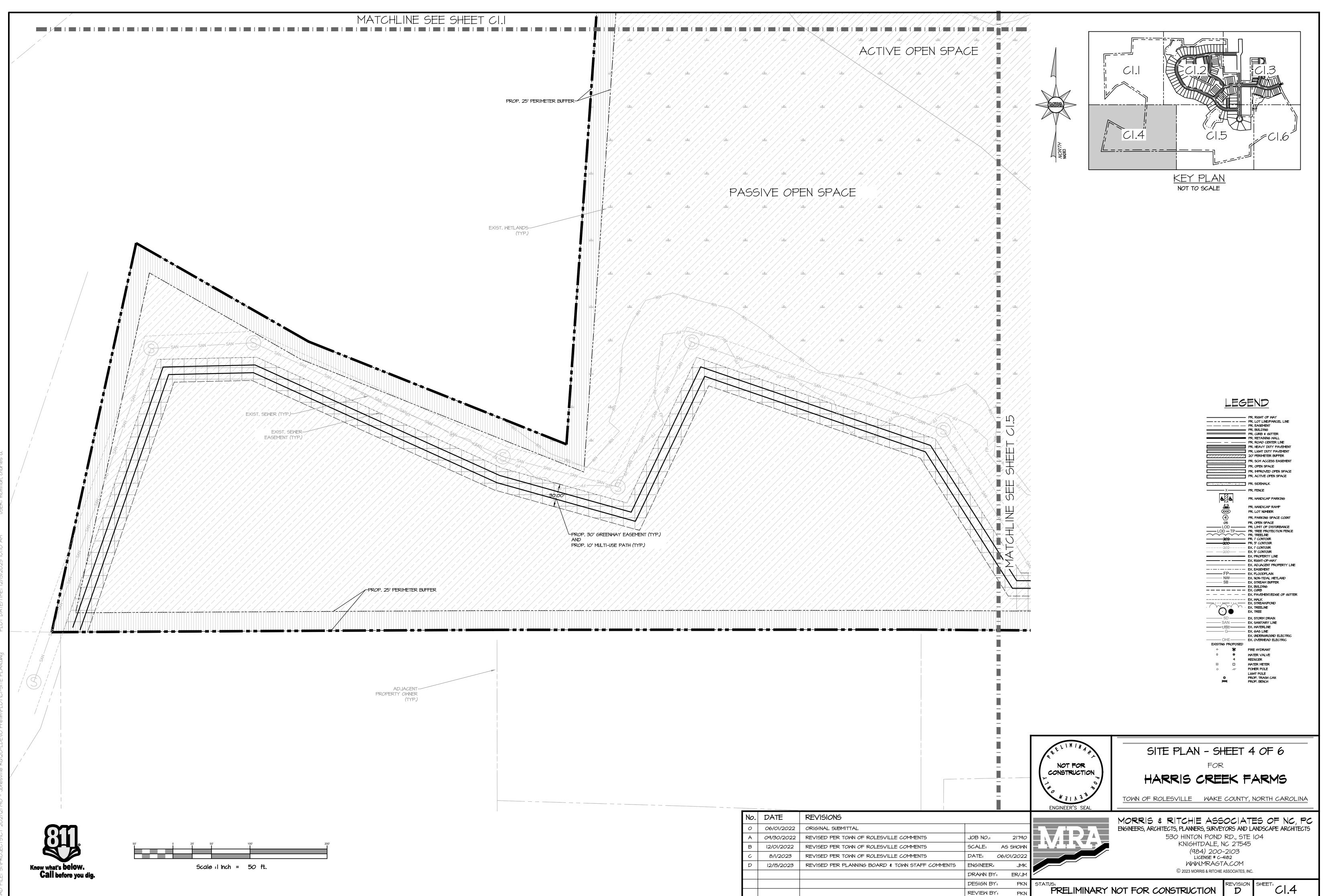

PILE: 5. VPRO, IEC.TS/CY, 2021/2140 - , Ionesville, Rd/20-1, DEVIO, Prelim/PI, OT/CO, I-EXISTING, CONDITIONS dwo



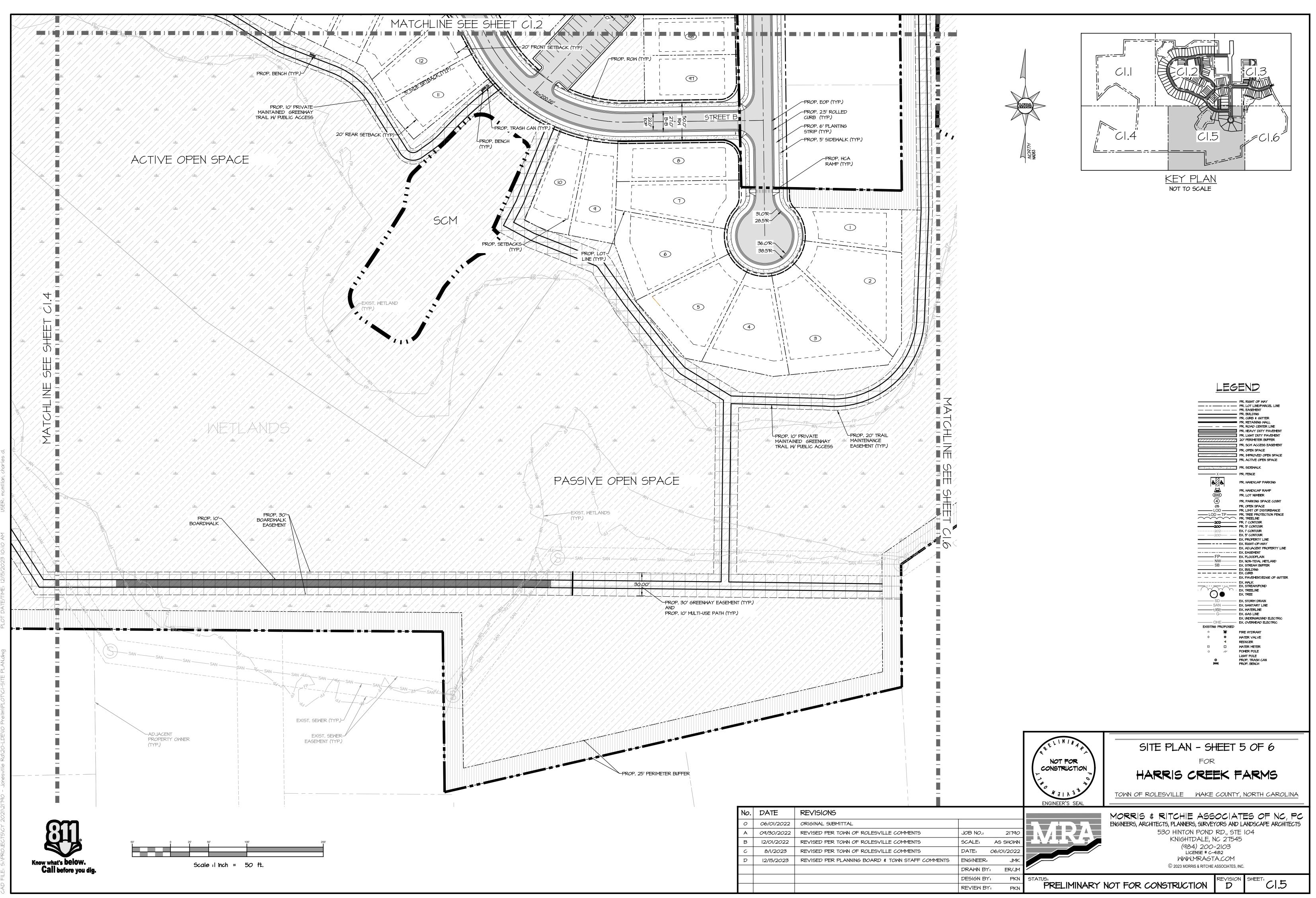





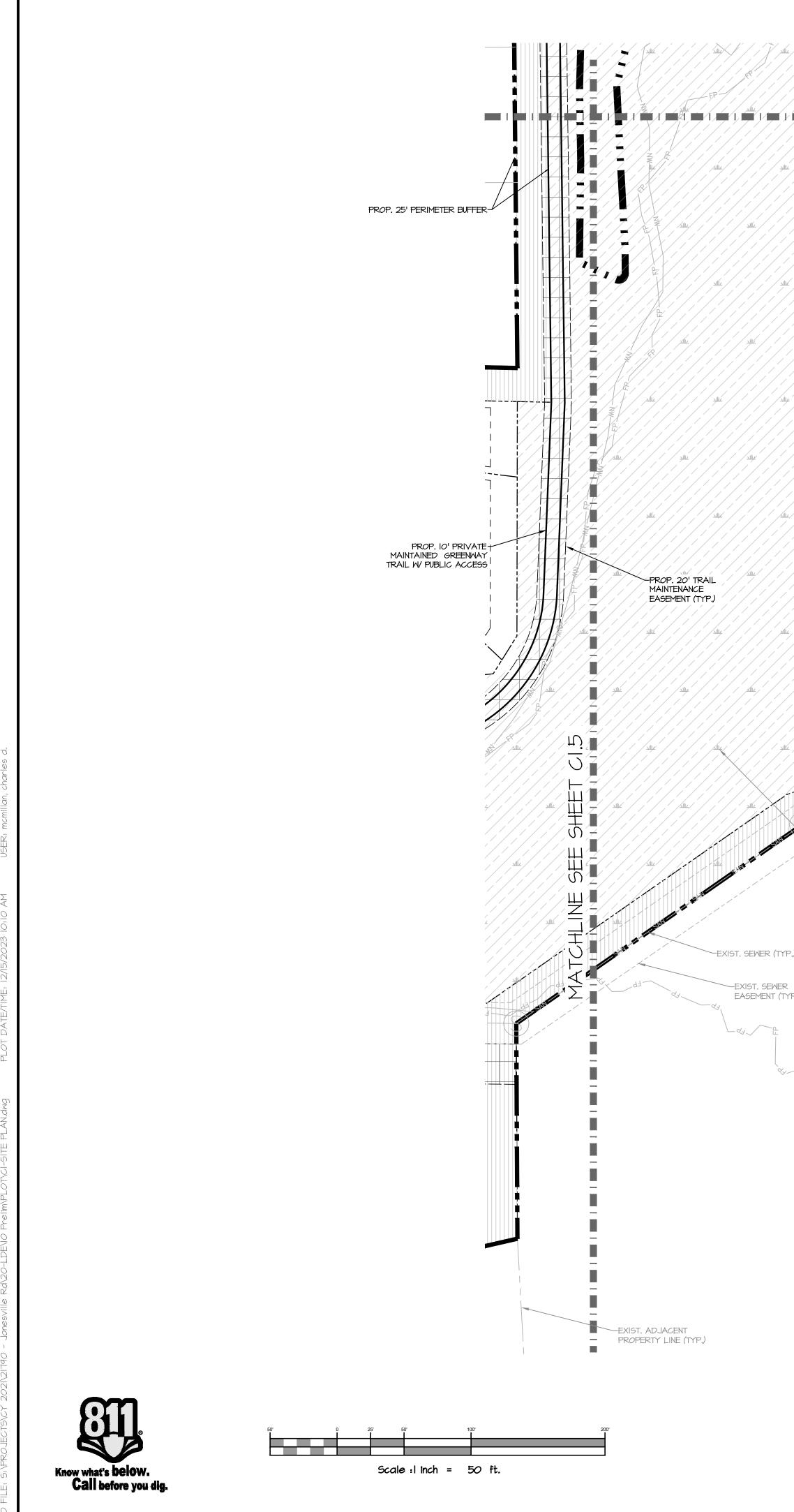

AD FILE: S:\PROJECTS\CY 2021\21790 - Jonesville Rd\20-LDE\10 Prelim\PL0T\CI-SITE PLAN.dwg PL0T DATE/TIME: 12/15/2023 10:09 AM USER: mcmillan, charles d.






REVIEW BY:


PKN



FILE: S:\PROJECTS\CY 2021\21790 - Jonesville Rd\20-LDE\I0 Prelim\PLOT\CI-SITE PLAN.dwa PLOT DATE/TIME: 12/15/2023 10:10 AM USER: mc



-11 E. S./PR.O. [EC.T.S./CY\_2021/21740 - \_ [Dinesville\_Rd/20-1 [DEVIO Prelim/P1 OT/C]-SITE P



## MATCHLINE SEE SHEET CI.3

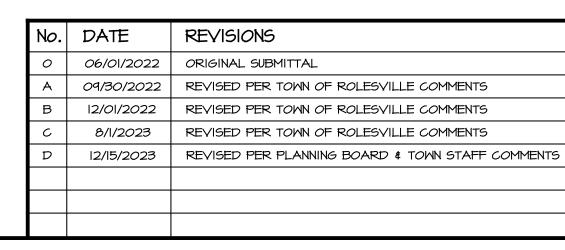
XIL PP /- /

/ بلکر /

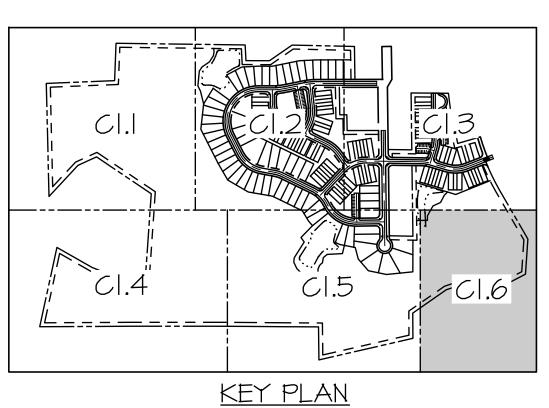
\_ كاللح

PROP. 30' PERIMETER BUFFER

-PROP. 25' PERIMETER BUFFER

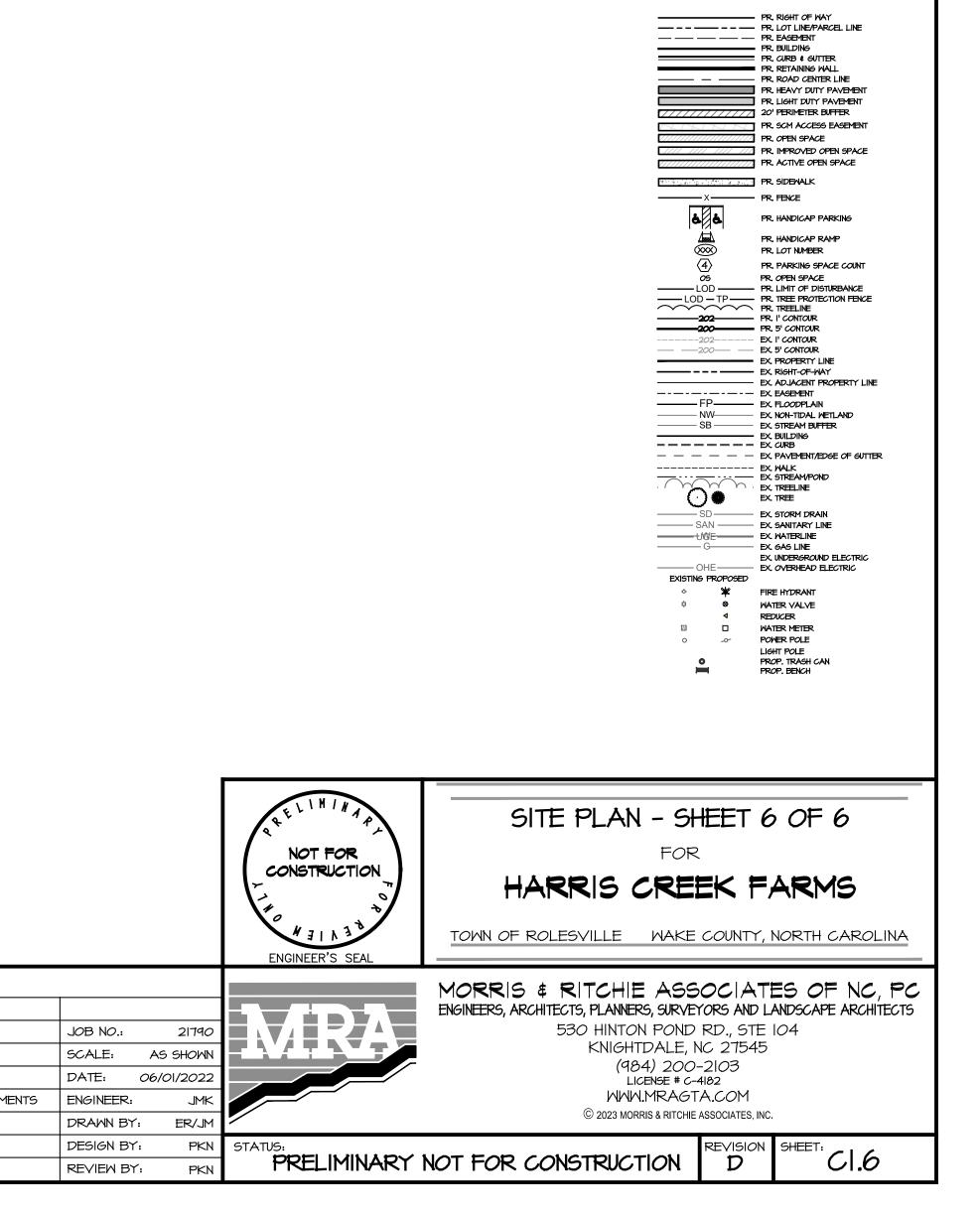

\_ علاج \_

## PASSIVE OPEN SPACE


´ \_ XIIL /

/بللد/

-EXIST. WETLANDS (TYP.)  $\sim$ EXIST. SEWER (TYP.) / ddEASEMENT (TYP.) A A









NOT TO SCALE


LEGEND





| an a |                                                                                         |                                                |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SCM I                                    |                                                                                         |                                                |                                                                                                                                                                           | RH-C<br>DEVE<br>STREET B<br>SINGL<br>AREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                          |                                                                                         |                                                |                                                                                                                                                                           | AREA<br>No. 03<br>No. |
|                                          | 24                                                                                      |                                                |                                                                                                                                                                           | 61 62 63 64 65<br>STREET A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                          |                                                                                         | 55RET B<br>57RET B<br>14<br>13<br>12           |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| G DISTRI<br>:63.87±<br>AREA: 19          | AC                                                                                      | SCM 2                                          |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| SAN                                      |                                                                                         |                                                | S SAN                                                                                                                                                                     | 5<br>4<br>3<br>3<br>5<br>4<br>3<br>5<br>4<br>3<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| REA:<br>CRES                             | UNITS: DENSITY:<br>68 SF UNITS 68/63.87 = 1.07                                          | 7 UNITS/ACRE                                   |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RES                                      | 81 TH UNITS 81/12.95 = 6.26<br>DEVELOPED AC<br>RESIDENTIAL MEDIUM<br>DENSITY OPEN SPACE | CRE<br>REQUIRED: 9.70 AC<br>PROVIDED: 44.74 AC | No.         DATE           0         06/01/2022           A         09/30/2022           B         12/01/2022           c         8/1/2023           D         12/15/2023 | REVISIONS<br>ORIGINAL SUBMITTAL<br>REVISED PER TOWN OF ROLESVILLE COMM<br>REVISED PER TOWN OF ROLESVILLE COMM<br>REVISED PER TOWN OF ROLESVILLE COMM<br>REVISED PER PLANNING BOARD & TOWN ST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                          | RESIDENTIAL HIGH<br>DENSITY OPEN SPACE                                                  | REQUIRED: 2.10 AC<br>PROVIDED: 17.37 AC        |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                          |                                                                                         |                                                |                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |





## V4 - MA 22-08/Harris Creek Farms

## **MORRIS & RITCHIE ASSOCIATES OF NC, PC**

AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS



## **RH-CZ Zoning District**

## <u>Legal Description – Exhibit "A"</u> 30.32 Acres ± Portion of Lands of Ping Chen Wake Forest Township – Wake County, North Carolina

All that certain parcel of land lying generally easterly of Jonesville Road, being located in Wake Forest Township, Wake County, North Carolina and being a portion of those lands described in deed dated March 11, 2022 from Jerri Jo Miller, Tammy Gower Batts, Clifton Edward Blackley and spouse Joetta May Blackley, Grantor to Ping Chen and recorded in the Land Records of Wake County, North Carolina in Deed Book 18953, page 592 and page 623, being more particularly described as follows, to wit:

**Beginning** at a PK nail set in an existing concrete monument on the Southwestern right-of-way of Jonesville Road, having North Carolina state plane coordinates N: 777,906.672 E: 2,154,356.044. Thence, with said right-of way, South 66°41'05" West 20.01 feet to a concrete monument on the Southwestern right-of-way line of Jonesville Road; thence, with said right-ofway and along a curve with a cord bearing distance South 25°28'26" East 211.09 feet and a radius of 1,482.39 feet to an iron pipe; thence along said right-of-way, South 30°07'41" East 362.37 feet to an iron pipe; thence leaving said right-of-way, South 03°57'30" West 224.27 feet to a point; thence, South 62°24'06" West 140.83 feet to a point; thence, North 85°00'48" West 220.39 feet to a point; thence, South 71°32'01" West 167.97 feet to a point; thence, South 55°11'46" West 260.01 feet to a point; thence South 00°19'06" East 160.50 feet to an iron pipe; thence, South 77°03'58" West 613.86 feet to an iron pipe; thence, North 00°39'34" West 210.00 feet to an iron pipe; thence, North 89°39'42" West 152.54 feet to a point; thence, North  $00^{\circ}20'38"$  East 298.57 feet to a point; thence, South 56°11'18" East 153.86 feet to a point; thence, North 34°42'38" East 298.57 feet to a point; thence, North 13°20'26" East 53.38 feet to a point; thence, South 78°57'32" East 61.36 feet to a point; thence, South 20°34'57" East 80.41 feet to a point; thence, South 40°55'01" East 98.07 feet to a point; thence, South 78°15'05" East 117.50 feet to a point; thence, North 84°15'01" East 168.88 feet to a point; thence, North 00°06'10" East 226.32 feet to an iron pipe; thence, North 00°34'22" West 421.87 feet to a point; thence, South 88°57'37" West 150.00 feet to a point; thence, South 88°57'37" West 65.68 feet to a point; thence, South 01°21'41" East 65.85 feet to a point; thence, South 78°24'21" West 133.89 feet to a point; thence, South 43°25'44" East 165.62 feet to a point; thence, North 46°34'16" West 175.00 feet to a point; thence, North 46°34'16" West 85.00 feet to a point; thence, North 43°25'44" East 98.00 feet to a point; thence, North 53°18'37" West 25.93 feet to a point; thence, North 64°00'09" West 344.00 feet to a point; thence, North 46°12'34" West 58.72 feet to a point; thence, North 35°01'39" West 86.00 feet to a point; thence, North 15°09'46" West 69.76 feet to a point; thence, North 00°03'08" East 103.24 feet to a point; thence, along a curve with a cord bearing distance North 83°21'20" East 41.73 feet and a radius of 175.00 feet to a point; thence, South 89°47'46" East 38.62 feet to a point; thence, North 88°34'40" East 97.19 feet to a point; thence, North 81°10'29" East 37.05 feet to a point; thence, North 78°40'36" East 29.34 feet to a point; thence, South 11°19'24" East 25.07 feet to a point; thence, South 38°15'43" East 110.80 feet to an iron pipe; thence, South 63°50'29" East 221.06 feet to a point;

5605 Chapel Hill Road, Suite 112, Raleigh, NC 27607 (984) 200-2103 www.mragta.com

## MORRIS & RITCHIE ASSOCIATES OF NC, PC AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH

PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS



thence, North  $89^{\circ}04'47"$  East 84.11feet to a point; thence, South  $00^{\circ}09'07"$  East 39.93 feet to an iron pipe; thence, South  $89^{\circ}21'02"$  East 200.02 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence, leaving said right-of-way, South  $89^{\circ}21'02"$  East 67.80 feet to a point on the Eastern right-of-way of Gideon Drive; thence, with said right-of-way, South  $00^{\circ}53'14"$  East 151.52 feet to a point; thence leaving said right of way, North  $88^{\circ}57'37"$  East 150.00 feet to a point; thence, North  $00^{\circ}53'16"$  West 390.32 feet to an axle; thence, South  $89^{\circ}32'03"$  East 237.94 feet to an iron pipe; thence, South  $06^{\circ}57'52"$  East 113.70 feet to a point; thence, South  $12^{\circ}21'20"$  East 211.32 feet to an iron pipe; thence, North  $73^{\circ}55'50"$  East 149.95 feet to an iron pipe on the Southwestern right-of-way of Jonesville Road; thence, with said right-of-way and along a curve with a bearing and distance of South  $19^{\circ}15'36"$  East 146.36 feet and a radius of 1,462.39 feet to the point of beginning. Containing **30.32** AC.±.

The total area of the **Exhibit "A"** herein described being a portion of Tract 1 as described in deed dated March 11, 2022 from Jerri Jo Miller, Tammy Gower Batts, Clifton Edward Blackley and spouse Joetta May Blackley, Grantor to Ping Chen and recorded in the Land Records of Wake County, North Carolina in Deed Book 18953, page 592 and page 623, and containing a total area of **30.32** AC.± and being subject to any and all matters of which a current title package would disclose.



5605 Chapel Hill Road, Suite 112, Raleigh, NC 27607 (984) 200-2103 www.mragta.com

## V4 - MA 22-08 / Harris Creek Farms

## **MORRIS & RITCHIE ASSOCIATES OF NC, PC**

AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS



## **RM-CZ Zoning District**

## Legal Description – Exhibit "B"

63.87 Acres Portion of Lands of Ping Chen Wake Forest Township – Wake County, North Carolina

All that certain parcel of land lying generally easterly of Jonesville Road, being located in Wake Forest Township, Wake County, North Carolina and being a portion of those lands described in deed dated March 11, 2022 from Jerri Jo Miller, Tammy Gower Batts, Clifton Edward Blackley and spouse Joetta May Blackley, Grantor to Ping Chen and recorded in the Land Records of Wake County, North Carolina in Deed Book 18953, page 592 and page 623, being more particularly described as follows, to wit:

Beginning at an existing iron pipe in the center of Universal Drive, having North Carolina state plane coordinates N: 778,620.5224 E: 2,153,506.2328. Thence, South 00°09'07" East 210.02 feet to an iron pipe; thence, South 89°21'02" East 175.02 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence with said right-of-way, North 00°10'25" West 219.87 feet to a point; thence leaving said right of way, South 88°58'52" East 60.90 feet to a point on the Eastern right-of-way of Gideon Drive; thence, with said right-of-way South 00°53'13" East 236.00 feet to a point; thence, South 31°00'37" West 56.74 feet to a point; thence, South 00°53'13" East 259.68 feet to a point; thence, crossing said right-of-way, South 89°21'02" East 67.80 feet to an iron pipe; thence, with said right-of-way North 00°09'07" West 275.03 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence, leaving said right-of-way, North 89°21'02" West 245.02 feet to an iron pipe; thence, South 00°09'07 East 175.02 feet to an iron pipe; thence, South 89°21'02" East 45.00 feet to an iron pipe; South 89°04'47" West 84.11 feet to a point; thence, North 63°50'29" West 221.06 feet to a point; thence, North 38°15'43" West 110.80 feet to a point; thence, North 11°19'24" West 25.07 feet to a point; thence, South 78°40'36" West 29.34 feet to a point; thence, South 81°10'29" West 37.05 feet to a point; thence, South 88°34'40" West 97.19 feet to a point; thence, North 89°47'46" West 38.62 feet to a point; thence along a curve with a cord bearing and distance, South 83°21'20" West 41.73 feet and a radius of 175.00 feet to a point; thence, South 00°03'08" West 103.24 feet to a point; thence, South 15°09'46" East 69.76 feet to a point; thence, South 35°01'39" East 86.00 feet to a point; thence, South 46°12'34" East 58.72 feet to a point; thence, South 64°00'09" East 344.00 feet to a point; thence, South 53°18'37" East 25.93 feet to a point; thence, South 43°25'44" West 98.00 feet to a point; thence, South 46°34'16" East 85.00 feet to a point; thence, South 46°34'16" East 175.00 feet to a point; thence, North 43°25'44" West 165.62 feet to a point; thence, North 78°24'21" East 133.89 feet to a point on the Western right-of-way of Gideon Drive; thence, North 01°21'41" West 65.85 feet to a point; thence, leaving said right-of-way North 88°57'37" East 65.68 feet to a point on the Eastern right-of-way of Gideon Drive; thence, with said right-of-way South 00°53'13" East 416.01 feet to a point; thence, leaving said right-ofway, South 88°46'16" East 147.79 feet to an iron pipe; thence, South 00°06'10" West 226.32 feet to a point; thence, South 84°15'01" West 168.88 feet to a point; thence, North 78°15'05" West 117.50 feet to a point; thence, North 40°55'01" West 98.07 feet to a point; thence, North 20°34'57" West 80.41 feet to a point; thence, North 78°57'32" West 61.36 feet to a point;

 Abingdon, MD
 Baltimore, MD
 Laurel, MD
 Towson, MD
 Georgetown, DE
 New Castle, DE
 Leesburg, VA
 Raleigh, NC

 (410) 515-9000
 (443) 490-7201
 (410) 792-9792
 (410) 821-1690
 (302) 855-5734
 (302) 326-2200
 (703) 994-4047
 (984) 200-2103

## MORRIS & RITCHIE ASSOCIATES OF NC, PC AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH

PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS



thence, South 13°20'26" West 53.38 feet to a point; thence, South 34°42'38" West 307.83 feet to a point; thence, North 56°11'18" West 153.86 feet to a point; thence, South 00°18'21" West 298.57 feet to a point; thence, North 89°59'29" West 1,621.81 feet to an iron pipe; thence, North 12°14'25" East 516.70 feet to an iron pipe; thence, South 60°15'35" East 257.50 feet to an iron pipe; thence, South 68°15'35" East 360.30 feet to an iron pipe; thence, North 03°59'25" East 604.00 feet to an iron pipe; thence, North 56°00'58" West 420.00 feet to an iron pipe; thence, South 65°29'02" West 130.00 feet to an iron pipe; thence, South 42°57'43" West 270.40 feet to an iron pipe; thence, North 01°21'15" West 719.72 feet to an axle; thence, North 87°42'39" East 434.84 feet to an iron pipe; thence, North 02°13'13" East 238.07 feet to an iron pipe; thence, South 89°16'24" East 821.92 feet to an iron pipe; thence, South 02°47'46" East 100.00 feet to an iron pipe; thence, North 55°18'54" East 174.59 feet to an iron pipe; thence, South 88°45'46" East 396.99 feet to the point of beginning. Containing **63.87 AC.±**.

The total area of the **Exhibit "B"** herein described being a portion of Tract 1 as described in deed dated March 11, 2022 from Jerri Jo Miller, Tammy Gower Batts, Clifton Edward Blackley and spouse Joetta May Blackley, Grantor to Ping Chen and recorded in the Land Records of Wake County, North Carolina in Deed Book 18953, page 592 and page 623, and containing a total area of **63.87** AC.± and being subject to any and all matters of which a current title package would disclose.



5605 Chapel Hill Road, Suite 112, Raleigh, NC 27607 (984) 200-2103 www.mragta.com

## HARRIS CREEK FARMS

## **VOLUNTARY REZONING CONDITIONS**

1. The subject property shall be developed in general compliance with the map amendment (conditional rezoning) concept plan, dated 12/15/2023.

2. The development shall consist of maximums of 68 single-family detached dwelling units/lots and 81 single-family attached (townhome) dwelling units/lots as detailed in the map amendment (conditional rezoning) concept plan, dated 12/15/2023.

3. The maximum allowable density within the RH-CZ zoning shall be 6.0 units/acre.

4.Single family detached dwelling unit facade anti-monotony: in order to promote variation in home appearance, no single-family front façade shall be duplicated for three (3) lots in a row, or directly across the street. For corner lots, this shall apply to the lots diagonally across the intersection.

5.All garage doors shall either contain windows or carriage style adornments.

## 6. Single-family detached dwelling units shall:

- **A**. Be a minimum of 1,500 heated square feet.
- **B**. Have cementitious siding that shall vary in type and color with brick, shakes, board and batten, or stone accents provided as decorative features
- **C**. Have at least two types of finishes on the front: lap siding, masonry, shakes, and board and batten.

## 7. Single-family attached (townhomes) shall have:

- **A**. Cementitious siding that shall vary in type and color with brick, shakes, board and batten, or stone accents provided as decorative features.
- **B**. Articulation in the end unit side elevations, which includes two of the following: side entry, windows (two or more), partial masonry, two types of finishes (i.e., Horizontal siding with board and batten or shakes in gables), and roofline changes.
- **C**. First floor glazing which shall consist of one or more of the following: garage doors with glass windows, or front doors with windows or sidelights.
- **D**. 8" minimum eaves and rakes on front, rear, and sides.

8.A homeowners' association (HOA) shall be created, and all open spaces observed in map amendment (conditional rezoning) concept plan, dated 7/24/2023, shall be owned and maintained by the HOA.

9. **Foundations:** All foundations are to be monolithic poured slab foundations. Top of slabs shall be elevated a minimum of 18 inches above finished grade for all dwelling units. All foundations shall be treated with masonry on the front and street-facing sides for a minimum of 10".

10. **Recreational amenities:** the following recreational amenities shall be constructed as observed in map amendment (conditional rezoning) concept plan, dated 12/15/2023. Public greenway (approximately 5,600 linear feet), private multi-use paths (approximately 410linear feet), gazebos, playgrounds, and a dog park. Amenities shall be built prior to the issuance of the building permit for the 70<sup>th</sup> lot.

11. <u>Landscaping</u>. At least twenty percent (20%) of all landscaping required by the LDO, that does not already qualify under LDO Section 6.2, shall utilize plant materials that are listed as native pollinator plants by the North Carolina Wildlife Federation. Where evergreen plantings or street trees are required by the LDO, native pollinator plantings shall not be required. Such plantings shall be clearly shown in construction drawings and installed as part of subdivision infrastructure. Nothing herein shall be constructed to limit the plant materials permitted on individual residential lots.

12. <u>Sidewalk Easement</u>. The development shall attempt to procure an easement from the owners of those properties with PINs 1757-48-1376 (Deed Book 19407, Page 984, Wake County Registry) and 1757-38-8408 (Deed Book 2261, Page 683, Wake County Registry), in order to provide a 5'-wide sidewalk running from the development's proposed access to Jonesville Road to the intersection with Universal Drive. If the development procures easements from both property owners, the sidewalk shall be located within said easements and constructed consistent with the Town of Rolesville Transportation Plan, and shall be completed prior to the issuance of the one hundredth (100<sup>th</sup>) building permit. If the development is unable to procure an easement from either property owner prior to the issuance of the first (1<sup>st</sup>) building permit, then the development shall pay a fee-in-lieu for the sidewalk construction to the Town of Rolesville. The fee-in-lieu shall be paid prior to the issuance of the one hundredth (100<sup>th</sup>) building permit.

13. <u>Universal Drive</u>. The development shall attempt to procure a minimum 20'-wide access easement (the "<u>Easement</u>") from the owner of that property with PIN 1757-38-8408 (Deed Book 2261, Page 683, Wake County Registry) for vehicular ingress and egress to and from Gideon Drive and Jonesville Road (the "<u>Easement Area</u>"). This Easement shall be recorded with the Wake County Registry. If the Easement is obtained and recorded, the development shall pave the Easement Area with a 20'-wide asphalt surface coat over top of the existing private gravel access drive. The paving shall be completed prior to the issuance of the development's one hundredth (100<sup>th</sup>) building permits. Following completion of the paving, the development shall be responsible for maintenance of the Easement Area; this maintenance responsibility shall expire if Columbia Drive is dedicated as public right-of-way. If the development can not obtain and record the Easement before the issuance of the first (1<sup>st</sup>) building permit, then the development shall have no obligation to perform any work described in this Condition.

14. Prior to issuance of the first building permit for a dwelling unit, the development shall donate thirty-five thousand dollars and no cents (\$35,000.00) to Homes for Heroes.

## REZONING AND ANNEXATION OF PROPERTY CONSISTING OF +/- 93.609 ACRES, LOCATED SOUTHWEST OF THE JONESVILLE ROAD AND UNIVERSAL DRIVE INTERSECTION, IN THE TOWN OF ROLESVILLE

## REPORT OF MEETING WITH ADJACENT PROPERTY OWNERS AND TENANTS ON JULY 12, 2022

Pursuant to applicable provisions of the Unified Development Ordinance, a meeting was held with respect to a potential rezoning and annexation with adjacent neighbors on Wednesday, July 12, 2023, at 6:00 p.m. The property considered for this potential rezoning totals approximately 93.609 acres, and is located along southwest of the Jonesville Road and Universal Drive intersection, in the Town of Rolesville. This meeting was held at virtually via a Zoom Meeting. All owners and tenants of property within 500 feet of the subject property were invited to attend the meeting. Attached hereto as **Exhibit A** is a copy of the neighborhood meeting notice. A copy of the required mailing list for the meeting invitations is attached hereto as **Exhibit B**. A summary of the items discussed at the meeting is attached hereto as **Exhibit C**. Attached hereto as **Exhibit D** is a list of individuals who attended the meeting.

### **EXHIBIT A – NEIGHBORHOOD MEETING NOTICE**



To: Neighboring Property Owners and Tenants
 From: Samuel Morris
 Date: June 23, 2023
 Re: Virtual Neighborhood Meeting for Annexation and Rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08)

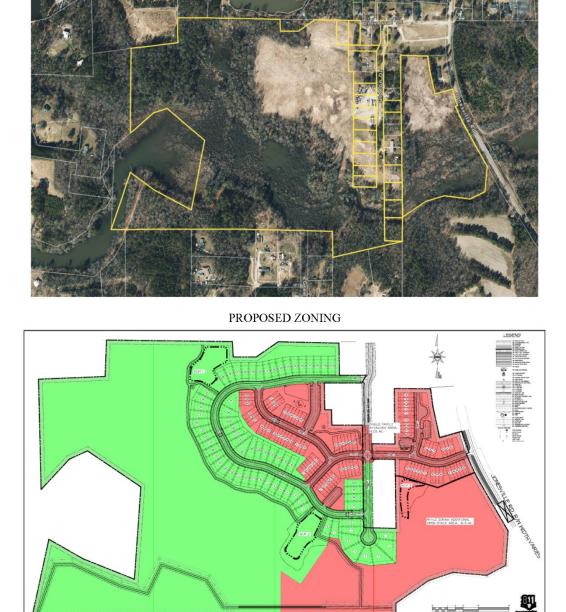
You are invited to attend a virtual meeting to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). We have scheduled an informational meeting with surrounding neighbors on <u>Wednesday</u>, July 12, 2023 from 6:00 PM until <u>7:00 PM</u>. This meeting will be held virtually. You can participate online or by telephone.

To join with video:

https://zoom.us/ Meeting ID: 871 7347 4235 Password: 922539

To join by telephone:

+1 646 558 8656 Meeting ID: 871 7347 4235 Password: 922539


The purpose of this meeting is to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). The property assemblage totals approximately 93.609 acres in size and is located southwest of the Jonesville Road and Universal Drive intersection.

The property is currently zoned Residential-30 (R-30) under Wake County zoning. The proposed rezoning would change the zoning to Residential Medium Density Conditional Zoning and Residential High Density Conditional Zoning (RM-CZ & RH-CZ) under the Town of Rolesville zoning. The purpose of the rezoning is to allow for the development of single family homes and townhomes.

The Town of Rolesville requires a neighborhood meeting involving the owners and tenants of property within 500 feet of the properties during the rezoning process. After the meeting, we will prepare a report for the Planning Department regarding the items discussed at the meeting.

Please do not hesitate to contact me directly if you have any questions or wish to discuss any issues. I can be reached at 919.780.5438 and <u>smorris@longleaflp.com</u>. Also, for more information about the rezoning, you may visit <u>https://www.rolesvillenc.gov/projects/harris-creek-farm-fka-4928-universal</u> or contact the Town of Rolesville Planning Department at 919.554.6517.

> Attached to this invitation are the following materials: 1.Subject Property Current Aerial 2.Proposed Zoning Map



OVERALL ZONING PLAN

MRA

30 10 - 2/140 16A.5 - 46 546 OCIATES OF NC. PC

IN B C1.7

 DEVELOPED
 AREA:
 UNITS:
 DENSITY:

 19.3 ACRES
 61.06 ACRES
 60 SF UNITS
 64/61.08 \* ULUNITS

61 TH UNITS

DATE REVERCE 495/2022 REVERTISH OF ROLESVILE COMMITS 220/2022 REVERTISH OF ROLESVILE COMMITS

14.02ACRE5 32.5 ACRE5

RESIDENTIAL MEDIUM DENSIT CONDITIONAL ZONINS: RESIDENTIAL HIGH DENSITY-CONDITIONAL ZONING:

RESCENTIAL MEDIAN DEBILITY OPEN RPACE RESCENTIAL HIGH DEBILITY OPEN RPACE REGISED, 110 AC REVIDED, 4404 AC REVIDED, 4404 AC REGISED, 313 AC (46.3 ADDITONS, ACRE)

CURRENT PROPERTY MAP

#### **EXHIBIT B – NOTICE LIST**

HUNT, FERDINAND V HUNT, LYDIA L 1000 SIMPSON ST APT 6B BRONX NY 10459-3348

JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR WAKE FOREST NC 27587-6360

> WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN HAMPSTEAD NC 28443-0480

WILDER, THOMAS H III WILDER, MAGGIE 104 DARTMOUTH RD APT 326 RALEIGH NC 27609-8409

> FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181

> BIRMINGHAM, JOHN D 3636 GREEN FARM LN WAKE FOREST NC 27587-6827

RIVERS, SUSAN MARSHALL 3627 GREEN FARM LN WAKE FOREST NC 27587-6828

MCGEE, LORIE ANN MCGEE, BILLY RAY 3621 GREEN FARM LN WAKE FOREST NC 27587-6828

FOWLER, JAMES ROBERT III BRIGHT, JILL F 7400 FOWLER RD ZEBULON NC 27597-8318

> CARTER, LISA CAROL 3604 GREEN FARM LN WAKE FOREST NC 27587-6827

FERRELL, CHARLES E FERRELL, GRETTA L 3805 JONESVILLE RD WAKE FOREST NC 27587-8181

JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR WAKE FOREST NC 27587-6360

> TODD, JOAN M 4180 STELLS RD WAKE FOREST NC 27587-6306

> HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

> BIRMINGHAM, JOHN DAVIS 3636 GREEN FARM LN WAKE FOREST NC 27587-6827

WW OVERTIME LLC 3728 GIDEON DR WAKE FOREST NC 27587-6360

LEE, BRENDA HEIRS BRENDEX MEEKS 3861 JONESVILLE RD WAKE FOREST NC 27587-8181

ALSTON, HENRY ALSTON, MARIE F 3741 JONESVILLE RD WAKE FOREST NC 27587-8179

BOSTIC, BILLIE D BOSTIC, JOHN J 9413 WHITE CARRIAGE DR WAKE FOREST NC 27587-7046

BIRMINGHAM, JOHN D 3636 GREEN FARM LN WAKE FOREST NC 27587-6827 HOWE, MARK JAMES JR PO BOX 61122 RALEIGH NC 27661-1122

DONAN, JESUS CORDON, LUCY DONAN 3617 GREEN FARM LN WAKE FOREST NC 27587-6828

POWER ELEVEN CONSTRUCTION LLC 4125 DURHAM CHAPEL HILL BLVD STE 8A DURHAM NC 27707-2666

> BOUTAVONG, KIT 3521 WOOD DUCK LN WAKE FOREST NC 27587-6874

PEELER, JAMIE ELIZABETH 313 SHERWEE DR RALEIGH NC 27603-3521

BOYD, KATHERINE B PAYNE, M TRAVIS 4220 MILLPOINT DR WAKE FOREST NC 27587-6377

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> PULLEN, MAGGIE H C/O SAREN GILMORE 3833 JONESVILLE RD WAKE FOREST NC 27587-8181

WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN HAMPSTEAD NC 28443-0480

JARVIS, MYRON JARVIS, MARIE 3704 GIDEON DR WAKE FOREST NC 27587-6360 BURNHAM, ABRAHAM T BURNHAM, KYLA L 3803 JONESVILLE RD WAKE FOREST NC 27587-8181

HARRIS, OLLIE VIRGIN HEIRS HARRIS, LORINE B LORINE B HARRIS PO BOX 225 FRANKLINTON NC 27525-0225

> DALEY, JOSEPH P 3619 GREEN FARM LN WAKE FOREST NC 27587-6828

PHILLIPS, BRETT LEE JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> QUIRINO, MARIA ESTELA 4916 UNIVERSAL DR WAKE FOREST NC 27587-6356

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 DUNN, JAMES WILLIAM HEIRS MONTAGUE, BUNNIE DUNN 2390 W RIVER RD FRANKLINTON NC 27525-7217

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611 WHITLEY, CLEVELAND G HEIRS DEBRA WHITLEY 3720 GIDEON DR WAKE FOREST NC 27587-6360

KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

BARHAM, LARRY H. BARHAM, MICHAEL D. 5821 WILD ORCHID TRL RALEIGH NC 27613-8549

> SMARTT, COLLIN 147 ROLLING CREEK CIR CLAYTON NC 27520-5132

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

> WILSON, TIMOTHY LEE 5409 KNOLLWOOD RD RALEIGH NC 27609-4552

BLACKLEY LAKE FISHING CLUB C/O GLENN BARHAM 9001 BLACKLEY LAKE RD WAKE FOREST NC 27587-8110

CURTIS, HENDELL HEIRS 4917 UNIVERSAL DR WAKE FOREST NC 27587-6357

KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874 JP MORGAN MORTGAGE ACQUISITION CORP 4817 LONG GREEN DR WAKE FOREST NC 27587-5244

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181

CARPENTER, BOBBY RAY CARPENTER, ALBERTA L 3629 GREEN FARM LN WAKE FOREST NC 27587-6828

> HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

UNIVERSAL CHURCH OF PRAYER & 4912 UNIVERSAL DR WAKE FOREST NC 27587-6356

GHOLSON, RYAN PATRICK 7924 MANDREL WAY RALEIGH NC 27616-9503

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

JONES, CHRISTOPHER D JONES, SHAWN MICHAEL 5108 CHRISTIAN SCHOOL RD PANTEGO NC 27860-9255

FERRELL, CHARLES E FERRELL, SHARON R 3805 JONESVILLE RD WAKE FOREST NC 27587-8181

> RIVERS, SUSAN M 3627 GREEN FARM LN WAKE FOREST NC 27587-6828

SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611

MAYE, EVELYN Y MAYE, HILTON EUGENE 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240

SUAREZ, HELENA TRUSTEE THE HELENA SUAREZ FAMILY TRUST 9660 FALLS OF NEUSE RD # 138-286 RALEIGH NC 27615-2473

> GARCIA, SALVADOR 4901 OLD POOLE RD RALEIGH NC 27610

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

HOLLOWAY, ROY D HOLLOWAY, MARTHA L 3613 GREEN FARM LN WAKE FOREST NC 27587-6828

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

> NC FARM AND FORAGE LLC 9261 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

### **EXHIBIT C – MEETING MINUTES**

- What is proposed timing for construction to start on the development
  - Developer and attorney explained proposed timeline with development plan and permits
- Would you have plans to do with the area that isn't a part of development?
  - Developer explained that wetland and southern land will remain the way it is (no development)
- How do we plan to avoid pollution from construction to the wells.
  - Developer and engineer explained their precautions in the construction process and state level regulations
- What about the blacktop water runoff and drying wells
  - Engineer explains storm drainage system and pond that will be on site state mandated process that requires permit from town to avoid flooding downstream properties.
- Worried about runoff into Watkins Pond What guarantee that it won't "get dirtied up".
  - Engineer explains codes and state mandated permits required to help control effects to the pond. Municipality will also come out to inspect site and silt fence.
- Who is the Developer on this project
  - Attorney explained who the client is and their members
- What is the price point of the townhomes and single-family homes
  - Developer explained projections on cost per unit. Do not have final pricing due to market changes and upgrades
- Will there be any fencing on the wooded areas into the private properties to separate the areas. Worried about people passing through to private property with greenways. Worried about "higher quality resident"
  - Developer and attorney explained Not projecting fencing due to where the wetlands are. Town of Rolesville will have public easement regarding the greenway it is up to the Town of Rolesville regarding fencing. Unlikely due to natural features.
- What is going to happen to the property that is not accessible from the road and is not in the wetlands? Will this ever be developed?
  - Developer explains it will not be developed and remained untouched. Units will not be added later to the plan.
- Will the land owner that is located along road next to development be able to access the road?
  - Attorney and developer explained that they will have access in and out as it is today. It is a public road
- The buffer at the NE corner of the development, where the words Universal Dr are on the map, appears to back up to the front yard at 4921 (the last home on the right). Will access to that end of Universal Dr beyond Gideon be cut off?
  - Attorney explained that the owners will still have access to their property. We are not allowed to cut off access. The scope of the rezoning should not effect that.

- Does this project have anything to do with the greenway plan?
  - Attorney explained that we do not have control of greenway development we give easement to the Town of Rolesville.
- Concerted that diesel fuel will get into the Watkins Pond
  - Engineer explained that the control of the fuel tank will be mandated at a state level by the contractor this is handled at the construction phase.
- Is the town mandating the developer to address the traffic concerns?
  - Attorney and Developer explained that an Impact analysis was done by Ramey Kemp. The NCDOT signed off on this. Based on increased trips and conditions on site they make recommendations on monitoring and approved intersections. The results will be included in the request. The Town of Rolesville contracts that traffic engineer and the developer and are not associated with the developer
- Are there plans to pave Universal Dr as well as Gideon?
- The town is requiring developer to pave all of Gideon Drive, not Universal
- Concerned about increased traffic load on Universal Drive
  - Developer explained access points to the development and town requirements
- Will Universal not be eligible for paving?
  - Engineer explained it has not been required by the town to be paved for this development. Not anticipate increased traffic to Universal due to it being unpaved. It is not a public road.
- Who sends out the meeting notifications for the City of Rolesville public hearings?
  - Attorney explained the notices will be coming from the Town of Rolesville. Mailed and signs are typical notification types as well as posted on their website.
- Will there be an HOA with this development?
  - Developer explained there will be an HOA that will maintain open areas as well as amenities.
- Where will the amenities be located within the development?
  - Engineer explained what amenities they are expecting to create and location of same.
- What type of barriers do you see with the proposal plan?
  - Developer and attorney explained that they have met with staff and made modification to address any of these concerns. Also explained there is a good path forward considering policies and overall plan for the Town of Rolesville
- If the church gave permission to be paved on Universal, could it be paved? Do we need to request it be paved with the Town of Rolesville?
  - Attorney explained that yes you can pave it if is your private road
- Residents on Jonesville Road Concerned about safety on this road for children there are no sidewalks. How do we get sidewalks put in on that road
  - Attorney and engineer explained improvements can only be made on our property. We can not take other people's property to create sidewalks. We are only required to improve along out frontage. We are building roadway and sidewalk on the property.
- Will school busses be stopping on Jonesville Road or will it go into the development? Will the roads be able to accommodate this?

- Engineer and developer explained the education department will be making that decision later on in the process. We have not control/make on that decision.
- Has any analysis been done regarding any wildlife in the wetlands on the property?
  - Attorney and engineer explained the open space requirements as well as the other preliminary environmental analysis that are required. The development will be predominantly be taking place in the already cleared areas.
- What measure will be taking place for privacy to neighboring properties? Will there be n natural buffers?
  - Attorney, developer and engineer explained the tree preservation areas and that they will keep trees where they can. There will be vegetative buffers and open space around property line.
- Is there a sidewalk plan along the eastern portion of Gideon Drive?
  - The engineer explained the town street requirements will require sidewalk improvements.
- What is the architectural design for the homes in the development?
  - Developer explained that they will be colonial type design that generally matches other developments in the area. This will not be mandated affordable housing but will be market rate but not luxury
- Neighbors are worried that the prices of the homes are not in line with others in the area they are too inexpensive compared to the "nice homes" in the area. We are worried about property value decreasing based on this development.
  - Developer and attorney explained that the prices will change in the future based on market rate. It depends on what the market will be like in the next 3-5 years. There will be a range depending on the home type (townhomes and single family).
- Is there a date on the next meeting?
  - Attorney and developer explained that there has not been a meeting set yet. More documentation must be submitted. A link for the Town's portal was shared in the Zoom chat

### **EXHIBIT D – MEETING ATTENDEES**

- 1. Sam Morris (Attorney with Longleaf Law Partners)
- 2. Kaline Shelton (Assistant at Longleaf Law Partners)
- 3. Steven George (Development Team)
- 4. Jeremy Keeny (Engineer)
- 5. Joan Todd
- 6. Natasha Hayes Smart
- 7. Marie Jarvis
- 8. Helena Suarez
- 9. Collin Smartt
- 10. Bill Harrell
- 11. Bryan Yaborough
- 12. Jackie
- 13. Lorine Harris
- 14. Steve
- 15. Brett
- 16. 919-453-4522
- 17.919-602-5532
- 18.919-621-1068
- 19. 984-204-0897
- 20. 434-265-0618
- 21. 919-272-1335
- 22. 919-438-9979
- 23. 919-491-6535
- 24. 919-827-5639



| To:   | Neighboring Property Owners and Tenants                                            |
|-------|------------------------------------------------------------------------------------|
| From: | Samuel Morris                                                                      |
| Date: | October 13, 2023                                                                   |
| Re:   | Neighborhood Meeting for Annexation and Rezoning of Harris Creek Farm (f.k.a. 4928 |
|       | Universal) (ANX 22-05 & MA 22-08)                                                  |

You are invited to attend a meeting to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). We have scheduled an informational meeting with surrounding neighbors on <u>October 24, 2023 from 5:30 PM until 6:30 PM</u> at the following location:

### Rolesville Community Center 514 Southtown Circle Rolesville, NC 27571

The purpose of this meeting is to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). The property assemblage totals approximately 93 acres in size and is located southwest of the Jonesville Road and Universal Drive intersection.

The property is currently zoned Residential-30 (R-30) under Wake County zoning. The proposed rezoning would change the zoning to Residential Medium Density Conditional Zoning and Residential High Density Conditional Zoning (RM-CZ & RH-CZ) under the Town of Rolesville zoning. The purpose of the rezoning is to allow for the development of single family homes and townhomes.

Please do not hesitate to contact me directly if you have any questions or wish to discuss any issues. I can be reached at 919.780.5438 and <u>smorris@longleaflp.com</u>. Also, for more information about the rezoning, you may visit <u>https://www.rolesvillenc.gov/projects/harris-creek-farm-fka-4928-universal</u> or contact the Town of Rolesville Planning Department at 919.554.6517.

Attached to this invitation are the following materials: 1.Subject Property Current Aerial 2.Proposed Zoning Map

### CURRENT PROPERTY MAP



PROPOSED ZONING



JONES, CHARLES ALFONSO JONES, ALLIE V 3800 JONESVILLE RD WAKE FOREST NC 27587-8180

HUNT, FERDINAND V HUNT, LYDIA L 1000 SIMPSON ST APT 6B BRONX NY 10459-3348

> HOWE, MARK JAMES JR PO BOX 61122 RALEIGH NC 27661-1122

DONAN, JESUS CORDON, LUCY DONAN 3617 GREEN FARM LN WAKE FOREST NC 27587-6828

> TODD, JOAN M 4180 STELLS RD WAKE FOREST NC 27587-6306

CHAPPELL, CONNIE B PERRY, BETTY ANN BLACKLEY 4025 LOUISBURY RD WAKE FOREST NC 27587-8118

WILDER, THOMAS H III WILDER, MAGGIE 104 DARTMOUTH RD APT 326 RALEIGH NC 27609-8409

GILMORE, JOSEPH H GILMORE, SARAH L 3833 JONESVILLE RD WAKE FOREST NC 27587-8181

ASWELL, FREDRICA T

WAKE FOREST NC 27587-9638

3508 GREEN FARM LN WAKE FOREST NC 27587-6825

JEFFERYS, CHRISTOPHER JEFFERYS, STEPHANIE MAYE, HILTON EUGENE MAYE, EVELYN YOUNG 2933 CANDLEHURST LN 4725 MITCHELL MILL RD RALEIGH NC 27616-6250 WAKE FOREST NC 27587-7240

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

BADGETT, ROBIN D BADGETT, TANA F 4817 MITCHELL MILL RD WAKE FOREST NC 27587-7242

WALKER, ALESHIA FERRELL WALKER, AARON 5012 HARTSFIELD DR WAKE FOREST NC 27587-9638

JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR **WAKE FOREST NC 27587-6360** 

PRUDENT, VIRGINIA PRUDENT, ULRICK JR 3104 BILLIARD CT WAKE FOREST NC 27587-9388

> PERRY, LISA R PO BOX 581 ROLESVILLE NC 27571-0581

SESSOMS, JOHN B 5021 HARTSFIELD DR WAKE FOREST NC 27587-9638

BROWN, JAMES A BROWN, SHELBY W 4141 STELLS RD WAKE FOREST NC 27587-5242

> GASPER, REGUGIO TECHICAC 7817 S COLORADO DR RALEIGH NC 27616-0905

BERRY, WILLIAM ROSSER BERRY, JULIA D 9249 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN

JONES, CHARLES E JONES, DARLENE C

3816 JONESVILLE RD

WAKE FOREST NC 27587-8180

FERRELL, CHARLES E FERRELL, GRETTA L

3805 JONESVILLE RD

WAKE FOREST NC 27587-8181

JARVIS, MARIE D CURTIS, HURLEY MAE

3704 GIDEON DR

FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181

POWER ELEVEN CONSTRUCTION LLC 4125 DURHAM CHAPEL HILL BLVD STE 8A DURHAM NC 27707-2666

CHRIST HOLINESS CHURCH NUMBER 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR

WAKE FOREST NC 27587-6360

HAMPSTEAD NC 28443-0480

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

BOUTAVONG, KIT 3521 WOOD DUCK LN WAKE FOREST NC 27587-6874

BROWN, JAMES ALLEN BROWN, SHELBY W 4141 STELLS RD WAKE FOREST NC 27587-5242

> HARTSFIELD, MARY HEIRS C/O KAREN BUTLER 3816 7TH ST NW WASHINGTON DC 20011-5902

> REEVES, LISA CAROL CARTER 3604 GREEN FARM LN WAKE FOREST NC 27587-6827

BROWN, WILHELMINIA ANNETTE 7506 LINNET RD WENDELL NC 27591-7279

LEITSCHUH, KARI DAWN 4605 MITCHELL MILL RD WAKE FOREST NC 27587-7239

> MILLER, BERNARD 3516 WOOD DUCK LN

WAKE FOREST NC 27587-6873

PERRY, JAMES DONNELL PERRY, CYNTHIA D 3869 JONESVILLE RD WAKE FOREST NC 27587-8181

> JONES, ERNESTINE 3848 JONESVILLE RD WAKE FOREST NC 27587-8180

MEDLIN, LISA C 3520 BRIDGES POND WAY WAKE FOREST NC 27587-5606

MCDANIEL, STEPHEN MCDANIEL, SHARON K 4213 MILLPOINT DR WAKE FOREST NC 27587-5239

MAYE, HILTON EUGENE MAYE, EVELYN RUTH 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240

> BROWN, WILHELMINIA ANNETTE 7506 LINNET RD WENDELL NC 27591-7279

RUIZ, ALICIA GUADALUPE 3857 JONESVILLE RD WAKE FOREST NC 27587-8181

PRINCE, TINA ATKINS ATKINS, JEFFREY RAY PO BOX 111 WILLOW SPRING NC 27592-0111 BLACKMON, JOE 4805 MITCHELL MILL RD WAKE FOREST NC 27587-7242

TOUTLOFF, KENNETH S TOUTLOFF, BILLIE ANNE 3512 WOOD DUCK LN WAKE FOREST NC 27587-6873

> CHRIST HOLINESS CHURCH 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638

4821 MITCHELL MILL RD WAKE FOREST NC 27587-7242

DUNN, WILLIE JEAN

FERRELL, BENJAMIN C/O JESSE FERRELL 248 CALIFORNIA AVE PROVIDENCE RI 02905-2815 HOLLINGSWORTH, JACOB BROOKS 3509 WOOD DUCK LN WAKE FOREST NC 27587-6874

> BUGG, SAMUEL WILLIAM 9245 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181

BIRMINGHAM, JOHN DAVIS 3636 GREEN FARM LN WAKE FOREST NC 27587-6827

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> BIRMINGHAM, JOHN D 3636 GREEN FARM LN WAKE FOREST NC 27587-6827

> WW OVERTIME LLC 3728 GIDEON DR WAKE FOREST NC 27587-6360

COVINGTON, LINDA MANNING 3812 JONESVILLE RD WAKE FOREST NC 27587-8180

BOYD, KATHERINE B PAYNE, M TRAVIS 4220 MILLPOINT DR WAKE FOREST NC 27587-6377 RIVERS, SUSAN MARSHALL 3627 GREEN FARM LN WAKE FOREST NC 27587-6828

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> COTTON, DIANE MAYO 5020 MISTLETOE DR WAKE FOREST NC 27587-6373

CARPENTER, BOBBY RAY CARPENTER, ALBERTA L 3629 GREEN FARM LN WAKE FOREST NC 27587-6828

> CARELOCK, TABATHA R 3513 GREEN FARM LN WAKE FOREST NC 27587-6826

> PAYNE, JEFFREY 3808 JONESVILLE RD WAKE FOREST NC 27587-8180

> VAN GORDER, JAMES 3200 MAYEVILLE LN WAKE FOREST NC 27587-5637

BOSTIC, BILLIE D BOSTIC, JOHN J 9413 WHITE CARRIAGE DR WAKE FOREST NC 27587-7046

BIRMINGHAM, JOHN D 3636 GREEN FARM LN WAKE FOREST NC 27587-6827

FERRELL, CHARLES E FERRELL, SHARON R 3805 JONESVILLE RD WAKE FOREST NC 27587-8181 RIVERS, SUSAN M 3627 GREEN FARM LN WAKE FOREST NC 27587-6828

MCGEE, LORIE ANN MCGEE, BILLY RAY 3621 GREEN FARM LN WAKE FOREST NC 27587-6828

LEE, WILLIE O'KELLY LEE, EDITH M 3845 JONESVILLE RD WAKE FOREST NC 27587-8181

CHRIST HOLINESS CHURCH # 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638

FOWLER, JAMES ROBERT III BRIGHT, JILL F 7400 FOWLER RD ZEBULON NC 27597-8318

MARTINEZ, ROBERTO ZETINA SANDOVAL, MARIA DE LOS ANGELES ORTIZ 4916 LASHERAL RD WAKE FOREST NC 27587-6375

JONES, CHRISTOPHER D JONES, SHAWN MICHAEL 5108 CHRISTIAN SCHOOL RD PANTEGO NC 27860-9255

> WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN HAMPSTEAD NC 28443-0480

JARVIS, MYRON JARVIS, MARIE 3704 GIDEON DR WAKE FOREST NC 27587-6360

BURNHAM, ABRAHAM T BURNHAM, KYLA L 3803 JONESVILLE RD WAKE FOREST NC 27587-8181 LEE, BRENDA HEIRS BRENDEX MEEKS 3861 JONESVILLE RD WAKE FOREST NC 27587-8181

BERGDOLT, BRIAN H 3612 MEDLIN WOODS RD WAKE FOREST NC 27587-7202

PULLEN, MAGGIE H C/O SAREN GILMORE 3833 JONESVILLE RD WAKE FOREST NC 27587-8181

CARELOCK, TABATHA R 3513 GREEN FARM LN WAKE FOREST NC 27587-6826

JONES, TANYA ELISHA 3517 WOOD DUCK LN WAKE FOREST NC 27587-6874

HOLDEN, MARCIE L 3524 WOOD DUCK LN WAKE FOREST NC 27587-6873

HOCUTT, JOHN E 3517 GREEN FARM LN WAKE FOREST NC 27587-6826

CARTER, LISA CAROL 3604 GREEN FARM LN WAKE FOREST NC 27587-6827

BLACKLEY LAKE FISHING CLUB C/O GLENN BARHAM 9001 BLACKLEY LAKE RD WAKE FOREST NC 27587-8110

JONES, CHARLES E JONES, DARLENE 3816 JONESVILLE RD WAKE FOREST NC 27587-8180 WHITLEY, CLEVELAND G HEIRS DEBRA WHITLEY 3720 GIDEON DR WAKE FOREST NC 27587-6360

HARRIS, OLLIE VIRGIN HEIRS HARRIS, LORINE B LORINE B HARRIS PO BOX 225 FRANKLINTON NC 27525-0225

> KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

BARHAM, LARRY H. BARHAM, MICHAEL D. 5821 WILD ORCHID TRL RALEIGH NC 27613-8549

> PERRY, ELWOOD RYAN 2004 TRAWICK RD RALEIGH NC 27604-3841

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

**KENNETH INVESTMENT LLC** 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802

KENNETH INVESTMENT LLC

10030 GREEN LEVEL CHURCH RD STE 802

KENNETH INVESTMENT LLC

10030 GREEN LEVEL CHURCH RD STE 802

CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC

CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

CURTIS, HENDELL HEIRS 4917 UNIVERSAL DR WAKE FOREST NC 27587-6357

CHRIST HOLINESS CHURCH NUMBER 1 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638

> GREENE, JOE L 6415 HAWTHORNE ST HYATTSVILLE MD 20785-1711

PHILLIPS, BRETT LEE JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> ALSTON, CHRISTOPHER 2172 WARRENTON RD **HENDERSON NC 27537-9359**

> > 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

> > > KENNETH INVESTMENT LLC

10030 GREEN LEVEL CHURCH RD STE 802

CARY NC 27519-8195

KENNETH INVESTMENT LLC

DALEY, JOSEPH P 3619 GREEN FARM LN WAKE FOREST NC 27587-6828

KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

HAUFLER, DARREL EUGENE

4340 MILLPOINT DR

WAKE FOREST NC 27587-6384

DUNN, JAMES WILLIAM HEIRS MONTAGUE, **BUNNIE DUNN** 2390 W RIVER RD

FRANKLINTON NC 27525-7217

QUIRINO, MARIA ESTELA

4916 UNIVERSAL DR

WAKE FOREST NC 27587-6356

CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

HOLLOWAY, ROY D HOLLOWAY, MARTHA L 3613 GREEN FARM LN WAKE FOREST NC 27587-6828 SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611

KENNETH INVESTMENT LLC

10030 GREEN LEVEL CHURCH RD STE 802

CARY NC 27519-8195

WILSON, TIMOTHY LEE 5409 KNOLLWOOD RD RALEIGH NC 27609-4552

SUAREZ, HELENA TRUSTEE THE HELENA SUAREZ FAMILY TRUST 9660 FALLS OF NEUSE RD # 138-286 RALEIGH NC 27615-2473

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611

> BERRY, WILLIAM R BERRY, JULIA D 9241 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

NC FARM AND FORAGE LLC

9261 BLACKLEY LAKE RD

WAKE FOREST NC 27587-8196

ROUSE, ELLEN CURTIS 4009 TRESCO XING RALEIGH NC 27616-8473

KELLY, NICOLAS KELLY, PEARLINE L 5025 HARTSFIELD DR WAKE FOREST NC 27587-9638

> GHOLSON, RYAN PATRICK 7924 MANDREL WAY RALEIGH NC 27616-9503

TYNER, BRENDA W TRUSTEE NANCY H WATKINS IRREVOCABLE TRUST PO BOX 221 ROLESVILLE NC 27571-0221

> GARCIA, SALVADOR 4901 OLD POOLE RD RALEIGH NC 27610

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

MAYE, EVELYN Y MAYE, HILTON EUGENE 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

UNIVERSAL CHURCH OF PRAYER & 4912 UNIVERSAL DR WAKE FOREST NC 27587-6356 4817 LONG GREEN DR WAKE FOREST NC 27587-5244

INTROINVEST LLC

4921 UNIVERSAL DR

WAKE FOREST NC 27587-6357

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H

9237 BLACKLEY LAKE RD

WAKE FOREST NC 27587-8196

JP MORGAN MORTGAGE ACQUISITION CORP

### REZONING AND ANNEXATION OF PROPERTY CONSISTING OF +/- 93 ACRES, LOCATED SOUTHWEST OF THE JONESVILLE ROAD AND UNIVERSAL DRIVE INTERSECTION, IN THE TOWN OF ROLESVILLE

# REPORT OF MEETING WITH ADJACENT PROPERTY OWNERS AND TENANTS ON OCTOBER 24, 2022

Pursuant to applicable provisions of the Unified Development Ordinance, a meeting was held with respect to a potential rezoning and annexation with adjacent neighbors on Tuesday, October 24, 2023, at 5:30 p.m. The property considered for this potential rezoning totals approximately 93 acres and is located southwest of the Jonesville Road and Universal Drive intersection, in the Town of Rolesville. This meeting was held at the Rolesville Community Center. All owners and tenants of property within 1000 feet of the subject property were invited to attend the meeting. Attached hereto as **Exhibit A** is a copy of the neighborhood meeting notice. A copy of the required mailing list for the meeting invitations is attached hereto as **Exhibit B**. A summary of the items discussed at the meeting is attached hereto as **Exhibit C**. Attached hereto as **Exhibit D** is a list of individuals who attended the meeting.

### **EXHIBIT A – NEIGHBORHOOD MEETING NOTICE**



| To:   | Neighboring Property Owners and Tenants                                            |
|-------|------------------------------------------------------------------------------------|
| From: | Samuel Morris                                                                      |
| Date: | October 13, 2023                                                                   |
| Re:   | Neighborhood Meeting for Annexation and Rezoning of Harris Creek Farm (f.k.a. 4928 |
|       | Universal) (ANX 22-05 & MA 22-08)                                                  |

You are invited to attend a meeting to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). We have scheduled an informational meeting with surrounding neighbors on <u>October 24, 2023 from 5:30 PM until 6:30 PM</u> at the following location:

### Rolesville Community Center 514 Southtown Circle Rolesville, NC 27571

The purpose of this meeting is to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). The property assemblage totals approximately 93 acres in size and is located southwest of the Jonesville Road and Universal Drive intersection.

The property is currently zoned Residential-30 (R-30) under Wake County zoning. The proposed rezoning would change the zoning to Residential Medium Density Conditional Zoning and Residential High Density Conditional Zoning (RM-CZ & RH-CZ) under the Town of Rolesville zoning. The purpose of the rezoning is to allow for the development of single family homes and townhomes.

Please do not hesitate to contact me directly if you have any questions or wish to discuss any issues. I can be reached at 919.780.5438 and <u>smorris@longleaflp.com</u>. Also, for more information about the rezoning, you may visit <u>https://www.rolesvillenc.gov/projects/harris-creek-farm-fka-4928-universal</u> or contact the Town of Rolesville Planning Department at 919.554.6517.

Attached to this invitation are the following materials: 1.Subject Property Current Aerial 2.Proposed Zoning Map

### CURRENT PROPERTY MAP



PROPOSED ZONING



### **EXHIBIT B – NOTICE LIST**

JONES, CHARLES ALFONSO JONES, ALLIE V 3800 JONESVILLE RD WAKE FOREST NC 27587-8180

HUNT, FERDINAND V HUNT, LYDIA L 1000 SIMPSON ST APT 6B BRONX NY 10459-3348

> HOWE, MARK JAMES JR PO BOX 61122 RALEIGH NC 27661-1122

DONAN, JESUS CORDON, LUCY DONAN 3617 GREEN FARM LN WAKE FOREST NC 27587-6828

> TODD, JOAN M 4180 STELLS RD WAKE FOREST NC 27587-6306

CHAPPELL, CONNIE B PERRY, BETTY ANN BLACKLEY 4025 LOUISBURY RD WAKE FOREST NC 27587-8118

WILDER, THOMAS H III WILDER, MAGGIE 104 DARTMOUTH RD APT 326 RALEIGH NC 27609-8409

GILMORE, JOSEPH H GILMORE, SARAH L 3833 JONESVILLE RD WAKE FOREST NC 27587-8181

ASWELL, FREDRICA T

WAKE FOREST NC 27587-9638

3508 GREEN FARM LN WAKE FOREST NC 27587-6825

JEFFERYS, CHRISTOPHER JEFFERYS, STEPHANIE MAYE, HILTON EUGENE MAYE, EVELYN YOUNG 2933 CANDLEHURST LN 4725 MITCHELL MILL RD RALEIGH NC 27616-6250 WAKE FOREST NC 27587-7240

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

BADGETT, ROBIN D BADGETT, TANA F 4817 MITCHELL MILL RD WAKE FOREST NC 27587-7242

WALKER, ALESHIA FERRELL WALKER, AARON 5012 HARTSFIELD DR WAKE FOREST NC 27587-9638

JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR **WAKE FOREST NC 27587-6360** 

PRUDENT, VIRGINIA PRUDENT, ULRICK JR 3104 BILLIARD CT WAKE FOREST NC 27587-9388

> PERRY, LISA R PO BOX 581 ROLESVILLE NC 27571-0581

SESSOMS, JOHN B 5021 HARTSFIELD DR WAKE FOREST NC 27587-9638

BROWN, JAMES A BROWN, SHELBY W 4141 STELLS RD WAKE FOREST NC 27587-5242

> GASPER, REGUGIO TECHICAC 7817 S COLORADO DR RALEIGH NC 27616-0905

BERRY, WILLIAM ROSSER BERRY, JULIA D 9249 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN

JONES, CHARLES E JONES, DARLENE C

3816 JONESVILLE RD

WAKE FOREST NC 27587-8180

FERRELL, CHARLES E FERRELL, GRETTA L

3805 JONESVILLE RD

WAKE FOREST NC 27587-8181

JARVIS, MARIE D CURTIS, HURLEY MAE

3704 GIDEON DR

FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181

POWER ELEVEN CONSTRUCTION LLC 4125 DURHAM CHAPEL HILL BLVD STE 8A DURHAM NC 27707-2666

CHRIST HOLINESS CHURCH NUMBER 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR

WAKE FOREST NC 27587-6360

HAMPSTEAD NC 28443-0480

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

BOUTAVONG, KIT 3521 WOOD DUCK LN WAKE FOREST NC 27587-6874

BROWN, JAMES ALLEN BROWN, SHELBY W 4141 STELLS RD WAKE FOREST NC 27587-5242

> HARTSFIELD, MARY HEIRS C/O KAREN BUTLER 3816 7TH ST NW WASHINGTON DC 20011-5902

> REEVES, LISA CAROL CARTER 3604 GREEN FARM LN WAKE FOREST NC 27587-6827

BROWN, WILHELMINIA ANNETTE 7506 LINNET RD WENDELL NC 27591-7279

LEITSCHUH, KARI DAWN 4605 MITCHELL MILL RD WAKE FOREST NC 27587-7239

> MILLER, BERNARD 3516 WOOD DUCK LN

WAKE FOREST NC 27587-6873

PERRY, JAMES DONNELL PERRY, CYNTHIA D 3869 JONESVILLE RD WAKE FOREST NC 27587-8181

> JONES, ERNESTINE 3848 JONESVILLE RD WAKE FOREST NC 27587-8180

MEDLIN, LISA C 3520 BRIDGES POND WAY WAKE FOREST NC 27587-5606

MCDANIEL, STEPHEN MCDANIEL, SHARON K 4213 MILLPOINT DR WAKE FOREST NC 27587-5239

MAYE, HILTON EUGENE MAYE, EVELYN RUTH 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240

> BROWN, WILHELMINIA ANNETTE 7506 LINNET RD WENDELL NC 27591-7279

RUIZ, ALICIA GUADALUPE 3857 JONESVILLE RD WAKE FOREST NC 27587-8181

PRINCE, TINA ATKINS ATKINS, JEFFREY RAY PO BOX 111 WILLOW SPRING NC 27592-0111 BLACKMON, JOE 4805 MITCHELL MILL RD WAKE FOREST NC 27587-7242

TOUTLOFF, KENNETH S TOUTLOFF, BILLIE ANNE 3512 WOOD DUCK LN WAKE FOREST NC 27587-6873

> CHRIST HOLINESS CHURCH 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638

4821 MITCHELL MILL RD WAKE FOREST NC 27587-7242

DUNN, WILLIE JEAN

FERRELL, BENJAMIN C/O JESSE FERRELL 248 CALIFORNIA AVE PROVIDENCE RI 02905-2815 HOLLINGSWORTH, JACOB BROOKS 3509 WOOD DUCK LN WAKE FOREST NC 27587-6874

> BUGG, SAMUEL WILLIAM 9245 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181

BIRMINGHAM, JOHN DAVIS 3636 GREEN FARM LN WAKE FOREST NC 27587-6827

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> BIRMINGHAM, JOHN D 3636 GREEN FARM LN WAKE FOREST NC 27587-6827

> WW OVERTIME LLC 3728 GIDEON DR WAKE FOREST NC 27587-6360

COVINGTON, LINDA MANNING 3812 JONESVILLE RD WAKE FOREST NC 27587-8180

BOYD, KATHERINE B PAYNE, M TRAVIS 4220 MILLPOINT DR WAKE FOREST NC 27587-6377 RIVERS, SUSAN MARSHALL 3627 GREEN FARM LN WAKE FOREST NC 27587-6828

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> COTTON, DIANE MAYO 5020 MISTLETOE DR WAKE FOREST NC 27587-6373

CARPENTER, BOBBY RAY CARPENTER, ALBERTA L 3629 GREEN FARM LN WAKE FOREST NC 27587-6828

> CARELOCK, TABATHA R 3513 GREEN FARM LN WAKE FOREST NC 27587-6826

> PAYNE, JEFFREY 3808 JONESVILLE RD WAKE FOREST NC 27587-8180

> VAN GORDER, JAMES 3200 MAYEVILLE LN WAKE FOREST NC 27587-5637

BOSTIC, BILLIE D BOSTIC, JOHN J 9413 WHITE CARRIAGE DR WAKE FOREST NC 27587-7046

BIRMINGHAM, JOHN D 3636 GREEN FARM LN WAKE FOREST NC 27587-6827

FERRELL, CHARLES E FERRELL, SHARON R 3805 JONESVILLE RD WAKE FOREST NC 27587-8181 RIVERS, SUSAN M 3627 GREEN FARM LN WAKE FOREST NC 27587-6828

MCGEE, LORIE ANN MCGEE, BILLY RAY 3621 GREEN FARM LN WAKE FOREST NC 27587-6828

LEE, WILLIE O'KELLY LEE, EDITH M 3845 JONESVILLE RD WAKE FOREST NC 27587-8181

CHRIST HOLINESS CHURCH # 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638

FOWLER, JAMES ROBERT III BRIGHT, JILL F 7400 FOWLER RD ZEBULON NC 27597-8318

MARTINEZ, ROBERTO ZETINA SANDOVAL, MARIA DE LOS ANGELES ORTIZ 4916 LASHERAL RD WAKE FOREST NC 27587-6375

JONES, CHRISTOPHER D JONES, SHAWN MICHAEL 5108 CHRISTIAN SCHOOL RD PANTEGO NC 27860-9255

> WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN HAMPSTEAD NC 28443-0480

JARVIS, MYRON JARVIS, MARIE 3704 GIDEON DR WAKE FOREST NC 27587-6360

BURNHAM, ABRAHAM T BURNHAM, KYLA L 3803 JONESVILLE RD WAKE FOREST NC 27587-8181 LEE, BRENDA HEIRS BRENDEX MEEKS 3861 JONESVILLE RD WAKE FOREST NC 27587-8181

BERGDOLT, BRIAN H 3612 MEDLIN WOODS RD WAKE FOREST NC 27587-7202

PULLEN, MAGGIE H C/O SAREN GILMORE 3833 JONESVILLE RD WAKE FOREST NC 27587-8181

CARELOCK, TABATHA R 3513 GREEN FARM LN WAKE FOREST NC 27587-6826

JONES, TANYA ELISHA 3517 WOOD DUCK LN WAKE FOREST NC 27587-6874

HOLDEN, MARCIE L 3524 WOOD DUCK LN WAKE FOREST NC 27587-6873

HOCUTT, JOHN E 3517 GREEN FARM LN WAKE FOREST NC 27587-6826

CARTER, LISA CAROL 3604 GREEN FARM LN WAKE FOREST NC 27587-6827

BLACKLEY LAKE FISHING CLUB C/O GLENN BARHAM 9001 BLACKLEY LAKE RD WAKE FOREST NC 27587-8110

JONES, CHARLES E JONES, DARLENE 3816 JONESVILLE RD WAKE FOREST NC 27587-8180 WHITLEY, CLEVELAND G HEIRS DEBRA WHITLEY 3720 GIDEON DR WAKE FOREST NC 27587-6360

HARRIS, OLLIE VIRGIN HEIRS HARRIS, LORINE B LORINE B HARRIS PO BOX 225 FRANKLINTON NC 27525-0225

> KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

BARHAM, LARRY H. BARHAM, MICHAEL D. 5821 WILD ORCHID TRL RALEIGH NC 27613-8549

> PERRY, ELWOOD RYAN 2004 TRAWICK RD RALEIGH NC 27604-3841

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

**KENNETH INVESTMENT LLC** 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802

KENNETH INVESTMENT LLC

10030 GREEN LEVEL CHURCH RD STE 802

KENNETH INVESTMENT LLC

10030 GREEN LEVEL CHURCH RD STE 802

CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC

CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

CURTIS, HENDELL HEIRS 4917 UNIVERSAL DR WAKE FOREST NC 27587-6357

CHRIST HOLINESS CHURCH NUMBER 1 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638

> GREENE, JOE L 6415 HAWTHORNE ST HYATTSVILLE MD 20785-1711

PHILLIPS, BRETT LEE JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

> ALSTON, CHRISTOPHER 2172 WARRENTON RD **HENDERSON NC 27537-9359**

> > 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

> > > KENNETH INVESTMENT LLC

10030 GREEN LEVEL CHURCH RD STE 802

CARY NC 27519-8195

KENNETH INVESTMENT LLC

DALEY, JOSEPH P 3619 GREEN FARM LN **WAKE FOREST NC 27587-6828** 

KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

HAUFLER, DARREL EUGENE

4340 MILLPOINT DR

WAKE FOREST NC 27587-6384

DUNN, JAMES WILLIAM HEIRS MONTAGUE, **BUNNIE DUNN** 2390 W RIVER RD

FRANKLINTON NC 27525-7217

QUIRINO, MARIA ESTELA

4916 UNIVERSAL DR

WAKE FOREST NC 27587-6356

CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

HOLLOWAY, ROY D HOLLOWAY, MARTHA L 3613 GREEN FARM LN WAKE FOREST NC 27587-6828 SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611

KENNETH INVESTMENT LLC

10030 GREEN LEVEL CHURCH RD STE 802

CARY NC 27519-8195

WILSON, TIMOTHY LEE 5409 KNOLLWOOD RD RALEIGH NC 27609-4552

SUAREZ, HELENA TRUSTEE THE HELENA SUAREZ FAMILY TRUST 9660 FALLS OF NEUSE RD # 138-286 RALEIGH NC 27615-2473

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611

> BERRY, WILLIAM R BERRY, JULIA D 9241 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

NC FARM AND FORAGE LLC

9261 BLACKLEY LAKE RD

WAKE FOREST NC 27587-8196

ROUSE, ELLEN CURTIS 4009 TRESCO XING RALEIGH NC 27616-8473

KELLY, NICOLAS KELLY, PEARLINE L 5025 HARTSFIELD DR WAKE FOREST NC 27587-9638

> GHOLSON, RYAN PATRICK 7924 MANDREL WAY RALEIGH NC 27616-9503

TYNER, BRENDA W TRUSTEE NANCY H WATKINS IRREVOCABLE TRUST PO BOX 221 ROLESVILLE NC 27571-0221

> GARCIA, SALVADOR 4901 OLD POOLE RD RALEIGH NC 27610

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

MAYE, EVELYN Y MAYE, HILTON EUGENE 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

UNIVERSAL CHURCH OF PRAYER & 4912 UNIVERSAL DR WAKE FOREST NC 27587-6356 4817 LONG GREEN DR WAKE FOREST NC 27587-5244

INTROINVEST LLC

4921 UNIVERSAL DR

WAKE FOREST NC 27587-6357

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H

9237 BLACKLEY LAKE RD

WAKE FOREST NC 27587-8196

JP MORGAN MORTGAGE ACQUISITION CORP

### **EXHIBIT C – MEETING MINUTES**

### • <u>Introduction of Development Team</u>:

 Developer Steve George with The CSC Group, Attorney Samuel Morris with Longleaf Law Partners, and Engineer Jeremy Keeney with Morris & Ritchie Associates.

### • <u>Development Team Presentation</u>:

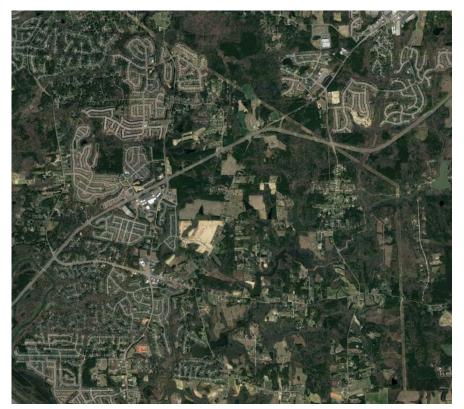
- Purpose of this neighborhood meeting and past meetings.
- o Discussion regarding rezoning and annexation process in Rolesville.
- Description and location of the Subject Property.
- Discussion regarding current zoning of the property under Wake County.
- Discussion regarding Rolesville Future Land Use Map and Comprehensive Plan guidance
- Description of proposed rezoning and reasons for the request.
- Explanation of proposed building types and densities on the Subject Property.
- Discussion regarding wetlands and open space that will be preserved on the property.
- Forecast future meetings and public hearings.

### • <u>Q & A</u>:

- What is the name of the development company?
  - The CSC Group, which is a local real estate development group.
- What is the price point and square footage of the townhomes and single-family <u>homes</u>?
  - Developer explained potential projections on cost per unit for townhouses and detached units. They will likely be between 1,800 and 3,000 square feet. Do not have final pricing due to potential market changes.
- Was there a traffic impact analysis?
  - The development team explained that a Traffic Impact Analysis was done by Ramey Kemp, who was retained by the Town. The NCDOT signed off on this. Based on increased trips and conditions on site they make

recommendations on monitoring and approved intersections. The results and requirements have been included in the rezoning request.

- Will Universal Dr Gideon Dr be paved/improved?
  - The town is requiring the developer to pave and improve all of Gideon Drive, not Universal, but we are working privately with the Church regarding Universal Drive.
- What measure will be taking place for privacy to neighboring properties? Will there be any natural buffers?
  - The development team explained that there will be 25' vegetative buffers around all adjacent private property.
- Will there be sidewalks Gideon Drive?
  - The engineer explained the town street requirements will require sidewalk improvements along Gideon.
- What is proposed timeline for the development?
  - Development team explained the typical rezoning timeline with development plan and permits, and that construction would not likely occur over a year.
- Inquiry regarding the size, location, and purpose of stormwater ponds.
  - The engineer explained the details and purpose of the proposed stormwater pond.
- Questions regarding density, configuration, and approval process for nearby Mitchell Mill Reserve development.
  - The development team explained the details and nature of the approved Mithcell Mill Reserve case. Engineer explained that background traffic data from that rezoning was considered and used during our TIA.
- Will the homes be built-to-rent, or will they be for sale? What is to stop an owner from renting out a unit that they purchase?
  - The homes will be for sale. NC law limits the ability to prohibit people from leasing their property. Individual owners could buy a unit as an investment.


### **EXHIBIT D – MEETING ATTENDEES**

- 1. Sam Morris
- 2. Steven George
- Jeremy Keeny
   John Birmingham
   Guy Jones
   Myron Jarvis
   Marie Jarvis

- 8. Matthew Jarvis
- 9. Darlene Jones
- 10. Bryan Harris

### **RAMEY KEMP ASSOCIATES**

TOGETHER WE ARE LIMITLESS







Harris Creek Farm **Traffic Impact Analysis Rolesville, North Carolina** 



rameykemp.com

# TRAFFIC IMPACT ANALYSIS

FOR

# HARRIS CREEK FARM

LOCATED

IN

## **ROLESVILLE, NORTH CAROLINA**

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By: Infrastructure Consulting Services, Inc. *dba* **Ramey Kemp Associates** 5808 Faringdon Place Raleigh, NC 27609 License #F-1489



MAY 2023

Prepared By: DAR

Reviewed By: <u>JAE</u>

RKA Project No. 20498 - 009

## TRAFFIC IMPACT ANALYSIS HARRIS CREEK FARM ROLESVILLE, NORTH CAROLINA

### **EXECUTIVE SUMMARY**

### 1. Development Overview

A Traffic Impact Analysis (TIA) was conducted for the proposed Harris Creek Farm development in accordance with the Town of Rolesville (Town) Land Development Ordinance (LDO) and North Carolina Department of Transportation (NCDOT) capacity analysis guidelines. The proposed development, anticipated to be completed in 2027, is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The proposed development is expected to consist of 68 single-family homes and 81 townhomes. Site access is proposed via two (2) fullmovement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions
- 2027 Build-Improved Traffic Conditions

### 2. Existing Traffic Conditions

The study area for the TIA was determined through coordination with the Town and NCDOT and consists of the following existing intersections:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Mitchell Mill Road and Jonesville Road / Peebles Road
- Jonesville Road and Universal Drive



Existing peak hour traffic volumes were determined based on traffic counts conducted at the study intersections listed above except for Jonesville Road and Universal Drive, in November of 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning.

Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive were estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive. It was estimated that there will be 8 AM trips: 2 enter 6 exit and 10 PM trips: 7 enter 3 exit. The trips were distributed to the north and south along Jonesville Road the same as site trips. Through traffic volumes were balanced from the Mitchell Mill Road/Jonesville Road intersection.

Previously collected counts from the year 2021 were projected to the 2022 existing analysis year using a compounded annual growth rate of 2%. Weekday AM and PM traffic volumes were balanced between study intersections, where appropriate.

### 3. Site Trip Generation

The proposed development is assumed to consist of 68 single-family homes and 81 townhomes,. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11<sup>th</sup> Edition. Table E-1 provides a summary of the trip generation potential for the site.

| Land Use<br>(ITE Code)          | Intensity | Daily<br>Traffic<br>(vpd) | Weekday<br>AM Peak Hour Trips<br>(vph) |      |       | Weekday<br>PM Peak Hour Trips<br>(vph) |      |       |
|---------------------------------|-----------|---------------------------|----------------------------------------|------|-------|----------------------------------------|------|-------|
|                                 |           |                           | Enter                                  | Exit | Total | Enter                                  | Exit | Total |
| Single-Family Home<br>(210)     | 68 DU     | 708                       | 13                                     | 39   | 52    | 44                                     | 25   | 69    |
| Single Family Attached<br>(215) | 81 DU     | 568                       | 9                                      | 27   | 36    | 26                                     | 19   | 45    |
| Total Primary Trips             |           | 1,276                     | 22                                     | 66   | 88    | 70                                     | 44   | 114   |

**Table E-1: Site Trip Generation** 



### 4. Future Traffic Conditions

Through coordination with the Town and NCDOT, it was determined that an annual growth rate of 0% would be used to generate 2027 projected weekday AM and PM peak hour traffic volumes. A growth rate of 0% was used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. The following adjacent developments were identified to be considered under future conditions:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

### 5. Capacity Analysis Summary

The analysis considered weekday AM and PM peak hour traffic for 2022 existing, 2027 no-build, 2027 build, and 2027 build-improved conditions. Refer to Section 7 of the TIA for the capacity analysis summary performed at each study intersection.

### 6. Recommendations

Based on the findings of this study, specific geometric and traffic control improvements have been identified at study intersections. The improvements are summarized below and are illustrated in Figure E-1.

### **Recommended Improvements by Developer**

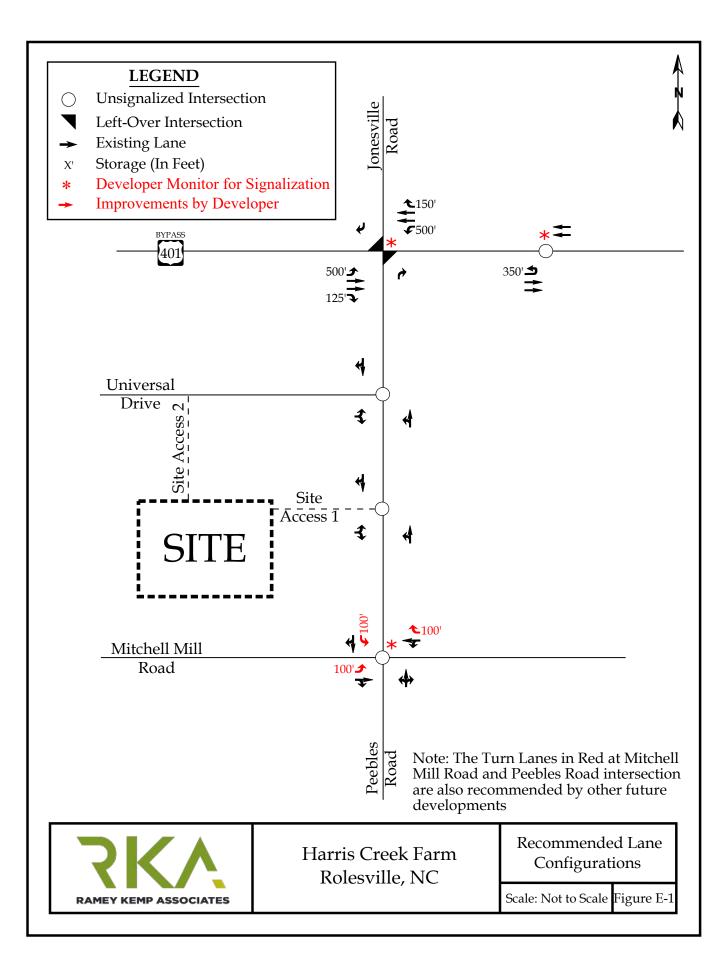
### US 401 Bypass and Jonesville Road

• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.



### US 401 Bypass and Eastern U-Turn Location

• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.


### Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
  - It should be noted that this improvement was also identified by the 5109
     Mitchell Mill Road TIA and Hills at Harris Creek TIA
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
  - It should be noted that this improvement was also identified by the Hills at Harris Creek TIA
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
  - It should be noted that this improvement was also identified by the 5109
     Mitchell Mill Road TIA
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

#### Jonesville Road and Site Drive

- Construct the eastbound approach (Site Drive) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Drive).





### TABLE OF CONTENTS

| 1. I | INTRODUCTION 1                                           |
|------|----------------------------------------------------------|
| 1.1. | Site Location and Study Area1                            |
| 1.2. | Proposed Land Use and Site Access2                       |
| 1.3. | Adjacent Land Uses2                                      |
| 1.4. | Existing Roadways2                                       |
| 2. 2 | 2022 EXISTING PEAK HOUR CONDITIONS7                      |
| 2.1. | 2022 Existing Peak Hour Traffic Volumes7                 |
| 2.2. | Analysis of 2022 Existing Peak Hour Traffic Conditions7  |
| 3. 2 | 2027 NO-BUILD PEAK HOUR CONDITIONS                       |
| 3.1. | Ambient Traffic Growth9                                  |
| 3.2. | Adjacent Development Traffic9                            |
| 3.3. | Future Roadway Improvements11                            |
| 3.4. | 2027 No-Build Peak Hour Traffic Volumes11                |
| 3.5. | Analysis of 2027 No-Build Peak Hour Traffic Conditions11 |
| 4. S | SITE TRIP GENERATION AND DISTRIBUTION                    |
| 4.1. | Trip Generation15                                        |
| 4.2. | Site Trip Distribution and Assignment16                  |
| 5. 2 | 2027 BUILD TRAFFIC CONDITIONS                            |
| 5.1. | 2027 Build Peak Hour Traffic Volumes19                   |
| 5.2. | Analysis of 2027 Build Peak Hour Traffic Conditions      |
| 6. T | RAFFIC ANALYSIS PROCEDURE                                |
| 6.1. | Adjustments to Analysis Guidelines21                     |
| 7. C | CAPACITY ANALYSIS                                        |
| 7.1. | US 401 Bypass and Jonesville Road22                      |
| 7.2. | US 401 Bypass and Eastern U-Turn Location25              |
| 7.3. | Mitchell Mill Road and Jonesville Road / Peebles Road    |
| 7.4. | Jonesville Road and Universal Drive                      |
| 7.5. | Jonesville Road and Site Drive                           |
| 8. C | CONCLUSIONS                                              |



| 9. | RECOMMENDATIONS | 33 | 3 |
|----|-----------------|----|---|
|----|-----------------|----|---|

### LIST OF FIGURES

| Figure 1 – Site Location Map                | 4  |
|---------------------------------------------|----|
| Figure 2 – Preliminary Site Plan            | 5  |
| Figure 3 – Existing Lane Configurations     | 6  |
| Figure 4 – 2022 Existing Peak Hour Traffic  | 8  |
| Figure 5 – 2027 Projected Peak Hour Traffic | 12 |
| Figure 6 – Adjacent Development Trips       | 13 |
| Figure 7 – 2027 No-Build Peak Hour Traffic  | 14 |
| Figure 8 – Site Trip Distribution           | 17 |
| Figure 9 – Site Trip Assignment             | 18 |
| Figure 10 – 2027 Build Peak Hour Traffic    | 20 |
| Figure 11 – Recommended Lane Configurations | 35 |
|                                             |    |



## LIST OF TABLES

| Table 1: Existing Roadway Inventory                                    |
|------------------------------------------------------------------------|
| Table 2: Adjacent Development Information                              |
| Table 3: Trip Generation Summary    15                                 |
| Table 4: Highway Capacity Manual – Levels-of-Service and Delay 21      |
| Table 5: Analysis Summary of US 401 Bypass and Jonesville Road 22      |
| Table 6: Analysis Summary of US 401 Bypass and Eastern U-Turn Location |
|                                                                        |
| Table 7: Analysis Summary of Mitchell Mill Road and Jonesville Road /  |
| Peebles Road28                                                         |
| Table 8: Analysis Summary of Jonesville Road and Universal Drive 30    |
| Table 9: Analysis Summary of Jonesville Road and Site Drive            |



# **TECHNICAL APPENDIX**

- Appendix A: Scoping Documentation
- Appendix B: Traffic Counts
- Appendix C: Adjacent Development Information
- Appendix D: Capacity Calculations US 401 Bypass & Jonesville Road
- Appendix E: Capacity Calculations US 401 Bypass & Eastern U-Turn Location
- Appendix F: Capacity Calculations Mitchell Mill Road & Jonesville Road / Peebles Road
- Appendix G: Capacity Calculations Jonesville Road & Universal Drive
- Appendix H: Capacity Calculations Jonesville Road & Site Drive
- Appendix I: Turn Lane Warrants
- Appendix J: MUTCD / ITRE Signal Warrant Analysis



# TRAFFIC IMPACT ANALYSIS HARRIS CREEK FARM ROLESVILLE, NORTH CAROLINA

# 1. INTRODUCTION

The contents of this report present the findings of the Traffic Impact Analysis (TIA) conducted for the proposed Harris Creek Farm development in Rolesville, North Carolina. The proposed development, anticipated to be completed in 2027, is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The proposed development is expected to consist of 68 single-family homes and 81 townhomes. The purpose of this study is to determine the potential impacts to the surrounding transportation system created by traffic generated by the proposed development, as well as recommend improvements to mitigate the impacts.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

# 1.1. Site Location and Study Area

The proposed development is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. Refer to Figure 1 for the site location map. The study area for the TIA was determined through coordination with the North Carolina Department of Transportation (NCDOT) and the Town of Rolesville (Town) and consists of the following existing intersections:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Jonesville Road and Universal Drive
- Mitchell Mill Road and Jonesville Road / Peebles Road

Refer to Appendix A for the approved scoping documentation.



### 1.2. Proposed Land Use and Site Access

The site is to be located on the west side of Jonesville Road near Universal Drive. The proposed development is anticipated to be completed in 2027, and is assumed to consist of the following uses:

- 68 single-family homes
- 81 townhomes

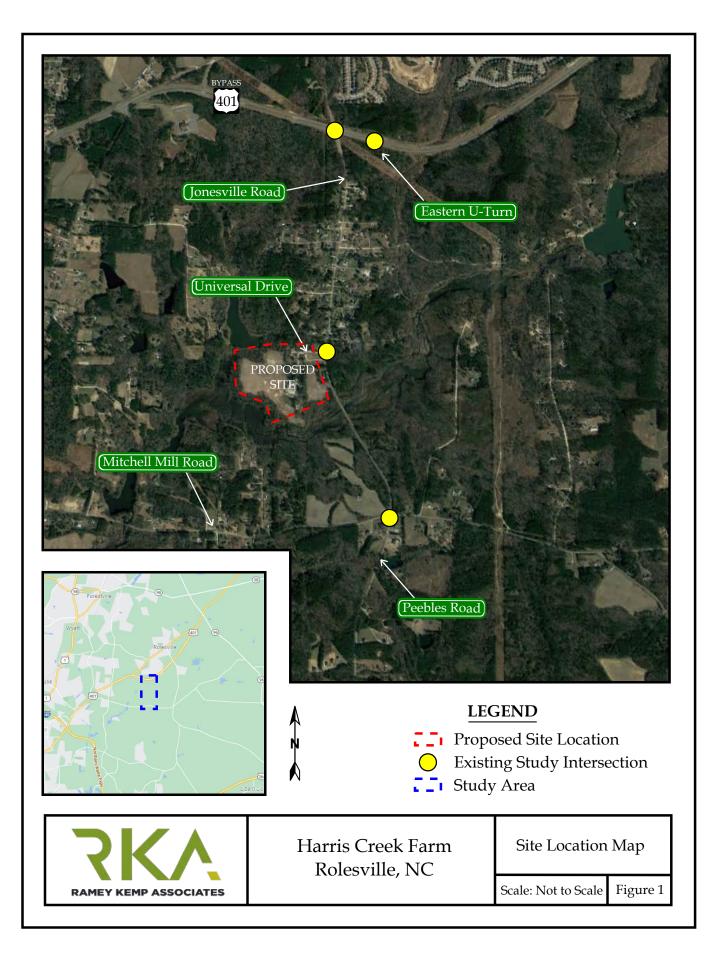
Site access to the proposed development is expected to be provided via two (2) full-movement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive. Refer to Figure 2 for a copy of the preliminary site plan.

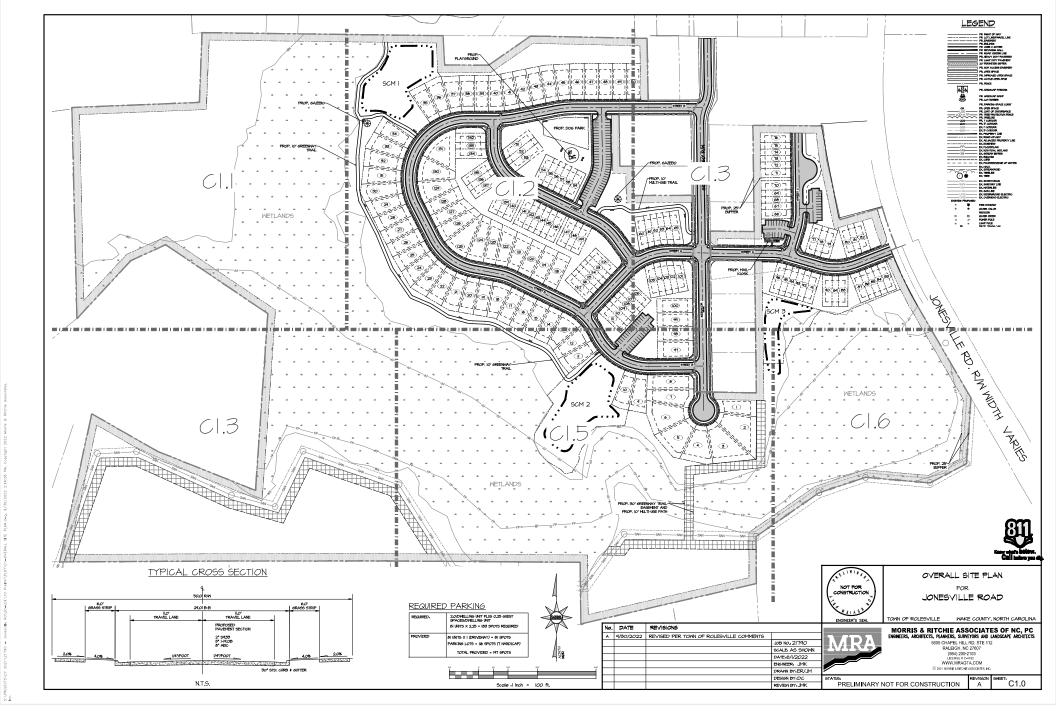
# 1.3. Adjacent Land Uses

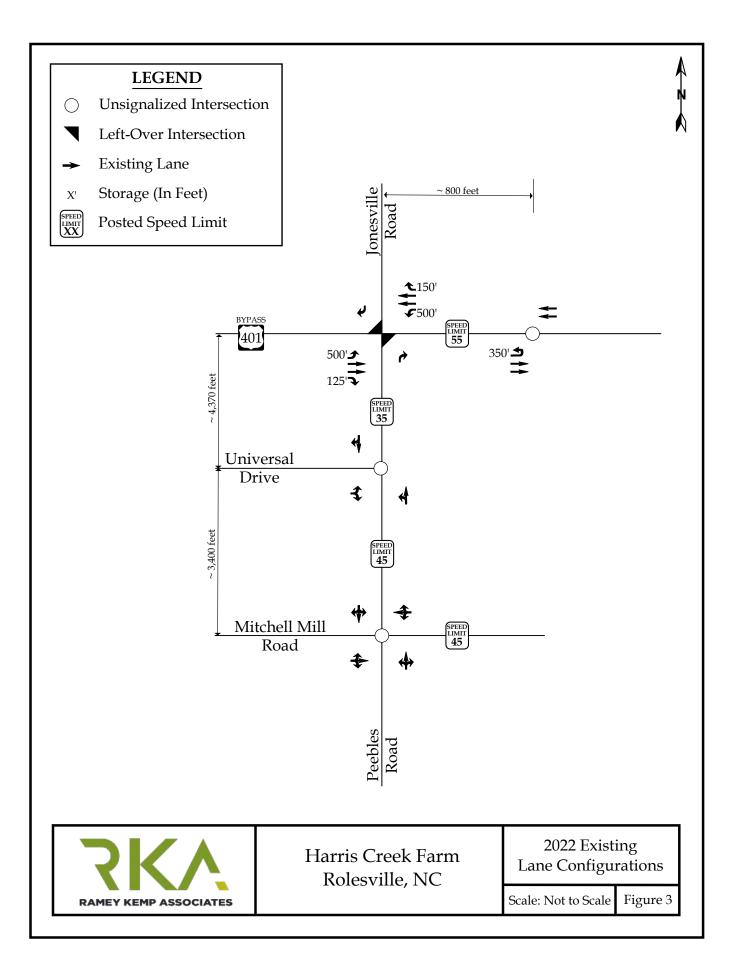
The proposed development is located in an area consisting primarily of undeveloped land and residential development.

# 1.4. Existing Roadways

Existing lane configurations (number of traffic lanes on each intersection approach), storage capacities, and other intersection and roadway information within the study area are shown in Figure 3. Table 1 provides a summary of this information, as well.





| Road Name             | Route<br>Number | Typical<br>Cross-<br>Section | Speed Limit        | Maintained<br>By | 2019 AADT<br>(vpd) |
|-----------------------|-----------------|------------------------------|--------------------|------------------|--------------------|
| US 401 Byp            | Dass            | 4-lane<br>divided            | 55 mph             | NCDOT            | 17,500             |
| Jonesville Road       | SR 2226         | 2-lane<br>undivided          | 35 mph /<br>45 mph | NCDOT            | 2,210*             |
| Mitchell Mill<br>Road | SR 2224         | 2-lane<br>undivided          | 45 mph             | NCDOT            | 4,000              |
| Peebles Road          | SR 2929         | 2-lane<br>undivided          | 45 mph             | NCDOT            | 1,700*             |


**Table 1: Existing Roadway Inventory** 

\*ADT based on 2022 existing traffic volumes and assuming the weekday PM peak hour volume is 10% of the average daily traffic.









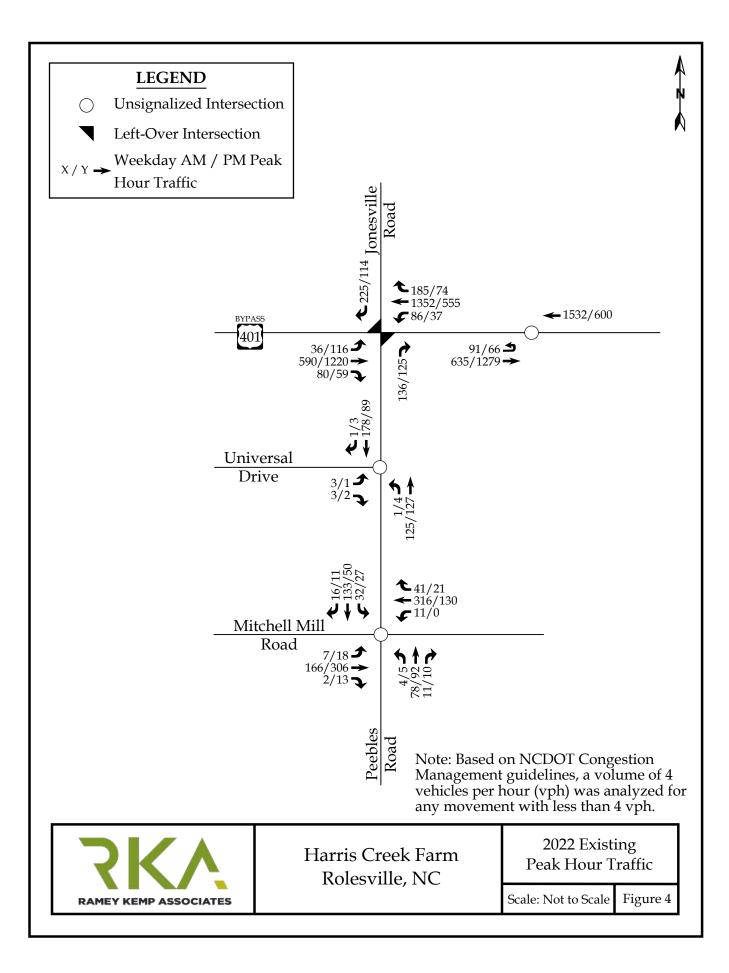
### 2. 2022 EXISTING PEAK HOUR CONDITIONS

#### 2.1. 2022 Existing Peak Hour Traffic Volumes

Existing peak hour traffic volumes were determined based on previously collected traffic counts conducted at the study intersections listed below, in November of 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Mitchell Mill Road and Jonesville Road / Peebles Road

Previously collected counts from the year 2021 were projected to the 2022 existing analysis year using a compounded annual growth rate of 2%.


Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive were estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive. It was estimated that there will be 8 AM trips: 2 enter 6 exit and 10 PM trips: 7 enter 3 exit. The trips were distributed to the north and south along Jonesville Road the same as site trips. Through traffic volumes were balanced from the Mitchell Mill Road/Jonesville Road intersection.

Weekday AM and PM traffic volumes were balanced between study intersections, where appropriate. Refer to Figure 4 for 2022 existing weekday AM and PM peak hour traffic volumes. A copy of the count data is located in Appendix B of this report.

### 2.2. Analysis of 2022 Existing Peak Hour Traffic Conditions

The 2022 existing weekday AM and PM peak hour traffic volumes were analyzed to determine the current levels of service at the study intersections under existing roadway conditions. The results of the analysis are presented in Section 7 of this report.





### 3. 2027 NO-BUILD PEAK HOUR CONDITIONS

In order to account for growth of traffic and subsequent traffic conditions at a future year, nobuild traffic projections are needed. No-build traffic is the component of traffic due to the growth of the community and surrounding area that is anticipated to occur regardless of whether or not the proposed development is constructed. No-build traffic is comprised of existing traffic growth within the study area and additional traffic created as a result of adjacent approved developments.

#### 3.1. Ambient Traffic Growth

Through coordination with NCDOT and the Town, it was determined that an annual growth rate of 0% would be used to generate 2027 projected weekday AM and PM peak hour traffic volumes. A growth rate of 0% was used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. Refer to Figure 5 for 2027 projected peak hour traffic.

#### 3.2. Adjacent Development Traffic

Through coordination with NCDOT and the Town, the following adjacent developments were identified to be included in this study:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

Table 2, on the following page, provides a summary of the adjacent developments. Adjacent development trips are shown in Figure 6. Adjacent development information can be found in Appendix C.



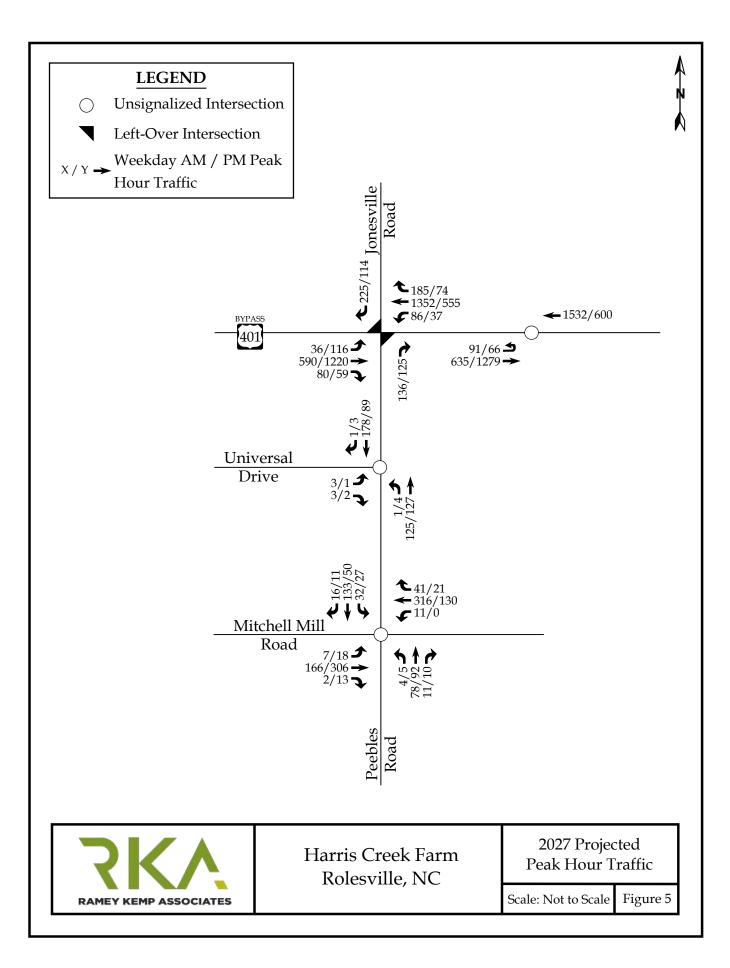
| Development<br>Name                   | Location                                                                                  | Build-<br>Out Year                                                                                                    | Land Use /<br>Intensity                                                                                          | TIA<br>Performed               |
|---------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Cobblestone<br>Crossing Mixed-<br>Use | Northwest quadrant<br>of the intersection of<br>Main Street and<br>Young Street           | 2023                                                                                                                  | 180 multi-family homes<br>18,200 sq. ft. municipal<br>flex space<br>50,000 sq. ft. general<br>retail             | March 2021<br>by RKA           |
| Young Street<br>PUD                   | Along both sides of<br>US 401 Bypass west<br>of Young Street                              | 2025                                                                                                                  | 96 single-family homes<br>525 single-family homes<br>320 multi-family homes<br>122,800 sq. ft. general<br>retail | June 2019<br>by Kimley<br>Horn |
| Wheeler Tract                         | Northeast quadrant<br>of the intersection of<br>Rolesville Road and<br>Mitchell Mill Road | 2026                                                                                                                  | 233 single-family homes<br>125 multi-family homes                                                                | June 2019<br>by RKA            |
| Louisbury Road<br>Assemblage          | West of Louisbury<br>Road and south of<br>Stells Road                                     | 2025                                                                                                                  | 152 single-family homes                                                                                          | May 2020<br>by RKA             |
| Kalas / Watkins<br>Family Property    | Along the west side<br>of Rolesville Road,<br>north of Mitchell Mill<br>Road              | 2025                                                                                                                  | 439 single-family homes<br>96 multi-family homes                                                                 | August 2019<br>by Stantec      |
| 5109 Mitchell<br>Mill                 | Innesville Road north 2028                                                                |                                                                                                                       | August 2022<br>by RKA                                                                                            |                                |
| Hills at Harris<br>Creek              | North of Mitchell<br>Mill Road, west of<br>Manly Farm Road<br>and east of Gro Peg<br>Lane | 2027<br>2027<br>2027<br>2027<br>211 single-family homes<br>109 multi-family homes<br>25,400 sq. ft. general<br>retail |                                                                                                                  | May 2022<br>by RKA             |

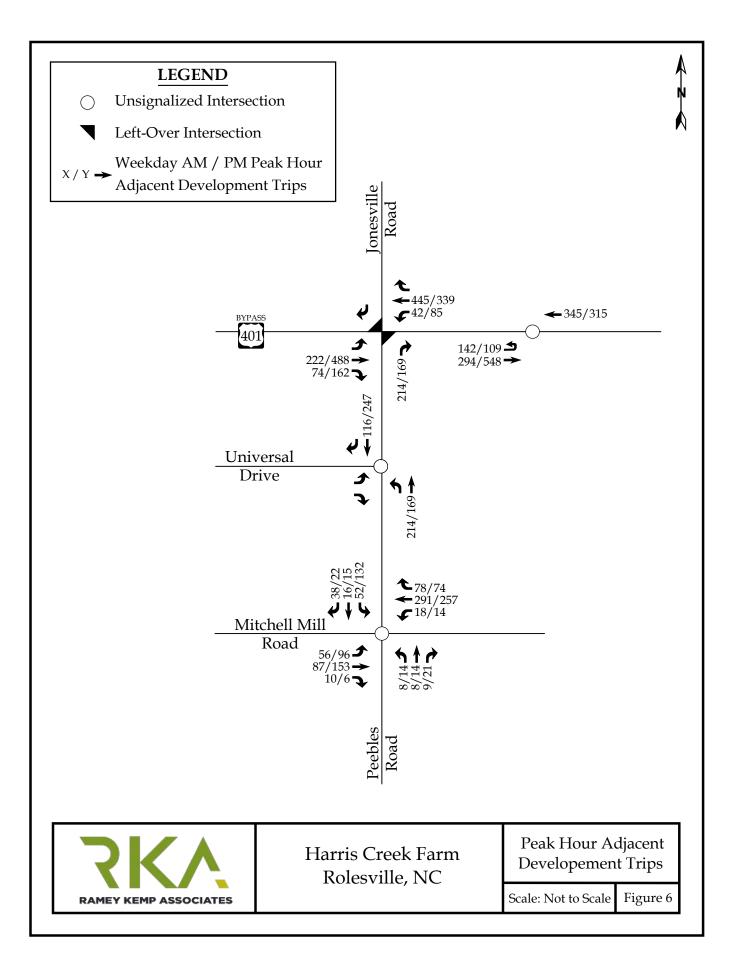
**Table 2: Adjacent Development Information** 

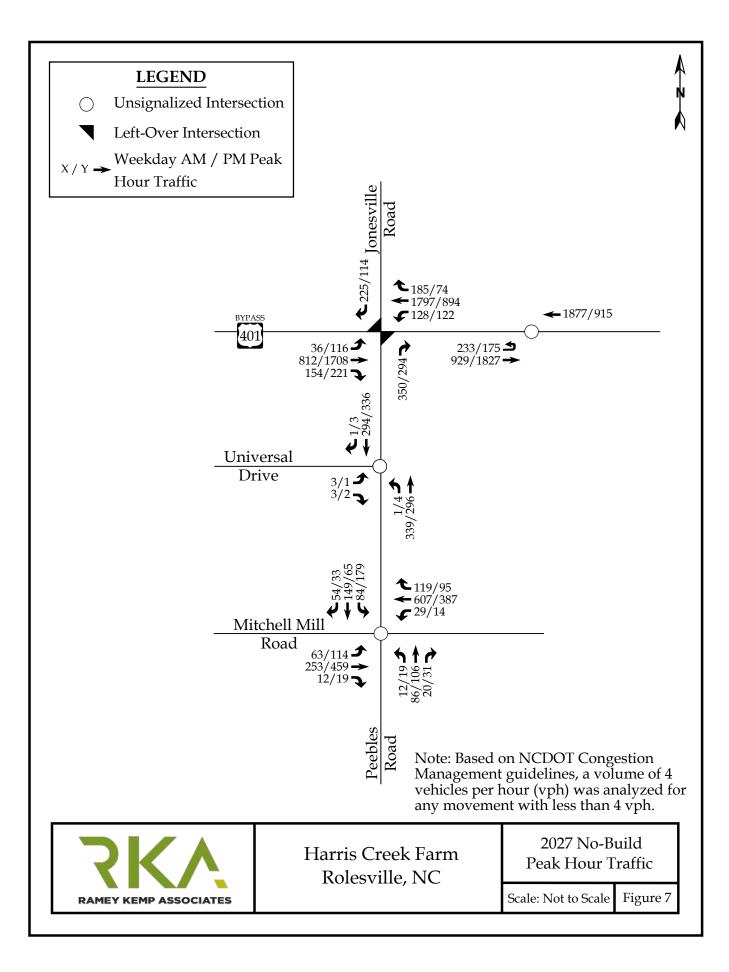


### 3.3. Future Roadway Improvements

Based on coordination with NCDOT and the Town, it was determined there were two previously approved TIA's that recommended roadway improvements that were considered under future conditions with this study. Both developments are to construct improvements at the intersection of Jonesville Road and Mitchell Mill Road. An exclusive eastbound left-turn lane was identified in the 5109 Mitchell Mill Road TIA. An exclusive westbound right-turn lane was identified in the Hills at Harris Creek TIA. In both the 5109 Mitchell Mill Road TIA and the Hills at Harris Creek TIA an exclusive southbound left-turn lane improvement was identified. It should be noted that per the Rolesville Community Transportation Plan (dated May 2022), the ultimate cross-section of Jonesville Road is identified as a 2-lane roadway with a center two-way-left-turn-lane (TWLTL) and Mitchell Mill Road is identified as a 4-lane median-divided roadway.


### 3.4. 2027 No-Build Peak Hour Traffic Volumes


The 2027 no-build traffic volumes were determined by projecting the 2022 existing peak hour traffic to the year 2027 and adding the adjacent development trips. Refer to Figure 7 for an illustration of the 2027 no-build peak hour traffic volumes at the study intersections.


# 3.5. Analysis of 2027 No-Build Peak Hour Traffic Conditions

The 2027 no-build AM and PM peak hour traffic volumes at the study intersections were analyzed with existing geometric roadway conditions and traffic control. The analysis results are presented in Section 7 of this report.









#### 4. SITE TRIP GENERATION AND DISTRIBUTION

#### 4.1. Trip Generation

The proposed development is assumed to consist of 68 single-family homes and 81 townhomes. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11th Edition. Table 3 provides a summary of the trip generation potential for the site.

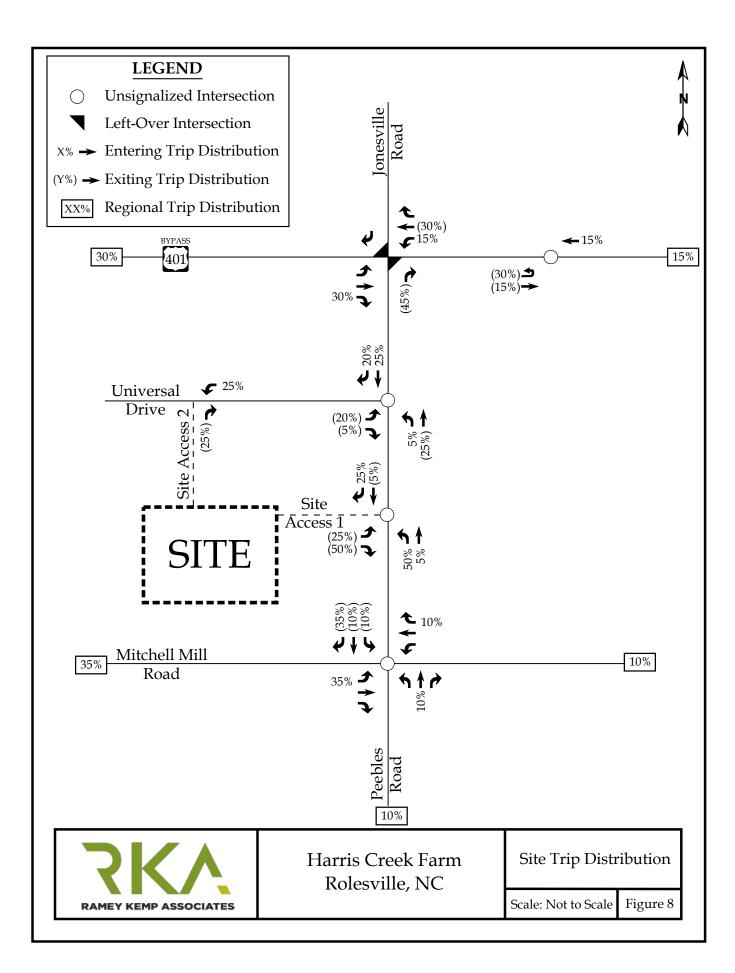
| Land Use<br>(ITE Code)          | Intensity | Daily<br>Traffic | Traffic AM Peak I |      | ekday<br>Hour Trips<br>/ph) |       | Weekday<br>PM Peak Hour Trips<br>(vph) |       |  |
|---------------------------------|-----------|------------------|-------------------|------|-----------------------------|-------|----------------------------------------|-------|--|
|                                 |           | (vpd)            | Enter             | Exit | Total                       | Enter | Exit                                   | Total |  |
| Single-Family Home<br>(210)     | 68 DU     | 708              | 13                | 39   | 52                          | 44    | 25                                     | 69    |  |
| Single Family Attached<br>(215) | 81 DU     | 568              | 9                 | 27   | 36                          | 26    | 19                                     | 45    |  |
| Total Primary Trips             | 1,276     | 22               | 66                | 88   | 70                          | 44    | 114                                    |       |  |

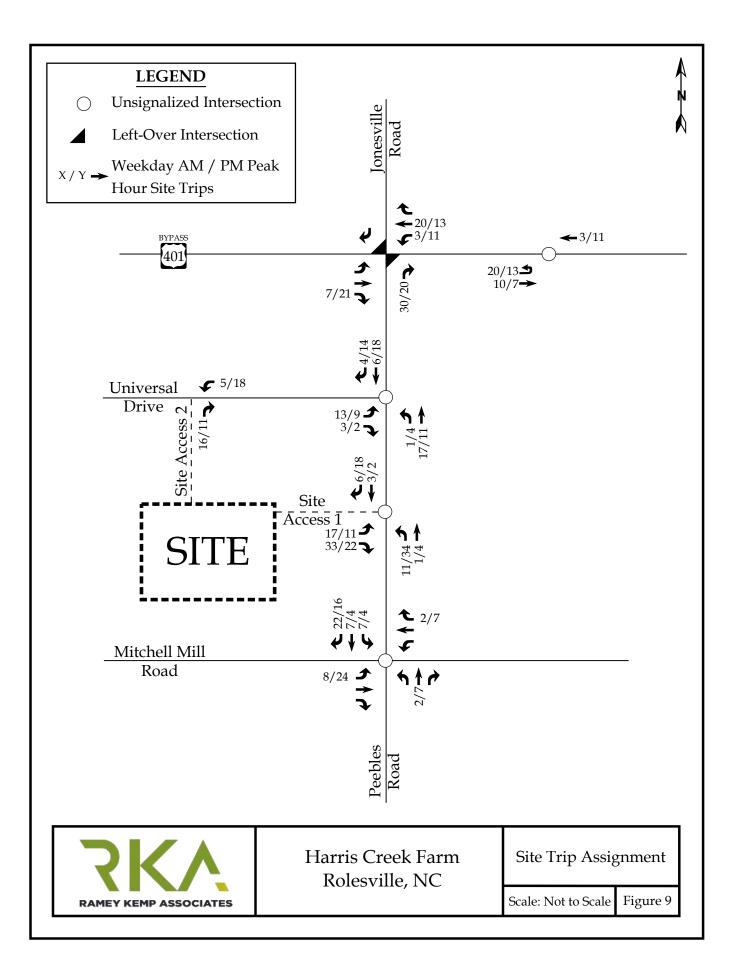
**Table 3: Trip Generation Summary** 

It is estimated that the proposed development will generate approximately 1,276 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.



### 4.2. Site Trip Distribution and Assignment


Trip distribution percentages used in assigning site trips for this development were approved during the scoping process and were estimated based on a combination of existing traffic patterns, population centers adjacent to the study area, and engineering judgment.


It is estimated that the residential site trips will be regionally distributed as follows:

- 35% to/from the west via Mitchell Mill Road
- 30% to/from the west via US 401 Bypass
- 15% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 10% to/from the east via Mitchell Mill Road

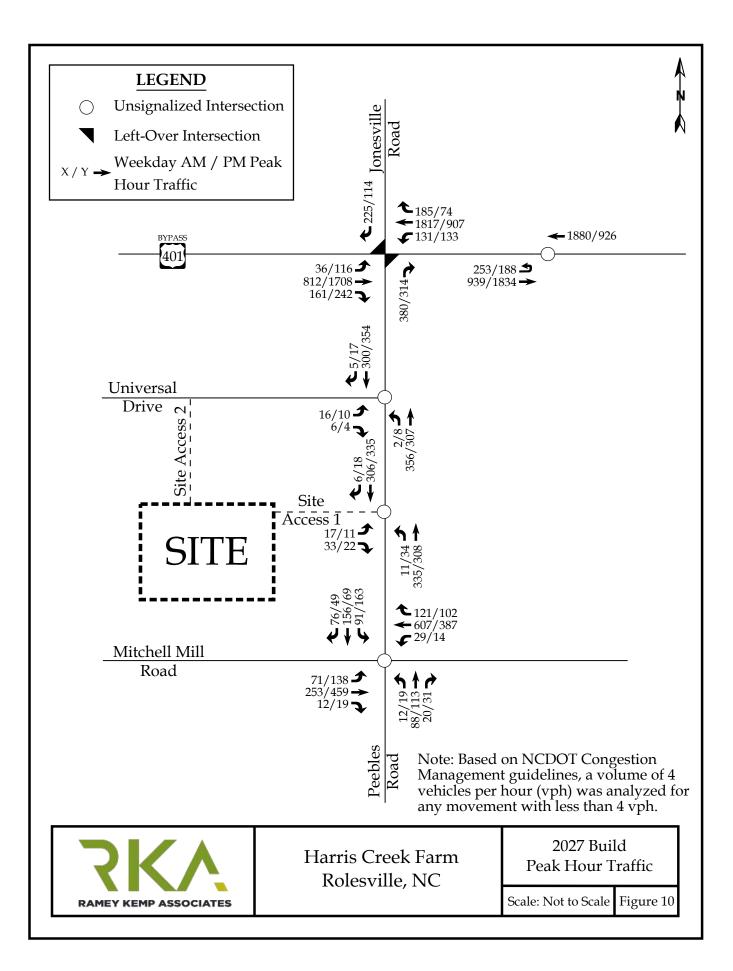
The site trip distribution is shown in Figure 8 and the peak hour site trip assignment is shown in Figure 9.







#### 5. 2027 BUILD TRAFFIC CONDITIONS


#### 5.1. 2027 Build Peak Hour Traffic Volumes

To estimate traffic conditions with the site fully built-out, the total site trips were added to the 2027 no-build traffic volumes to determine the 2027 build traffic volumes. Refer to Figure 10 for an illustration of the 2027 build peak hour traffic volumes with the proposed site fully developed.

### 5.2. Analysis of 2027 Build Peak Hour Traffic Conditions

Study intersections were analyzed with the 2027 build traffic volumes using the same methodology previously discussed for existing and no-build traffic conditions. Intersections were analyzed with improvements necessary to accommodate future traffic volumes. The results of the capacity analysis for each intersection are presented in Section 7 of this report.





#### 6. TRAFFIC ANALYSIS PROCEDURE

Study intersections were analyzed using the methodology outlined in the *Highway Capacity Manual* (HCM), 6<sup>th</sup> Edition published by the Transportation Research Board. Capacity and level of service are the design criteria for this traffic study. A computer software package, Synchro (Version 11), was used to complete the analyses for most of the study area intersections. Please note that the unsignalized capacity analysis does not provide an overall level of service for an intersection; only delay for an approach with a conflicting movement.

The HCM defines capacity as "the maximum hourly rate at which persons or vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions." Level of service (LOS) is a term used to represent different driving conditions, and is defined as a "qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers." Level of service varies from Level "A" representing free flow, to Level "F" where breakdown conditions are evident. Refer to Table 4 for HCM levels of service and related average control delay per vehicle for both signalized and unsignalized intersections. Control delay as defined by the HCM includes "initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay." An average control delay of 50 seconds at a signalized intersection results in LOS "D" operation at the intersection.

| UNSIGN                 | ALIZED INTERSECTION                                  | SIGNALIZED INTERSECTION |                                                      |  |  |
|------------------------|------------------------------------------------------|-------------------------|------------------------------------------------------|--|--|
| LEVEL<br>OF<br>SERVICE | AVERAGE<br>CONTROL DELAY<br>PER VEHICLE<br>(SECONDS) | LEVEL OF<br>SERVICE     | AVERAGE<br>CONTROL DELAY<br>PER VEHICLE<br>(SECONDS) |  |  |
| А                      | 0-10                                                 | А                       | 0-10                                                 |  |  |
| В                      | 10-15                                                | В                       | 10-20                                                |  |  |
| С                      | 15-25                                                | С                       | 20-35                                                |  |  |
| D                      | 25-35                                                | D                       | 35-55                                                |  |  |
| Е                      | 35-50                                                | Е                       | 55-80                                                |  |  |
| F                      | >50                                                  | F                       | >80                                                  |  |  |

Table 4: Highway Capacity Manual – Levels-of-Service and Delay

### 6.1. Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to Town LDO and NCDOT Congestions Management Guidelines.



### 7. CAPACITY ANALYSIS

#### 7.1. US 401 Bypass and Jonesville Road

The existing unsignalized intersection of US 401 Bypass Road and Jonesville Road was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 5. Refer to Table 5 for a summary of the analysis results. Refer to Appendix D for the Synchro capacity analysis reports.

| ANALYSIS      | A<br>P<br>P<br>R LANE |                            | WEEKDAY AM<br>PEAK HOUR<br>LEVEL OF SERVICE |                      | WEEKDAY PM<br>PEAK HOUR<br>LEVEL OF SERVICE |                      |
|---------------|-----------------------|----------------------------|---------------------------------------------|----------------------|---------------------------------------------|----------------------|
| SCENARIO      | O<br>A<br>C<br>H      | CONFIGURATIONS             | Approach                                    | Overall<br>(seconds) | Approach                                    | Overall<br>(seconds) |
|               | EB<br>WB*<br>NB       | 2 TH, 1 RT<br>1 LT<br>1 RT | $C^1$<br>$B^2$                              | N/A                  | <br>E <sup>1</sup><br>C <sup>2</sup>        | N/A                  |
| 2022 Existing | EB**<br>WB<br>SB      | 1 LT<br>2 TH, 1 RT<br>1 RT | F <sup>1</sup><br><br>E <sup>2</sup>        | N/A                  | C <sup>1</sup><br><br>B <sup>2</sup>        | N/A                  |
| 2027 N. D. 11 | EB<br>WB*<br>NB       | 2 TH, 1 RT<br>1 LT<br>1 RT | <br>D <sup>1</sup><br>D <sup>2</sup>        | N/A                  | <br>F <sup>1</sup><br>F <sup>2</sup>        | N/A                  |
| 2027 No-Build | EB**<br>WB<br>SB      | 1 LT<br>2 TH, 1 RT<br>1 RT | F <sup>1</sup><br><br>F <sup>2</sup>        | N/A                  | E <sup>1</sup><br><br>B <sup>2</sup>        | N/A                  |
| 2027 R .:11   | EB<br>WB*<br>NB       | 2 TH, 1 RT<br>1 LT<br>1 RT | <br>D <sup>1</sup><br>D <sup>2</sup>        | N/A                  | <br>F <sup>1</sup><br>F <sup>2</sup>        | N/A                  |
| 2027 Build    | EB**<br>WB<br>SB      | 1 LT<br>2 TH, 1 RT<br>1 RT | F <sup>1</sup><br><br>F <sup>2</sup>        | N/A                  | E <sup>1</sup><br><br>B <sup>2</sup>        | N/A                  |
| 2027 Build-   | EB<br>WB*<br>NB       | 2 TH, 1 RT<br>1 LT<br>1 RT | B<br>B<br>B                                 | B<br>(16)            | B<br>D<br>C                                 | C<br>(23)            |
| Improved      | EB**<br>WB<br>SB      | 1 LT<br>2 TH, 1 RT<br>1 RT | F <sup>1</sup><br><br>F <sup>2</sup>        | N/A                  | E <sup>1</sup><br><br>B <sup>2</sup>        | N/A                  |

Table 5: Analysis Summary of US 401 Bypass and Jonesville Road

\*Synchro analyzed the WB left-turns as SB through movements due to the nature of the superstreet and synchro limitations.

\*\*Synchro analyzed the EB left-turns as NB through movements due to the nature of the superstreet and synchro limitations.

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.



Capacity analysis of 2022 existing traffic conditions indicates that the major-street left-turn movements and minor-street approaches are expected to operate at LOS D or better with the exception of the eastbound left-turn movement during the weekday AM peak hour (LOS F), the westbound left-turn movement during the weekday PM peak hour (LOS E), and the southbound minor-street approach during the weekday AM peak hour (LOS E).

Under 2027 no-build and 2027 build traffic conditions, the major-street left-turn movements are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the westbound left-turn movement during the weekday AM peak hour (LOS D) under 2027 no-build and 2027 build traffic conditions. The minor-street approaches are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the northbound approach during the weekday AM peak hour (LOS D) and the southbound approach during the weekday PM peak hour (LOS B) under 2027 no-build and 2027 build traffic conditions. It should be noted that the proposed development is expected to account for approximately 2% of the overall traffic at this intersection during the weekday AM and PM peak hours. The proposed development is expected to account for 8% and 6% of the northbound right movements during the AM and PM peak hours, respectively.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the *Manual on Uniform Traffic Control Devices* (MUTCD) and within the *Guidelines for Signalization of Intersections with Two or Three Approaches Final Report*, published by ITRE. Based on a review of the peak hour signal warrant at this intersection, the intersection is expected to meet the peak hour warrant for both the weekday AM and PM peak hours under 2027 no-build and 2027 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95<sup>th</sup> percentile queue length calculations, the northbound right-turn movement demand is expected to be over 85%



capacity during the weekday AM peak hour and exceed capacity during the weekday PM peak hour under 2027 no-build and 2027 build traffic conditions. Refer to Appendix J for a copy of the MUTCD warrants and the ITRE 95<sup>th</sup> percentile queue length calculations.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-ofservice under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the northbound right-turn and westbound left-turn movements at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.



#### 7.2. US 401 Bypass and Eastern U-Turn Location

The existing unsignalized intersection of US 401 Bypass and Eastern U-Turn Location was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 6. Refer to Table 6 for a summary of the analysis results. Refer to Appendix E for the Synchro capacity analysis reports.

| A<br>P<br>P<br>ANALYSIS R LANE |                  | PEAK           | DAY AM<br>HOUR<br>SERVICE | WEEKDAY PM<br>PEAK HOUR<br>LEVEL OF SERVICE |                |                      |
|--------------------------------|------------------|----------------|---------------------------|---------------------------------------------|----------------|----------------------|
| SCENARIO                       | O<br>A<br>C<br>H | CONFIGURATIONS | Approach                  | Overall<br>(seconds)                        | Approach       | Overall<br>(seconds) |
| 2022 Existing                  | EB*<br>WB        | 1 UT<br>2 TH   | C1                        | N/A                                         | B1             | N/A                  |
| 2027 No-Build                  | EB*<br>WB        | 1 UT<br>2 TH   | F <sup>1</sup>            | N/A                                         | C1             | N/A                  |
| 2027 Build                     | EB*<br>WB        | 1 UT<br>2 TH   | F <sup>1</sup>            | N/A                                         | C <sup>1</sup> | N/A                  |
| 2027 Build –<br>Improved       | EB*<br>WB        | 1 UT<br>2 TH   | D<br>B                    | C<br>(21)                                   | B<br>A         | B<br>(11)            |

Table 6: Analysis Summary of US 401 Bypass and Eastern U-TurnLocation

\*Synchro analyzed the EB u-turn as a NB left-turn movement due to the nature of the superstreet and synchro limitations.

1. Level of service for major-street u-turn movement.

Capacity analysis of 2022 existing and 2027 no-build traffic conditions indicates that the major-street u-turn movement is expected to operate at LOS C or better during the weekday AM and PM peak hours, with the exception of the weekday AM peak hour under 2027 no-build conditions (LOS F).

Under 2027 build traffic conditions, the major-street u-turn movement is expected to operate at LOS F during the weekday AM peak hour and at LOS C during the weekday PM peak hour. It should be noted that the proposed development is expected to account for approximately 1% of the overall traffic at this intersection during the weekday AM and PM peak hours. The proposed development is expected to account for approximately 8% and 7%



of the overall eastbound u-turn movements at this intersection during the weekday AM and PM peak hours, respectively.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the Manual on Uniform Traffic Control Devices (MUTCD) and within the Guidelines for Signalization of Intersections with Two or Three Approaches Final Report, published by ITRE. Based on a review of signal warrants at this intersection, the peak hour warrant (warrant 3) from the MUTCD is expected to be met for the weekday AM peak hour under 2027 no-build and build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the eastbound u-turn movement demand is expected to exceed capacity during the weekday AM peak hour under 2027 no-build and 2027 build traffic conditions. Refer to Appendix J for a copy of the MUTCD warrants and the ITRE 95th percentile queue length calculations.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-ofservice under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the eastbound u-turn movement at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town



and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.



### 7.3. Mitchell Mill Road and Jonesville Road / Peebles Road

The existing unsignalized four-way stop intersection of Mitchell Mill Road and Jonesville Road / Peebles Road was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 7. Refer to Table 7 for a summary of the analysis results. Refer to Appendix F for the Synchro capacity analysis reports.

| ANALYSIS                 | A<br>P<br>P<br>R LANE |                                                               | PEAK                                                     | DAY AM<br>HOUR<br>SERVICE | WEEKDAY PM<br>PEAK HOUR<br>LEVEL OF SERVICE         |                      |
|--------------------------|-----------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------|-----------------------------------------------------|----------------------|
| SCENARIO                 | O<br>A<br>C<br>H      | CONFIGURATIONS                                                | Approach                                                 | Overall<br>(seconds)      | Approach                                            | Overall<br>(seconds) |
| 2022 Existing            | EB<br>WB<br>NB<br>SB  | 1 LT-TH-RT<br>1 LT-TH-RT<br>1 LT-TH-RT<br>1 LT-TH-RT          | $egin{array}{c} B^1 \ B^1 \ B^1 \ B^1 \ B^1 \end{array}$ | B<br>(13)                 | $\begin{array}{c} B^1\\ A^1\\ A^1\\ A^1\end{array}$ | B<br>(11)            |
| 2027 No-Build            | EB<br>WB<br>NB<br>SB  | 1 LT, 1 TH-RT<br>1 LT-TH, 1 RT<br>1 LT-TH-RT<br>1 LT, 1 TH-RT | $\begin{array}{c} C^1 \\ F^1 \\ C^1 \\ C^1 \end{array}$  | F<br>(95)                 | $F^1 \\ E^1 \\ C^1 \\ C^1$                          | F<br>(57)            |
| 2027 Build               | EB<br>WB<br>NB<br>SB  | 1 LT, 1 TH-RT<br>1 LT-TH, 1 RT<br>1 LT-TH-RT<br>1 LT, 1 TH-RT | $\begin{array}{c} C^1 \\ F^1 \\ C^1 \\ C^1 \end{array}$  | F<br>(104)                | $F^1 \\ F^1 \\ C^1 \\ C^1$                          | F<br>(61)            |
| 2027 Build -<br>Improved | EB<br>WB<br>NB<br>SB  | 1 LT, 1 TH-RT<br>1 LT-TH, 1 RT<br>1 LT-TH-RT<br>1 LT, 1 TH-RT | A<br>B<br>B<br>C                                         | B<br>(14)                 | B<br>B<br>B<br>B                                    | B<br>(13)            |

Table 7: Analysis Summary of Mitchell Mill Road and Jonesville Road / Peebles Road

1. Level of service for all-way stop controlled approach.

Capacity analysis of 2022 existing indicates that the intersection is expected to operate at an overall LOS B or better during the weekday AM and PM peak hours. Under 2027 no-build and 2027 build traffic conditions, this intersection is expected to operate at an overall LOS F during the weekday AM and PM peak hours. It should be noted that the proposed development is expected to account for approximately 3% and 4% of the overall traffic at this



intersection during the weekday AM and PM peak hours, respectively. The proposed development is expected to account for approximately 11% and 17% of the eastbound left movement and 17% and 7% of the westbound right movements during the weekday AM and PM peak hours, respectively.

Several turn lanes expected to be constructed by adjacent developments were included in the 2027 no-build and 2027 build scenarios. An exclusive eastbound left-turn lane was identified in the 5109 Mitchell Mill Road TIA. An exclusive westbound right-turn lane was identified in the Hills at Harris Creek TIA. In both the 5109 Mitchell Mill Road TIA and the Hills at Harris Creek TIA an exclusive southbound left-turn lane improvement was identified.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels-of-service. The peak hour warrant (warrant 3) from the *Manual on Uniform Traffic Control Devices* (MUTCD) was considered. Based on a review of the peak hour signal warrant at this intersection, the intersection is expected to meet the peak hour warrant for both the weekday AM and PM peak hours under 2027 no-build and 2027 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Refer to Appendix J for a copy of the MUTCD warrants.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.



### 7.4. Jonesville Road and Universal Drive

The existing unsignalized intersection of Jonesville Road and Universal Drive was analyzed under 2027 build traffic conditions with the lane configurations and traffic control shown in Table 8. Refer to Table 8 for a summary of the analysis results. Refer to Appendix G for the synchro capacity analysis reports.

| ANALYSIS      | A<br>P<br>P<br>R | LANE                          | PEAK                             | DAY AM<br>HOUR<br>SERVICE | PEAK                             | DAY PM<br>HOUR<br>SERVICE |
|---------------|------------------|-------------------------------|----------------------------------|---------------------------|----------------------------------|---------------------------|
| SCENARIO      | O<br>A<br>C<br>H | CONFIGURATIONS                | Approach                         | Overall<br>(seconds)      | Approach                         | Overall<br>(seconds)      |
| 2022 Existing | EB<br>NB<br>SB   | 1 LT-RT<br>1 LT-TH<br>1 TH-RT | A <sup>2</sup><br>A <sup>1</sup> | N/A                       | A <sup>2</sup><br>A <sup>1</sup> | N/A                       |
| 2027 No-Build | EB<br>NB<br>SB   | 1 LT-RT<br>1 LT-TH<br>1 TH-RT | B <sup>2</sup><br>A <sup>1</sup> | N/A                       | B <sup>2</sup><br>A <sup>1</sup> | N/A                       |
| 2027 Build    | EB<br>NB<br>SB   | 1 LT-RT<br>1 LT-TH<br>1 TH-RT | B <sup>2</sup><br>A <sup>1</sup> | N/A                       | B <sup>2</sup><br>A <sup>1</sup> | N/A                       |

Table 8: Analysis Summary of Jonesville Road and Universal Drive

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.

Capacity analysis of 2027 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B or better during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways*. Based on the estimated low volume of right-turn and leftturn movements into the proposed development at this intersection, exclusive right-turn and left-turn lanes are not recommended. Refer to Appendix I for a copy of the turn lane warrants. No improvements are recommended by the developer.



#### 7.5. Jonesville Road and Site Drive

The proposed intersection of Jonesville Road and Site Drive was analyzed under 2027 build traffic conditions with the lane configurations and traffic control shown in Table 9. Refer to Table 9 for a summary of the analysis results. Refer to Appendix H for the synchro capacity analysis reports.

| ANALYSIS   | A<br>P<br>P<br>IS R LANE |                | WEEKDAY AM<br>PEAK HOUR<br>LEVEL OF SERVICE |                      | WEEKDAY PM<br>PEAK HOUR<br>LEVEL OF SERVICE |                      |
|------------|--------------------------|----------------|---------------------------------------------|----------------------|---------------------------------------------|----------------------|
| SCENARIO   | O<br>A<br>C<br>H         | CONFIGURATIONS | Approach                                    | Overall<br>(seconds) | Approach                                    | Overall<br>(seconds) |
|            | EB                       | 1 LT-RT        | B <sup>2</sup>                              |                      | B <sup>2</sup>                              |                      |
| 2027 Build | NB                       | 1 LT-TH        | $A^1$                                       | N/A                  | $A^1$                                       | N/A                  |
|            | SB                       | 1 TH-RT        |                                             |                      |                                             |                      |

Table 9: Analysis Summary of Jonesville Road and Site Drive

1. Level of service for major-street left-turn movement.

2. Level of service for minor-street approach.

Capacity analysis of 2027 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B or better during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways*. Based on the estimated low volume of right-turn and leftturn movements into the proposed development at this intersection, exclusive right-turn and left-turn lanes are not recommended. Refer to Appendix I for a copy of the turn lane warrants. No improvements are recommended by the developer.



### 8. CONCLUSIONS

This Traffic Impact Analysis was conducted to determine the potential traffic impacts of the proposed Harris Creek Farm development to be located on the west side of Jonesville Road near Universal Drive in Rolesville, North Carolina. The development is expected to consist of 68 single-family homes and 81 townhomes and to be built-out in 2027. Site access is proposed via two (2) full-movement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

### Trip Generation

It is estimated that the proposed development will generate approximately 1,276 site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.

### Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to NCDOT Congestion Management Guidelines. Refer to section 6.1 of this report for a detailed description of any adjustments to these guidelines made throughout the analysis.

### Intersection Capacity Analysis Summary

All the study area intersections (including the proposed site driveways) are expected to operate at acceptable levels-of-service under existing and future year conditions with the exception of those identified in Section 7 of this report.



### 9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 11 for an illustration of the recommended lane configurations for the proposed development.

### **Recommended Improvements by Developer**

US 401 Bypass and Jonesville Road

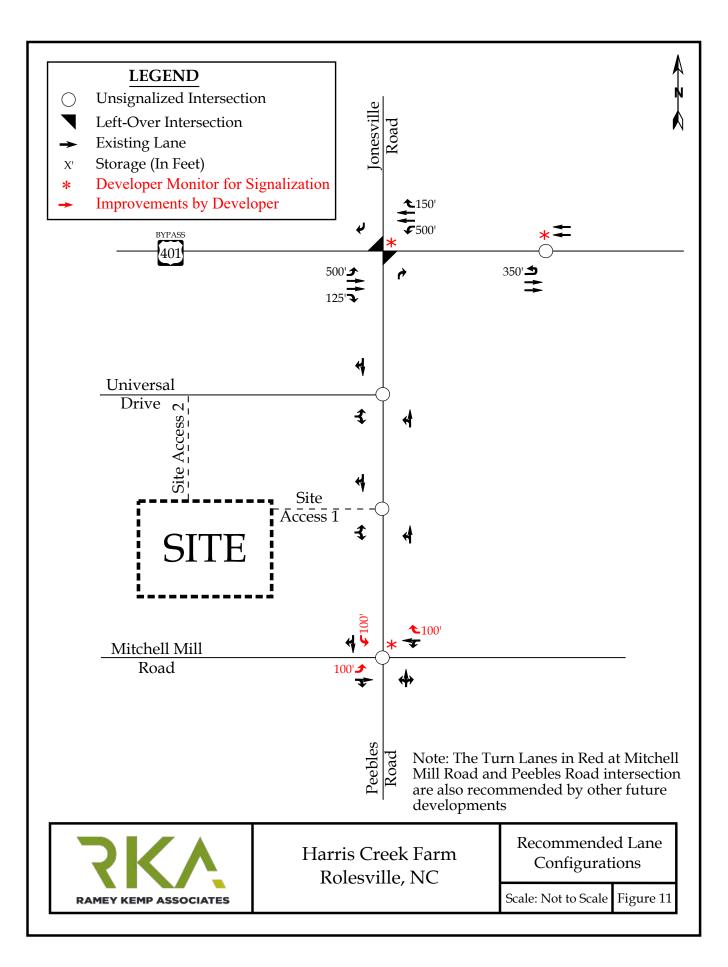
• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

### US 401 Bypass and Eastern U-Turn Location

• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

### Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
  - It should be noted that this improvement was also identified by the 5109
     Mitchell Mill Road TIA and Hills at Harris Creek TIA
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
  - It should be noted that this improvement was also identified by the Hills at Harris Creek TIA
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
  - It should be noted that this improvement was also identified by the 5109
     Mitchell Mill Road TIA




• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

### Jonesville Road and Site Drive

- Construct the eastbound approach (Site Drive) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Drive).





# **TECHNICAL APPENDIX**

# **APPENDIX A**

**SCOPING DOCUMENTATION** 

### **RAMEY KEMP ASSOCIATES**

TOGETHER WE ARE LIMITLESS

T 919 872 5115 5808 Faringdon Pl, Raleigh, NC 27609

JKV

March 17, 2023

Jeremy L. Warren, PE NCDOT District 1 Engineer 4009 District Drive Raleigh, NC 27507 <u>jlwarren@ncdot.gov</u> [Sent via Email]

| Reference: | Harris Creek Farm          |
|------------|----------------------------|
|            | Rolesville, North Carolina |

Subject: Memorandum of Understanding for TIA Report

Dear Mr. Warren:

The following is a Memorandum of Understanding (MOU) outlining the proposed scope of work and assumptions related to the Traffic Impact Analysis (TIA) for the proposed Harris Creek Farm development in Rolesville, North Carolina. The proposed development is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The development is expected to consist of 68 single-family homes and 81 townhomes and is anticipated to be built out by 2027. Refer to the attached site location map. Site access to the proposed development is expected to be provided via two (2) full-movement driveway connections: one on Jonesville Road and one on Universal Drive. Refer to the attachments for a copy of the preliminary site plan.

#### Study Area

The study area is proposed to consist of the following intersections:

- Mitchell Mill Road & Jonesville Road / Peebles Road (unsignalized)
- US 401 Bypass and Jonesville Road (unsignalized)
- US 401 Bypass and Eastern U-Turn Location (unsignalized)
- Jonesville Road and Universal Drive (unsignalized)
- Jonesville Road and Site Driveway (unsignalized)

#### Existing Traffic Volumes

Existing peak hour traffic volumes will be determined based on previously collected traffic counts at the study intersections below, in November 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning:

- Mitchell Mill Road & Jonesville Road / Peebles Road
- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location

These previously collected counts will be projected to the year 2022 using a compounded annual growth rate of 2%.

Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive will be estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive (AM trips: 2 enter 6 exit and PM trips: 7 enter 3 exit, distributed to the north and south along Jonesville Road the same as site trips). Through traffic volumes will be balanced from the Mitchell Mill Road/Jonesville Road intersection.

Refer to the attachments for an illustration of 2022 existing peak hour traffic volumes.

#### **Background Traffic Volumes**

Background traffic volumes will be determined by projecting 2022 existing traffic volumes to the year 2027 using a 0% annual growth rate. A growth rate of 0% will be used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. It is assumed that the following adjacent developments are to be included in this study:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

#### Future Roadway Improvements

There are no future roadway improvements within the study area to consider under future traffic conditions.



#### Trip Generation

Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11<sup>th</sup> Edition. Refer to Table 1, on the following page, for a summary of the proposed site trip generation for full buildout of the proposed development.

| Land Use<br>(ITE Code)                | Intensity | Daily<br>Traffic |       | Weekday<br>eak Hour<br>(vph) |       | Weekday<br>PM Peak Hour Trips<br>(vph) |      |       |  |
|---------------------------------------|-----------|------------------|-------|------------------------------|-------|----------------------------------------|------|-------|--|
|                                       |           | (vpd)            | Enter | Exit                         | Total | Enter                                  | Exit | Total |  |
| Single-Family Home<br>(210)           | 68 DU     | 710              | 13    | 39                           | 52    | 44                                     | 25   | 69    |  |
| Multi-Family Home (Low-Rise)<br>(220) | 81 DU     | 568              | 9     | 27                           | 36    | 26                                     | 19   | 45    |  |
| Total Trips                           |           | 1,268            | 22    | 66                           | 88    | 70                                     | 44   | 114   |  |

#### Table 1: Trip Generation Summary

It is estimated that the proposed development will generate approximately 1,268 site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.

#### Trip Distribution and Assignment

Site trips are distributed based on the locations of existing traffic patterns, population centers adjacent to the study area, and engineering judgment. A summary of the overall distributions is below.

Residential

- 30% to/from the west via US 401 Bypass
- 15% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 35% to/from the west via Mitchell Mill Road
- 10% to/from the east via Mitchell Mill Road

Refer to the attached site trip distribution figure.



#### Analysis Scenarios

All capacity analyses will be performed utilizing Synchro (Version 11). All study intersections will be analyzed during the weekday AM and PM peak hours under the following proposed traffic scenarios:

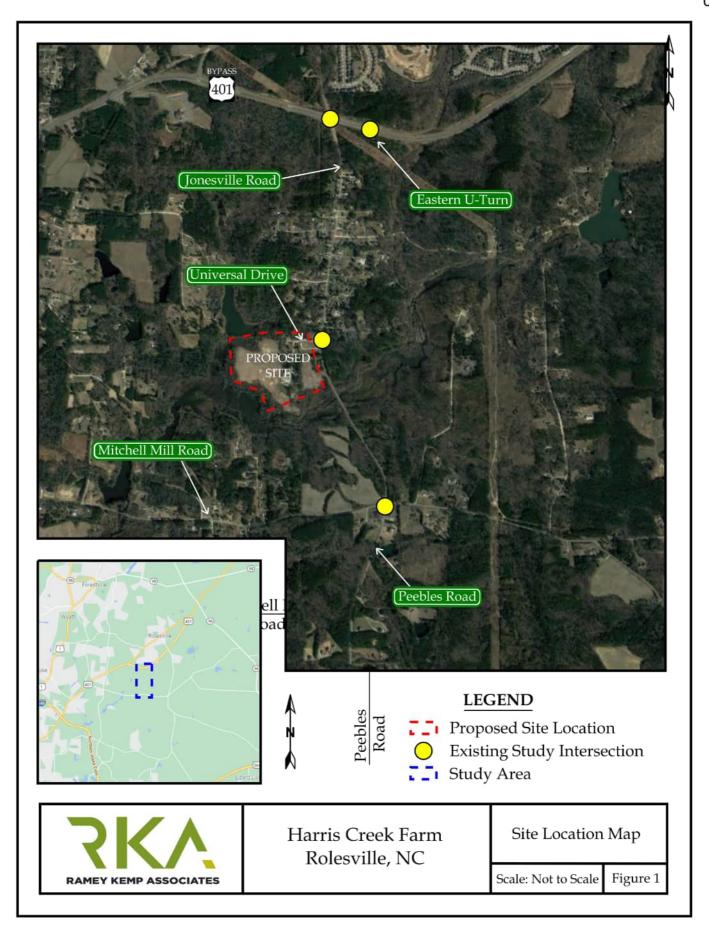
- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

#### <u>Report</u>

The TIA report will be prepared based on the Town and NCDOT requirements.

If you find this memorandum of understanding acceptable, please let me know so that we may include it in the TIA report. If you have any questions or concerns, please do not hesitate to contact me.

Sincerely, Ramey Kemp Associates,


Andraw Eagle

J. Andrew Eagle, PE, PTOE Senior Traffic Engineering Project Manager

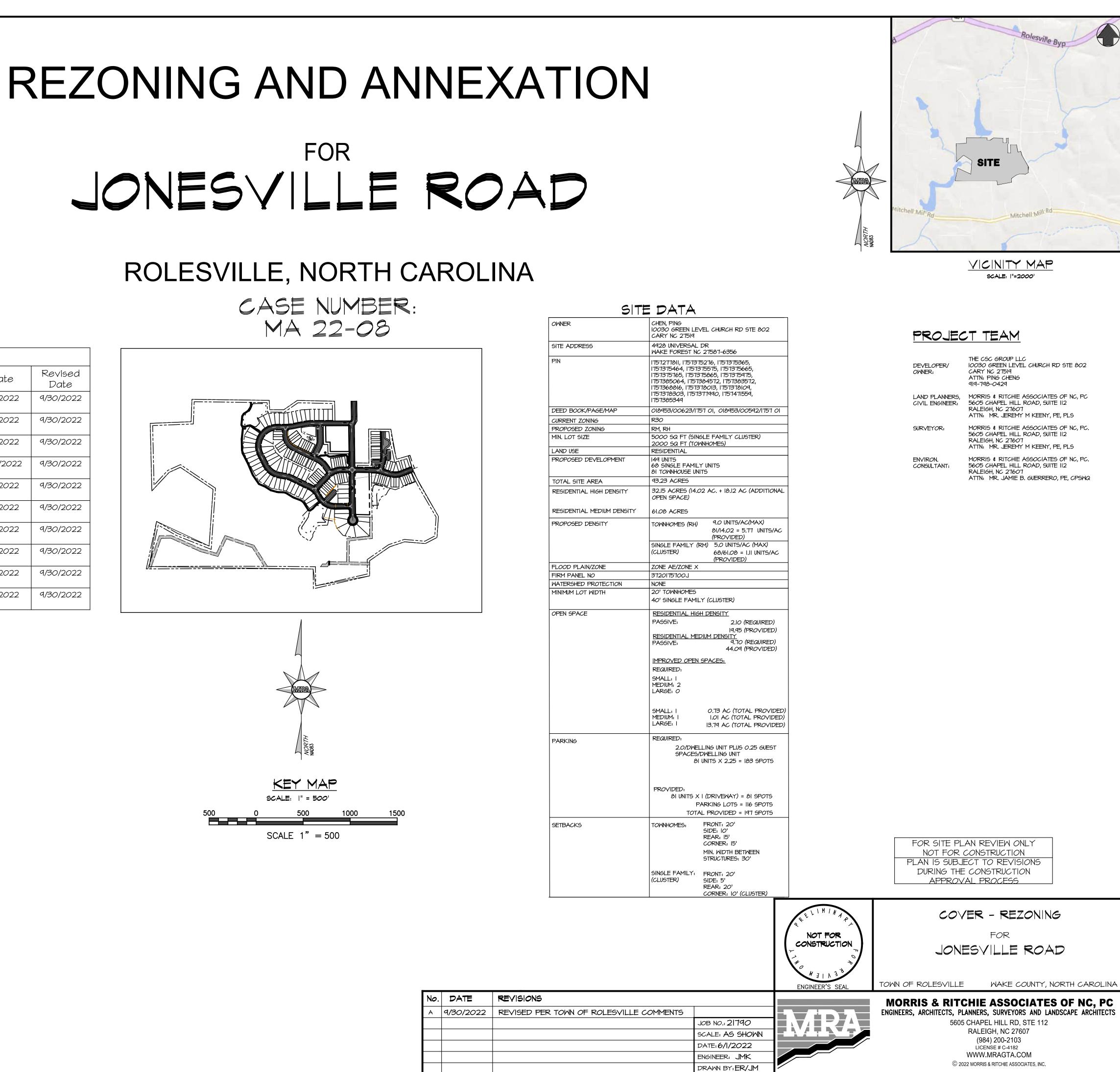
Attachments: Site Location Map Site Plan 2022 Existing Traffic Volumes Figure Proposed Site Trip Distribution Figure

cc: Matthew J. Nolfo, NCDOT Holt Willis, NCDOT Clarence Bunting, NCDOT Nicholas Lineberger, NCDOT Daniel Collins, NCDOT Meredith Gruber, Town of Rolesville Michael Elabarger, Town of Rolesville



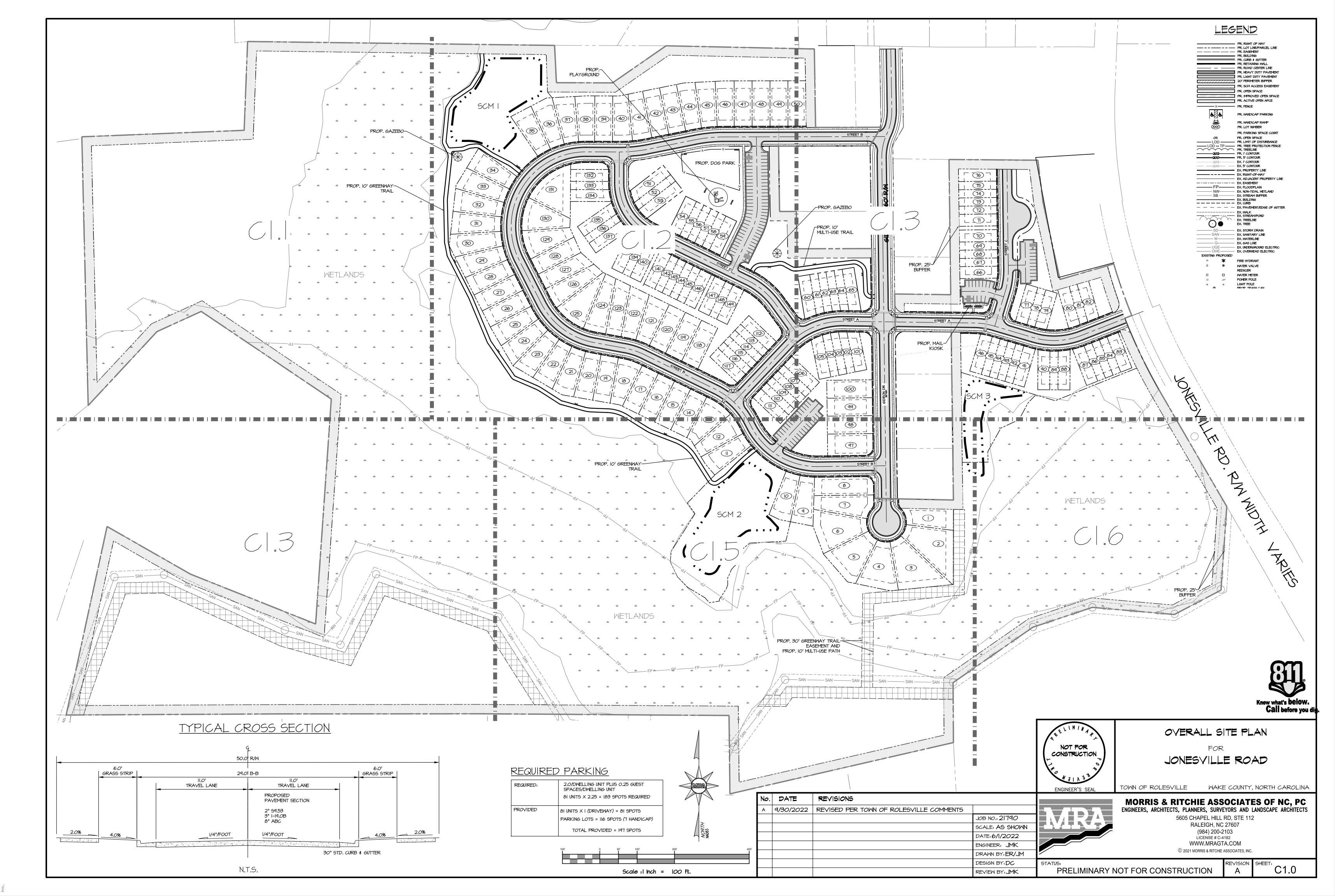


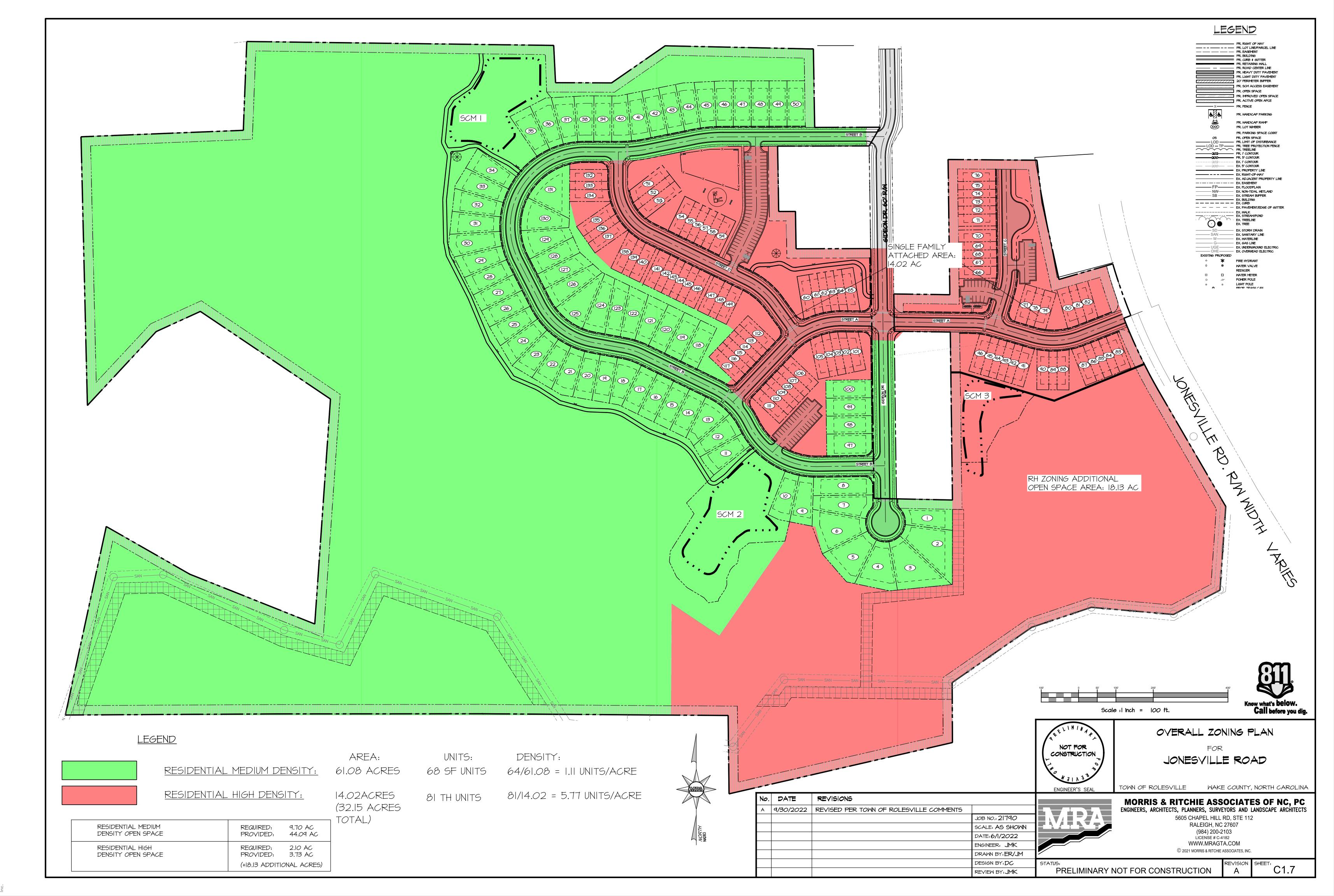
### AGENCY CONTACTS

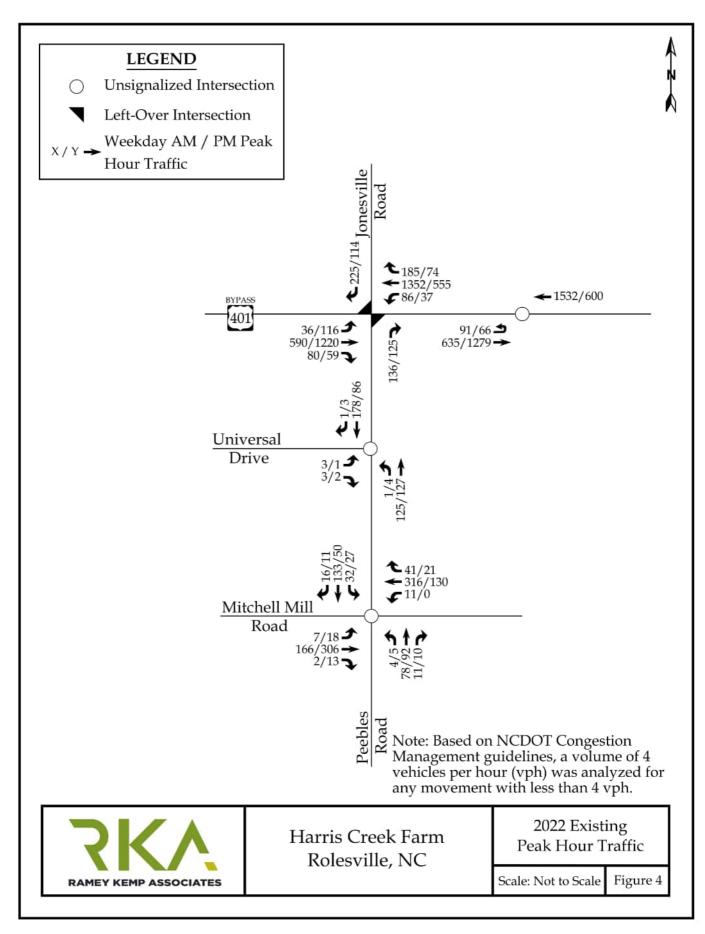

- A. Town of Rolesville Planning Department 502 Southtown Circle Rolesville, NC 27571
- B. Wake County Watershed Management Waverly F. Akins Building 337 S. Salisbury St Raleigh, NC 27601 Contact: Karyn Pageau Phone: (919)-796-8769 Email: karyn.pageau@wakegov.com

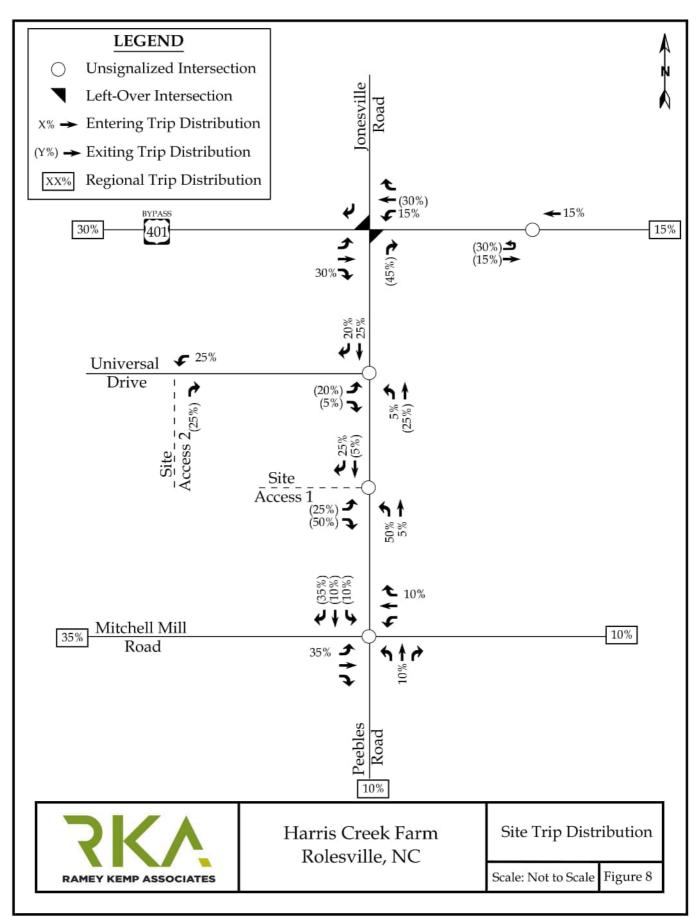
C. City of Raleigh Public Utilities Department Oné Exchangé Plaza Suite 620 Raleigh, NC 27601 P.O.Box 590 Raleigh, NC 27602 Phone: 919-996-3245 Email: publicutilityinfo@raleighnc.gov

D. NCDOT Division 5, District | Office 4009 District Drive Raleigh, NC 27607 Contact: Amy Neidringhaus, District Engineer Phone: 919-733-3213 Email: anneidringhaus@ncdot.gov


| STREE    | T DATA   |
|----------|----------|
| STREET A | 1,200 LF |
| STREET B | 2,368 LF |
| STREET C | 450 LF   |
| STREET D | 743 LF   |


| R<br>9/ |
|---------|
| 9/      |
|         |
|         |
| 9/      |
| 9/      |
| 9/      |
| 9/      |
| 9/      |
| 9/      |
| 9/      |
| 9/      |
| 9/      |
|         |





| _   |           |                                |
|-----|-----------|--------------------------------|
| No. | DATE      | REVISIONS                      |
| А   | 9/30/2022 | REVISED PER TOWN OF ROLESVILLE |
|     |           |                                |
|     |           |                                |
|     |           |                                |
|     |           |                                |
|     |           |                                |
|     |           |                                |
|     |           |                                |

| DESIGN BY: DC  |                                  | REVISION | SHEET: |
|----------------|----------------------------------|----------|--------|
| REVIEW BY: JMK | PRELIMINARY NOT FOR CONSTRUCTION | A        | C0.0   |
|                |                                  |          |        |





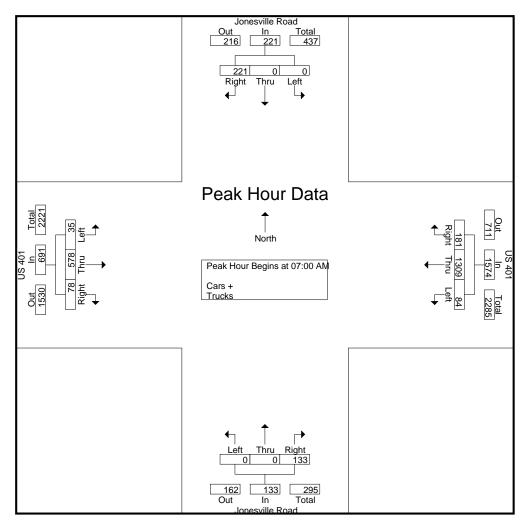




## **APPENDIX B**

**TRAFFIC COUNTS** 




File Name : Rolesville(US 401 and Jonesville)AM Peak Site Code : Start Date : 11/9/2021 Page No : 1

|             |       | Jonesvil |       | d          |       | US        | 401  |            |       | Jonesvi |       | d          |       |      | 401  |            |            |
|-------------|-------|----------|-------|------------|-------|-----------|------|------------|-------|---------|-------|------------|-------|------|------|------------|------------|
|             |       | South    | bound |            |       | Westbound |      |            |       | North   | bound |            |       | East | ound |            |            |
| Start Time  | Right | Thru     | Left  | App. Total | Right | Thru      | Left | App. Total | Right | Thru    | Left  | App. Total | Right | Thru | Left | App. Total | Int. Total |
| 07:00 AM    | 63    | 0        | 0     | 63         | 24    | 380       | 21   | 425        | 23    | 0       | 0     | 23         | 18    | 182  | 3    | 203        | 714        |
| 07:15 AM    | 42    | 0        | 0     | 42         | 39    | 362       | 24   | 425        | 37    | 0       | 0     | 37         | 11    | 125  | 7    | 143        | 647        |
| 07:30 AM    | 51    | 0        | 0     | 51         | 80    | 318       | 23   | 421        | 48    | 0       | 0     | 48         | 24    | 136  | 15   | 175        | 695        |
| 07:45 AM    | 65    | 0        | 0     | 65         | 38    | 249       | 16   | 303        | 25    | 0       | 0     | 25         | 25    | 135  | 10   | 170        | 563        |
| Total       | 221   | 0        | 0     | 221        | 181   | 1309      | 84   | 1574       | 133   | 0       | 0     | 133        | 78    | 578  | 35   | 691        | 2619       |
| 08:00 AM    | 01    | 0        | 0     | <b>C1</b>  |       | 000       | 13   | 075        | 23    | 0       | 0     | 22         | 30    | 100  | 10   | 100        | 540        |
|             | 61    | 0        | 0     | 61         | 26    | 236       |      | 275        |       | 0       | 0     | 23         |       | 120  | 10   | 160        | 519        |
| 08:15 AM    | 36    | 0        | 0     | 36         | 12    | 233       | 9    | 254        | 16    | 0       | 0     | 16         | 13    | 94   | 9    | 116        | 422        |
| 08:30 AM    | 24    | 0        | 0     | 24         | 10    | 213       | 5    | 228        | 9     | 0       | 0     | 9          | 6     | 91   | 3    | 100        | 361        |
| 08:45 AM    | 28    | 0        | 0     | 28         | 9     | 145       | 5    | 159        | 10    | 0       | 0     | 10         | 11    | 85   | 2    | 98         | 295        |
| Total       | 149   | 0        | 0     | 149        | 57    | 827       | 32   | 916        | 58    | 0       | 0     | 58         | 60    | 390  | 24   | 474        | 1597       |
| Grand Total | 370   | 0        | 0     | 370        | 238   | 2136      | 116  | 2490       | 191   | 0       | 0     | 191        | 138   | 968  | 59   | 1165       | 4216       |
| Apprch %    | 100   | 0        | 0     | 570        | 9.6   | 85.8      | 4.7  | 2430       | 100   | 0       | 0     | 131        | 11.8  | 83.1 | 5.1  | 1105       | 4210       |
|             |       |          | -     | 0.0        |       |           |      | 50.4       |       | 0       | 0     | 4 5        |       |      | -    | 07.0       |            |
| Total %     | 8.8   | 0        |       | 8.8        | 5.6   | 50.7      | 2.8  | 59.1       | 4.5   | 0       |       | 4.5        | 3.3   | 23   | 1.4  | 27.6       |            |
| Cars +      | 366   | 0        | 0     | 366        | 233   | 2094      | 114  | 2441       | 188   | 0       | 0     | 188        | 135   | 916  | 57   | 1108       | 4103       |
| % Cars +    | 98.9  | 0        | 0     | 98.9       | 97.9  | 98        | 98.3 | 98         | 98.4  | 0       | 0     | 98.4       | 97.8  | 94.6 | 96.6 | 95.1       | 97.3       |
| Trucks      | 4     | 0        | 0     | 4          | 5     | 42        | 2    | 49         | 3     | 0       | 0     | 3          | 3     | 52   | 2    | 57         | 113        |
| % Trucks    | 1.1   | 0        | 0     | 1.1        | 2.1   | 2         | 1.7  | 2          | 1.6   | 0       | 0     | 1.6        | 2.2   | 5.4  | 3.4  | 4.9        | 2.7        |

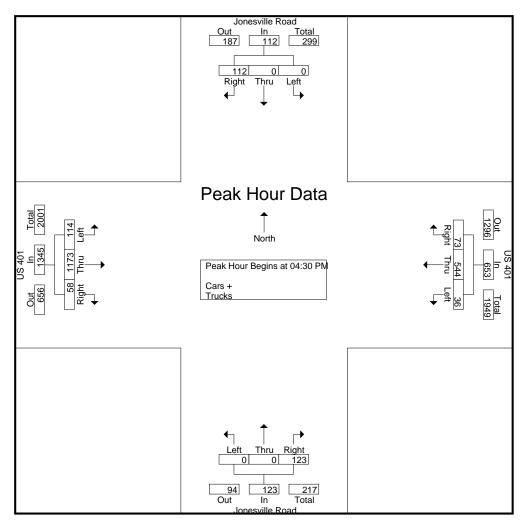


File Name : Rolesville(US 401 and Jonesville)AM Peak Site Code : Start Date : 11/9/2021 Page No : 2

|               |            | Jonesville Road |        |            | US 401  |           |       |            |       | Jonesvi    | lle Roa | d          |       | US        | 401  |            | ]          |
|---------------|------------|-----------------|--------|------------|---------|-----------|-------|------------|-------|------------|---------|------------|-------|-----------|------|------------|------------|
|               |            | South           | bound  |            |         | West      | bound |            |       | Northbound |         |            |       | Eastbound |      |            |            |
| Start Time    | Right      | Thru            | Left   | App. Total | Right   | Thru      | Left  | App. Total | Right | Thru       | Left    | App. Total | Right | Thru      | Left | App. Total | Int. Total |
| Peak Hour Ana | alysis Fro | om 07:0         | 0 AM t | o 08:45 A  | M - Pea | ak 1 of 1 |       |            | -     |            |         |            | -     |           |      |            |            |
| Peak Hour for | Entire In  | tersection      | on Beg | ins at 07: | 00 AM   |           |       |            |       |            |         |            |       |           |      |            |            |
| 07:00 AM      | 63         | 0               | 0      | 63         | 24      | 380       | 21    | 425        | 23    | 0          | 0       | 23         | 18    | 182       | 3    | 203        | 714        |
| 07:15 AM      | 42         | 0               | 0      | 42         | 39      | 362       | 24    | 425        | 37    | 0          | 0       | 37         | 11    | 125       | 7    | 143        | 647        |
| 07:30 AM      | 51         | 0               | 0      | 51         | 80      | 318       | 23    | 421        | 48    | 0          | 0       | 48         | 24    | 136       | 15   | 175        | 695        |
| 07:45 AM      | 65         | 0               | 0      | 65         | 38      | 249       | 16    | 303        | 25    | 0          | 0       | 25         | 25    | 135       | 10   | 170        | 563        |
| Total Volume  | 221        | 0               | 0      | 221        | 181     | 1309      | 84    | 1574       | 133   | 0          | 0       | 133        | 78    | 578       | 35   | 691        | 2619       |
| % App. Total  | 100        | 0               | 0      |            | 11.5    | 83.2      | 5.3   |            | 100   | 0          | 0       |            | 11.3  | 83.6      | 5.1  |            |            |
| PHF           | .850       | .000            | .000   | .850       | .566    | .861      | .875  | .926       | .693  | .000       | .000    | .693       | .780  | .794      | .583 | .851       | .917       |






File Name : Rolesville(US 401 and Jonesville)PM Peak Site Code : Start Date : 11/9/2021 Page No : 1

|                 |       | Jonesvi | lle Roa | d          |       |      | 401   | linted O   |       | Jonesvil | lle Roa | d          |       | US   | 401   |            |            |
|-----------------|-------|---------|---------|------------|-------|------|-------|------------|-------|----------|---------|------------|-------|------|-------|------------|------------|
|                 |       | South   | bound   |            |       | West | bound |            |       | North    | bound   |            |       | East | bound |            |            |
| Start Time      | Right | Thru    | Left    | App. Total | Right | Thru | Left  | App. Total | Right | Thru     | Left    | App. Total | Right | Thru | Left  | App. Total | Int. Total |
| 04:00 PM        | 47    | 0       | 0       | 47         | 13    | 124  | 6     | 143        | 21    | 0        | 0       | 21         | 37    | 217  | 22    | 276        | 487        |
| 04:15 PM        | 34    | 0       | 0       | 34         | 13    | 119  | 6     | 138        | 26    | 0        | 0       | 26         | 15    | 231  | 20    | 266        | 464        |
| 04:30 PM        | 30    | 0       | 0       | 30         | 19    | 118  | 12    | 149        | 32    | 0        | 0       | 32         | 12    | 291  | 28    | 331        | 542        |
| 04:45 PM        | 15    | 0       | 0       | 15         | 22    | 137  | 6     | 165        | 32    | 0        | 0       | 32         | 8     | 303  | 30    | 341        | 553        |
| Total           | 126   | 0       | 0       | 126        | 67    | 498  | 30    | 595        | 111   | 0        | 0       | 111        | 72    | 1042 | 100   | 1214       | 2046       |
|                 |       |         |         |            |       |      |       |            | 1     |          |         |            |       |      |       |            | I          |
| 05:00 PM        | 37    | 0       | 0       | 37         | 10    | 143  | 7     | 160        | 23    | 0        | 0       | 23         | 23    | 322  | 30    | 375        | 595        |
| 05:15 PM        | 30    | 0       | 0       | 30         | 22    | 146  | 11    | 179        | 36    | 0        | 0       | 36         | 15    | 257  | 26    | 298        | 543        |
| 05:30 PM        | 39    | 0       | 0       | 39         | 20    | 145  | 3     | 168        | 34    | 0        | 0       | 34         | 23    | 262  | 14    | 299        | 540        |
| 05:45 PM        | 24    | 0       | 0       | 24         | 10    | 112  | 9     | 131        | 22    | 0        | 0       | 22         | 11    | 227  | 21    | 259        | 436        |
| Total           | 130   | 0       | 0       | 130        | 62    | 546  | 30    | 638        | 115   | 0        | 0       | 115        | 72    | 1068 | 91    | 1231       | 2114       |
| Oren d Tetal    | 050   | 0       | 0       | 250        | 100   | 1011 | 60    | 1000       | 222   | 0        | 0       | 220        | 444   | 0140 | 101   | 0445       | 4400       |
| Grand Total     | 256   | 0       | 0       | 256        | 129   | 1044 |       | 1233       | 226   | 0        | 0       | 226        | 144   | 2110 | 191   | 2445       | 4160       |
| Apprch %        | 100   | 0       | 0       | 0.0        | 10.5  | 84.7 | 4.9   | <u> </u>   | 100   | 0        | 0       | - 4        | 5.9   | 86.3 | 7.8   | 50.0       |            |
| Total %         | 6.2   | 0       | 0       | 6.2        | 3.1   | 25.1 | 1.4   | 29.6       | 5.4   | 0        |         | 5.4        | 3.5   | 50.7 | 4.6   | 58.8       | 1000       |
| Cars +          | 252   | 0       | 0       | 252        | 127   | 1020 | 60    | 1207       | 223   | 0        | 0       | 223        | 142   | 2051 | 191   | 2384       | 4066       |
| <u>% Cars +</u> | 98.4  | 0       | 0       | 98.4       | 98.4  | 97.7 | 100   | 97.9       | 98.7  | 0        | 0       | 98.7       | 98.6  | 97.2 | 100   | 97.5       | 97.7       |
| Trucks          | 4     | 0       | 0       | 4          | 2     | 24   | 0     | 26         | 3     | 0        | 0       | 3          | 2     | 59   | 0     | 61         | 94         |
| % Trucks        | 1.6   | 0       | 0       | 1.6        | 1.6   | 2.3  | 0     | 2.1        | 1.3   | 0        | 0       | 1.3        | 1.4   | 2.8  | 0     | 2.5        | 2.3        |

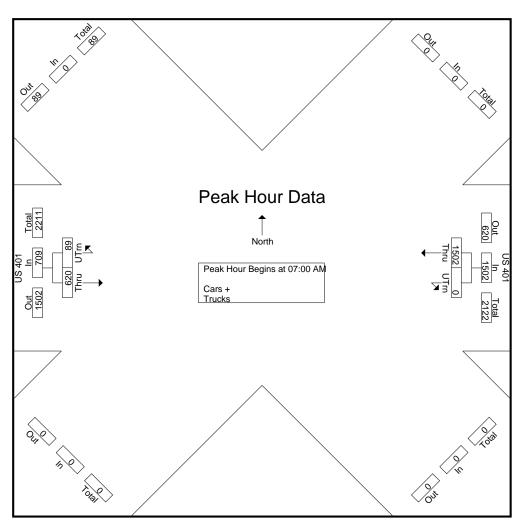


File Name : Rolesville(US 401 and Jonesville)PM Peak Site Code : Start Date : 11/9/2021 Page No : 2

|               |            | Jonesville Road |        |            | US 401  |           |       |            |       | Jonesvi    | ille Roa | d          |       | US        | 401  |            | ]          |
|---------------|------------|-----------------|--------|------------|---------|-----------|-------|------------|-------|------------|----------|------------|-------|-----------|------|------------|------------|
|               |            | South           | bound  |            |         | West      | bound |            |       | Northbound |          |            |       | Eastbound |      |            |            |
| Start Time    | Right      | Thru            | Left   | App. Total | Right   | Thru      | Left  | App. Total | Right | Thru       | Left     | App. Total | Right | Thru      | Left | App. Total | Int. Total |
| Peak Hour Ana | ilysis Fro | om 04:0         | 0 PM t | o 05:45 P  | M - Pea | ak 1 of 1 |       |            | -     |            |          |            | -     |           |      |            |            |
| Peak Hour for | Entire In  | tersection      | on Beg | ins at 04: | 30 PM   |           |       |            |       |            |          |            |       |           |      |            |            |
| 04:30 PM      | 30         | 0               | 0      | 30         | 19      | 118       | 12    | 149        | 32    | 0          | 0        | 32         | 12    | 291       | 28   | 331        | 542        |
| 04:45 PM      | 15         | 0               | 0      | 15         | 22      | 137       | 6     | 165        | 32    | 0          | 0        | 32         | 8     | 303       | 30   | 341        | 553        |
| 05:00 PM      | 37         | 0               | 0      | 37         | 10      | 143       | 7     | 160        | 23    | 0          | 0        | 23         | 23    | 322       | 30   | 375        | 595        |
| 05:15 PM      | 30         | 0               | 0      | 30         | 22      | 146       | 11    | 179        | 36    | 0          | 0        | 36         | 15    | 257       | 26   | 298        | 543        |
| Total Volume  | 112        | 0               | 0      | 112        | 73      | 544       | 36    | 653        | 123   | 0          | 0        | 123        | 58    | 1173      | 114  | 1345       | 2233       |
| % App. Total  | 100        | 0               | 0      |            | 11.2    | 83.3      | 5.5   |            | 100   | 0          | 0        |            | 4.3   | 87.2      | 8.5  |            |            |
| PHF           | .757       | .000            | .000   | .757       | .830    | .932      | .750  | .912       | .854  | .000       | .000     | .854       | .630  | .911      | .950 | .897       | .938       |






File Name : Rolesville(US 401 and Eastern U Turn)AM Peak Site Code : Start Date : 11/9/2021 Page No : 1

|             |      | US 401    |            |      |           |            |            |
|-------------|------|-----------|------------|------|-----------|------------|------------|
|             |      | Westbound |            |      | Eastbound |            |            |
| Start Time  | Thru | UTrn      | App. Total | Thru | UTrn      | App. Total | Int. Total |
| 07:00 AM    | 421  | 0         | 421        | 198  | 12        | 210        | 631        |
| 07:15 AM    | 410  | 0         | 410        | 136  | 24        | 160        | 570        |
| 07:30 AM    | 392  | 0         | 392        | 149  | 36        | 185        | 577        |
| 07:45 AM    | 279  | 0         | 279        | 137  | 17        | 154        | 433        |
| Total       | 1502 | 0         | 1502       | 620  | 89        | 709        | 2211       |
|             |      |           |            |      |           |            |            |
| 08:00 AM    | 253  | 0         | 253        | 130  | 20        | 150        | 403        |
| 08:15 AM    | 243  | 0         | 243        | 98   | 13        | 111        | 354        |
| 08:30 AM    | 223  | 0         | 223        | 94   | 7         | 101        | 324        |
| 08:45 AM    | 147  | 0         | 147        | 85   | 9         | 94         | 241        |
| Total       | 866  | 0         | 866        | 407  | 49        | 456        | 1322       |
| Grand Total | 2368 | 0         | 2368       | 1027 | 138       | 1165       | 3533       |
| Apprch %    | 100  | 0         |            | 88.2 | 11.8      |            |            |
| Total %     | 67   | 0         | 67         | 29.1 | 3.9       | 33         |            |
| Cars +      | 2318 | 0         | 2318       | 973  | 136       | 1109       | 3427       |
| % Cars +    | 97.9 | 0         | 97.9       | 94.7 | 98.6      | 95.2       | 97         |
| Trucks      | 50   | 0         | 50         | 54   | 2         | 56         | 106        |
| % Trucks    | 2.1  | 0         | 2.1        | 5.3  | 1.4       | 4.8        | 3          |

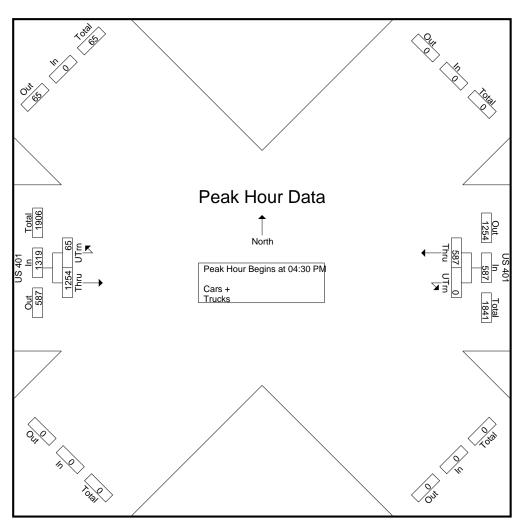


File Name : Rolesville(US 401 and Eastern U Turn)AM Peak Site Code : Start Date : 11/9/2021 Page No : 2

|                                   |                    | US 401        |            |      |      |            |            |
|-----------------------------------|--------------------|---------------|------------|------|------|------------|------------|
|                                   |                    | Westbound     |            |      |      |            |            |
| Start Time                        | Thru               | UTrn          | App. Total | Thru | UTrn | App. Total | Int. Total |
| Peak Hour Analysis From 07:00     | 0 AM to 08:45 AM   | - Peak 1 of 1 |            |      |      |            |            |
| Peak Hour for Entire Intersection | on Begins at 07:00 | AM            |            |      |      |            |            |
| 07:00 AM                          | 421                | 0             | 421        | 198  | 12   | 210        | 631        |
| 07:15 AM                          | 410                | 0             | 410        | 136  | 24   | 160        | 570        |
| 07:30 AM                          | 392                | 0             | 392        | 149  | 36   | 185        | 577        |
| 07:45 AM                          | 279                | 0             | 279        | 137  | 17   | 154        | 433        |
| Total Volume                      | 1502               | 0             | 1502       | 620  | 89   | 709        | 2211       |
| % App. Total                      | 100                | 0             |            | 87.4 | 12.6 |            |            |
| PHF                               | .892               | .000          | .892       | .783 | .618 | .844       | .876       |






File Name : Rolesville(US 401 and Eastern U Turn)PM Peak Site Code : Start Date : 11/9/2021 Page No : 1

|             |      | US 401    |            |      |                     |            |            |
|-------------|------|-----------|------------|------|---------------------|------------|------------|
|             |      | Westbound |            |      | US 401<br>Eastbound |            |            |
| Start Time  | Thru | UTrn      | App. Total | Thru | UTrn                | App. Total | Int. Total |
| 04:00 PM    | 130  | 0         | 130        | 240  | 12                  | 252        | 382        |
| 04:15 PM    | 128  | 0         | 128        | 237  | 15                  | 252        | 380        |
| 04:30 PM    | 129  | 0         | 129        | 311  | 19                  | 330        | 459        |
| 04:45 PM    | 149  | 0         | 149        | 317  | 19                  | 336        | 485        |
| Total       | 536  | 0         | 536        | 1105 | 65                  | 1170       | 1706       |
| 05:00 PM    | 149  | 0         | 149        | 342  | 8                   | 350        | 499        |
| 05:15 PM    | 160  | Õ         | 160        | 284  | 19                  | 303        | 463        |
| 05:30 PM    | 161  | 0         | 161        | 273  | 22                  | 295        | 456        |
| 05:45 PM    | 120  | 0         | 120        | 235  | 12                  | 247        | 367        |
| Total       | 590  | 0         | 590        | 1134 | 61                  | 1195       | 1785       |
| Grand Total | 1126 | 0         | 1126       | 2239 | 126                 | 2365       | 3491       |
| Apprch %    | 100  | 0         |            | 94.7 | 5.3                 |            |            |
| Total %     | 32.3 | 0         | 32.3       | 64.1 | 3.6                 | 67.7       |            |
| Cars +      | 1101 | 0         | 1101       | 2175 | 125                 | 2300       | 3401       |
| % Cars +    | 97.8 | 0         | 97.8       | 97.1 | 99.2                | 97.3       | 97.4       |
| Trucks      | 25   | 0         | 25         | 64   | 1                   | 65         | 90         |
| % Trucks    | 2.2  | 0         | 2.2        | 2.9  | 0.8                 | 2.7        | 2.6        |

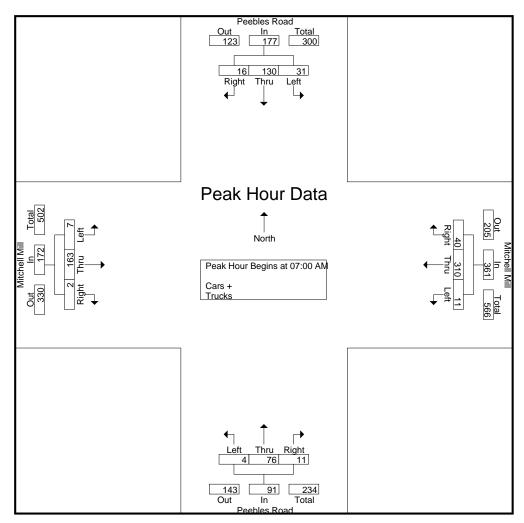


File Name : Rolesville(US 401 and Eastern U Turn)PM Peak Site Code : Start Date : 11/9/2021 Page No : 2

|                                                            |                    | US 401    |            |      |      |            |            |  |  |  |  |  |  |
|------------------------------------------------------------|--------------------|-----------|------------|------|------|------------|------------|--|--|--|--|--|--|
|                                                            |                    | Westbound |            |      |      |            |            |  |  |  |  |  |  |
| Start Time                                                 | Thru               | UTrn      | App. Total | Thru | UTrn | App. Total | Int. Total |  |  |  |  |  |  |
| Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 |                    |           |            |      |      |            |            |  |  |  |  |  |  |
| Peak Hour for Entire Intersection                          | on Begins at 04:30 | PM        |            |      |      |            |            |  |  |  |  |  |  |
| 04:30 PM                                                   | 129                | 0         | 129        | 311  | 19   | 330        | 459        |  |  |  |  |  |  |
| 04:45 PM                                                   | 149                | 0         | 149        | 317  | 19   | 336        | 485        |  |  |  |  |  |  |
| 05:00 PM                                                   | 149                | 0         | 149        | 342  | 8    | 350        | 499        |  |  |  |  |  |  |
| 05:15 PM                                                   | 160                | 0         | 160        | 284  | 19   | 303        | 463        |  |  |  |  |  |  |
| Total Volume                                               | 587                | 0         | 587        | 1254 | 65   | 1319       | 1906       |  |  |  |  |  |  |
| % App. Total                                               | 100                | 0         |            | 95.1 | 4.9  |            |            |  |  |  |  |  |  |
| PHF                                                        | .917               | .000      | .917       | .917 | .855 | .942       | .955       |  |  |  |  |  |  |






File Name : Rolesville(Jonesville and Mitchell Mill)AM Peak Site Code : Start Date : 11/30/2021 Page No : 1

|             |       | Peeble | s Road | ł          |       |      | ell Mill | linted O   |       | Peeble | s Road | 1          |       | Mitch | ell Mill |            |            |
|-------------|-------|--------|--------|------------|-------|------|----------|------------|-------|--------|--------|------------|-------|-------|----------|------------|------------|
|             |       | South  | bound  |            |       | West | bound    |            |       | North  | bound  |            |       | East  | bound    |            |            |
| Start Time  | Right | Thru   | Left   | App. Total | Right | Thru | Left     | App. Total | Right | Thru   | Left   | App. Total | Right | Thru  | Left     | App. Total | Int. Total |
| 07:00 AM    | 4     | 17     | 13     | 34         | 8     | 73   | 5        | 86         | 6     | 11     | 3      | 20         | 0     | 74    | 1        | 75         | 215        |
| 07:15 AM    | 4     | 36     | 7      | 47         | 8     | 101  | 2        | 111        | 3     | 26     | 1      | 30         | 0     | 32    | 1        | 33         | 221        |
| 07:30 AM    | 6     | 34     | 5      | 45         | 16    | 87   | 3        | 106        | 0     | 24     | 0      | 24         | 1     | 33    | 1        | 35         | 210        |
| 07:45 AM    | 2     | 43     | 6      | 51         | 8     | 49   | 1        | 58         | 2     | 15     | 0      | 17         | 1     | 24    | 4        | 29         | 155        |
| Total       | 16    | 130    | 31     | 177        | 40    | 310  | 11       | 361        | 11    | 76     | 4      | 91         | 2     | 163   | 7        | 172        | 801        |
|             |       |        |        |            |       |      |          |            | 1     |        |        |            |       |       |          |            | I.         |
| 08:00 AM    | 7     | 31     | 12     | 50         | 4     | 53   | 1        | 58         | 1     | 8      | 2      | 11         | 0     | 28    | 3        | 31         | 150        |
| 08:15 AM    | 12    | 17     | 3      | 32         | 1     | 37   | 1        | 39         | 1     | 7      | 0      | 8          | 1     | 24    | 1        | 26         | 105        |
| 08:30 AM    | 6     | 4      | 2      | 12         | 3     | 49   | 2        | 54         | 1     | 4      | 2      | 7          | 0     | 19    | 0        | 19         | 92         |
| 08:45 AM    | 1     | 13     | 3      | 17         | 4     | 32   | 1        | 37         | 1     | 3      | 1      | 5          | 1     | 18    | 2        | 21         | 80         |
| Total       | 26    | 65     | 20     | 111        | 12    | 171  | 5        | 188        | 4     | 22     | 5      | 31         | 2     | 89    | 6        | 97         | 427        |
|             |       |        |        |            |       |      |          | - 10       |       |        |        |            |       |       |          |            | 4000       |
| Grand Total | 42    | 195    | 51     | 288        | 52    | 481  | 16       | 549        | 15    | 98     | _ 9    | 122        | 4     | 252   | 13       | 269        | 1228       |
| Apprch %    | 14.6  | 67.7   | 17.7   |            | 9.5   | 87.6 | 2.9      |            | 12.3  | 80.3   | 7.4    |            | 1.5   | 93.7  | 4.8      |            |            |
| Total %     | 3.4   | 15.9   | 4.2    | 23.5       | 4.2   | 39.2 | 1.3      | 44.7       | 1.2   | 8      | 0.7    | 9.9        | 0.3   | 20.5  | 1.1      | 21.9       |            |
| Cars +      | 42    | 195    | 50     | 287        | 52    | 479  | 16       | 547        | 15    | 98     | 9      | 122        | 4     | 249   | 13       | 266        | 1222       |
| % Cars +    | 100   | 100    | 98     | 99.7       | 100   | 99.6 | 100      | 99.6       | 100   | 100    | 100    | 100        | 100   | 98.8  | 100      | 98.9       | 99.5       |
| Trucks      | 0     | 0      | 1      | 1          | 0     | 2    | 0        | 2          | 0     | 0      | 0      | 0          | 0     | 3     | 0        | 3          | 6          |
| % Trucks    | 0     | 0      | 2      | 0.3        | 0     | 0.4  | 0        | 0.4        | 0     | 0      | 0      | 0          | 0     | 1.2   | 0        | 1.1        | 0.5        |

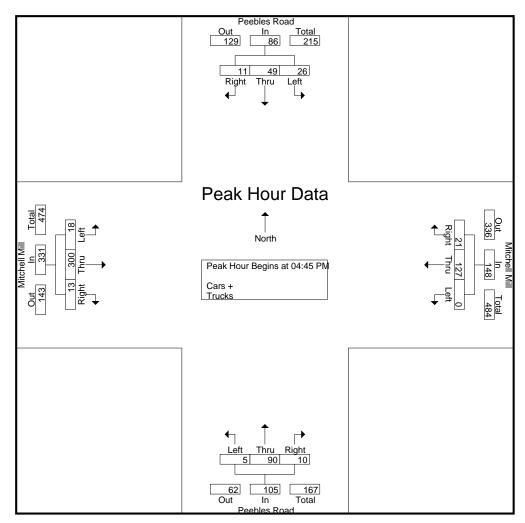


File Name : Rolesville(Jonesville and Mitchell Mill)AM Peak Site Code : Start Date : 11/30/2021 Page No : 2

|                                                            |           | Peeble   |        | ł          | Mitchell Mill |           |      |            |       |       | s Road |            |       | ]    |      |            |            |
|------------------------------------------------------------|-----------|----------|--------|------------|---------------|-----------|------|------------|-------|-------|--------|------------|-------|------|------|------------|------------|
|                                                            |           | South    | bound  |            |               | Westbound |      |            |       | North | bound  |            |       |      |      |            |            |
| Start Time                                                 | Right     | Thru     | Left   | App. Total | Right         | Thru      | Left | App. Total | Right | Thru  | Left   | App. Total | Right | Thru | Left | App. Total | Int. Total |
| Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1 |           |          |        |            |               |           |      |            |       |       |        |            |       |      |      |            |            |
| Peak Hour for                                              | Entire In | tersecti | on Beg | ins at 07: | 00 AM         |           |      |            |       |       |        |            |       |      |      |            |            |
| 07:00 AM                                                   | 4         | 17       | 13     | 34         | 8             | 73        | 5    | 86         | 6     | 11    | 3      | 20         | 0     | 74   | 1    | 75         | 215        |
| 07:15 AM                                                   | 4         | 36       | 7      | 47         | 8             | 101       | 2    | 111        | 3     | 26    | 1      | 30         | 0     | 32   | 1    | 33         | 221        |
| 07:30 AM                                                   | 6         | 34       | 5      | 45         | 16            | 87        | 3    | 106        | 0     | 24    | 0      | 24         | 1     | 33   | 1    | 35         | 210        |
| 07:45 AM                                                   | 2         | 43       | 6      | 51         | 8             | 49        | 1    | 58         | 2     | 15    | 0      | 17         | 1     | 24   | 4    | 29         | 155        |
| Total Volume                                               | 16        | 130      | 31     | 177        | 40            | 310       | 11   | 361        | 11    | 76    | 4      | 91         | 2     | 163  | 7    | 172        | 801        |
| % App. Total                                               | 9         | 73.4     | 17.5   |            | 11.1          | 85.9      | 3    |            | 12.1  | 83.5  | 4.4    |            | 1.2   | 94.8 | 4.1  |            |            |
| PHF                                                        | .667      | .756     | .596   | .868       | .625          | .767      | .550 | .813       | .458  | .731  | .333   | .758       | .500  | .551 | .438 | .573       | .906       |






File Name : Rolesville(Jonesville and Mitchell Mill)PM Peak Site Code : Start Date : 11/30/2021 Page No : 1

|             |        | Peeble | s Road<br>bound | ł                |       | Mitch | ell Mill<br>bound | ninea o    |        | Peeble | s Roac<br>bound | I          |        |      |       |                  |            |
|-------------|--------|--------|-----------------|------------------|-------|-------|-------------------|------------|--------|--------|-----------------|------------|--------|------|-------|------------------|------------|
| Stort Time  | Dialat |        |                 | • <b>T</b> · · · | Diaht |       |                   | ·          | Dialat |        |                 | A          | Dialet |      | bound | • <b>T</b> · · · | Int. Total |
| Start Time  | Right  | Thru   | Left            | App. Total       | Right | Thru  | Left              | App. Total | Right  | Thru   | Left            | App. Total | Right  | Thru | Left  | App. Total       |            |
| 04:00 PM    | 7      | 11     | 13              | 31               | 6     | 25    | 1                 | 32         | 1      | 14     | 1               | 16         | 2      | 44   | 6     | 52               | 131        |
| 04:15 PM    | 6      | 11     | 4               | 21               | 2     | 27    | 2                 | 31         | 1      | 17     | 3               | 21         | 1      | 62   | 4     | 67               | 140        |
| 04:30 PM    | 3      | 13     | 3               | 19               | 4     | 30    | 2                 | 36         | 0      | 27     | 1               | 28         | 3      | 64   | 3     | 70               | 153        |
| 04:45 PM    | 2      | 8      | 5               | 15               | 4     | 37    | 0                 | 41         | 3      | 18     | 0               | 21         | 3      | 71   | 3     | 77               | 154        |
| Total       | 18     | 43     | 25              | 86               | 16    | 119   | 5                 | 140        | 5      | 76     | 5               | 86         | 9      | 241  | 16    | 266              | 578        |
| 05:00 PM    | 1      | 15     | 6               | 22               | 5     | 31    | 0                 | 36         | 3      | 19     | 2               | 24         | 1      | 78   | 5     | 84               | 166        |
| 05:15 PM    | 3      | 15     | 6               | 24               | 4     | 23    | 0                 | 27         | 3      | 26     | 1               | 30         | 4      | 89   | 7     | 100              | 181        |
| 05:30 PM    | 5      | 11     | 9               | 25               | 8     | 36    | 0                 | 44         | 1      | 27     | 2               | 30         | 5      | 62   | 3     | 70               | 169        |
| 05:45 PM    | 1      | 7      | 4               | 12               | 2     | 21    | 1                 | 24         | 2      | 13     | 2               | 17         | 1      | 55   | 6     | 65               | 118        |
|             | 10     | 48     | 25              | 83               | 19    | 111   | 1                 | 131        | 9      | 85     | 7               |            | 14     | 284  | 21    |                  | 634        |
| Total       | 10     | 40     | 25              | 03               | 19    |       | I                 | 131        | 9      | 60     | 1               | 101        | 14     | 204  | 21    | 319              | 034        |
| Grand Total | 28     | 91     | 50              | 169              | 35    | 230   | 6                 | 271        | 14     | 161    | 12              | 187        | 23     | 525  | 37    | 585              | 1212       |
| Apprch %    | 16.6   | 53.8   | 29.6            |                  | 12.9  | 84.9  | 2.2               |            | 7.5    | 86.1   | 6.4             |            | 3.9    | 89.7 | 6.3   |                  |            |
| Total %     | 2.3    | 7.5    | 4.1             | 13.9             | 2.9   | 19    | 0.5               | 22.4       | 1.2    | 13.3   | 1               | 15.4       | 1.9    | 43.3 | 3.1   | 48.3             |            |
| Cars +      | 28     | 91     | 50              | 169              | 35    | 229   | 6                 | 270        | 14     | 161    | 12              | 187        | 23     | 524  | 37    | 584              | 1210       |
| % Cars +    | 100    | 100    | 100             | 100              | 100   | 99.6  | 100               | 99.6       | 100    | 100    | 100             | 100        | 100    | 99.8 | 100   | 99.8             | 99.8       |
| Trucks      | 0      | 0      | 0               | 0                | 0     | 1     | 0                 | 1          | 0      | 0      | 0               | 0          | 0      | 1    | 0     | 1                | 2          |
| % Trucks    | 0      | 0      | 0               | 0                | 0     | 0.4   | 0                 | 0.4        | 0      | 0      | 0               | 0          | 0      | 0.2  | 0     | 0.2              | 0.2        |



File Name : Rolesville(Jonesville and Mitchell Mill)PM Peak Site Code : Start Date : 11/30/2021 Page No : 2

|                                                            |           | Peeble   | s Road | ł          | Mitchell Mill |           |      |            |       | Peeble | s Road |            |       | ]    |      |            |            |
|------------------------------------------------------------|-----------|----------|--------|------------|---------------|-----------|------|------------|-------|--------|--------|------------|-------|------|------|------------|------------|
|                                                            |           | South    | bound  |            |               | Westbound |      |            |       | North  | bound  |            |       |      |      |            |            |
| Start Time                                                 | Right     | Thru     | Left   | App. Total | Right         | Thru      | Left | App. Total | Right | Thru   | Left   | App. Total | Right | Thru | Left | App. Total | Int. Total |
| Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1 |           |          |        |            |               |           |      |            |       |        |        |            |       |      |      |            |            |
| Peak Hour for                                              | Entire In | tersecti | on Beg | ins at 04: | 45 PM         |           |      |            |       |        |        |            |       |      |      |            |            |
| 04:45 PM                                                   | 2         | 8        | 5      | 15         | 4             | 37        | 0    | 41         | 3     | 18     | 0      | 21         | 3     | 71   | 3    | 77         | 154        |
| 05:00 PM                                                   | 1         | 15       | 6      | 22         | 5             | 31        | 0    | 36         | 3     | 19     | 2      | 24         | 1     | 78   | 5    | 84         | 166        |
| 05:15 PM                                                   | 3         | 15       | 6      | 24         | 4             | 23        | 0    | 27         | 3     | 26     | 1      | 30         | 4     | 89   | 7    | 100        | 181        |
| 05:30 PM                                                   | 5         | 11       | 9      | 25         | 8             | 36        | 0    | 44         | 1     | 27     | 2      | 30         | 5     | 62   | 3    | 70         | 169        |
| Total Volume                                               | 11        | 49       | 26     | 86         | 21            | 127       | 0    | 148        | 10    | 90     | 5      | 105        | 13    | 300  | 18   | 331        | 670        |
| % App. Total                                               | 12.8      | 57       | 30.2   |            | 14.2          | 85.8      | 0    |            | 9.5   | 85.7   | 4.8    |            | 3.9   | 90.6 | 5.4  |            |            |
| PHF                                                        | .550      | .817     | .722   | .860       | .656          | .858      | .000 | .841       | .833  | .833   | .625   | .875       | .650  | .843 | .643 | .828       | .925       |



# **APPENDIX C**

## ADJACENT DEVELOPMENT INFORMATION

## **TRAFFIC IMPACT** ANALYSIS

FOR

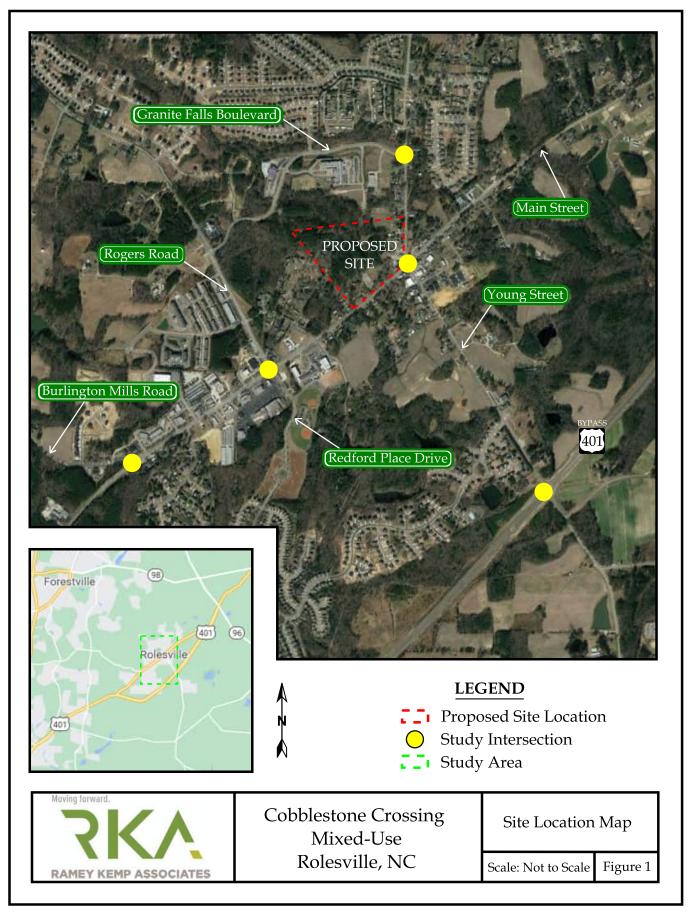
## **COBBLESTONE CROSSING MIXED-USE**

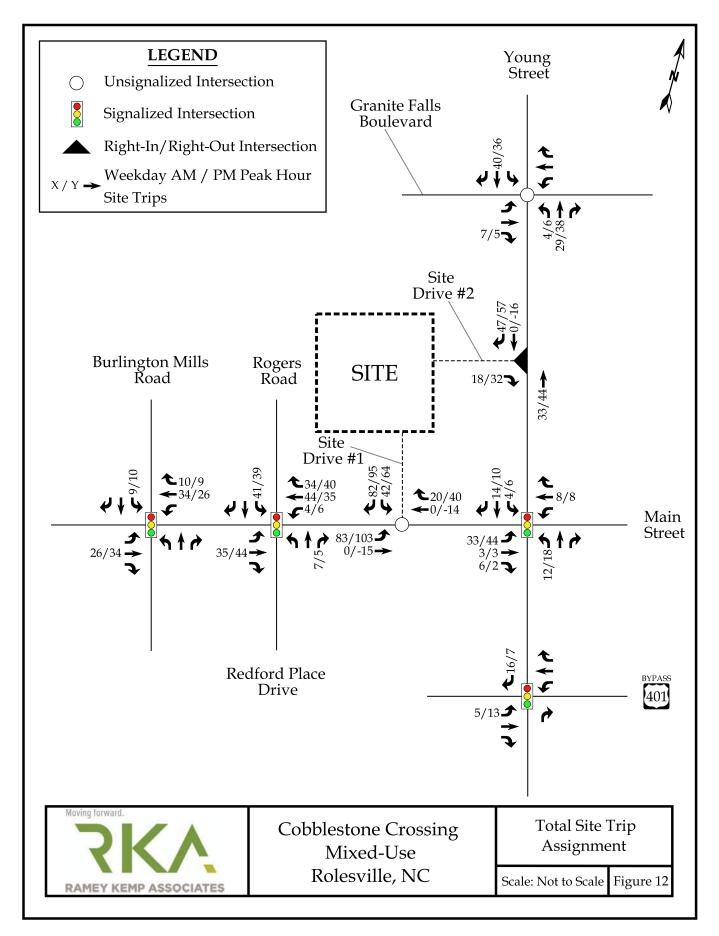
#### **LOCATED**

IN

### **ROLESVILLE, NORTH CAROLINA**

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571


Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910


**MARCH 2021** 



Prepared By: TF Reviewed By: MK

RKA Project No. 20498





#### 9. RECOMMENDATIONS

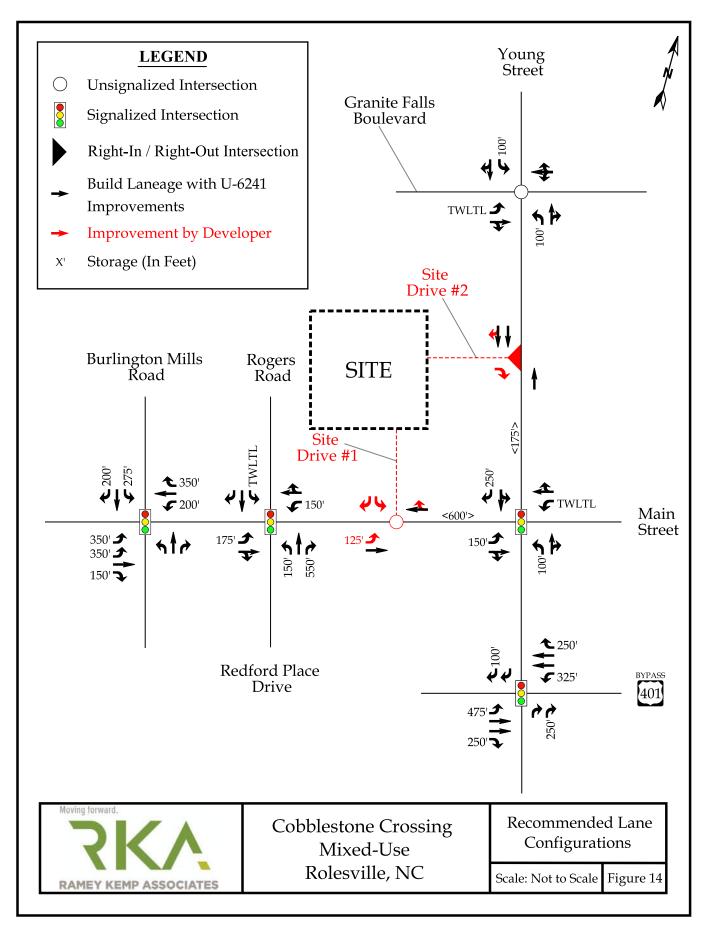
Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configuration for the proposed development.

#### **Improvements by STIP U-6241**

STIP U-6241 is expected to realign Burlington Mills Road and install a traffic signal at the relocated intersection on Main Street. STIP U-6241 is also expected to provide improvements to the pedestrian and bike facilities along Main Street and add a concrete median island along Main Street west of Rogers Road. These improvements associated with STIP U-6241 will alter the existing lane configurations at the study intersections along Main Street.

#### **Recommended Improvements by Developer**

Main Street and Site Drive 1


- Construct the southbound approach with one ingress and two egress lanes.
- Provide stop control for the southbound approach. ٠
- Install an eastbound left-turn lane with at least 125 feet of storage and appropriate decel ٠ and taper.

#### Young Street and Site Drive 2

- Construct the eastbound approach with one ingress and egress lane. •
- Provide stop control for the eastbound approach.



Transportation. Consulting that moves us forward.



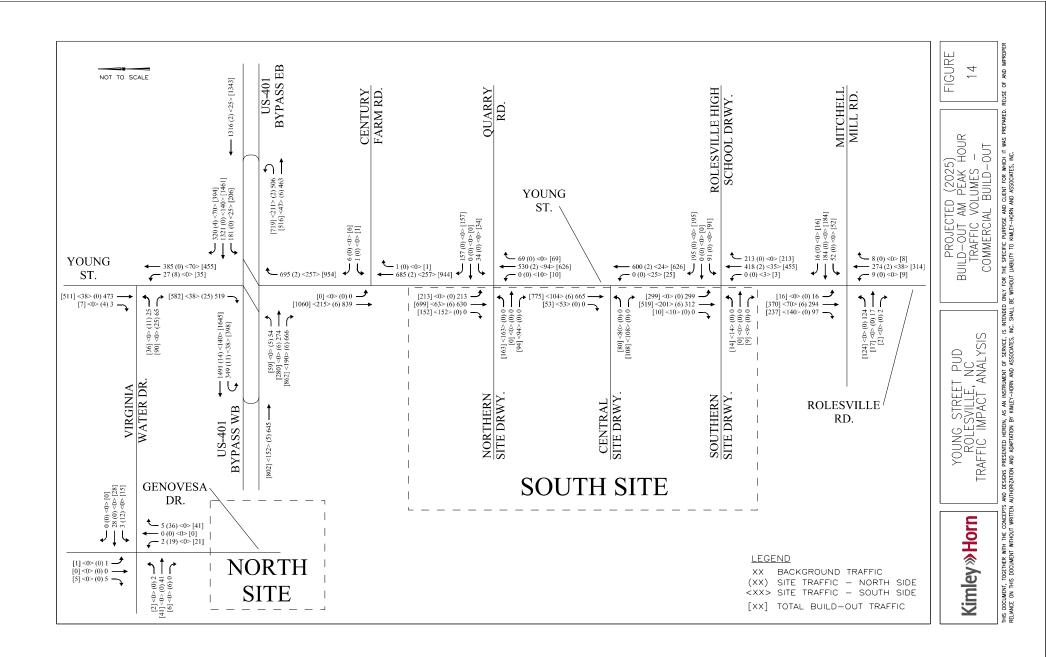
**Revised Traffic Impact Analysis for** 

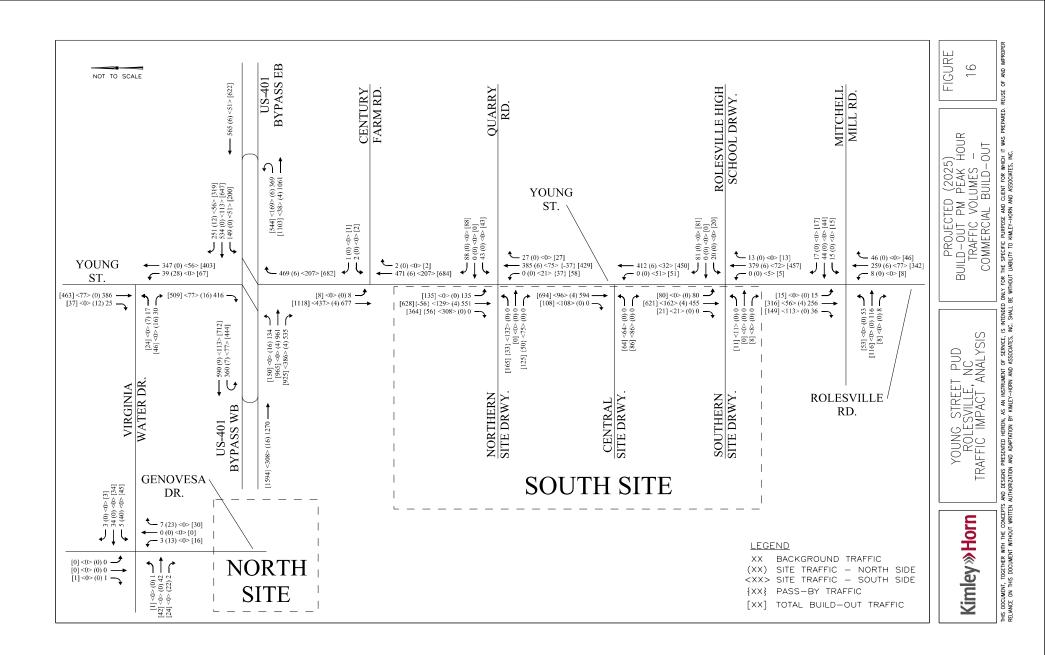
### **Young Street PUD**

**Rolesville, North Carolina** 

Prepared for: Ashton Woods Raleigh, North Carolina

**Prepared by:** 


Kimley-Horn and Associates, Inc. NC License #F-0102 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000


> June 2019 015956012





THIS DOCUMENT, TOGETHER WITH THE CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPARED. REUSE OF AND IMPROPER RELIANCE ON THIS DOCUMENT WITHOUT WRITTEN AUTHORIZATION AND ADAPTATION BY KIMLEY-HORN AND ASSOCIATES, INC. SHALL BE WITHOUT LIABILITY TO KIMLEY-HORN AND ASSOCIATES, INC.





### 7.0 Recommendations

#### **Residential Build-out**

The following improvements are recommended to be performed to accommodate projected site traffic volumes at build-out of the residential portion of the development:

### US 401 Bypass:

• Coordinate the traffic signals at the intersections of US 401 at Young Street and the Superstreet U-turns

### Young Street at Quarry Road/North Site Driveway:

- Construct a northbound left-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Construct a southbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Restripe the existing westbound left-turn lane on Quarry Road to a shared left/through lane
- Provide an exclusive left-turn lane with 275 feet of storage and appropriate tapers and a shared through/right lane on the North Site Driveway
- Install a traffic signal when warranted

### Young Street at Central Site Driveway:

- Construct a northbound left-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Construct a southbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Provide exclusive left and right-turn lanes on the Central Site Driveway with 125 feet of storage and appropriate tapers for the left-turn lane

#### Young Street at Rolesville High School Driveway/South Site Driveway:

- Construct a northbound left-turn lane on Young Street with 50 feet of storage and appropriate tapers
- Provide one egress lane on the South Site Driveway

### Rolesville Road at Mitchell Mill Road:

• Install a traffic signal when warranted

Analyses indicate that with the recommended improvements in place, all of the study intersections except for Young Street at Century Farm Road and Young Street at Rolesville High School Driveway/South Site Driveway are expected to operate at an acceptable LOS at build-out of the residential-only phase of the development.

### Kimley »Horn

Analyses indicate that the intersection of Young Street at Century Farm Road is expected to operate with long delays on the minor street approach (Century Farm Road) in the AM peak hour at project build-out. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic traffic simulations indicate that no queuing issues are expected at this intersection.

Analyses indicate that the intersection of Young Street at the Rolesville High School Driveway/South Site Driveway is expected to operate with long delays on the minor street approach (Rolesville High School Driveway) in the AM peak hour and school PM peak hour with or without the proposed project in place in the study year 2025. SimTraffic traffic simulations also indicate the possibility of long queues on the westbound left-turn movement at this intersection in the AM peak hour and school PM peak hour. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. This intersection is not expected to meet 4-hour or 8-hour MUTCD traffic signal warrants.

#### **Commercial Build-out**

The following additional improvements are recommended to be performed in addition to those recommended above for the residential phase to accommodate projected site traffic volumes when the retail portion of the site is developed:

US 401 Bypass Eastbound at Young Street:

• Extend the storage of the existing eastbound right-turn lane on US 401 Bypass by approximately 175 feet to provide 400 feet of storage and appropriate tapers

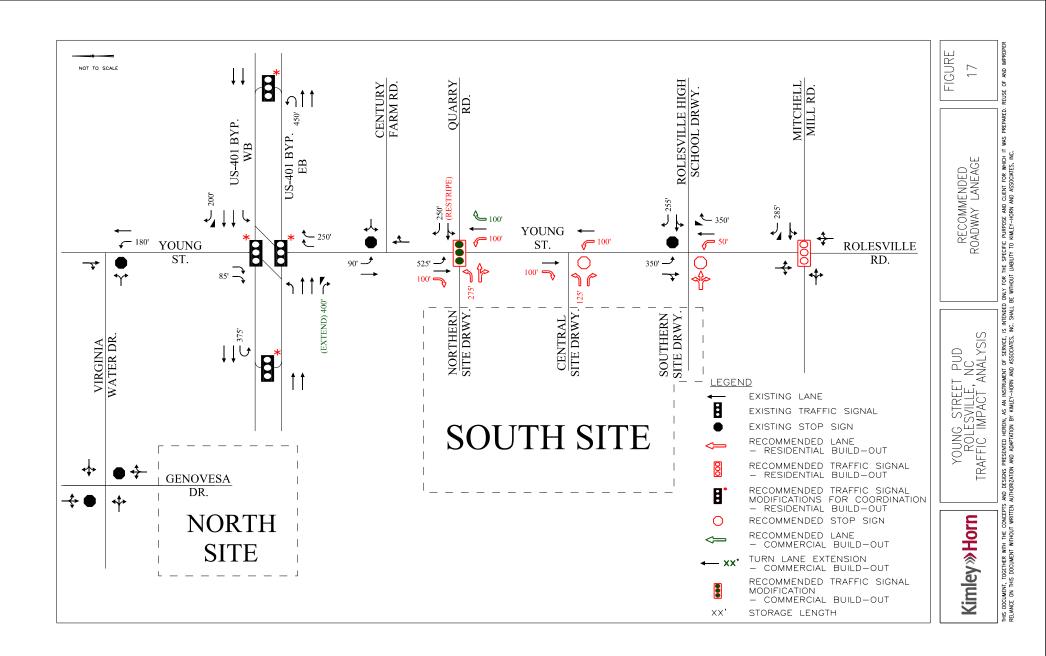
Young Street at Quarry Road/North Site Driveway:

- Construct a northbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Modify the traffic signal to accommodate the additional laneage

Analyses indicate that with the recommended improvements in place, all of the study intersections except for Young Street at Century Farm Road, Young Street at the Central Site Driveway, and Young Street at Rolesville High School Driveway/South Site Driveway are expected to operate at acceptable LOS at commercial build-out of the development.

Analyses indicate that the intersection of Young Street at Century Farm Road is expected to operate with long delays on the minor street approach (Century Farm Road) in the AM peak hour at project build-out. It is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic

### Kimley »Horn


traffic simulations indicate that short queues are likely on the minor street approach in the AM peak hour at commercial build-out.

Analyses indicate that the intersection of Young Street at the Central Site Driveway is expected to operate with long delays on the minor street approach (Central Site Driveway) in the AM peak hour in the commercial build-out traffic condition. It is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic traffic simulations indicate the possibility of long queues on the eastbound left-turn movement at this intersection in the AM peak hour in the commercial build-out condition.

Analyses indicate that the intersection of Young Street at the Rolesville High School Driveway/South Site Driveway is expected to operate with long delays on the minor street approach (Rolesville High School Driveway) in the AM peak hour and school PM peak hour with or without the proposed project in place in the study year 2025. SimTraffic traffic simulations also indicate the possibility of long queues on the westbound left-turn movement at this intersection in the AM peak hour and school PM peak hour. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. This intersection is not expected to meet 4-hour or 8-hour MUTCD traffic signal warrants.

As shown in the analysis, the impact of site traffic associated with the commercial build-out of this proposed PUD is generally consistent with the currently-approved PUD for the site. The proposed PUD is expected to generate no more than 50 additional peak hour trips in each of the studied peak hours compared to the approved PUD, and delays at commercial build-out of both plans are generally consistent at each of the study intersections.

The recommended laneage for the development is shown on Figure 17.



## TRAFFIC IMPACT ANALYSIS

FOR

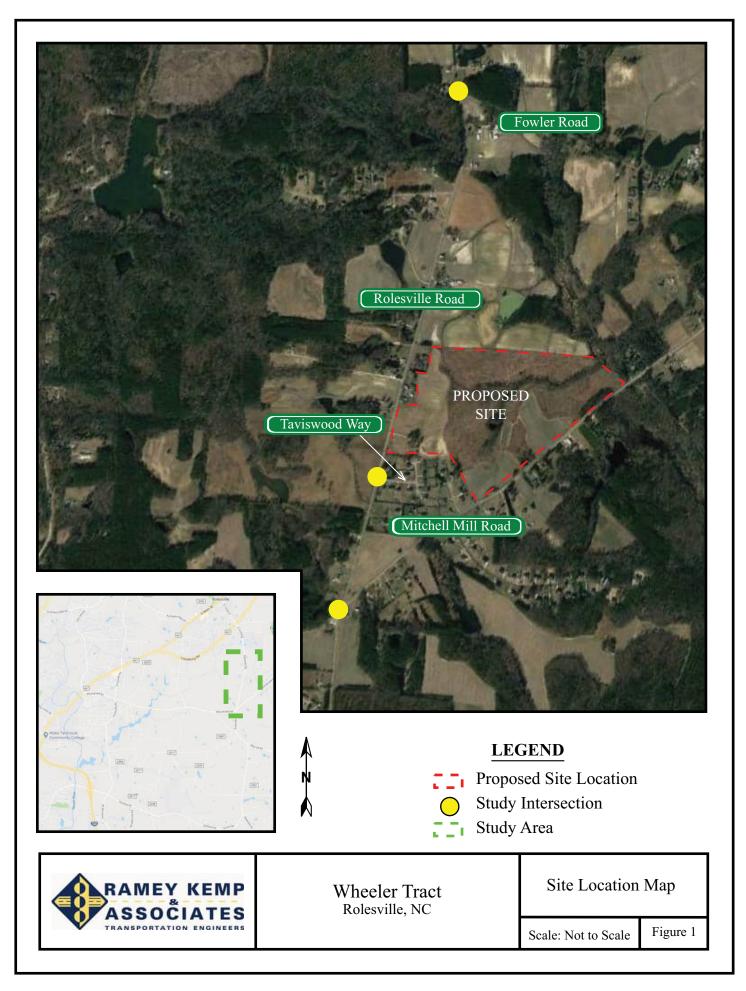
### WHEELER TRACT

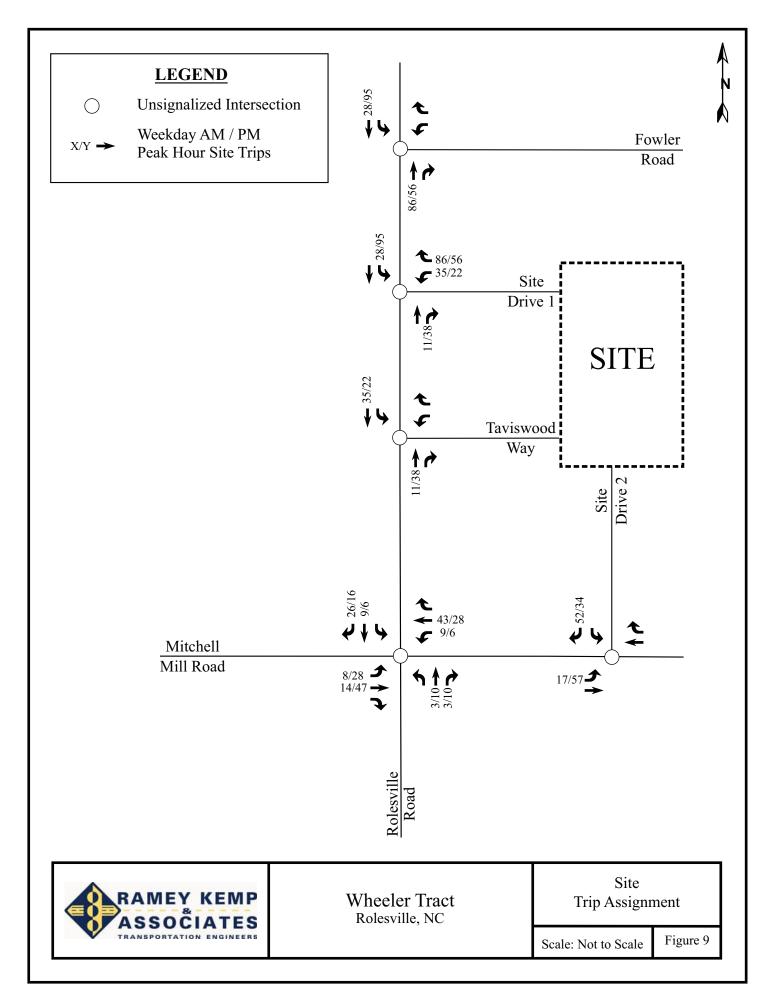
LOCATED

IN

### **ROLESVILLE, NC**

Prepared For: Hopper Communities 173 Paraggi Court Clayton, NC 27527


Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910


June 2019



Prepared By: <u>CAB</u> Reviewed By: JTR

RKA Project No. 19045





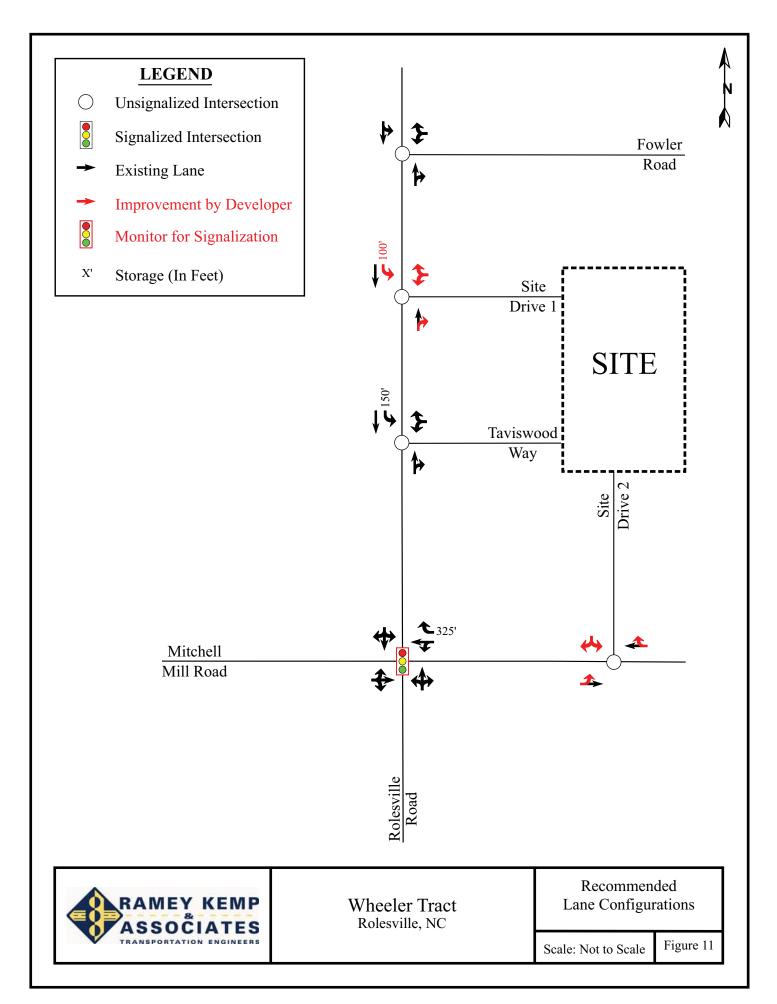
### 9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 11 for an illustration of the recommended lane configuration for the proposed development.

### **Recommended Improvements by Developer**

Rolesville Road and Mitchell Mill Road

• Monitor intersection for signalization.


### Rolesville Road and Site Drive 1

- Provide site access via a full movement intersection with one ingress lane and one egress lane.
- Provide stop control for westbound Site Drive 1 approach.
- Provide a designated southbound left-turn lane with at least 100 feet of storage and appropriate deceleration and taper.

### Mitchell Mill Road and Site Drive 2

- Provide site access via a full movement intersection with one ingress lane and one egress lane.
- Provide stop control for southbound Site Drive 2 approach.





# TRAFFIC IMPACT ANALYSIS

FOR

## LOUISBURY ROAD ASSEMBLAGE

LOCATED

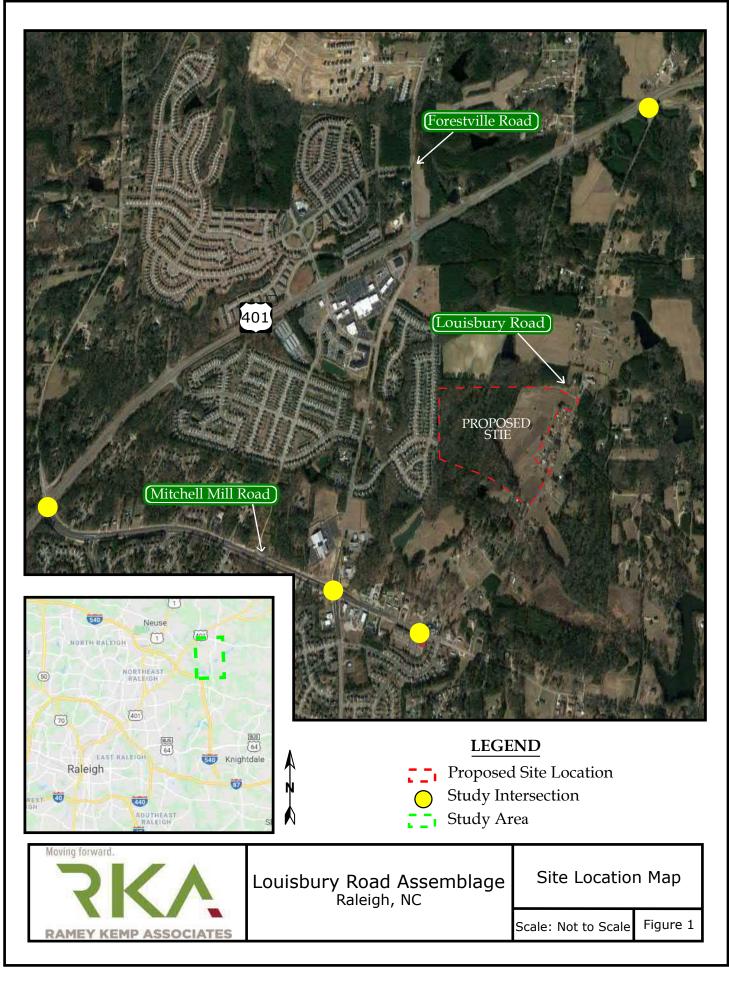
IN

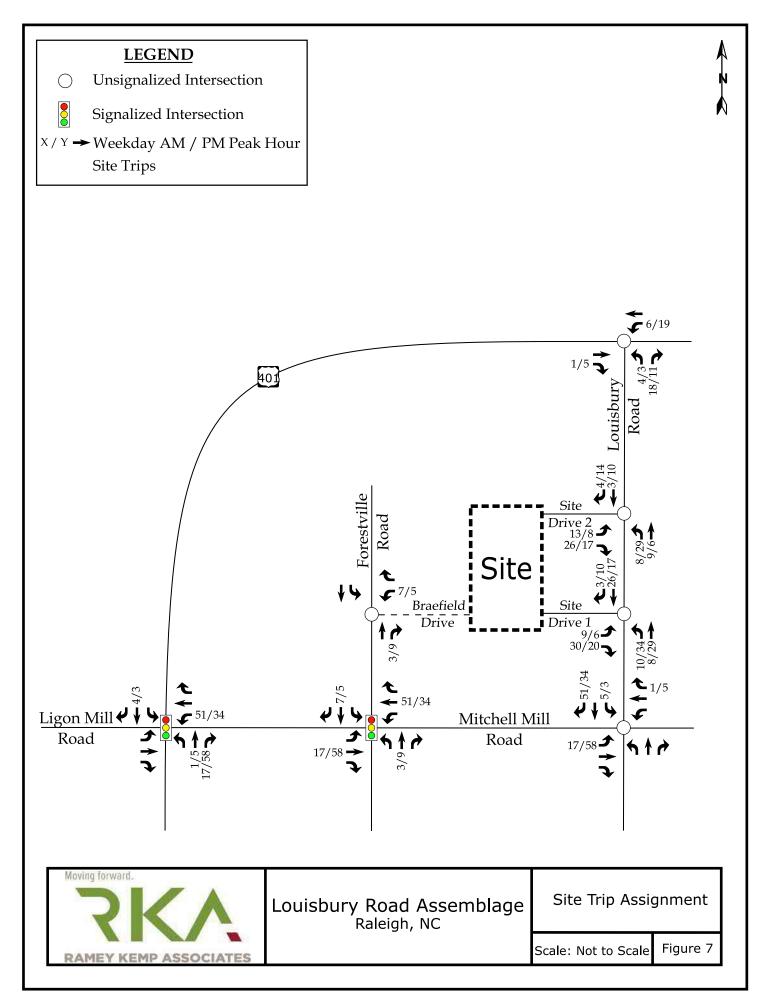
### **RALEIGH, NC**

Prepared For: McAdams Company 2905 Meridian Parkway Durham, NC 27713

Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910

andrew Ryle Rithe


SEAL 047058 5/8/2020


May 2020

Prepared By: <u>DT</u>

Reviewed By: DR

RKA Project No. 19418





### **12. RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 9 for an illustration of the recommended lane configuration for the proposed development.

### **Recommended Improvements by Developer**

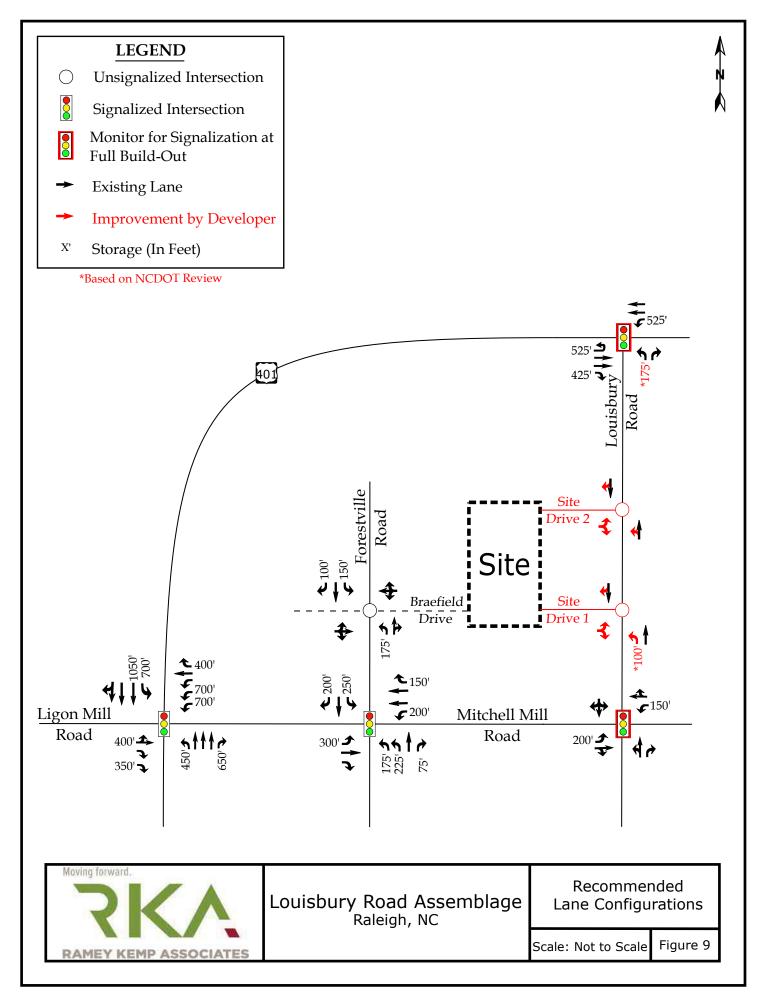
Mitchell Mill Road and Louisbury Road

• Monitor for signalization after site is constructed.

### US 401 and Louisbury Road

- Per NCDOT, extend northbound left turn lane to 175' of storage.
- Monitor for signalization after site is constructed.

### Louisbury Road and Site Drive 1


- Provide site access via full movement intersection with one (1) ingress lane and one (1) egress lane.
- Per NCDOT, provide northbound left turn lane with 100' of storage.
- Provide stop control for eastbound approach.

### Louisbury Road and Site Drive 2

- Provide site access via full movement intersection with one (1) ingress lane and one (1) egress lane.
- Provide stop control for eastbound approach.



Transportation Consulting that moves us forward.





### Kalas / Watkins Family Property Traffic Impact Analysis

Rolesville Road, Rolesville, North Carolina

August 24, 2019

Prepared for:

Mitchell Mill Road Investors LLC PO Box 3557 Cary, NC 27519

Prepared by:

Stantec Consulting Services Inc.

801 Jones Franklin Road Suite 300 Raleigh, NC 27606

### Sign-off Sheet

This document entitled Kalas / Watkins Family Property Traffic Impact Analysis was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Mitchell Mill Road Investors LLC (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Maggie Rogers

Reviewed by \_\_

2

(signature)

Matt Peach, PE, PTOE une Approved by

(signature)

Christa Greene, PE



Introduction August 24, 2019

### **1.0 INTRODUCTION**

The purpose of this report is to evaluate the transportation impacts of the proposed Kalas / Watkins Family Property development located on the west side of Rolesville Road just north of Mitchell Mill Road in Rolesville, NC. The project location is shown below in Figure 1.

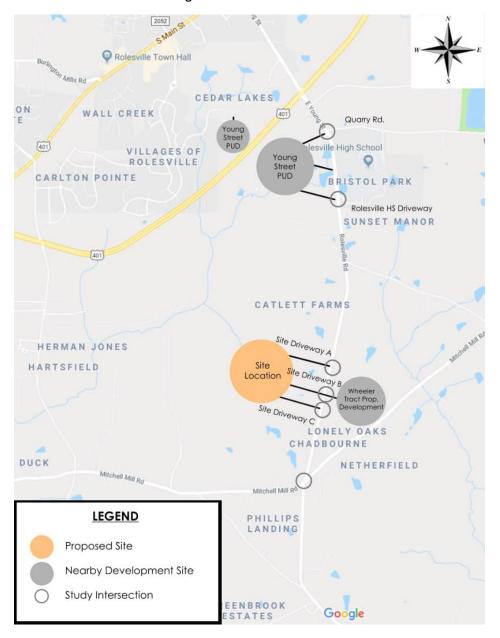



Figure 1: Site Location

#### KALAS / WATKINS FAMILY PROPERTY TRAFFIC IMPACT ANALYSIS

Trip Generation and Distribution August 24, 2019

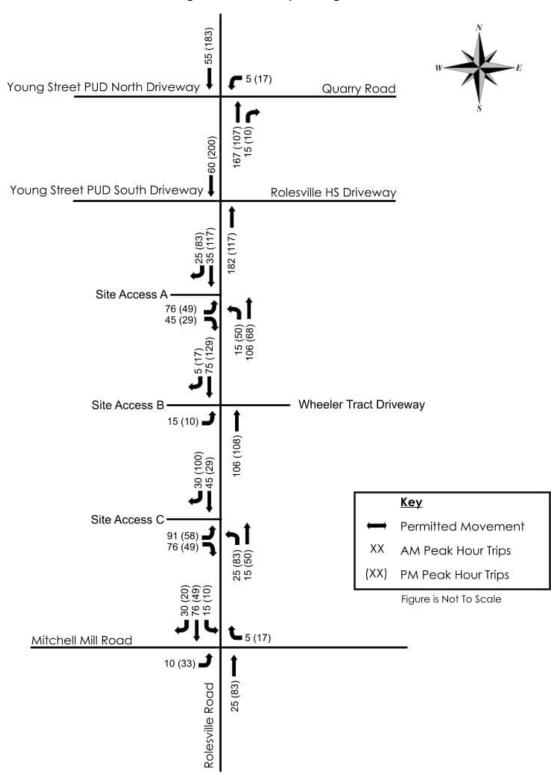



Figure 6: Site Trip Assignment

Traffic Analysis August 24, 2019

### 5.4 2025 BUILD WITH IMPROVEMENTS

Geometric improvements such as the installation of turn-lanes are recommended and therefore analyzed in this scenario. These items are listed below as well as in the recommendations section.

### Rolesville Road at Site Driveway A

- Construct Driveway A as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive eastbound right-turn lane with 100 feet of full-width storage and appropriate taper on Driveway A.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.

### Rolesville Road at Site Driveway B / Wheeler Tract Driveway

- Construct Driveway B as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 50 feet of full-width storage and appropriate taper on Rolesville Road.

### Rolesville Road at Site Driveway C

- Construct Driveway C as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive eastbound right-turn lane with 100 feet of full-width storage and appropriate taper on Driveway C.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.

Accordingly, all study area intersections and approaches operate at acceptable levels of service with the following exceptions:

- The east and westbound approaches to the intersection of Rolesville Road at Rolesville High School Driveway / Young Street PUD Southern Driveway operates at LOS F in the AM peak hour. This causes high overall delays at the intersection. Furthermore, the eastbound approach operates at LOS F and westbound approach operates at LOS E in the PM peak hour.
- The east and westbound approaches at the intersection of Rolesville Road at Site Driveway B / Wheeler Tract Driveway operate at LOS E in the AM peak hour.

The east and westbound approaches to the intersection of Rolesville Road at Rolesville High School Driveway / Young Street PUD Southern Driveway performs unacceptably across analysis scenarios. These delays can be



#### KALAS / WATKINS FAMILY PROPERTY TRAFFIC IMPACT ANALYSIS

Traffic Analysis August 24, 2019

attributed to both the Young Street PUD and High School traffic on the side street approaches. The Kalas / Watkins development is projected to only add through volumes to the intersection and are anticipated to have a minimal impact on overall delays at this intersection.

Delays on the eastbound approach of Site Driveway B at Rolesville Road can be attributed to high thru volumes on Rolesville Road during the AM peak hour. Traffic volumes using this approach are anticipated to be minor (i.e. 15 vehicles in the AM peak hour and 10 vehicles in the PM peak hour) and side street delays should dissipate after High School Traffic passes through the network. Table 8 lists the results of the capacity analysis under the 2025 build-improved traffic conditions. The recommended improvements are illustrated in figure 14.

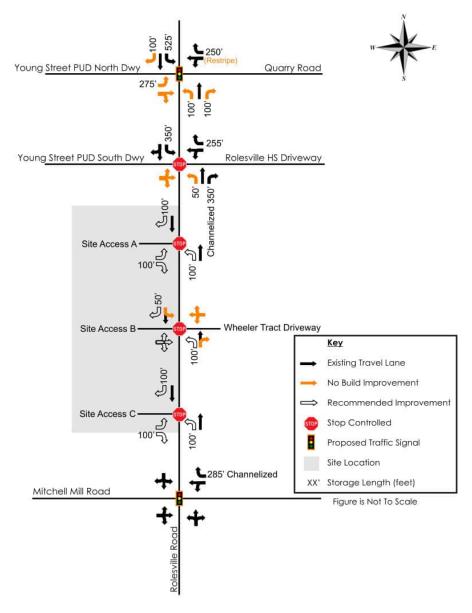



Figure 14: Recommended Improvements



# TRAFFIC IMPACT ANALYSIS

FOR

# **5109 MITCHELL MILL ROAD**

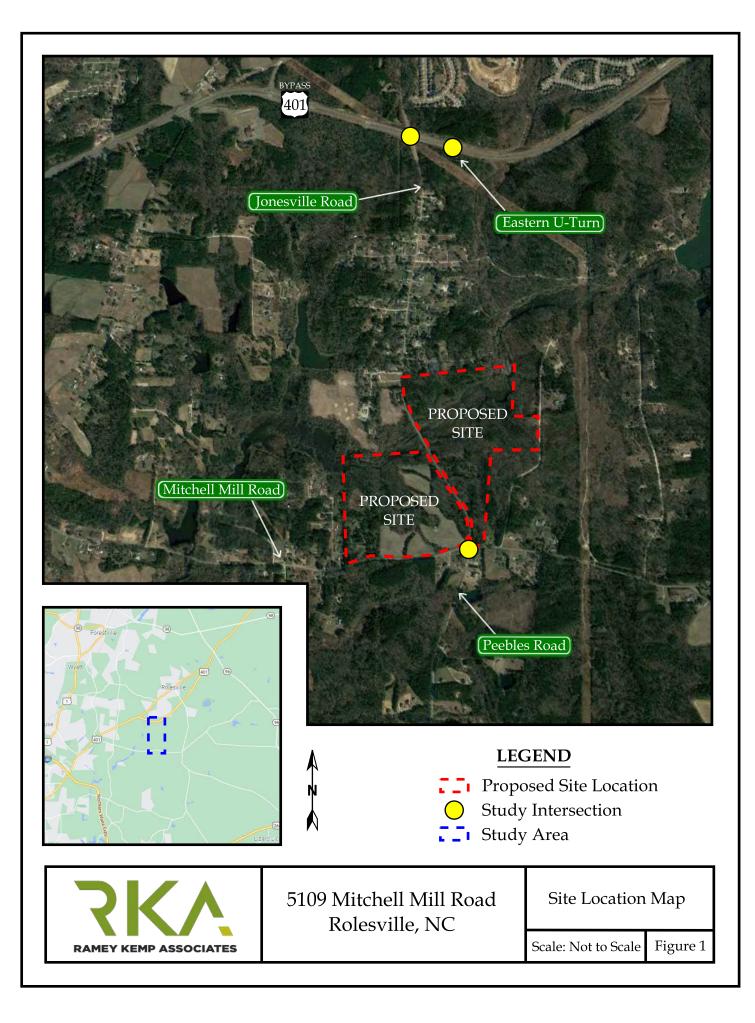
### LOCATED

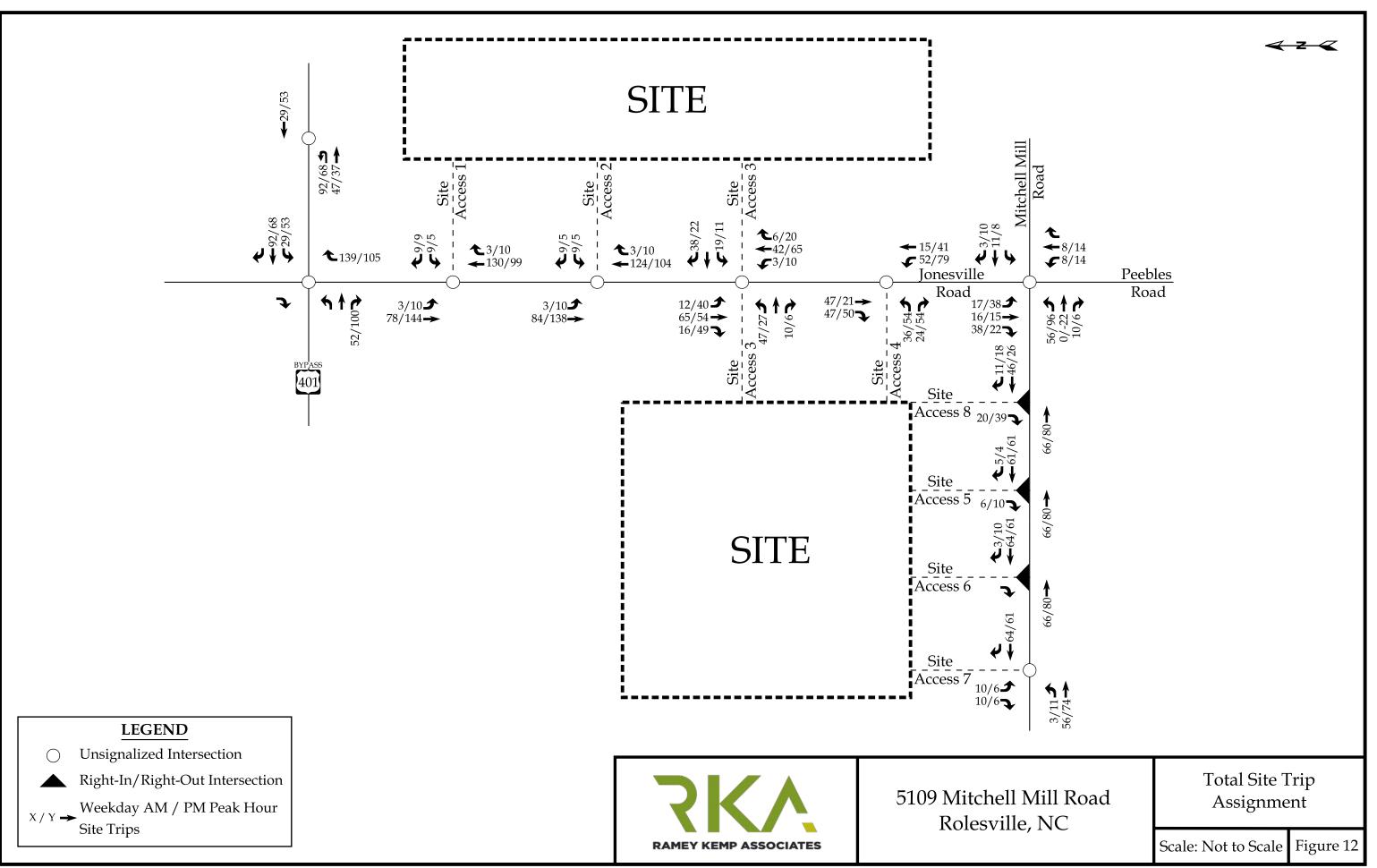
IN

### **ROLESVILLE, NORTH CAROLINA**

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571




Prepared By: Infrastructure Consulting Services, Inc. *dba* **Ramey Kemp Associates** 5808 Faringdon Place Raleigh, NC 27609 License #F-1489


AUGUST 2022

RKA Project No. 20498 - 004

Prepared By: TF

Reviewed By: CH





### 9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configurations for the proposed development.

### **Recommended Improvements by Developer**

Required Frontage Improvements per Rolesville Community Transportation Plan

- Widen Jonesville Road along the site frontage between Site Access 1 and Mitchell Mill Road to this roadway's ultimate section (2-lane w/ TWLTL).
- Widen one-half section of Mitchell Mill Road along the site frontage to this roadway's ultimate section (4-lane median divided).

### US 401 Bypass and Jonesville Road

• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

### US 401 Bypass and Eastern U-Turn Location

• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

### Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.



### Jonesville Road and Site Access 1

- Construct the westbound approach (Site Access 1) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 1).
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

### Jonesville Road and Site Access 2

- Construct the westbound approach (Site Access 2) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 2).
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

### Jonesville Road and Site Access 3

- Construct the eastbound and westbound approaches (Site Access 3) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound and westbound approaches (Site Access 3).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.



### Jonesville Road and Site Access 4

- Construct the eastbound approach (Site Access 4) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Access 4).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

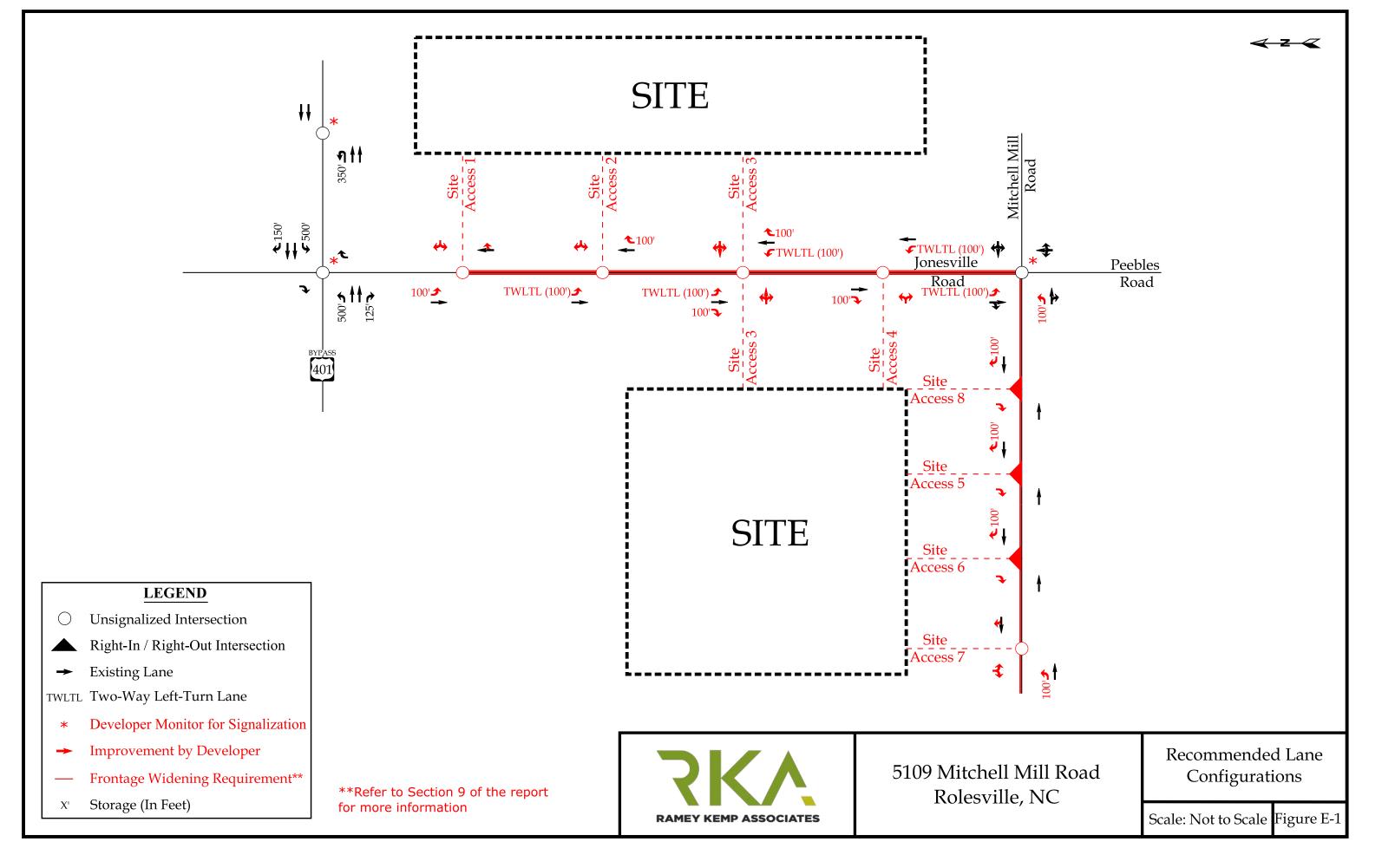
### Mitchell Mill Road and Site Access 5

- Construct the southbound approach (Site Access 5) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 5). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

### Mitchell Mill Road and Site Access 6

- Construct the southbound approach (Site Access 6) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 6). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

### Mitchell Mill Road and Site Access 7


- Construct the southbound approach (Site Access 7) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 7)
- Construct an exclusive eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.



### Mitchell Mill Road and Site Access 8

- Construct the southbound approach (Site Access 8) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 8). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.





# TRAFFIC IMPACT ANALYSIS

FOR

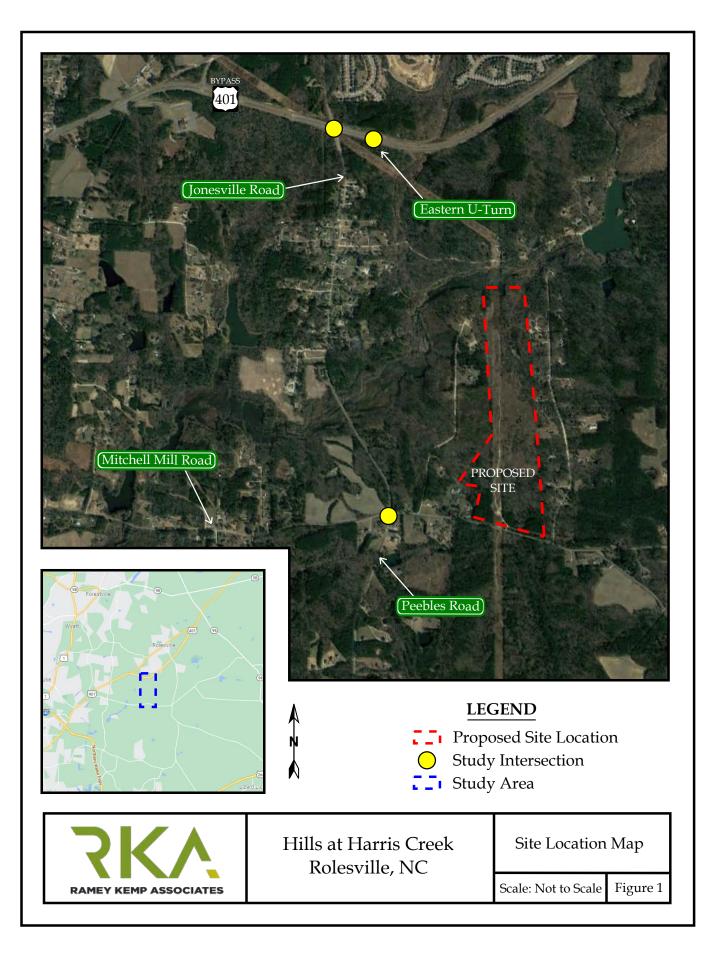
## **HILLS AT HARIS CREEK**

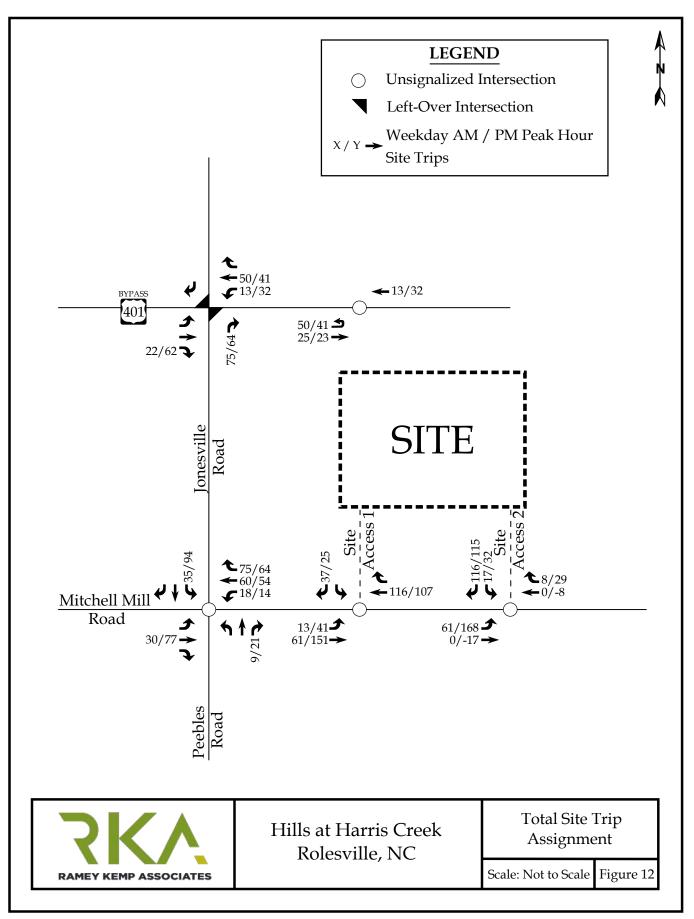
### LOCATED

IN

### **ROLESVILLE, NORTH CAROLINA**

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571


Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910




MAY 2022

Prepared By: <u>TF</u> Reviewed By: <u>JMC</u>

RKA Project No. 20498 - 005





### 9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configurations for the proposed development.

### **Recommended Improvements by Developer**

Required Frontage Improvements per Rolesville Community Transportation Plan

• Widen one-half section of Mitchell Mill Road along the site frontage to this roadway's ultimate section (4-lane median divided).

### US 401 Bypass and Jonesville Road

• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

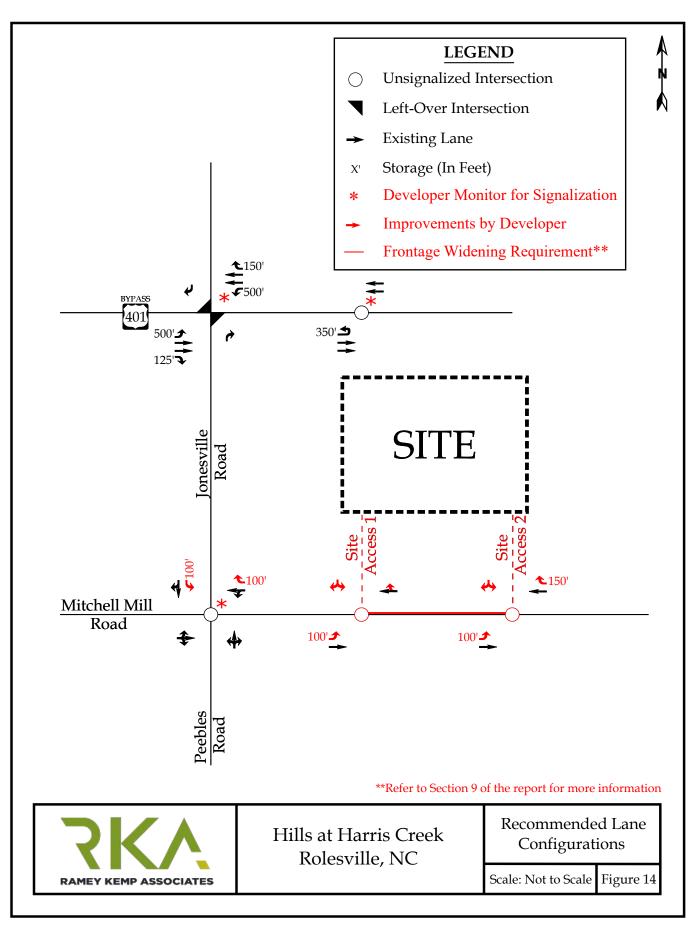
### US 401 Bypass and Eastern U-Turn Location

• Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

### Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
  - It should be noted that this improvement was also identified by the 5109
     Mitchell Mill Road TIA.
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.




### Mitchell Mill Road and Site Access 1

- Construct the southbound approach (Site Access 1) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 1).
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

### Mitchell Mill Road and Site Access 2

- Construct the southbound approach (Site Access 2) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 2).
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 150 feet of storage and appropriate decel and taper.
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.





# **APPENDIX D**

# CAPACITY ANALYSIS CALCULATIONS US 401 BYPASS & JONESVILLE ROAD

3.5

#### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|-------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      |      |       | WDL  |      | WDIX | NDL  |      |      | ODL  |      |      |  |
| •                      | •    | TT   | 00    | 0    | 0    | •    | •    | •    | 400  | •    | T    | 0    |  |
| Traffic Vol, veh/h     | 0    | 590  | 80    | 0    | 0    | 0    | 0    | 0    | 136  | 0    | 86   | 0    |  |
| Future Vol, veh/h      | 0    | 590  | 80    | 0    | 0    | 0    | 0    | 0    | 136  | 0    | 86   | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free  | Stop |  |
| RT Channelized         | -    | -    | Yield | -    | -    | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | -    | -    | 125   | -    | -    | -    | -    | -    | 0    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 656  | 89    | 0    | 0    | 0    | 0    | 0    | 151  | 0    | 96   | 0    |  |

| Major/Minor           | Major1 |       |     |     |       | Mino | r1 |   | Ν    | /linor2 |      |   |  |  |
|-----------------------|--------|-------|-----|-----|-------|------|----|---|------|---------|------|---|--|--|
| Conflicting Flow All  | -      | 0     | 0   |     |       |      | -  | - | 328  | -       | 656  | - |  |  |
| Stage 1               | -      | -     | -   |     |       |      | -  | - | -    | -       | 0    | - |  |  |
| Stage 2               | -      | -     | -   |     |       |      | -  | - | -    | -       | 656  | - |  |  |
| Critical Hdwy         | -      | -     | -   |     |       |      | -  | - | 6.94 | -       | 6.54 | - |  |  |
| Critical Hdwy Stg 1   | -      | -     | -   |     |       |      | -  | - | -    | -       | -    | - |  |  |
| Critical Hdwy Stg 2   | -      | -     | -   |     |       |      | -  | - | -    | -       | 5.54 | - |  |  |
| Follow-up Hdwy        | -      | -     | -   |     |       |      | -  | - | 3.32 | -       | 4.02 | - |  |  |
| Pot Cap-1 Maneuver    | 0      | -     | -   |     |       |      | 0  | 0 | 668  | 0       | 384  | 0 |  |  |
| Stage 1               | 0      | -     | -   |     |       |      | 0  | 0 | -    | 0       | -    | 0 |  |  |
| Stage 2               | 0      | -     | -   |     |       |      | 0  | 0 | -    | 0       | 460  | 0 |  |  |
| Platoon blocked, %    |        | -     | -   |     |       |      |    |   |      |         |      |   |  |  |
| Mov Cap-1 Maneuver    | -      | -     | -   |     |       |      | -  | - | 668  | -       | 384  | - |  |  |
| Mov Cap-2 Maneuver    | -      | -     | -   |     |       |      | -  | - | -    | -       | 384  | - |  |  |
| Stage 1               | -      | -     | -   |     |       |      | -  | - | -    | -       | -    | - |  |  |
| Stage 2               | -      | -     | -   |     |       |      | -  | - | -    | -       | 460  | - |  |  |
|                       |        |       |     |     |       |      |    |   |      |         |      |   |  |  |
| Approach              | EB     |       |     |     |       | Ν    | IB |   |      | SB      |      |   |  |  |
| HCM Control Delay, s  | 0      |       |     |     |       | 1    | 2  |   |      | 17.5    |      |   |  |  |
| HCM LOS               |        |       |     |     |       |      | В  |   |      | С       |      |   |  |  |
|                       |        |       |     |     |       |      |    |   |      |         |      |   |  |  |
| Minor Lane/Major Mvn  | nt N   | BLn1  | EBT | EBR | SBLn1 |      |    |   |      |         |      |   |  |  |
| Capacity (veh/h)      |        | 668   | -   | -   | 384   |      |    |   |      |         |      |   |  |  |
| HCM Lane V/C Ratio    | (      | 0.226 | -   | -   | 0.249 |      |    |   |      |         |      |   |  |  |
| HCM Control Delay (s) | )      | 12    | -   | -   | 17.5  |      |    |   |      |         |      |   |  |  |
| HCM Lane LOS          |        | В     | -   | -   | С     |      |    |   |      |         |      |   |  |  |
| HCM 95th %tile Q(veh  | )      | 0.9   | -   | -   | 1     |      |    |   |      |         |      |   |  |  |

#### Intersection

| Movement               | EBL  | EBT  | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|------------------------|------|------|-------|------|------|------|------|------|------|------|------|------|
| Lane Configurations    |      | ††   | 1     |      |      |      |      |      | 1    | -    | Ť    | -    |
| Traffic Vol, veh/h     | 0    | 1220 | 59    | 0    | 0    | 0    | 0    | 0    | 125  | 0    | 37   | 0    |
| Future Vol, veh/h      | 0    | 1220 | 59    | 0    | 0    | 0    | 0    | 0    | 125  | 0    | 37   | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Free | Free | Free  | Stop |
| RT Channelized         | -    | -    | Yield | -    | -    | None | -    | -    | None | -    | -    | None |
| Storage Length         | -    | -    | 125   | -    | -    | -    | -    | -    | 0    | -    | -    | -    |
| Veh in Median Storage, | ,# - | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Grade, %               | -    | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0    | 1356 | 66    | 0    | 0    | 0    | 0    | 0    | 139  | 0    | 41   | 0    |

| Major/Minor           | Major1 |       |     |     |       | Mino | r1 |   | Ν    | /linor2 |      |   |      |  |
|-----------------------|--------|-------|-----|-----|-------|------|----|---|------|---------|------|---|------|--|
| Conflicting Flow All  | -      | 0     | 0   |     |       |      | -  | - | 678  | -       | 1356 | - |      |  |
| Stage 1               | -      | -     | -   |     |       |      | -  | - | -    | -       | 0    | - |      |  |
| Stage 2               | -      | -     | -   |     |       |      | -  | - | -    | -       | 1356 | - |      |  |
| Critical Hdwy         | -      | -     | -   |     |       |      | -  | - | 6.94 | -       | 6.54 | - |      |  |
| Critical Hdwy Stg 1   | -      | -     | -   |     |       |      | -  | - | -    | -       | -    | - |      |  |
| Critical Hdwy Stg 2   | -      | -     | -   |     |       |      | -  | - | -    | -       | 5.54 | - |      |  |
| Follow-up Hdwy        | -      | -     | -   |     |       |      | -  | - | 3.32 | -       | 4.02 | - |      |  |
| Pot Cap-1 Maneuver    | 0      | -     | -   |     |       |      | 0  | 0 | 395  | 0       | 148  | 0 |      |  |
| Stage 1               | 0      | -     | -   |     |       |      | 0  | 0 | -    | 0       | -    | 0 |      |  |
| Stage 2               | 0      | -     | -   |     |       |      | 0  | 0 | -    | 0       | 216  | 0 |      |  |
| Platoon blocked, %    |        | -     | -   |     |       |      |    |   |      |         |      |   |      |  |
| Mov Cap-1 Maneuver    | -      | -     | -   |     |       |      | -  | - | 395  | -       | 148  | - |      |  |
| Mov Cap-2 Maneuver    | -      | -     | -   |     |       |      | -  | - | -    | -       | 148  | - |      |  |
| Stage 1               | -      | -     | -   |     |       |      | -  | - | -    | -       | -    | - |      |  |
| Stage 2               | -      | -     | -   |     |       |      | -  | - | -    | -       | 216  | - |      |  |
|                       |        |       |     |     |       |      |    |   |      |         |      |   |      |  |
| Approach              | EB     |       |     |     |       | Ν    | ΝB |   |      | SB      |      |   |      |  |
| HCM Control Delay, s  | 0      |       |     |     |       |      | 19 |   |      | 38.4    |      |   |      |  |
| HCM LOS               |        |       |     |     |       |      | С  |   |      | Е       |      |   |      |  |
|                       |        |       |     |     |       |      |    |   |      |         |      |   |      |  |
| Minor Lane/Major Mvm  | nt N   | BLn1  | EBT | EBR | SBLn1 |      |    |   |      |         |      |   |      |  |
| Capacity (veh/h)      | -      | 395   | -   | -   | 148   |      |    |   |      |         |      |   | <br> |  |
| HCM Lane V/C Ratio    | (      | 0.352 | -   | -   | 0.278 |      |    |   |      |         |      |   |      |  |
| HCM Control Delay (s) |        | 19    | -   | -   | 38.4  |      |    |   |      |         |      |   |      |  |
| HCM Lane LOS          |        | C     | -   | -   | E     |      |    |   |      |         |      |   |      |  |
| HCM 95th %tile Q(veh) | )      | 1.6   | -   | -   | 1.1   |      |    |   |      |         |      |   |      |  |
|                       |        |       |     |     |       |      |    |   |      |         |      |   |      |  |

#### Intersection

Int Delay, s/veh

| Lane Configurations       Image: configuration in the image: configuration | Movement               | EBL  | EBT  | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------|------|-------|------|------|------|------|------|------|------|------|------|--|
| Traffic Vol, veh/h       0       812       154       0       0       0       0       350       0       128       0         Future Vol, veh/h       0       812       154       0       0       0       0       350       0       128       0         Conflicting Peds, #/hr       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 </td <td></td> <td>EDL</td> <td></td> <td>EDK</td> <td>VVDL</td> <td>VVDI</td> <td>VVDR</td> <td>INDL</td> <td>INDI</td> <td>NDR</td> <td>SDL</td> <td>SDI</td> <td>SDK</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                        | EDL  |      | EDK   | VVDL | VVDI | VVDR | INDL | INDI | NDR  | SDL  | SDI  | SDK  |  |
| Future Vol, veh/h       0       812       154       0       0       0       0       350       0       128       0         Conflicting Peds, #/hr       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Lane Configurations    |      | 11   | r     |      |      |      |      |      | r    |      | 1    |      |  |
| Conflicting Peds, #/hr       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0 <td>Traffic Vol, veh/h</td> <td>0</td> <td>812</td> <td>154</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>350</td> <td>0</td> <td>128</td> <td>0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Traffic Vol, veh/h     | 0    | 812  | 154   | 0    | 0    | 0    | 0    | 0    | 350  | 0    | 128  | 0    |  |
| Sign ControlFreeFreeFreeStopStopStopStopStopStopStopStopStopRT ChannelizedYieldNoneNoneNoneStorage Length1250Veh in Median Storage, #0000-Grade, %-000-0-Peak Hour Factor9090909090909090909090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Future Vol, veh/h      | 0    | 812  | 154   | 0    | 0    | 0    | 0    | 0    | 350  | 0    | 128  | 0    |  |
| RT Channelized       -       -       Yield       -       -       None       -       -       None         Storage Length       -       -       125       -       -       -       0       -       -       0         Veh in Median Storage, #       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0       -       -       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Conflicting Peds, #/hr | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Storage Length       -       -       125       -       -       -       0       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sign Control           | Free | Free | Free  | Stop |  |
| Veh in Median Storage, #       0       -       -       0       -       -       0       -       0       -         Grade, %       -       0       -       -       0       -       -       0       -       -       0       -         Peak Hour Factor       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90       90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | RT Channelized         | -    | -    | Yield | -    | -    | None | -    | -    | None | -    | -    | None |  |
| Grade, % - 0 0 0 0 -<br>Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Storage Length         | -    | -    | 125   | -    | -    | -    | -    | -    | 0    | -    | -    | -    |  |
| Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90 90 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Veh in Median Storage. | ,# - | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Grade, %               | -    | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Hence $V$ (objection $V$ ) $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak Hour Factor       | 90   | 90   | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Heavy Vehicles, %      | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow 0 902 171 0 0 0 0 389 0 142 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Mvmt Flow              | 0    | 902  | 171   | 0    | 0    | 0    | 0    | 0    | 389  | 0    | 142  | 0    |  |

| Major/Minor           | Major1 |       |     |           | Minor1 |   | Ν    | /linor2 |      |   |      |
|-----------------------|--------|-------|-----|-----------|--------|---|------|---------|------|---|------|
| Conflicting Flow All  | -      | 0     | 0   |           | -      | - | 451  | -       | 902  | - |      |
| Stage 1               | -      | -     | -   |           | -      | - | -    | -       | 0    | - |      |
| Stage 2               | -      | -     | -   |           | -      | - | -    | -       | 902  | - |      |
| Critical Hdwy         | -      | -     | -   |           | -      | - | 6.94 | -       | 6.54 | - |      |
| Critical Hdwy Stg 1   | -      | -     | -   |           | -      | - | -    | -       | -    | - |      |
| Critical Hdwy Stg 2   | -      | -     | -   |           | -      | - | -    | -       | 5.54 | - |      |
| Follow-up Hdwy        | -      | -     | -   |           | -      | - | 3.32 | -       | 4.02 | - |      |
| Pot Cap-1 Maneuver    | 0      | -     | -   |           | 0      | 0 | 556  | 0       | 276  | 0 |      |
| Stage 1               | 0      | -     | -   |           | 0      | 0 | -    | 0       | -    | 0 |      |
| Stage 2               | 0      | -     | -   |           | 0      | 0 | -    | 0       | 355  | 0 |      |
| Platoon blocked, %    |        | -     | -   |           |        |   |      |         |      |   |      |
| Mov Cap-1 Maneuver    | -      | -     | -   |           | -      | - | 556  | -       | 276  | - |      |
| Mov Cap-2 Maneuver    | -      | -     | -   |           | -      | - | -    | -       | 276  | - |      |
| Stage 1               | -      | -     | -   |           | -      | - | -    | -       | -    | - |      |
| Stage 2               | -      | -     | -   |           | -      | - | -    | -       | 355  | - |      |
|                       |        |       |     |           |        |   |      |         |      |   |      |
| Approach              | EB     |       |     |           | NB     |   |      | SB      |      |   |      |
| HCM Control Delay, s  | 0      |       |     |           | 25.2   |   |      | 31.1    |      |   | <br> |
| HCM LOS               | v      |       |     |           | D      |   |      | D       |      |   |      |
|                       |        |       |     |           | 5      |   |      | 5       |      |   |      |
| Minor Long/Maigr Mur  | at N   |       | ГРТ | EBR SBLn1 |        |   |      |         |      |   |      |
| Minor Lane/Major Mvn  | nt N   | IBLn1 | EBT |           |        |   |      |         |      |   |      |
| Capacity (veh/h)      |        | 556   | -   | - 276     |        |   |      |         |      |   |      |
| HCM Lane V/C Ratio    |        | 0.699 | -   | - 0.515   |        |   |      |         |      |   |      |
| HCM Control Delay (s) | )      | 25.2  | -   | - 31.1    |        |   |      |         |      |   |      |
| HCM Lane LOS          |        | D     | -   | - D       |        |   |      |         |      |   |      |

2.7

\_

5.5

HCM 95th %tile Q(veh)

#### Intersection

| Movement               | EBL  | EBT  | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|-------|------|------|------|------|------|------|------|------|------|--|
|                        | EDL  | EDI  | EDR   | VVDL | VVDI | VVDN | INDL | INDI | NDR  | SDL  | SDI  | JDR  |  |
| Lane Configurations    |      | TT.  | r     |      |      |      |      |      | r    |      | Ť    |      |  |
| Traffic Vol, veh/h     | 0    | 1708 | 221   | 0    | 0    | 0    | 0    | 0    | 294  | 0    | 122  | 0    |  |
| Future Vol, veh/h      | 0    | 1708 | 221   | 0    | 0    | 0    | 0    | 0    | 294  | 0    | 122  | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free  | Stop |  |
| RT Channelized         | -    | -    | Yield | -    | -    | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | -    | -    | 125   | -    | -    | -    | -    | -    | 0    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 1898 | 246   | 0    | 0    | 0    | 0    | 0    | 327  | 0    | 136  | 0    |  |

| Major1 |                                                                         |                                                  | Minor1                                                    | ľ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Minor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                       |                                                       |
|--------|-------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| -      | 0                                                                       | 0                                                | -                                                         | - 949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 1898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                     |                                                       |
| -      | -                                                                       | -                                                | -                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                     |                                                       |
| -      | -                                                                       | -                                                | -                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 1898                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                     |                                                       |
| -      | -                                                                       | -                                                | -                                                         | - 6.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 6.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                     |                                                       |
| -      | -                                                                       | -                                                | -                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                     |                                                       |
| -      | -                                                                       | -                                                | -                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - 5.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                     |                                                       |
| -      | -                                                                       | -                                                | -                                                         | - 3.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - 4.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                     |                                                       |
| 0      | -                                                                       | -                                                | 0                                                         | 0 ~261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0 ~ 69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                     |                                                       |
| 0      | -                                                                       | -                                                | 0                                                         | 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0                                                     |                                                       |
| 0      | -                                                                       | -                                                | 0                                                         | 0 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 ~116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                                                     |                                                       |
|        | -                                                                       | -                                                |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |
|        | -                                                                       | -                                                | -                                                         | - ~261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - ~69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                     |                                                       |
| · -    | -                                                                       | -                                                | -                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - ~69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                     |                                                       |
| -      | -                                                                       | -                                                | -                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                     |                                                       |
| -      | -                                                                       | -                                                | -                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - ~116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                     |                                                       |
|        |                                                                         |                                                  |                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                       |                                                       |
| EB     |                                                                         |                                                  | NB                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                       |                                                       |
| 0      |                                                                         |                                                  | 180.2                                                     | \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 579.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |                                                       |
|        |                                                                         |                                                  | F                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                       |                                                       |
|        | -<br>-<br>-<br>-<br>-<br>-<br>-<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | - 0<br><br><br><br><br><br><br>0 -<br>0 -<br>0 - | - 0 0<br><br><br><br><br><br><br><br>0<br>0<br>0<br>0<br> | -       0       0       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         0       -       -       0         0       -       -       0         0       -       -       0         0       -       -       0         -       -       0       -         -       -       -       0         -       -       -       0         -       -       -       0         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       < | -       0       0       -       -       949         -       -       -       -       -       -       -         -       -       -       -       -       -       -       -         -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       -       - | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

| Minor Lane/Major Mvmt      | NBLn1    | EBT     | EBR SBLn1 |                            |                                |
|----------------------------|----------|---------|-----------|----------------------------|--------------------------------|
| Capacity (veh/h)           | 261      | -       | - 69      | 1                          |                                |
| HCM Lane V/C Ratio         | 1.252    | -       | - 1.965   |                            |                                |
| HCM Control Delay (s)      | 180.2    | -       | -\$ 579.5 |                            |                                |
| HCM Lane LOS               | F        | -       | - F       |                            |                                |
| HCM 95th %tile Q(veh)      | 15.9     | -       | - 12.4    |                            |                                |
| Notes                      |          |         |           |                            |                                |
| -: Volume exceeds capacity | / \$: De | lav exc | eeds 300s | +: Computation Not Defined | *: All major volume in platoon |

#### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|-------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      | 11   | 1     |      |      |      |      |      | 1    |      | Ť    |      |  |
| Traffic Vol, veh/h     | 0    | 812  | 161   | 0    | 0    | 0    | 0    | 0    | 380  | 0    | 131  | 0    |  |
| Future Vol, veh/h      | 0    | 812  | 161   | 0    | 0    | 0    | 0    | 0    | 380  | 0    | 131  | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free  | Stop |  |
| RT Channelized         | -    | -    | Yield | -    | -    | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | -    | -    | 125   | -    | -    | -    | -    | -    | 0    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -     | -    | -    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 902  | 179   | 0    | 0    | 0    | 0    | 0    | 422  | 0    | 146  | 0    |  |

| Major/Minor I         | Major1 |      |     |           | Minor1    |   | Ν    | /linor2 |      |   |  |
|-----------------------|--------|------|-----|-----------|-----------|---|------|---------|------|---|--|
| Conflicting Flow All  | -      | 0    | 0   |           | -         | - | 451  | -       | 902  | - |  |
| Stage 1               | -      | -    | -   |           | -         | - | -    | -       | 0    | - |  |
| Stage 2               | -      | -    | -   |           | -         | - | -    | -       | 902  | - |  |
| Critical Hdwy         | -      | -    | -   |           | -         | - | 6.94 | -       | 6.54 | - |  |
| Critical Hdwy Stg 1   | -      | -    | -   |           | -         | - | -    | -       | -    | - |  |
| Critical Hdwy Stg 2   | -      | -    | -   |           | -         | - | -    | -       | 5.54 | - |  |
| Follow-up Hdwy        | -      | -    | -   |           | -         | - | 3.32 | -       | 4.02 | - |  |
| Pot Cap-1 Maneuver    | 0      | -    | -   |           | 0         | 0 | 556  | 0       | 276  | 0 |  |
| Stage 1               | 0      | -    | -   |           | 0         | 0 | -    | 0       | -    | 0 |  |
| Stage 2               | 0      | -    | -   |           | 0         | 0 | -    | 0       | 355  | 0 |  |
| Platoon blocked, %    |        | -    | -   |           |           |   |      |         |      |   |  |
| Mov Cap-1 Maneuver    | -      | -    | -   |           | -         | - | 556  | -       | 276  | - |  |
| Mov Cap-2 Maneuver    | -      | -    | -   |           | -         | - | -    | -       | 276  | - |  |
| Stage 1               | -      | -    | -   |           | -         | - | -    | -       | -    | - |  |
| Stage 2               | -      | -    | -   |           | -         | - | -    | -       | 355  | - |  |
|                       |        |      |     |           |           |   |      |         |      |   |  |
| Approach              | EB     |      |     |           | NB        |   |      | SB      |      |   |  |
| HCM Control Delay, s  | 0      |      |     |           | 29.1      |   |      | 31.7    |      |   |  |
| HCM LOS               | 0      |      |     |           | 23.1<br>D |   |      | D       |      |   |  |
|                       |        |      |     |           | U         |   |      | U       |      |   |  |
|                       |        |      |     |           |           |   |      |         |      |   |  |
| Minor Lane/Major Mvm  | nt NB  | BLn1 | EBT | EBR SBLn1 |           |   |      |         |      |   |  |
| Capacity (veh/h)      |        | 556  | -   | - 276     |           |   |      |         |      |   |  |
| HCM Lane V/C Ratio    |        | 759  | -   | - 0.527   |           |   |      |         |      |   |  |
| HCM Control Delay (s) |        | 29.1 | -   | - 31.7    |           |   |      |         |      |   |  |
| HCM Lane LOS          |        | D    | -   | - D       |           |   |      |         |      |   |  |

6.7

HCM 95th %tile Q(veh)

2.9

#### Intersection

Int Delay, s/veh

| Movement               | EBL  | EBT  | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|-------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      | 11   | ٢     |      |      |      |      |      | ٢    |      | Ť    |      |  |
| Traffic Vol, veh/h     | 0    | 1708 | 242   | 0    | 0    | 0    | 0    | 0    | 314  | 0    | 133  | 0    |  |
| Future Vol, veh/h      | 0    | 1708 | 242   | 0    | 0    | 0    | 0    | 0    | 314  | 0    | 133  | 0    |  |
| Conflicting Peds, #/hr | 0    | 0    | 0     | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Free | Free | Free  | Stop |  |
| RT Channelized         | -    | -    | Yield | -    | -    | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | -    | -    | 125   | -    | -    | -    | -    | -    | 0    | -    | -    | -    |  |
| Veh in Median Storage, | # -  | 0    | -     | -    | -    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -     | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90    | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 1898 | 269   | 0    | 0    | 0    | 0    | 0    | 349  | 0    | 148  | 0    |  |

| /lajor1 |                                                                                                  |                                      |                                                        | Minor1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ν                                                     | 1inor2                                               |                                                      |                                                      |                                                      |                                                       |
|---------|--------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|
| -       | 0                                                                                                | 0                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 949                                                   | -                                                    | 1898                                                 | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | -                                                    | 0                                                    | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | -                                                    | 1898                                                 | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6.94                                                  | -                                                    | 6.54                                                 | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | -                                                    | -                                                    | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | -                                                    |                                                      | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                       | -                                                    |                                                      | -                                                    |                                                      |                                                       |
| 0       | -                                                                                                | -                                    |                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~ 261                                                 | 0                                                    | ~ 69                                                 | 0                                                    |                                                      |                                                       |
| 0       | -                                                                                                | -                                    |                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | 0                                                    | -                                                    |                                                      |                                                      |                                                       |
| 0       | -                                                                                                | -                                    |                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | 0                                                    | ~ 116                                                | 0                                                    |                                                      |                                                       |
|         | -                                                                                                | -                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ~ 261                                                 | -                                                    |                                                      | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | -                                                    | ~ 69                                                 | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     | -                                                    | -                                                    | -                                                    |                                                      |                                                       |
| -       | -                                                                                                | -                                    |                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                     |                                                      | ~ 116                                                | -                                                    |                                                      |                                                       |
|         |                                                                                                  |                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
| EB      |                                                                                                  |                                      |                                                        | NB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | SB                                                   |                                                      |                                                      |                                                      |                                                       |
| 0       |                                                                                                  |                                      |                                                        | 213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | \$ 655                                               |                                                      |                                                      |                                                      |                                                       |
|         |                                                                                                  |                                      |                                                        | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       | F                                                    |                                                      |                                                      |                                                      |                                                       |
|         |                                                                                                  |                                      |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
| t NBL   | n1 EE                                                                                            | BT _                                 | EBR SBLn1                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
|         |                                                                                                  | -                                    | - 69                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
|         |                                                                                                  | -                                    | - 2.142                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
|         |                                                                                                  | -                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
|         | F                                                                                                | -                                    | - F                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
| 18      | 3.2                                                                                              | -                                    | - 13.8                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                                      |                                                      |                                                      |                                                      |                                                       |
|         | -<br>-<br>-<br>-<br>-<br>-<br>-<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | - 0<br><br><br><br><br>0<br>0 -<br>0 | - 0 0<br><br><br><br><br><br>0<br>0<br>0<br>0<br>0<br> | - 0 0<br><br><br><br><br>0<br>0<br>0<br>0<br><br>0<br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br><br> | -       0       0       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       -         -       -       -       0         0       -       -       0         0       -       -       0         0       -       -       0         -       -       0       -         -       -       -       0         0       -       -       -         EB       NB       0       213         F       -       69       -         1.337       -       2.142         213       -       \$ 655         F       -       F | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |

Notes ~: Volume exceeds capacity

+: Computation Not Defined \$: Delay exceeds 300s

\*: All major volume in platoon

|                         | ٨    | <b>→</b> | 1     | 4    | ↓    | •    | 1    | t    | 1     | *    | ţ     | ~    |
|-------------------------|------|----------|-------|------|------|------|------|------|-------|------|-------|------|
| Lane Group              | EBL  | EBT      | EBR   | WBL  | WBT  | WBR  | NBL  | NBT  | NBR   | SBL  | SBT   | SBR  |
| Lane Configurations     |      | 11       | 1     |      |      |      |      |      | 1     |      | Ť     |      |
| Traffic Volume (vph)    | 0    | 812      | 161   | 0    | 0    | 0    | 0    | 0    | 380   | 0    | 131   | 0    |
| Future Volume (vph)     | 0    | 812      | 161   | 0    | 0    | 0    | 0    | 0    | 380   | 0    | 131   | 0    |
| Ideal Flow (vphpl)      | 1900 | 1900     | 1900  | 1900 | 1900 | 1900 | 1900 | 1900 | 1900  | 1900 | 1900  | 1900 |
| Storage Length (ft)     | 0    |          | 125   | 0    |      | 0    | 0    |      | 0     | 0    |       | 0    |
| Storage Lanes           | 0    |          | 1     | 0    |      | 0    | 0    |      | 1     | 0    |       | 0    |
| Taper Length (ft)       | 100  |          |       | 100  |      |      | 100  |      |       | 100  |       |      |
| Lane Util. Factor       | 1.00 | 0.95     | 1.00  | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00  | 1.00 | 1.00  | 1.00 |
| Frt                     |      |          | 0.850 |      |      |      |      |      | 0.865 |      |       |      |
| Flt Protected           |      |          |       |      |      |      |      |      |       |      |       |      |
| Satd. Flow (prot)       | 0    | 3539     | 1583  | 0    | 0    | 0    | 0    | 0    | 1611  | 0    | 1863  | 0    |
| Flt Permitted           |      |          |       |      |      |      |      |      |       |      |       |      |
| Satd. Flow (perm)       | 0    | 3539     | 1583  | 0    | 0    | 0    | 0    | 0    | 1611  | 0    | 1863  | 0    |
| Right Turn on Red       |      |          | No    |      |      | No   |      |      | No    | No   |       | No   |
| Satd. Flow (RTOR)       |      |          |       |      |      |      |      |      |       |      |       |      |
| Link Speed (mph)        |      | 55       |       |      | 55   |      |      | 35   |       |      | 45    |      |
| Link Distance (ft)      |      | 278      |       |      | 727  |      |      | 1295 |       |      | 275   |      |
| Travel Time (s)         |      | 3.4      |       |      | 9.0  |      |      | 25.2 |       |      | 4.2   |      |
| Peak Hour Factor        | 0.90 | 0.90     | 0.90  | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90  | 0.90 | 0.90  | 0.90 |
| Adj. Flow (vph)         | 0    | 902      | 179   | 0    | 0    | 0    | 0    | 0    | 422   | 0    | 146   | 0    |
| Shared Lane Traffic (%) |      |          |       |      |      |      |      |      |       |      |       |      |
| Lane Group Flow (vph)   | 0    | 902      | 179   | 0    | 0    | 0    | 0    | 0    | 422   | 0    | 146   | 0    |
| Turn Type               |      | NA       | Perm  |      |      |      |      |      | Prot  |      | NA    |      |
| Protected Phases        |      | 2        |       |      |      |      |      |      | 4     |      | 4     |      |
| Permitted Phases        |      |          | 2     |      |      |      |      |      |       |      |       |      |
| Detector Phase          |      | 2        | 2     |      |      |      |      |      | 4     |      | 4     |      |
| Switch Phase            |      |          |       |      |      |      |      |      |       |      |       |      |
| Minimum Initial (s)     |      | 14.0     | 14.0  |      |      |      |      |      | 7.0   |      | 7.0   |      |
| Minimum Split (s)       |      | 21.0     | 21.0  |      |      |      |      |      | 14.0  |      | 14.0  |      |
| Total Split (s)         |      | 28.0     | 28.0  |      |      |      |      |      | 32.0  |      | 32.0  |      |
| Total Split (%)         |      | 46.7%    | 46.7% |      |      |      |      |      | 53.3% |      | 53.3% |      |
| Maximum Green (s)       |      | 21.0     | 21.0  |      |      |      |      |      | 25.0  |      | 25.0  |      |
| Yellow Time (s)         |      | 5.0      | 5.0   |      |      |      |      |      | 5.0   |      | 5.0   |      |
| All-Red Time (s)        |      | 2.0      | 2.0   |      |      |      |      |      | 2.0   |      | 2.0   |      |
| Lost Time Adjust (s)    |      | -2.0     | -2.0  |      |      |      |      |      | -2.0  |      | -2.0  |      |
| Total Lost Time (s)     |      | 5.0      | 5.0   |      |      |      |      |      | 5.0   |      | 5.0   |      |
| Lead/Lag                |      |          |       |      |      |      |      |      |       |      |       |      |
| Lead-Lag Optimize?      |      |          |       |      |      |      |      |      |       |      |       |      |
| Vehicle Extension (s)   |      | 3.0      | 3.0   |      |      |      |      |      | 3.0   |      | 3.0   |      |
| Recall Mode             |      | None     | None  |      |      |      |      |      | Min   |      | Min   |      |
| Act Effct Green (s)     |      | 20.8     | 20.8  |      |      |      |      |      | 20.4  |      | 20.4  |      |
| Actuated g/C Ratio      |      | 0.40     | 0.40  |      |      |      |      |      | 0.40  |      | 0.40  |      |
| v/c Ratio               |      | 0.63     | 0.28  |      |      |      |      |      | 0.66  |      | 0.20  |      |
| Control Delay           |      | 15.5     | 13.2  |      |      |      |      |      | 18.6  |      | 11.0  |      |
| Queue Delay             |      | 0.0      | 0.0   |      |      |      |      |      | 0.0   |      | 0.0   |      |
| Total Delay             |      | 15.5     | 13.2  |      |      |      |      |      | 18.6  |      | 11.0  |      |
| LOS                     |      | В        | В     |      |      |      |      |      | В     |      | В     |      |
| Approach Delay          |      | 15.1     |       |      |      |      |      | 18.6 |       |      | 11.0  |      |
| Approach LOS            |      | В        |       |      |      |      |      | В    |       |      | В     |      |

2027 Build AM Harris Creek Farm - Rolesville, NC 11:36 am 01/05/2023 2027 Build - Improved RKA

Synchro 11 Report Page 1

|                                 | _ م             | • `      | ,    | 4        | ←          | ٩          | 1   | t    | 1    | 4   | ţ    | ~   |
|---------------------------------|-----------------|----------|------|----------|------------|------------|-----|------|------|-----|------|-----|
| Lane Group                      | EBL EB          | T EE     | BR   | WBL      | WBT        | WBR        | NBL | NBT  | NBR  | SBL | SBT  | SBF |
| Queue Length 50th (ft)          | 11              | 4        | 36   |          |            |            |     |      | 107  |     | 30   |     |
| Queue Length 95th (ft)          | 19              | 4        | 84   |          |            |            |     |      | 187  |     | 59   |     |
| Internal Link Dist (ft)         | 19              | 8        |      |          | 647        |            |     | 1215 |      |     | 195  |     |
| Turn Bay Length (ft)            |                 | 1        | 25   |          |            |            |     |      |      |     |      |     |
| Base Capacity (vph)             | 162             | .9 7.    | 28   |          |            |            |     |      | 870  |     | 1006 |     |
| Starvation Cap Reductn          |                 | 0        | 0    |          |            |            |     |      | 0    |     | 0    |     |
| Spillback Cap Reductn           |                 | 0        | 0    |          |            |            |     |      | 0    |     | 0    |     |
| Storage Cap Reductn             |                 | 0        | 0    |          |            |            |     |      | 0    |     | 0    |     |
| Reduced v/c Ratio               | 0.5             | 5 0.     | 25   |          |            |            |     |      | 0.49 |     | 0.15 |     |
| Intersection Summary            |                 |          |      |          |            |            |     |      |      |     |      |     |
| Area Type: C                    | Other           |          |      |          |            |            |     |      |      |     |      |     |
| Cycle Length: 60                |                 |          |      |          |            |            |     |      |      |     |      |     |
| Actuated Cycle Length: 51.4     |                 |          |      |          |            |            |     |      |      |     |      |     |
| Natural Cycle: 40               |                 |          |      |          |            |            |     |      |      |     |      |     |
| Control Type: Actuated-Unco     | ordinated       |          |      |          |            |            |     |      |      |     |      |     |
| Maximum v/c Ratio: 0.66         |                 |          |      |          |            |            |     |      |      |     |      |     |
| Intersection Signal Delay: 15   |                 |          |      |          | tersectior |            |     |      |      |     |      |     |
| Intersection Capacity Utilizati | on 58.7%        |          |      | IC       | U Level o  | of Service | В   |      |      |     |      |     |
| Analysis Period (min) 15        |                 |          |      |          |            |            |     |      |      |     |      |     |
| Splits and Phases: 1: Jone      | esville Road/WB | Left-Ove | er&l | JS 401 B | ypass EB   | }          |     |      |      |     |      |     |

| ⇒Ø2  | <b>↓/</b> <sub>Ø4</sub> |  |
|------|-------------------------|--|
| 28 s | 32.5                    |  |

|                         | ار   | <b>→</b>  | 7        | 4    | ←    | ٩    | 1    | t         | 1     | 1    | ţ         | ~    |
|-------------------------|------|-----------|----------|------|------|------|------|-----------|-------|------|-----------|------|
| Lane Group              | EBL  | EBT       | EBR      | WBL  | WBT  | WBR  | NBL  | NBT       | NBR   | SBL  | SBT       | SBR  |
| Lane Configurations     |      | 11        | r        |      |      |      |      |           | r.    |      | Ť         |      |
| Traffic Volume (vph)    | 0    | 1708      | 242      | 0    | 0    | 0    | 0    | 0         | 314   | 0    | 133       | 0    |
| Future Volume (vph)     | 0    | 1708      | 242      | 0    | 0    | 0    | 0    | 0         | 314   | 0    | 133       | 0    |
| Ideal Flow (vphpl)      | 1900 | 1900      | 1900     | 1900 | 1900 | 1900 | 1900 | 1900      | 1900  | 1900 | 1900      | 1900 |
| Storage Length (ft)     | 0    |           | 125      | 0    |      | 0    | 0    |           | 0     | 0    |           | 0    |
| Storage Lanes           | 0    |           | 1        | 0    |      | 0    | 0    |           | 1     | 0    |           | 0    |
| Taper Length (ft)       | 100  |           |          | 100  |      |      | 100  |           |       | 100  |           |      |
| Lane Util. Factor       | 1.00 | 0.95      | 1.00     | 1.00 | 1.00 | 1.00 | 1.00 | 1.00      | 1.00  | 1.00 | 1.00      | 1.00 |
| Frt                     |      |           | 0.850    |      |      |      |      |           | 0.865 |      |           |      |
| Flt Protected           |      |           |          |      |      |      |      |           |       |      |           |      |
| Satd. Flow (prot)       | 0    | 3539      | 1583     | 0    | 0    | 0    | 0    | 0         | 1611  | 0    | 1863      | 0    |
| Flt Permitted           |      |           |          |      |      |      |      |           |       |      |           |      |
| Satd. Flow (perm)       | 0    | 3539      | 1583     | 0    | 0    | 0    | 0    | 0         | 1611  | 0    | 1863      | 0    |
| Right Turn on Red       |      |           | No       |      |      | No   |      |           | No    | No   |           | No   |
| Satd. Flow (RTOR)       |      |           |          |      |      |      |      |           |       |      |           |      |
| Link Speed (mph)        |      | 55        |          |      | 55   |      |      | 35        |       |      | 45        |      |
| Link Distance (ft)      |      | 278       |          |      | 727  |      |      | 1295      |       |      | 275       |      |
| Travel Time (s)         |      | 3.4       |          |      | 9.0  |      |      | 25.2      |       |      | 4.2       |      |
| Peak Hour Factor        | 0.90 | 0.90      | 0.90     | 0.90 | 0.90 | 0.90 | 0.90 | 0.90      | 0.90  | 0.90 | 0.90      | 0.90 |
| Adj. Flow (vph)         | 0    | 1898      | 269      | 0    | 0    | 0    | 0    | 0         | 349   | 0    | 148       | 0    |
| Shared Lane Traffic (%) | -    |           |          | -    | -    | -    | -    | -         |       | -    |           | -    |
| Lane Group Flow (vph)   | 0    | 1898      | 269      | 0    | 0    | 0    | 0    | 0         | 349   | 0    | 148       | 0    |
| Turn Type               | -    | NA        | Perm     | -    | -    | -    | -    | -         | Prot  | -    | NA        | -    |
| Protected Phases        |      | 2         |          |      |      |      |      |           | 4     |      | 4         |      |
| Permitted Phases        |      |           | 2        |      |      |      |      |           |       |      |           |      |
| Detector Phase          |      | 2         | 2        |      |      |      |      |           | 4     |      | 4         |      |
| Switch Phase            |      |           |          |      |      |      |      |           |       |      |           |      |
| Minimum Initial (s)     |      | 14.0      | 14.0     |      |      |      |      |           | 7.0   |      | 7.0       |      |
| Minimum Split (s)       |      | 21.0      | 21.0     |      |      |      |      |           | 14.0  |      | 14.0      |      |
| Total Split (s)         |      | 40.0      | 40.0     |      |      |      |      |           | 20.0  |      | 20.0      |      |
| Total Split (%)         |      | 66.7%     | 66.7%    |      |      |      |      |           | 33.3% |      | 33.3%     |      |
| Maximum Green (s)       |      | 33.0      | 33.0     |      |      |      |      |           | 13.0  |      | 13.0      |      |
| Yellow Time (s)         |      | 5.0       | 5.0      |      |      |      |      |           | 5.0   |      | 5.0       |      |
| All-Red Time (s)        |      | 2.0       | 2.0      |      |      |      |      |           | 2.0   |      | 2.0       |      |
| Lost Time Adjust (s)    |      | -2.0      | -2.0     |      |      |      |      |           | -2.0  |      | -2.0      |      |
| Total Lost Time (s)     |      | 5.0       | 5.0      |      |      |      |      |           | 5.0   |      | 5.0       |      |
| Lead/Lag                |      |           |          |      |      |      |      |           |       |      |           |      |
| Lead-Lag Optimize?      |      |           |          |      |      |      |      |           |       |      |           |      |
| Vehicle Extension (s)   |      | 3.0       | 3.0      |      |      |      |      |           | 3.0   |      | 3.0       |      |
| Recall Mode             |      | None      | None     |      |      |      |      |           | Min   |      | Min       |      |
| Act Effct Green (s)     |      | 35.0      | 35.0     |      |      |      |      |           | 15.0  |      | 15.0      |      |
| Actuated g/C Ratio      |      | 0.58      | 0.58     |      |      |      |      |           | 0.25  |      | 0.25      |      |
| v/c Ratio               |      | 0.92      | 0.29     |      |      |      |      |           | 0.87  |      | 0.32      |      |
| Control Delay           |      | 20.8      | 7.3      |      |      |      |      |           | 46.6  |      | 20.6      |      |
| Queue Delay             |      | 0.0       | 0.0      |      |      |      |      |           | 0.0   |      | 0.0       |      |
| Total Delay             |      | 20.8      | 7.3      |      |      |      |      |           | 46.6  |      | 20.6      |      |
| LOS                     |      | 20.0<br>C | 7.0<br>A |      |      |      |      |           | D     |      | 20.0<br>C |      |
| Approach Delay          |      | 19.1      |          |      |      |      |      | 46.6      | U     |      | 20.6      |      |
| Approach LOS            |      | B         |          |      |      |      |      | 40.0<br>D |       |      | 20.0<br>C |      |
|                         |      | U         |          |      |      |      |      | U         |       |      | U         |      |

2027 Build PM Harris Creek Farm - Rolesville, NC 11:14 am 04/14/2023 2027 Build - Improved RKA

|                                   | ٨            | <b>→</b>   | 7        | 4         | ←           | ٩          | 1   | Ť    | ۲    | 5   | ţ    | ~   |
|-----------------------------------|--------------|------------|----------|-----------|-------------|------------|-----|------|------|-----|------|-----|
| Lane Group                        | EBL          | EBT        | EBR      | WBL       | WBT         | WBR        | NBL | NBT  | NBR  | SBL | SBT  | SBR |
| Queue Length 50th (ft)            |              | 285        | 43       |           |             |            |     |      | 121  |     | 44   |     |
| Queue Length 95th (ft)            |              | #481       | 78       |           |             |            |     |      | #254 |     | 87   |     |
| Internal Link Dist (ft)           |              | 198        |          |           | 647         |            |     | 1215 |      |     | 195  |     |
| Turn Bay Length (ft)              |              |            | 125      |           |             |            |     |      |      |     |      |     |
| Base Capacity (vph)               |              | 2064       | 923      |           |             |            |     |      | 402  |     | 465  |     |
| Starvation Cap Reductn            |              | 0          | 0        |           |             |            |     |      | 0    |     | 0    |     |
| Spillback Cap Reductn             |              | 0          | 0        |           |             |            |     |      | 0    |     | 0    |     |
| Storage Cap Reductn               |              | 0          | 0        |           |             |            |     |      | 0    |     | 0    |     |
| Reduced v/c Ratio                 |              | 0.92       | 0.29     |           |             |            |     |      | 0.87 |     | 0.32 |     |
| Intersection Summary              |              |            |          |           |             |            |     |      |      |     |      |     |
| Area Type:                        | Other        |            |          |           |             |            |     |      |      |     |      |     |
| Cycle Length: 60                  |              |            |          |           |             |            |     |      |      |     |      |     |
| Actuated Cycle Length: 60         |              |            |          |           |             |            |     |      |      |     |      |     |
| Natural Cycle: 60                 |              |            |          |           |             |            |     |      |      |     |      |     |
| Control Type: Actuated-Un         | coordinated  |            |          |           |             |            |     |      |      |     |      |     |
| Maximum v/c Ratio: 0.92           |              |            |          |           |             |            |     |      |      |     |      |     |
| Intersection Signal Delay: 2      | 22.8         |            |          | In        | Itersectior | LOS: C     |     |      |      |     |      |     |
| Intersection Capacity Utilization | ation 75.0%  |            |          | IC        | CU Level o  | of Service | D   |      |      |     |      |     |
| Analysis Period (min) 15          |              |            |          |           |             |            |     |      |      |     |      |     |
| # 95th percentile volume          | exceeds cap  | bacity, qu | eue may  | be longer | r.          |            |     |      |      |     |      |     |
| Queue shown is maxim              | um after two | cycles.    |          |           |             |            |     |      |      |     |      |     |
| Splits and Phases: 1: Jo          | nesville Roa | d/WB Lef   | t-Over & | US 401 B  | Sypass EE   | }          |     |      |      |     |      | 17  |

| <b>⇒</b> Ø2 | <b>1</b> Ø4 |  |
|-------------|-------------|--|
|             |             |  |

6

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      |      |      |      | 11   | 1    |      | Ť    |      | -    | -    | 1    |  |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 0    | 1352 | 185  | 0    | 36   | 0    | 0    | 0    | 225  |  |
| Future Vol, veh/h      | 0    | 0    | 0    | 0    | 1352 | 185  | 0    | 36   | 0    | 0    | 0    | 225  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Stop | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | 150  | -    | -    | -    | -    | -    | 0    |  |
| Veh in Median Storage, | # -  | 1    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 0    | 0    | 0    | 1502 | 206  | 0    | 40   | 0    | 0    | 0    | 250  |  |

| Major/Minor           |       | Ν   | /lajor2 |       | Mi | inor1 |      |   | Mi   | Minor2 | Minor2 |
|-----------------------|-------|-----|---------|-------|----|-------|------|---|------|--------|--------|
| Conflicting Flow All  |       |     | -       | -     | 0  | -     | 1708 | - |      | -      |        |
| Stage 1               |       |     | -       | -     | -  | -     | 0    | - |      | -      |        |
| Stage 2               |       |     | -       | -     | -  | -     | 1708 | - |      | -      |        |
| Critical Hdwy         |       |     | -       | -     | -  | -     | 6.54 | - |      | -      |        |
| Critical Hdwy Stg 1   |       |     | -       | -     | -  | -     | -    | - | -    |        | -      |
| Critical Hdwy Stg 2   |       |     | -       | -     | -  | -     | 5.54 | - | -    |        | -      |
| Follow-up Hdwy        |       |     | -       | -     | -  | -     | 4.02 | - | -    |        | -      |
| Pot Cap-1 Maneuver    |       |     | 0       | -     | -  | 0     | 90   | 0 | 0    |        | 0      |
| Stage 1               |       |     | 0       | -     | -  | 0     | -    | 0 | 0    |        | 0      |
| Stage 2               |       |     | 0       | -     | -  | 0     | 145  | 0 | 0    |        | 0      |
| Platoon blocked, %    |       |     |         | -     | -  |       |      |   |      |        |        |
| Mov Cap-1 Maneuver    |       |     | -       | -     | -  | -     | 90   | - | -    |        | -      |
| Mov Cap-2 Maneuver    |       |     | -       | -     | -  | -     | 90   | - | -    |        | -      |
| Stage 1               |       |     | -       | -     | -  | -     | -    | - | -    |        | -      |
| Stage 2               |       |     | -       | -     | -  | -     | 145  | - | -    | -      |        |
|                       |       |     |         |       |    |       |      |   |      |        |        |
| Approach              |       |     | WB      |       |    | NB    |      |   | SB   |        |        |
| HCM Control Delay, s  |       |     | 0       |       |    | 73.7  |      |   | 36.5 |        |        |
| HCM LOS               |       |     |         |       |    | F     |      |   | Е    |        |        |
|                       |       |     |         |       |    |       |      |   |      |        |        |
| Minor Lane/Major Mvmt | NBLn1 | WBT | WBR \$  | SBLn1 |    |       |      |   |      |        |        |
| Capacity (veh/h)      | 90    | -   | -       | 353   |    |       |      |   |      |        |        |
| HCM Lane V/C Ratio    | 0.444 | -   | -       | 0.708 |    |       |      |   |      |        |        |
| HCM Control Delay (s) | 73.7  | -   | -       | 36.5  |    |       |      |   |      |        |        |
| HCM Lane LOS          | F     | -   | -       | Е     |    |       |      |   |      |        |        |
| HCM 95th %tile Q(veh) | 1.9   | -   | -       | 5.2   |    |       |      |   |      |        |        |

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--|
| Lane Configurations    |      |      |      |      | 11   | 1    |      | Ť    |      |      |      | 1    |  |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 0    | 555  | 74   | 0    | 116  | 0    | 0    | 0    | 114  |  |
| Future Vol, veh/h      | 0    | 0    | 0    | 0    | 555  | 74   | 0    | 116  | 0    | 0    | 0    | 114  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Stop | Free | Free | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | 150  | -    | -    | -    | -    | -    | 0    |  |
| Veh in Median Storage, | # -  | 1    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 0    | 0    | 0    | 617  | 82   | 0    | 129  | 0    | 0    | 0    | 127  |  |

| Major/Minor           |       | N   | Major2 |       | Mi | inor1 |      | Mi | nor2 |   |      |  |
|-----------------------|-------|-----|--------|-------|----|-------|------|----|------|---|------|--|
| Conflicting Flow All  |       |     | -      | -     | 0  | -     | 699  | -  | -    | - | 309  |  |
| Stage 1               |       |     | -      | -     | -  | -     | 0    | -  | -    | - | -    |  |
| Stage 2               |       |     | -      | -     | -  | -     | 699  | -  | -    | - | -    |  |
| Critical Hdwy         |       |     | -      | -     | -  | -     | 6.54 | -  | -    | - | 6.94 |  |
| Critical Hdwy Stg 1   |       |     | -      | -     | -  | -     | -    | -  | -    | - | -    |  |
| Critical Hdwy Stg 2   |       |     | -      | -     | -  | -     | 5.54 | -  | -    | - | -    |  |
| Follow-up Hdwy        |       |     | -      | -     | -  | -     | 4.02 | -  | -    | - | 3.32 |  |
| Pot Cap-1 Maneuver    |       |     | 0      | -     | -  | 0     | 362  | 0  | 0    | 0 | 687  |  |
| Stage 1               |       |     | 0      | -     | -  | 0     | -    | 0  | 0    | 0 | -    |  |
| Stage 2               |       |     | 0      | -     | -  | 0     | 440  | 0  | 0    | 0 | -    |  |
| Platoon blocked, %    |       |     |        | -     | -  |       |      |    |      |   |      |  |
| Mov Cap-1 Maneuver    |       |     | -      | -     | -  | -     | 362  | -  | -    | - | 687  |  |
| Mov Cap-2 Maneuver    |       |     | -      | -     | -  | -     | 362  | -  | -    | - | -    |  |
| Stage 1               |       |     | -      | -     | -  | -     | -    | -  | -    | - | -    |  |
| Stage 2               |       |     | -      | -     | -  | -     | 440  | -  | -    | - | -    |  |
|                       |       |     |        |       |    |       |      |    |      |   |      |  |
| Approach              |       |     | WB     |       |    | NB    |      |    | SB   |   |      |  |
| HCM Control Delay, s  |       |     | 0      |       |    | 20.3  |      |    | 11.4 |   |      |  |
| HCM LOS               |       |     |        |       |    | С     |      |    | В    |   |      |  |
|                       |       |     |        |       |    |       |      |    |      |   |      |  |
| Minor Lane/Major Mvmt | NBLn1 | WBT | WBR    | SBLn1 |    |       |      |    |      |   |      |  |
| Capacity (veh/h)      | 362   | -   | -      | 687   |    |       |      |    |      |   |      |  |
| HCM Lane V/C Ratio    | 0.356 | -   | -      | 0.184 |    |       |      |    |      |   |      |  |
| HCM Control Delay (s) | 20.3  | -   | -      | 11.4  |    |       |      |    |      |   |      |  |
| HCM Lane LOS          | С     | -   | -      | В     |    |       |      |    |      |   |      |  |
| HCM 95th %tile Q(veh) | 1.6   |     | _      | 0.7   |    |       |      |    |      |   |      |  |

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL    | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|--------|------|------|------|------|------|--|
| Lane Configurations    | 202  | 201  |      |      | 11   | 1    | TIDE . | •    |      | 000  |      | 1    |  |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 0    | 1797 | 185  | 0      | 36   | 0    | 0    | 0    | 225  |  |
| Future Vol, veh/h      | 0    | 0    | 0    | 0    | 1797 | 185  | 0      | 36   | 0    | 0    | 0    | 225  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0      | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Stop | Free | Free | Free | Stop   | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -    | -    | None | -      | -    | None | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | 150  | -      | -    | -    | -    | -    | 0    |  |
| Veh in Median Storage, | # -  | 1    | -    | -    | 0    | -    | -      | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -      | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90     | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2      | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 0    | 0    | 0    | 1997 | 206  | 0      | 40   | 0    | 0    | 0    | 250  |  |

| Major/Minor                |        | I       | Major2  |       | М       | inor1   |        | М     | inor2    |        |          |         |  |
|----------------------------|--------|---------|---------|-------|---------|---------|--------|-------|----------|--------|----------|---------|--|
| Conflicting Flow All       |        |         | -       | -     | 0       | -       | 2203   | -     | -        | -      | 999      |         |  |
| Stage 1                    |        |         | -       | -     | -       | -       | 0      | -     | -        | -      | -        |         |  |
| Stage 2                    |        |         | -       | -     | -       | -       | 2203   | -     | -        | -      | -        |         |  |
| Critical Hdwy              |        |         | -       | -     | -       | -       | 6.54   | -     | -        | -      | 6.94     |         |  |
| Critical Hdwy Stg 1        |        |         | -       | -     | -       | -       | -      | -     | -        | -      | -        |         |  |
| Critical Hdwy Stg 2        |        |         | -       | -     | -       | -       | 5.54   | -     | -        | -      | -        |         |  |
| Follow-up Hdwy             |        |         | -       | -     | -       | -       | 4.02   | -     | -        | -      | 3.32     |         |  |
| Pot Cap-1 Maneuver         |        |         | 0       | -     | -       | 0       | 44     | 0     | 0        |        | ~ 242    |         |  |
| Stage 1                    |        |         | 0       | -     | -       | 0       | -      | 0     | 0        | 0      | -        |         |  |
| Stage 2                    |        |         | 0       | -     | -       | 0       | 81     | 0     | 0        | 0      | -        |         |  |
| Platoon blocked, %         |        |         |         | -     | -       |         |        |       |          |        |          |         |  |
| Mov Cap-1 Maneuver         |        |         | -       | -     | -       | -       | 44     | -     | -        | -      | ~ 242    |         |  |
| Mov Cap-2 Maneuver         |        |         | -       | -     | -       | -       | 44     | -     | -        | -      | -        |         |  |
| Stage 1                    |        |         | -       | -     | -       | -       | -      | -     | -        | -      | -        |         |  |
| Stage 2                    |        |         | -       | -     | -       | -       | 81     | -     | -        | -      | -        |         |  |
|                            |        |         |         |       |         |         |        |       |          |        |          |         |  |
| Approach                   |        |         | WB      |       |         | NB      |        |       | SB       |        |          |         |  |
| HCM Control Delay, s       |        |         | 0       |       |         | 250.5   |        | 1     | 10.8     |        |          |         |  |
| HCM LOS                    |        |         |         |       |         | F       |        |       | F        |        |          |         |  |
|                            |        |         |         |       |         |         |        |       |          |        |          |         |  |
| Minor Lane/Major Mvmt      | NBLn1  | WBT     | WBR S   | BLn1  |         |         |        |       |          |        |          |         |  |
| Capacity (veh/h)           | 44     | -       | -       | 242   |         |         |        |       |          |        |          |         |  |
| HCM Lane V/C Ratio         | 0.909  | -       | -       | 1.033 |         |         |        |       |          |        |          |         |  |
| HCM Control Delay (s)      | 250.5  | -       | -       | 110.8 |         |         |        |       |          |        |          |         |  |
| HCM Lane LOS               | F      | -       | -       | F     |         |         |        |       |          |        |          |         |  |
| HCM 95th %tile Q(veh)      | 3.6    | -       | -       | 10.2  |         |         |        |       |          |        |          |         |  |
| Notes                      |        |         |         |       |         |         |        |       |          |        |          |         |  |
| ~: Volume exceeds capacity | \$: De | lay exc | eeds 30 | 0s    | +: Comp | utation | Not De | fined | *: All m | ajor v | olume in | platoon |  |

#### Intersection

| Movement               | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|------|------|------|------|------|------|------|----------|------|------|------|------|--|
| Lane Configurations    |      |      |      |      | ††   | 1    |      | <b>↑</b> |      |      |      | 1    |  |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 0    | 894  | 74   | 0    | 116      | 0    | 0    | 0    | 114  |  |
| Future Vol, veh/h      | 0    | 0    | 0    | 0    | 894  | 74   | 0    | 116      | 0    | 0    | 0    | 114  |  |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop | Stop | Stop | Free | Free | Free | Stop | Stop     | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -    | -    | None | -    | -    | None | -    | -        | None | -    | -    | None |  |
| Storage Length         | -    | -    | -    | -    | -    | 150  | -    | -        | -    | -    | -    | 0    |  |
| Veh in Median Storage, | # -  | 1    | -    | -    | 0    | -    | -    | 0        | -    | -    | 0    | -    |  |
| Grade, %               | -    | 0    | -    | -    | 0    | -    | -    | 0        | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 90   | 90       | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2        | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0    | 0    | 0    | 0    | 993  | 82   | 0    | 129      | 0    | 0    | 0    | 127  |  |

| Major/Minor           |       | Ν   | /lajor2 |       | М | inor1 |      | M | inor2 |   |      |  |
|-----------------------|-------|-----|---------|-------|---|-------|------|---|-------|---|------|--|
| Conflicting Flow All  |       |     |         | -     | 0 | -     | 1075 | - | -     | - | 497  |  |
| Stage 1               |       |     | -       | -     | - | -     | 0    | - | -     | - | -    |  |
| Stage 2               |       |     | -       | -     | - | -     | 1075 | - | -     | - | -    |  |
| Critical Hdwy         |       |     | -       | -     | - | -     | 6.54 | - | -     | - | 6.94 |  |
| Critical Hdwy Stg 1   |       |     | -       | -     | - | -     | -    | - | -     | - | -    |  |
| Critical Hdwy Stg 2   |       |     | -       | -     | - | -     | 5.54 | - | -     | - | -    |  |
| Follow-up Hdwy        |       |     | -       | -     | - | -     | 4.02 | - | -     | - | 3.32 |  |
| Pot Cap-1 Maneuver    |       |     | 0       | -     | - | 0     | 218  | 0 | 0     | 0 | 519  |  |
| Stage 1               |       |     | 0       | -     | - | 0     | -    | 0 | 0     | 0 | -    |  |
| Stage 2               |       |     | 0       | -     | - | 0     | 294  | 0 | 0     | 0 | -    |  |
| Platoon blocked, %    |       |     |         | -     | - |       |      |   |       |   |      |  |
| Mov Cap-1 Maneuver    |       |     | -       | -     | - | -     | 218  | - | -     | - | 519  |  |
| Mov Cap-2 Maneuver    |       |     | -       | -     | - | -     | 218  | - | -     | - | -    |  |
| Stage 1               |       |     | -       | -     | - | -     | -    | - | -     | - | -    |  |
| Stage 2               |       |     | -       | -     | - | -     | 294  | - | -     | - | -    |  |
|                       |       |     |         |       |   |       |      |   |       |   |      |  |
| Approach              |       |     | WB      |       |   | NB    |      |   | SB    |   |      |  |
| HCM Control Delay, s  |       |     | 0       |       |   | 42.9  |      |   | 14.2  |   |      |  |
| HCM LOS               |       |     |         |       |   | Е     |      |   | В     |   |      |  |
|                       |       |     |         |       |   |       |      |   |       |   |      |  |
| Minor Lane/Major Mvmt | NBLn1 | WBT | WBR     | SBLn1 |   |       |      |   |       |   |      |  |
| Capacity (veh/h)      | 218   | -   | -       | 519   |   |       |      |   |       |   |      |  |
| HCM Lane V/C Ratio    | 0.591 | -   | -       | 0.244 |   |       |      |   |       |   |      |  |
| HCM Control Delay (s) | 42.9  | -   | -       | 14.2  |   |       |      |   |       |   |      |  |
| HCM Lane LOS          | E     | -   | -       | В     |   |       |      |   |       |   |      |  |
| HCM 95th %tile Q(veh) | 3.3   | -   | -       | 0.9   |   |       |      |   |       |   |      |  |

#### Intersection

| Movement               | EBL   | EBT   | EBR  | WBL  | WBT        | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|-------|-------|------|------|------------|------|------|------|------|------|------|------|--|
| Lane Configurations    |       |       |      |      | <u>†</u> † | 1    |      | Ť    |      |      |      | 1    |  |
| Traffic Vol, veh/h     | 0     | 0     | 0    | 0    | 1817       | 185  | 0    | 36   | 0    | 0    | 0    | 225  |  |
| Future Vol, veh/h      | 0     | 0     | 0    | 0    | 1817       | 185  | 0    | 36   | 0    | 0    | 0    | 225  |  |
| Conflicting Peds, #/hr | 0     | 0     | 0    | 0    | 0          | 0    | 0    | 0    | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop  | Stop  | Stop | Free | Free       | Free | Stop | Stop | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -     | -     | None | -    | -          | None | -    | -    | None | -    | -    | None |  |
| Storage Length         | -     | -     | -    | -    | -          | 150  | -    | -    | -    | -    | -    | 0    |  |
| Veh in Median Storage, | # 147 | 45600 | -    | -    | 0          | -    | -    | 0    | -    | -    | 0    | -    |  |
| Grade, %               | -     | 0     | -    | -    | 0          | -    | -    | 0    | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90    | 90    | 90   | 90   | 90         | 90   | 90   | 90   | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2     | 2     | 2    | 2    | 2          | 2    | 2    | 2    | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0     | 0     | 0    | 0    | 2019       | 206  | 0    | 40   | 0    | 0    | 0    | 250  |  |

| Major/Minor                |        | 1       | Major2  |       | Μ       | linor1  |        | Μ     | linor2   |          |          |         |  |
|----------------------------|--------|---------|---------|-------|---------|---------|--------|-------|----------|----------|----------|---------|--|
| Conflicting Flow All       |        |         | -       | -     | 0       | -       | 2225   | -     | -        | -        | 1010     |         |  |
| Stage 1                    |        |         | -       | -     | -       | -       | 0      | -     | -        | -        | -        |         |  |
| Stage 2                    |        |         | -       | -     | -       | -       | 2225   | -     | -        | -        | -        |         |  |
| Critical Hdwy              |        |         | -       | -     | -       | -       | 6.54   | -     | -        | -        | 6.94     |         |  |
| Critical Hdwy Stg 1        |        |         | -       | -     | -       | -       | -      | -     | -        | -        | -        |         |  |
| Critical Hdwy Stg 2        |        |         | -       | -     | -       | -       | 5.54   | -     | -        | -        | -        |         |  |
| Follow-up Hdwy             |        |         | -       | -     | -       | -       | 4.02   | -     | -        | -        | 3.32     |         |  |
| Pot Cap-1 Maneuver         |        |         | 0       | -     | -       | 0       | 43     | 0     | 0        |          | ~ 238    |         |  |
| Stage 1                    |        |         | 0       | -     | -       | 0       | -      | 0     | 0        | 0        | -        |         |  |
| Stage 2                    |        |         | 0       | -     | -       | 0       | 79     | 0     | 0        | 0        | -        |         |  |
| Platoon blocked, %         |        |         |         | -     | -       |         |        |       |          |          |          |         |  |
| Mov Cap-1 Maneuver         |        |         | -       | -     | -       | -       | 43     | -     | -        | -        | ~ 238    |         |  |
| Mov Cap-2 Maneuver         |        |         | -       | -     | -       | -       | 43     | -     | -        | -        | -        |         |  |
| Stage 1                    |        |         | -       | -     | -       | -       | -      | -     | -        | -        | -        |         |  |
| Stage 2                    |        |         | -       | -     | -       | -       | 79     | -     | -        | -        | -        |         |  |
|                            |        |         |         |       |         |         |        |       |          |          |          |         |  |
| Approach                   |        |         | WB      |       |         | NB      |        |       | SB       |          |          |         |  |
| HCM Control Delay, s       |        |         | 0       |       | -       | 260.9   |        | ·     | 116.8    |          |          |         |  |
| HCM LOS                    |        |         |         |       |         | F       |        |       | F        |          |          |         |  |
|                            |        |         |         |       |         |         |        |       |          |          |          |         |  |
| Minor Lane/Major Mvmt      | NBLn1  | WBT     | WBR S   | SBLn1 |         |         |        |       |          |          |          |         |  |
| Capacity (veh/h)           | 43     | -       | -       | 238   |         |         |        |       |          |          |          |         |  |
| HCM Lane V/C Ratio         | 0.93   | -       | -       | 1.05  |         |         |        |       |          |          |          |         |  |
| HCM Control Delay (s)      | 260.9  | -       | -       | 116.8 |         |         |        |       |          |          |          |         |  |
| HCM Lane LOS               | F      | -       | -       | F     |         |         |        |       |          |          |          |         |  |
| HCM 95th %tile Q(veh)      | 3.7    | -       | -       | 10.5  |         |         |        |       |          |          |          |         |  |
| Notes                      |        |         |         |       |         |         |        |       |          |          |          |         |  |
| ~: Volume exceeds capacity | \$: De | lay exc | eeds 30 | )0s   | +: Comp | utation | Not De | fined | *: All m | najor vo | olume in | platoon |  |

#### Intersection

| Movement               | EBL   | EBT   | EBR  | WBL  | WBT  | WBR  | NBL  | NBT      | NBR  | SBL  | SBT  | SBR  |  |
|------------------------|-------|-------|------|------|------|------|------|----------|------|------|------|------|--|
| Lane Configurations    |       |       |      |      | 11   | 1    |      | <b>^</b> |      |      | •= · | 1    |  |
| Traffic Vol, veh/h     | 0     | 0     | 0    | 0    | 907  | 74   | 0    | 116      | 0    | 0    | 0    | 114  |  |
| Future Vol, veh/h      | 0     | 0     | 0    | 0    | 907  | 74   | 0    | 116      | 0    | 0    | 0    | 114  |  |
| Conflicting Peds, #/hr | 0     | 0     | 0    | 0    | 0    | 0    | 0    | 0        | 0    | 0    | 0    | 0    |  |
| Sign Control           | Stop  | Stop  | Stop | Free | Free | Free | Stop | Stop     | Stop | Stop | Stop | Stop |  |
| RT Channelized         | -     | -     | None | -    | -    | None | -    | -        | None | -    | -    | None |  |
| Storage Length         | -     | -     | -    | -    | -    | 150  | -    | -        | -    | -    | -    | 0    |  |
| Veh in Median Storage, | # 747 | 71104 | -    | -    | 0    | -    | -    | 0        | -    | -    | 0    | -    |  |
| Grade, %               | -     | 0     | -    | -    | 0    | -    | -    | 0        | -    | -    | 0    | -    |  |
| Peak Hour Factor       | 90    | 90    | 90   | 90   | 90   | 90   | 90   | 90       | 90   | 90   | 90   | 90   |  |
| Heavy Vehicles, %      | 2     | 2     | 2    | 2    | 2    | 2    | 2    | 2        | 2    | 2    | 2    | 2    |  |
| Mvmt Flow              | 0     | 0     | 0    | 0    | 1008 | 82   | 0    | 129      | 0    | 0    | 0    | 127  |  |

| Major/Minor           |       | N   | Major2 |       | Mi | inor1 |      | Mi | I    | nor2 | nor2 |
|-----------------------|-------|-----|--------|-------|----|-------|------|----|------|------|------|
| Conflicting Flow All  |       |     | -      | -     | 0  | -     | 1090 | -  |      | -    |      |
| Stage 1               |       |     | -      | -     | -  | -     | 0    | -  |      | -    |      |
| Stage 2               |       |     | -      | -     | -  | -     | 1090 | -  |      | -    |      |
| Critical Hdwy         |       |     | -      | -     | -  | -     | 6.54 | -  | -    |      | -    |
| Critical Hdwy Stg 1   |       |     | -      | -     | -  | -     | -    | -  | -    |      | -    |
| Critical Hdwy Stg 2   |       |     | -      | -     | -  | -     | 5.54 | -  | -    |      | -    |
| Follow-up Hdwy        |       |     | -      | -     | -  | -     | 4.02 | -  | -    |      | -    |
| Pot Cap-1 Maneuver    |       |     | 0      | -     | -  | 0     | 214  | 0  | 0    |      | 0    |
| Stage 1               |       |     | 0      | -     | -  | 0     | -    | 0  | 0    |      | 0    |
| Stage 2               |       |     | 0      | -     | -  | 0     | 289  | 0  | 0    |      | 0    |
| Platoon blocked, %    |       |     |        | -     | -  |       |      |    |      |      |      |
| Mov Cap-1 Maneuver    |       |     | -      | -     | -  | -     | 214  | -  | -    |      | -    |
| Mov Cap-2 Maneuver    |       |     | -      | -     | -  | -     | 214  | -  | -    |      | -    |
| Stage 1               |       |     | -      | -     | -  | -     | -    | -  | -    | -    | •    |
| Stage 2               |       |     | -      | -     | -  | -     | 289  | -  | -    | -    |      |
|                       |       |     |        |       |    |       |      |    |      |      |      |
| Approach              |       |     | WB     |       |    | NB    |      |    | SB   |      |      |
| HCM Control Delay, s  |       |     | 0      |       |    | 44.4  |      |    | 14.3 |      |      |
| HCM LOS               |       |     |        |       |    | Е     |      |    | В    |      |      |
|                       |       |     |        |       |    |       |      |    |      |      |      |
| Minor Lane/Major Mvmt | NBLn1 | WBT | WBR S  | SBLn1 |    |       |      |    |      |      |      |
| Capacity (veh/h)      | 214   | -   | -      | 513   |    |       |      |    |      |      |      |
| HCM Lane V/C Ratio    | 0.602 | -   | -      | 0.247 |    |       |      |    |      |      |      |
| HCM Control Delay (s) | 44.4  | -   | -      | 14.3  |    |       |      |    |      |      |      |
| HCM Lane LOS          | E     | -   | -      | В     |    |       |      |    |      |      |      |
| HCM 95th %tile Q(veh) | 3.4   | -   | -      | 1     |    |       |      |    |      |      |      |

# **APPENDIX E**

## CAPACITY ANALYSIS CALCULATIONS US 401 BYPASS & EASTERN U-TURN LOCATION

| Int Delay, s/veh       | 1.3  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    |      |      |      | 11   | 1    |      |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 1532 | 91   | 0    |
| Future Vol, veh/h      | 0    | 0    | 0    | 1532 | 91   | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage, | # 2  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0    | 0    | 0    | 1702 | 101  | 0    |

| Major/Minor           | Ν     | Major2 |   | Minor1 |   |
|-----------------------|-------|--------|---|--------|---|
| Conflicting Flow All  |       | -      | - | 851    | - |
| Stage 1               |       | -      | - | 0      | - |
| Stage 2               |       | -      | - | 851    | - |
| Critical Hdwy         |       | -      | - | 6.84   | - |
| Critical Hdwy Stg 1   |       | -      | - | -      | - |
| Critical Hdwy Stg 2   |       | -      | - | 5.84   | - |
| Follow-up Hdwy        |       | -      | - | 3.52   | - |
| Pot Cap-1 Maneuver    |       | 0      | - | 299    | 0 |
| Stage 1               |       | 0      | - | -      | 0 |
| Stage 2               |       | 0      | - | 379    | 0 |
| Platoon blocked, %    |       |        | - |        |   |
| Mov Cap-1 Maneuver    |       | -      | - | 299    | - |
| Mov Cap-2 Maneuver    |       | -      | - | 299    | - |
| Stage 1               |       | -      | - | -      | - |
| Stage 2               |       | -      | - | 379    | - |
|                       |       |        |   |        |   |
| Approach              |       | WB     |   | NB     |   |
| HCM Control Delay, s  |       | 0      |   | 23.1   |   |
| HCM LOS               |       | •      |   | C      |   |
|                       |       |        |   | •      |   |
|                       |       | WDT    |   |        |   |
| Minor Lane/Major Mvmt | NBLn1 | WBT    |   |        |   |
| Capacity (veh/h)      | 299   | -      |   |        |   |
| HCM Lane V/C Ratio    | 0.338 | -      |   |        |   |
| HCM Control Delay (s) | 23.1  | -      |   |        |   |
| HCM Lane LOS          | C     | -      |   |        |   |
| HCM 95th %tile Q(veh) | 1.4   | -      |   |        |   |

| Int Delay, s/veh       | 1.1  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    |      |      |      | 11   | 1    |      |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 600  | 66   | 0    |
| Future Vol, veh/h      | 0    | 0    | 0    | 600  | 66   | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage, | # 2  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0    | 0    | 0    | 667  | 73   | 0    |

| Major/Minor           | Ν         | Major2 | Ν | /linor1 |   |
|-----------------------|-----------|--------|---|---------|---|
|                       |           | najurz |   |         |   |
| Conflicting Flow All  |           | -      | - | 334     | - |
| Stage 1               |           | -      | - | 0       | - |
| Stage 2               |           | -      | - | 334     | - |
| Critical Hdwy         |           | -      | - | 6.84    | - |
| Critical Hdwy Stg 1   |           | -      | - | -       | - |
| Critical Hdwy Stg 2   |           | -      | - | 0.01    | - |
| Follow-up Hdwy        |           | -      | - | 3.52    | - |
| Pot Cap-1 Maneuver    |           | 0      | - | 636     | 0 |
| Stage 1               |           | 0      | - | -       | 0 |
| Stage 2               |           | 0      | - | 697     | 0 |
| Platoon blocked, %    |           |        | - |         |   |
| Mov Cap-1 Maneuver    |           | -      | - | 636     | - |
| Mov Cap-2 Maneuver    |           | -      | - | 636     | - |
| Stage 1               |           | -      | - | -       | - |
| Stage 2               |           | -      | - | 697     | - |
|                       |           |        |   |         |   |
| Ammanah               |           |        |   |         |   |
| Approach              |           | WB     |   | NB      |   |
| HCM Control Delay, s  |           | 0      |   | 11.4    |   |
| HCM LOS               |           |        |   | В       |   |
|                       |           |        |   |         |   |
| Minor Lane/Major Mvmt | NBLn1     | WBT    |   |         |   |
| Capacity (veh/h)      | 636       | -      |   |         |   |
| HCM Lane V/C Ratio    | 0.115     |        |   |         |   |
| HCM Control Delay (s) | 11.4      | -      |   |         |   |
| HCM Lane LOS          | 11.4<br>B | -      |   |         |   |
|                       | в<br>0.4  | -      |   |         |   |
| HCM 95th %tile Q(veh) | 0.4       | -      |   |         |   |

Int Delay, s/veh 16.8 EBT EBR WBL WBT NBL NBR Movement **††** 1877 Lane Configurations ካ 233 Traffic Vol, veh/h 0 0 0 0 Future Vol, veh/h 0 0 0 1877 233 0 0 Conflicting Peds, #/hr 0 0 0 0 0 Sign Control Stop Stop Free Free Stop Stop RT Channelized None -None None --Storage Length 0 -----Veh in Median Storage, # 2 --0 0 -Grade, % 0 0 0 ---Peak Hour Factor 90 90 90 90 90 90 Heavy Vehicles, % 2 2 2 2 2 2 Mvmt Flow 0 0 0 2086 259 0

| Major/Minor                | Ν      | /lajor2  | Minor    | 1       |                      |                                |
|----------------------------|--------|----------|----------|---------|----------------------|--------------------------------|
| Conflicting Flow All       |        | -        | - 1043   | 3 -     |                      |                                |
| Stage 1                    |        | -        | - (      | ) -     |                      |                                |
| Stage 2                    |        | -        | - 1043   | 3 -     |                      |                                |
| Critical Hdwy              |        | -        | - 6.84   | 1 -     |                      |                                |
| Critical Hdwy Stg 1        |        | -        | -        |         |                      |                                |
| Critical Hdwy Stg 2        |        | -        | - 5.84   |         |                      |                                |
| Follow-up Hdwy             |        | -        | - 3.52   |         |                      |                                |
| Pot Cap-1 Maneuver         |        | 0        | - ~ 22   | 5 0     |                      |                                |
| Stage 1                    |        | 0        |          | - 0     |                      |                                |
| Stage 2                    |        | 0        | - 30     | ) 0     |                      |                                |
| Platoon blocked, %         |        |          | -        |         |                      |                                |
| Mov Cap-1 Maneuver         |        | -        | - ~ 22   |         |                      |                                |
| Mov Cap-2 Maneuver         |        | -        | - ~ 22   | 5 -     |                      |                                |
| Stage 1                    |        | -        | -        |         |                      |                                |
| Stage 2                    |        | -        | - 30     | ) -     |                      |                                |
|                            |        |          |          |         |                      |                                |
| Approach                   |        | WB       | N        | 3       |                      |                                |
| HCM Control Delay, s       |        | 0        | 15       | 2       |                      |                                |
| HCM LOS                    |        |          |          | -       |                      |                                |
|                            |        |          |          |         |                      |                                |
| Minor Lane/Major Mvmt      | NBLn1  | WBT      |          |         |                      |                                |
| Capacity (veh/h)           | 225    | -        |          |         |                      |                                |
| HCM Lane V/C Ratio         | 1.151  | -        |          |         |                      |                                |
| HCM Control Delay (s)      | 152    | -        |          |         |                      |                                |
| HCM Lane LOS               | F      | -        |          |         |                      |                                |
| HCM 95th %tile Q(veh)      | 12.2   | -        |          |         |                      |                                |
| Notes                      |        |          |          |         |                      |                                |
| ~: Volume exceeds capacity | \$: De | lay exce | eds 300s | +: Comp | outation Not Defined | *: All major volume in platoon |

| Int Delay, s/veh       | 2.7  |      |      |            |      |      |
|------------------------|------|------|------|------------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT        | NBL  | NBR  |
| Lane Configurations    |      |      |      | <b>†</b> † | 7    |      |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 915        | 175  | 0    |
| Future Vol, veh/h      | 0    | 0    | 0    | 915        | 175  | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0          | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free       | Stop | Stop |
| RT Channelized         | -    | None | -    | None       | -    | None |
| Storage Length         | -    | -    | -    | -          | 0    | -    |
| Veh in Median Storage, | # 2  | -    | -    | 0          | 0    | -    |
| Grade, %               | 0    | -    | -    | 0          | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90         | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2          | 2    | 2    |
| Mvmt Flow              | 0    | 0    | 0    | 1017       | 194  | 0    |

| Major/Minor           | Ν         | Major2 | I | Minor1 |   |  |  |  |
|-----------------------|-----------|--------|---|--------|---|--|--|--|
| Conflicting Flow All  |           |        | - |        | - |  |  |  |
| Stage 1               |           | -      | - | 0      | - |  |  |  |
| Stage 2               |           | -      | - | 509    | - |  |  |  |
| Critical Hdwy         |           | -      | - | 6.84   | - |  |  |  |
| Critical Hdwy Stg 1   |           | -      | - | -      | - |  |  |  |
| Critical Hdwy Stg 2   |           | -      | - | 5.84   | - |  |  |  |
| Follow-up Hdwy        |           | -      | - | 3.52   | - |  |  |  |
| Pot Cap-1 Maneuver    |           | 0      | - | 494    | 0 |  |  |  |
| Stage 1               |           | 0      | - | -      | 0 |  |  |  |
| Stage 2               |           | 0      | - | 569    | 0 |  |  |  |
| Platoon blocked, %    |           |        | - |        |   |  |  |  |
| Mov Cap-1 Maneuver    |           | -      | - | 494    | - |  |  |  |
| Mov Cap-2 Maneuver    |           | -      | - | 494    | - |  |  |  |
| Stage 1               |           | -      | - | -      | - |  |  |  |
| Stage 2               |           | -      | - | 569    | - |  |  |  |
|                       |           |        |   |        |   |  |  |  |
| Approach              |           | WB     |   | NB     |   |  |  |  |
| HCM Control Delay, s  |           | 0      |   | 16.9   |   |  |  |  |
| HCM LOS               |           |        |   | С      |   |  |  |  |
|                       |           |        |   |        |   |  |  |  |
| Minor Lane/Major Mvmt | NBLn1     | WBT    |   |        |   |  |  |  |
| Capacity (veh/h)      | 494       | -      |   |        |   |  |  |  |
| HCM Lane V/C Ratio    | 0.394     | -      |   |        |   |  |  |  |
| HCM Control Delay (s) | 16.9      | -      |   |        |   |  |  |  |
| HCM Lane LOS          | 10.3<br>C | -      |   |        |   |  |  |  |
| HCM 95th %tile Q(veh) | 1.9       | _      |   |        |   |  |  |  |
|                       | 1.5       |        |   |        |   |  |  |  |

| Int Delay, s/veh       | 22.5 |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBT  | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    |      |      |      | ††   | 1    |      |
| Traffic Vol, veh/h     | 0    | 0    | 0    | 1880 | 253  | 0    |
| Future Vol, veh/h      | 0    | 0    | 0    | 1880 | 253  | 0    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Stop | Stop |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | -    | -    | -    | -    | 0    | -    |
| Veh in Median Storage, | # -  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0    | 0    | 0    | 2089 | 281  | 0    |

| Major/Minor                | N      | Major2   | Minor1   |         |                     |                                |
|----------------------------|--------|----------|----------|---------|---------------------|--------------------------------|
| Conflicting Flow All       |        | -        | - 1045   | -       |                     |                                |
| Stage 1                    |        | -        | - 0      | -       |                     |                                |
| Stage 2                    |        | -        | - 1045   | -       |                     |                                |
| Critical Hdwy              |        | -        | - 6.84   | -       |                     |                                |
| Critical Hdwy Stg 1        |        | -        |          | -       |                     |                                |
| Critical Hdwy Stg 2        |        | -        | - 5.84   |         |                     |                                |
| Follow-up Hdwy             |        | -        | - 3.52   |         |                     |                                |
| Pot Cap-1 Maneuver         |        | 0        | - ~224   | 0       |                     |                                |
| Stage 1                    |        | 0        |          | •       |                     |                                |
| Stage 2                    |        | 0        | - 300    | 0       |                     |                                |
| Platoon blocked, %         |        |          | -        |         |                     |                                |
| Mov Cap-1 Maneuver         |        | -        | - ~ 224  |         |                     |                                |
| Mov Cap-2 Maneuver         |        | -        | - ~224   | -       |                     |                                |
| Stage 1                    |        | -        |          | -       |                     |                                |
| Stage 2                    |        | -        | - 300    | -       |                     |                                |
|                            |        |          |          |         |                     |                                |
| Approach                   |        | WB       | NB       |         |                     |                                |
| HCM Control Delay, s       |        | 0        | 189.6    |         |                     |                                |
| HCM LOS                    |        |          | F        |         |                     |                                |
|                            |        |          |          |         |                     |                                |
| Minor Lane/Major Mvmt      | NBLn1  | WBT      |          |         |                     |                                |
| Capacity (veh/h)           | 224    | -        |          |         |                     |                                |
| HCM Lane V/C Ratio         | 1.255  | -        |          |         |                     |                                |
| HCM Control Delay (s)      | 189.6  | -        |          |         |                     |                                |
| HCM Lane LOS               | F      | -        |          |         |                     |                                |
| HCM 95th %tile Q(veh)      | 14.4   | -        |          |         |                     |                                |
| Notes                      |        |          |          |         |                     |                                |
| ~: Volume exceeds capacity | \$: De | lay exce | eds 300s | +: Comp | utation Not Defined | *: All major volume in platoon |

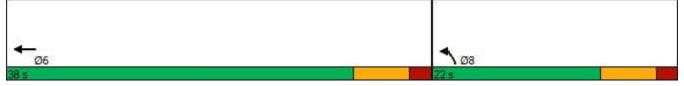
| Int Delay, s/veh       | 3     |      |      |      |      |      |
|------------------------|-------|------|------|------|------|------|
| Movement               | EBT   | EBR  | WBL  | WBT  | NBL  | NBR  |
| Lane Configurations    |       |      |      | 11   | 1    |      |
| Traffic Vol, veh/h     | 0     | 0    | 0    | 926  | 188  | 0    |
| Future Vol, veh/h      | 0     | 0    | 0    | 926  | 188  | 0    |
| Conflicting Peds, #/hr | 0     | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop  | Stop | Free | Free | Stop | Stop |
| RT Channelized         | -     | None | -    | None | -    | None |
| Storage Length         | -     | -    | -    | -    | 0    | -    |
| Veh in Median Storage  | , # - | -    | -    | 0    | 0    | -    |
| Grade, %               | 0     | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90    | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2     | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 0     | 0    | 0    | 1029 | 209  | 0    |

| Major/Minor           | Ν     | /lajor2 | Ν | 1inor1 |   |
|-----------------------|-------|---------|---|--------|---|
| Conflicting Flow All  |       | -       | - | 515    | - |
| Stage 1               |       | -       | - | 0      | - |
| Stage 2               |       | -       | - | 515    | - |
| Critical Hdwy         |       | -       | - | 6.84   | - |
| Critical Hdwy Stg 1   |       | -       | - | -      | - |
| Critical Hdwy Stg 2   |       | -       | - | 5.84   | - |
| Follow-up Hdwy        |       | -       | - | 3.52   | - |
| Pot Cap-1 Maneuver    |       | 0       | - | 489    | 0 |
| Stage 1               |       | 0       | - | -      | 0 |
| Stage 2               |       | 0       | - | 565    | 0 |
| Platoon blocked, %    |       |         | - |        |   |
| Mov Cap-1 Maneuver    |       | -       | - | 489    | - |
| Mov Cap-2 Maneuver    |       | -       | - | 489    | - |
| Stage 1               |       | -       | - | -      | - |
| Stage 2               |       | -       | - | 565    | - |
|                       |       |         |   |        |   |
| Approach              |       | WB      |   | NB     |   |
| HCM Control Delay, s  |       | 0       |   | 17.7   |   |
| HCM LOS               |       |         |   | С      |   |
|                       |       |         |   |        |   |
| Minor Lane/Major Mvmt | NBLn1 | WBT     |   |        |   |
| Capacity (veh/h)      | 489   | -       |   |        |   |
| HCM Lane V/C Ratio    | 0.427 | -       |   |        |   |
| HCM Control Delay (s) | 17.7  | -       |   |        |   |
| HCM Lane LOS          | С     | -       |   |        |   |
| HCM 95th %tile Q(veh) | 2.1   | -       |   |        |   |

|                         |           | 7    | 1    | ←          | 1         | 1    |
|-------------------------|-----------|------|------|------------|-----------|------|
| Lane Group              | EBT       | EBR  | WBL  | WBT        | NBL       | NBR  |
| Lane Configurations     |           |      |      | 11         | 1         |      |
| Traffic Volume (vph)    | 0         | 0    | 0    | 1880       | 253       | 0    |
| Future Volume (vph)     | 0         | 0    | 0    | 1880       | 253       | 0    |
| Ideal Flow (vphpl)      | 1900      | 1900 | 1900 | 1900       | 1900      | 1900 |
| Lane Util. Factor       | 1.00      | 1.00 | 1.00 | 0.95       | 1.00      | 1.00 |
| Frt                     | 1.00      | 1.00 | 1.00 | 0.00       | 1.00      | 1.00 |
| Flt Protected           |           |      |      |            | 0.950     |      |
| Satd. Flow (prot)       | 0         | 0    | 0    | 3539       | 1770      | 0    |
| Flt Permitted           | 0         | 0    | 0    | 0000       | 0.950     | 0    |
| Satd. Flow (perm)       | 0         | 0    | 0    | 3539       | 1770      | 0    |
| Right Turn on Red       | 0         | No   | U    | 0000       | No        | No   |
| Satd. Flow (RTOR)       |           | INU  |      |            | NU        | NU   |
| Link Speed (mph)        | 55        |      |      | 55         | 45        |      |
| Link Distance (ft)      | 55<br>520 |      |      | 55<br>1076 | 45<br>100 |      |
| ( )                     |           |      |      |            |           |      |
| Travel Time (s)         | 6.4       | 0.00 | 0.00 | 13.3       | 1.5       | 0.00 |
| Peak Hour Factor        | 0.90      | 0.90 | 0.90 | 0.90       | 0.90      | 0.90 |
| Adj. Flow (vph)         | 0         | 0    | 0    | 2089       | 281       | 0    |
| Shared Lane Traffic (%) | ^         | ^    | ^    | 0000       | 004       | ^    |
| Lane Group Flow (vph)   | 0         | 0    | 0    | 2089       | 281       | 0    |
| Turn Type               |           |      |      | NA         | Prot      |      |
| Protected Phases        |           |      |      | 6          | 8         |      |
| Permitted Phases        |           |      |      | -          | _         |      |
| Detector Phase          |           |      |      | 6          | 8         |      |
| Switch Phase            |           |      |      |            |           |      |
| Minimum Initial (s)     |           |      |      | 14.0       | 7.0       |      |
| Minimum Split (s)       |           |      |      | 21.0       | 14.0      |      |
| Total Split (s)         |           |      |      | 44.0       | 16.0      |      |
| Total Split (%)         |           |      |      | 73.3%      | 26.7%     |      |
| Maximum Green (s)       |           |      |      | 37.0       | 9.0       |      |
| Yellow Time (s)         |           |      |      | 5.0        | 5.0       |      |
| All-Red Time (s)        |           |      |      | 2.0        | 2.0       |      |
| Lost Time Adjust (s)    |           |      |      | -2.0       | -2.0      |      |
| Total Lost Time (s)     |           |      |      | 5.0        | 5.0       |      |
| Lead/Lag                |           |      |      |            |           |      |
| Lead-Lag Optimize?      |           |      |      |            |           |      |
| Vehicle Extension (s)   |           |      |      | 3.0        | 3.0       |      |
| Recall Mode             |           |      |      | None       | Min       |      |
| Act Effct Green (s)     |           |      |      | 39.0       | 11.0      |      |
| Actuated g/C Ratio      |           |      |      | 0.65       | 0.18      |      |
| v/c Ratio               |           |      |      | 0.91       | 0.87      |      |
| Control Delay           |           |      |      | 16.9       | 53.0      |      |
| Queue Delay             |           |      |      | 0.0        | 0.0       |      |
| Total Delay             |           |      |      | 16.9       | 53.0      |      |
| LOS                     |           |      |      | B          | D         |      |
| Approach Delay          |           |      |      | 16.9       | 53.0      |      |
| Approach LOS            |           |      |      | 10.9<br>B  | 55.0<br>D |      |
| Queue Length 50th (ft)  |           |      |      | 280        | 100       |      |
|                         |           |      |      | #513       | #221      |      |
| Queue Length 95th (ft)  | 110       |      |      |            |           |      |
| Internal Link Dist (ft) | 440       |      |      | 996        | 20        |      |

2027 Build AM Harris Creek Farm - Rolesville, NC 11:36 am 01/05/2023 2027 Build - Improved RKA

|                              |               | 7         | •        | ←         | 1          | 1           |
|------------------------------|---------------|-----------|----------|-----------|------------|-------------|
| Lane Group                   | EBT           | EBR       | WBL      | WBT       | NBL        | NBR         |
| Turn Bay Length (ft)         |               |           |          |           |            |             |
| Base Capacity (vph)          |               |           |          | 2300      | 324        |             |
| Starvation Cap Reductn       |               |           |          | 0         | 0          |             |
| Spillback Cap Reductn        |               |           |          | 0         | 0          |             |
| Storage Cap Reductn          |               |           |          | 0         | 0          |             |
| Reduced v/c Ratio            |               |           |          | 0.91      | 0.87       |             |
| Intersection Summary         |               |           |          |           |            |             |
| Area Type:                   | Other         |           |          |           |            |             |
| Cycle Length: 60             |               |           |          |           |            |             |
| Actuated Cycle Length: 60    |               |           |          |           |            |             |
| Natural Cycle: 60            |               |           |          |           |            |             |
| Control Type: Actuated-Un    | coordinated   |           |          |           |            |             |
| Maximum v/c Ratio: 0.91      |               |           |          |           |            |             |
| Intersection Signal Delay:   | 21.2          |           |          | Int       | tersection | LOS: C      |
| Intersection Capacity Utiliz | ation 74.3%   |           |          | IC        | U Level o  | f Service D |
| Analysis Period (min) 15     |               |           |          |           |            |             |
| # 95th percentile volume     | exceeds cap   | acity, qu | eue may  | be longer |            |             |
| Queue shown is maxim         | um after two  | cycles.   |          |           |            |             |
| Splits and Phases: 2: Ea     | astern U-Turr | & US 4    | 01 Rynas | s WB      |            |             |


| <<br>Ø6 | ↑ Ø8 |
|---------|------|
| 44 s    | 16.5 |

|                         |      | 7    | •    | <     | 1         | 1    |
|-------------------------|------|------|------|-------|-----------|------|
| Lane Group              | EBT  | EBR  | WBL  | WBT   | NBL       | NBR  |
| Lane Configurations     |      |      | TTDL |       | TIDE<br>7 | NDR  |
| Traffic Volume (vph)    | 0    | 0    | 0    | 926   | 188       | 0    |
| Future Volume (vph)     | 0    | 0    | 0    | 920   | 188       | 0    |
| Ideal Flow (vphpl)      | 1900 | 1900 | 1900 | 1900  | 1900      | 1900 |
| Lane Util. Factor       | 1.00 | 1.00 | 1.00 | 0.95  | 1.00      | 1.00 |
| Frt                     | 1.00 | 1.00 | 1.00 | 0.95  | 1.00      | 1.00 |
| Fit Protected           |      |      |      |       | 0.950     |      |
|                         | 0    | 0    | 0    | 2520  |           | 0    |
| Satd. Flow (prot)       | 0    | 0    | 0    | 3539  | 1770      | 0    |
| Flt Permitted           | •    | •    | •    | 0.500 | 0.950     | •    |
| Satd. Flow (perm)       | 0    | 0    | 0    | 3539  | 1770      | 0    |
| Right Turn on Red       |      | No   |      |       | No        | No   |
| Satd. Flow (RTOR)       |      |      |      |       |           |      |
| Link Speed (mph)        | 55   |      |      | 55    | 45        |      |
| Link Distance (ft)      | 520  |      |      | 1076  | 100       |      |
| Travel Time (s)         | 6.4  |      |      | 13.3  | 1.5       |      |
| Peak Hour Factor        | 0.90 | 0.90 | 0.90 | 0.90  | 0.90      | 0.90 |
| Adj. Flow (vph)         | 0    | 0    | 0    | 1029  | 209       | 0    |
| Shared Lane Traffic (%) | -    |      |      |       |           | -    |
| Lane Group Flow (vph)   | 0    | 0    | 0    | 1029  | 209       | 0    |
| Turn Type               | v    | U    | U    | NA    | Prot      | U    |
| Protected Phases        |      |      |      | 6     | 8         |      |
| Permitted Phases        |      |      |      | 0     | 0         |      |
|                         |      |      |      | 6     | 8         |      |
| Detector Phase          |      |      |      | 6     | ð         |      |
| Switch Phase            |      |      |      | 44.0  | 7.0       |      |
| Minimum Initial (s)     |      |      |      | 14.0  | 7.0       |      |
| Minimum Split (s)       |      |      |      | 21.0  | 14.0      |      |
| Total Split (s)         |      |      |      | 38.0  | 22.0      |      |
| Total Split (%)         |      |      |      | 63.3% | 36.7%     |      |
| Maximum Green (s)       |      |      |      | 31.0  | 15.0      |      |
| Yellow Time (s)         |      |      |      | 5.0   | 5.0       |      |
| All-Red Time (s)        |      |      |      | 2.0   | 2.0       |      |
| Lost Time Adjust (s)    |      |      |      | -2.0  | -2.0      |      |
| Total Lost Time (s)     |      |      |      | 5.0   | 5.0       |      |
| Lead/Lag                |      |      |      |       |           |      |
| Lead-Lag Optimize?      |      |      |      |       |           |      |
| Vehicle Extension (s)   |      |      |      | 3.0   | 3.0       |      |
| Recall Mode             |      |      |      | None  | Min       |      |
| Act Effct Green (s)     |      |      |      | 22.7  | 12.7      |      |
| Actuated g/C Ratio      |      |      |      | 0.50  | 0.28      |      |
|                         |      |      |      |       |           |      |
| v/c Ratio               |      |      |      | 0.59  | 0.42      |      |
| Control Delay           |      |      |      | 9.9   | 17.9      |      |
| Queue Delay             |      |      |      | 0.0   | 0.0       |      |
| Total Delay             |      |      |      | 9.9   | 17.9      |      |
| LOS                     |      |      |      | А     | В         |      |
| Approach Delay          |      |      |      | 9.9   | 17.9      |      |
| Approach LOS            |      |      |      | А     | В         |      |
| Queue Length 50th (ft)  |      |      |      | 87    | 43        |      |
| Queue Length 95th (ft)  |      |      |      | 157   | 111       |      |
| Internal Link Dist (ft) | 440  |      |      | 996   | 20        |      |

2027 Build PM Harris Creek Farm - Rolesville, NC 11:14 am 04/14/2023 2027 Build - Improved RKA

|                              |              | 7   | •   | ←    | 1          | 1           |
|------------------------------|--------------|-----|-----|------|------------|-------------|
| Lane Group                   | EBT          | EBR | WBL | WBT  | NBL        | NBR         |
| Turn Bay Length (ft)         |              |     |     |      |            |             |
| Base Capacity (vph)          |              |     |     | 2642 | 680        |             |
| Starvation Cap Reductn       |              |     |     | 0    | 0          |             |
| Spillback Cap Reductn        |              |     |     | 0    | 0          |             |
| Storage Cap Reductn          |              |     |     | 0    | 0          |             |
| Reduced v/c Ratio            |              |     |     | 0.39 | 0.31       |             |
| Intersection Summary         |              |     |     |      |            |             |
| Area Type:                   | Other        |     |     |      |            |             |
| Cycle Length: 60             |              |     |     |      |            |             |
| Actuated Cycle Length: 45    | 5.7          |     |     |      |            |             |
| Natural Cycle: 40            |              |     |     |      |            |             |
| Control Type: Actuated-Ur    | ncoordinated |     |     |      |            |             |
| Maximum v/c Ratio: 0.59      |              |     |     |      |            |             |
| Intersection Signal Delay:   |              |     |     |      | tersection |             |
| Intersection Capacity Utiliz | zation 44.3% |     |     | IC   | U Level o  | f Service A |
| Analysis Period (min) 15     |              |     |     |      |            |             |

Splits and Phases: 2: Eastern U-Turn & US 401 Bypass WB



# **APPENDIX F**

## CAPACITY ANALYSIS CALCULATIONS MITCHELL MILL ROAD & JONESVILLE ROAD / PEEBLES ROAD

```
eh 12.7
B
```

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 7    | 166  | 2    | 11   | 316  | 41   | 4    | 78   | 11   | 32   | 133  | 16   |
| Future Vol, veh/h          | 7    | 166  | 2    | 11   | 316  | 41   | 4    | 78   | 11   | 32   | 133  | 16   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 8    | 184  | 2    | 12   | 351  | 46   | 4    | 87   | 12   | 36   | 148  | 18   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 1    |      |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 10.8 |      |      | 14.8 |      |      | 10.1 |      |      | 11.4 |      |      |
| HCM LOS                    | В    |      |      | В    |      |      | В    |      |      | В    |      |      |

| 1                      | NDL 4 | EDL -4 |       | 0014  |
|------------------------|-------|--------|-------|-------|
| Lane                   | NBLn1 | EBLn1  | WBLn1 | SBLn1 |
| Vol Left, %            | 4%    | 4%     | 3%    | 18%   |
| Vol Thru, %            | 84%   | 95%    | 86%   | 73%   |
| Vol Right, %           | 12%   | 1%     | 11%   | 9%    |
| Sign Control           | Stop  | Stop   | Stop  | Stop  |
| Traffic Vol by Lane    | 93    | 175    | 368   | 181   |
| LT Vol                 | 4     | 7      | 11    | 32    |
| Through Vol            | 78    | 166    | 316   | 133   |
| RT Vol                 | 11    | 2      | 41    | 16    |
| Lane Flow Rate         | 103   | 194    | 409   | 201   |
| Geometry Grp           | 1     | 1      | 1     | 1     |
| Degree of Util (X)     | 0.168 | 0.294  | 0.576 | 0.318 |
| Departure Headway (Hd) | 5.843 | 5.438  | 5.074 | 5.691 |
| Convergence, Y/N       | Yes   | Yes    | Yes   | Yes   |
| Сар                    | 612   | 659    | 711   | 631   |
| Service Time           | 3.897 | 3.483  | 3.111 | 3.736 |
| HCM Lane V/C Ratio     | 0.168 | 0.294  | 0.575 | 0.319 |
| HCM Control Delay      | 10.1  | 10.8   | 14.8  | 11.4  |
| HCM Lane LOS           | В     | В      | В     | В     |
| HCM 95th-tile Q        | 0.6   | 1.2    | 3.7   | 1.4   |

В

#### Intersection

Intersection Delay, s/veh Intersection LOS

10.8

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        |      | 4    |      |      | 4    |      |      | 4    |      |      | 4    |      |
| Traffic Vol, veh/h         | 18   | 306  | 13   | 0    | 130  | 21   | 5    | 92   | 10   | 27   | 50   | 11   |
| Future Vol, veh/h          | 18   | 306  | 13   | 0    | 130  | 21   | 5    | 92   | 10   | 27   | 50   | 11   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 20   | 340  | 14   | 0    | 144  | 23   | 6    | 102  | 11   | 30   | 56   | 12   |
| Number of Lanes            | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    | 0    | 1    | 0    |
| Approach                   | EB   |      |      |      | WB   |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      |      | EB   |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 1    |      |      |      | 1    |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      |      | NB   |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 1    |      |      |      | 1    |      | 1    |      |      | 1    |      |      |
| Conflicting Approach Right | NB   |      |      |      | SB   |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      |      | 1    |      | 1    |      |      | 1    |      |      |
| HCM Control Delay          | 12.2 |      |      |      | 9.4  |      | 9.5  |      |      | 9.4  |      |      |
| HCM LOS                    | В    |      |      |      | А    |      | А    |      |      | А    |      |      |

| Lane                   | NBLn1 | EBLn1 | WBLn1 | SBLn1 |  |
|------------------------|-------|-------|-------|-------|--|
| Vol Left, %            | 5%    | 5%    | 0%    | 31%   |  |
| Vol Thru, %            | 86%   | 91%   | 86%   | 57%   |  |
| Vol Right, %           | 9%    | 4%    | 14%   | 12%   |  |
| Sign Control           | Stop  | Stop  | Stop  | Stop  |  |
| Traffic Vol by Lane    | 107   | 337   | 151   | 88    |  |
| LT Vol                 | 5     | 18    | 0     | 27    |  |
| Through Vol            | 92    | 306   | 130   | 50    |  |
| RT Vol                 | 10    | 13    | 21    | 11    |  |
| Lane Flow Rate         | 119   | 374   | 168   | 98    |  |
| Geometry Grp           | 1     | 1     | 1     | 1     |  |
| Degree of Util (X)     | 0.175 | 0.488 | 0.227 | 0.146 |  |
| Departure Headway (Hd) | 5.3   | 4.694 | 4.868 | 5.368 |  |
| Convergence, Y/N       | Yes   | Yes   | Yes   | Yes   |  |
| Сар                    | 669   | 760   | 730   | 660   |  |
| Service Time           | 3.395 | 2.76  | 2.948 | 3.464 |  |
| HCM Lane V/C Ratio     | 0.178 | 0.492 | 0.23  | 0.148 |  |
| HCM Control Delay      | 9.5   | 12.2  | 9.4   | 9.4   |  |
| HCM Lane LOS           | А     | В     | А     | А     |  |
| HCM 95th-tile Q        | 0.6   | 2.7   | 0.9   | 0.5   |  |

#### Intersection

```
95.4
```

| Movement                   | EBL  | EBT  | EBR  | WBL   | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|-------|------|------|------|------|------|------|------|------|
| Lane Configurations        | 2    | T    |      |       | 4    | 1    |      | 4    |      | 2    | T    |      |
| Traffic Vol, veh/h         | 63   | 253  | 12   | 29    | 607  | 119  | 12   | 86   | 20   | 84   | 149  | 54   |
| Future Vol, veh/h          | 63   | 253  | 12   | 29    | 607  | 119  | 12   | 86   | 20   | 84   | 149  | 54   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90  | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 70   | 281  | 13   | 32    | 674  | 132  | 13   | 96   | 22   | 93   | 166  | 60   |
| Number of Lanes            | 1    | 1    | 0    | 0     | 1    | 1    | 0    | 1    | 0    | 1    | 1    | 0    |
| Approach                   | EB   |      |      | WB    |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB    |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 2     |      |      | 2    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB    |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 2    |      |      | 1     |      |      | 2    |      |      | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB    |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 2     |      |      | 2    |      |      | 2    |      |      |
| HCM Control Delay          | 19.9 |      |      | 170.3 |      |      | 16.1 |      |      | 17.2 |      |      |
| HCM LOS                    | С    |      |      | F     |      |      | С    |      |      | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vol Left, %            | 10%   | 100%  | 0%    | 5%    | 0%    | 100%  | 0%    |
| Vol Thru, %            | 73%   | 0%    | 95%   | 95%   | 0%    | 0%    | 73%   |
| Vol Right, %           | 17%   | 0%    | 5%    | 0%    | 100%  | 0%    | 27%   |
| Sign Control           | Stop  |
| Traffic Vol by Lane    | 118   | 63    | 265   | 636   | 119   | 84    | 203   |
| LT Vol                 | 12    | 63    | 0     | 29    | 0     | 84    | 0     |
| Through Vol            | 86    | 0     | 253   | 607   | 0     | 0     | 149   |
| RT Vol                 | 20    | 0     | 12    | 0     | 119   | 0     | 54    |
| Lane Flow Rate         | 131   | 70    | 294   | 707   | 132   | 93    | 226   |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |
| Degree of Util (X)     | 0.302 | 0.152 | 0.597 | 1.372 | 0.229 | 0.215 | 0.476 |
| Departure Headway (Hd) | 9.162 | 8.438 | 7.887 | 6.988 | 6.248 | 9.036 | 8.326 |
| Convergence, Y/N       | Yes   |
| Сар                    | 395   | 428   | 462   | 516   | 570   | 399   | 435   |
| Service Time           | 7.162 | 6.138 | 5.587 | 4.777 | 4.036 | 6.736 | 6.026 |
| HCM Lane V/C Ratio     | 0.332 | 0.164 | 0.636 | 1.37  | 0.232 | 0.233 | 0.52  |
| HCM Control Delay      | 16.1  | 12.6  | 21.6  | 200.1 | 10.9  | 14.2  | 18.4  |
| HCM Lane LOS           | С     | В     | С     | F     | В     | В     | С     |
| HCM 95th-tile Q        | 1.3   | 0.5   | 3.8   | 31.9  | 0.9   | 0.8   | 2.5   |

### Intersection

```
57.2
```

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        | 2    | T    |      |      | 4    | 1    |      | 4    |      | 2    | T    |      |
| Traffic Vol, veh/h         | 114  | 459  | 19   | 14   | 387  | 95   | 19   | 106  | 31   | 159  | 65   | 33   |
| Future Vol, veh/h          | 114  | 459  | 19   | 14   | 387  | 95   | 19   | 106  | 31   | 159  | 65   | 33   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 127  | 510  | 21   | 16   | 430  | 106  | 21   | 118  | 34   | 177  | 72   | 37   |
| Number of Lanes            | 1    | 1    | 0    | 0    | 1    | 1    | 0    | 1    | 0    | 1    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 2    |      |      | 2    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 2    |      |      | 1    |      |      | 2    |      |      | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 2    |      |      | 2    |      |      | 2    |      |      |
| HCM Control Delay          | 90.6 |      |      | 50   |      |      | 19.2 |      |      | 17.4 |      |      |
| HCM LOS                    | F    |      |      | E    |      |      | С    |      |      | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vol Left, %            | 12%   | 100%  | 0%    | 3%    | 0%    | 100%  | 0%    |
| Vol Thru, %            | 68%   | 0%    | 96%   | 97%   | 0%    | 0%    | 66%   |
| Vol Right, %           | 20%   | 0%    | 4%    | 0%    | 100%  | 0%    | 34%   |
| Sign Control           | Stop  |
| Traffic Vol by Lane    | 156   | 114   | 478   | 401   | 95    | 159   | 98    |
| LT Vol                 | 19    | 114   | 0     | 14    | 0     | 159   | 0     |
| Through Vol            | 106   | 0     | 459   | 387   | 0     | 0     | 65    |
| RT Vol                 | 31    | 0     | 19    | 0     | 95    | 0     | 33    |
| Lane Flow Rate         | 173   | 127   | 531   | 446   | 106   | 177   | 109   |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |
| Degree of Util (X)     | 0.429 | 0.289 | 1.13  | 0.95  | 0.204 | 0.443 | 0.251 |
| Departure Headway (Hd) | 9.353 | 8.206 | 7.661 | 7.994 | 7.251 | 9.428 | 8.662 |
| Convergence, Y/N       | Yes   |
| Сар                    | 388   | 438   | 473   | 459   | 498   | 385   | 417   |
| Service Time           | 7.353 | 5.959 | 5.414 | 5.694 | 4.951 | 7.128 | 6.362 |
| HCM Lane V/C Ratio     | 0.446 | 0.29  | 1.123 | 0.972 | 0.213 | 0.46  | 0.261 |
| HCM Control Delay      | 19.2  | 14.3  | 108.8 | 59    | 11.8  | 19.4  | 14.2  |
| HCM Lane LOS           | С     | В     | F     | F     | В     | С     | В     |
| HCM 95th-tile Q        | 2.1   | 1.2   | 18.4  | 11.3  | 0.8   | 2.2   | 1     |

#### Intersection

| Movement                   | EBL  | EBT  | EBR  | WBL   | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|-------|------|------|------|------|------|------|------|------|
| Lane Configurations        | 7    | T    |      |       | 4    | 1    |      | 4    |      | 2    | ħ    |      |
| Traffic Vol, veh/h         | 71   | 253  | 12   | 29    | 607  | 121  | 12   | 88   | 20   | 91   | 156  | 76   |
| Future Vol, veh/h          | 71   | 253  | 12   | 29    | 607  | 121  | 12   | 88   | 20   | 91   | 156  | 76   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90  | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2     | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 79   | 281  | 13   | 32    | 674  | 134  | 13   | 98   | 22   | 101  | 173  | 84   |
| Number of Lanes            | 1    | 1    | 0    | 0     | 1    | 1    | 0    | 1    | 0    | 1    | 1    | 0    |
| Approach                   | EB   |      |      | WB    |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB    |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 2     |      |      | 2    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB    |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 2    |      |      | 1     |      |      | 2    |      |      | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB    |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 2     |      |      | 2    |      |      | 2    |      |      |
| HCM Control Delay          | 20.8 |      |      | 191.1 |      |      | 16.7 |      |      | 19   |      |      |
| HCM LOS                    | С    |      |      | F     |      |      | С    |      |      | С    |      |      |

| Lane                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|
| Vol Left, %            | 10%   | 100%  | 0%    | 5%    | 0%    | 100%  | 0%    |
| Vol Thru, %            | 73%   | 0%    | 95%   | 95%   | 0%    | 0%    | 67%   |
| Vol Right, %           | 17%   | 0%    | 5%    | 0%    | 100%  | 0%    | 33%   |
| Sign Control           | Stop  |
| Traffic Vol by Lane    | 120   | 71    | 265   | 636   | 121   | 91    | 232   |
| LT Vol                 | 12    | 71    | 0     | 29    | 0     | 91    | 0     |
| Through Vol            | 88    | 0     | 253   | 607   | 0     | 0     | 156   |
| RT Vol                 | 20    | 0     | 12    | 0     | 121   | 0     | 76    |
| Lane Flow Rate         | 133   | 79    | 294   | 707   | 134   | 101   | 258   |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |
| Degree of Util (X)     | 0.313 | 0.176 | 0.611 | 1.43  | 0.244 | 0.234 | 0.545 |
| Departure Headway (Hd) | 9.455 | 8.699 | 8.147 | 7.283 | 6.541 | 9.17  | 8.414 |
| Convergence, Y/N       | Yes   |
| Сар                    | 383   | 415   | 448   | 502   | 553   | 394   | 430   |
| Service Time           | 7.455 | 6.399 | 5.847 | 4.983 | 4.241 | 6.87  | 6.114 |
| HCM Lane V/C Ratio     | 0.347 | 0.19  | 0.656 | 1.408 | 0.242 | 0.256 | 0.6   |
| HCM Control Delay      | 16.7  | 13.2  | 22.8  | 225.3 | 11.3  | 14.6  | 20.7  |
| HCM Lane LOS           | С     | В     | С     | F     | В     | В     | С     |
| HCM 95th-tile Q        | 1.3   | 0.6   | 4     | 34.3  | 1     | 0.9   | 3.2   |

#### Intersection

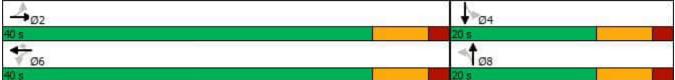
```
60.9
```

| Movement                   | EBL  | EBT  | EBR  | WBL  | WBT  | WBR  | NBL  | NBT  | NBR  | SBL  | SBT  | SBR  |
|----------------------------|------|------|------|------|------|------|------|------|------|------|------|------|
| Lane Configurations        | 7    | T    |      |      | 4    | 1    |      | 4    |      | 2    | T+   |      |
| Traffic Vol, veh/h         | 138  | 459  | 19   | 14   | 387  | 102  | 19   | 113  | 31   | 163  | 69   | 49   |
| Future Vol, veh/h          | 138  | 459  | 19   | 14   | 387  | 102  | 19   | 113  | 31   | 163  | 69   | 49   |
| Peak Hour Factor           | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 | 0.90 |
| Heavy Vehicles, %          | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow                  | 153  | 510  | 21   | 16   | 430  | 113  | 21   | 126  | 34   | 181  | 77   | 54   |
| Number of Lanes            | 1    | 1    | 0    | 0    | 1    | 1    | 0    | 1    | 0    | 1    | 1    | 0    |
| Approach                   | EB   |      |      | WB   |      |      | NB   |      |      | SB   |      |      |
| Opposing Approach          | WB   |      |      | EB   |      |      | SB   |      |      | NB   |      |      |
| Opposing Lanes             | 2    |      |      | 2    |      |      | 2    |      |      | 1    |      |      |
| Conflicting Approach Left  | SB   |      |      | NB   |      |      | EB   |      |      | WB   |      |      |
| Conflicting Lanes Left     | 2    |      |      | 1    |      |      | 2    |      |      | 2    |      |      |
| Conflicting Approach Right | NB   |      |      | SB   |      |      | WB   |      |      | EB   |      |      |
| Conflicting Lanes Right    | 1    |      |      | 2    |      |      | 2    |      |      | 2    |      |      |
| HCM Control Delay          | 96.6 |      |      | 54.4 |      |      | 20.2 |      |      | 18   |      |      |
| HCM LOS                    | F    |      |      | F    |      |      | С    |      |      | С    |      |      |

| Lana                   | NBLn1 | EBLn1 | EBLn2 | WBLn1 | WBLn2 | SBLn1 | SBLn2 |
|------------------------|-------|-------|-------|-------|-------|-------|-------|
| Lane                   |       |       |       |       |       |       |       |
| Vol Left, %            | 12%   | 100%  | 0%    | 3%    | 0%    | 100%  | 0%    |
| Vol Thru, %            | 69%   | 0%    | 96%   | 97%   | 0%    | 0%    | 58%   |
| Vol Right, %           | 19%   | 0%    | 4%    | 0%    | 100%  | 0%    | 42%   |
| Sign Control           | Stop  |
| Traffic Vol by Lane    | 163   | 138   | 478   | 401   | 102   | 163   | 118   |
| LT Vol                 | 19    | 138   | 0     | 14    | 0     | 163   | 0     |
| Through Vol            | 113   | 0     | 459   | 387   | 0     | 0     | 69    |
| RT Vol                 | 31    | 0     | 19    | 0     | 102   | 0     | 49    |
| Lane Flow Rate         | 181   | 153   | 531   | 446   | 113   | 181   | 131   |
| Geometry Grp           | 6     | 7     | 7     | 7     | 7     | 7     | 7     |
| Degree of Util (X)     | 0.455 | 0.358 | 1.159 | 0.973 | 0.225 | 0.459 | 0.304 |
| Departure Headway (Hd) | 9.533 | 8.403 | 7.857 | 8.211 | 7.466 | 9.559 | 8.735 |
| Convergence, Y/N       | Yes   |
| Сар                    | 380   | 428   | 462   | 446   | 484   | 379   | 414   |
| Service Time           | 7.533 | 6.158 | 5.612 | 5.911 | 5.166 | 7.259 | 6.435 |
| HCM Lane V/C Ratio     | 0.476 | 0.357 | 1.149 | 1     | 0.233 | 0.478 | 0.316 |
| HCM Control Delay      | 20.2  | 15.8  | 119.9 | 65.1  | 12.3  | 20.1  | 15.2  |
| HCM Lane LOS           | С     | С     | F     | F     | В     | С     | С     |
| HCM 95th-tile Q        | 2.3   | 1.6   | 19.3  | 11.9  | 0.9   | 2.3   | 1.3   |

## Lanes, Volumes, Timings 3: Peebles Road/Jonesville Road & Mitchell Mill Road

|                         | ٨     | -     | 7    | 4     | -     | ٩     | 1     | Î     | ۲    | 6     | ţ     | ~    |
|-------------------------|-------|-------|------|-------|-------|-------|-------|-------|------|-------|-------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR   | NBL   | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     | 7     | To    |      |       | 4     | 1     |       | 4     |      | 7     | T     |      |
| Traffic Volume (vph)    | 71    | 253   | 12   | 29    | 607   | 121   | 12    | 88    | 20   | 91    | 156   | 76   |
| Future Volume (vph)     | 71    | 253   | 12   | 29    | 607   | 121   | 12    | 88    | 20   | 91    | 156   | 76   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 100   |       | 0    | 0     |       | 100   | 0     |       | 0    | 100   |       | 0    |
| Storage Lanes           | 1     |       | 0    | 0     |       | 1     | 0     |       | 0    | 1     |       | 0    |
| Taper Length (ft)       | 100   |       |      | 100   |       |       | 100   |       |      | 100   |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Frt                     |       | 0.993 |      |       |       | 0.850 |       | 0.978 |      |       | 0.951 |      |
| Flt Protected           | 0.950 |       |      |       | 0.998 |       |       | 0.995 |      | 0.950 |       |      |
| Satd. Flow (prot)       | 1770  | 1850  | 0    | 0     | 1859  | 1583  | 0     | 1813  | 0    | 1770  | 1771  | 0    |
| Flt Permitted           | 0.247 |       |      |       | 0.976 |       |       | 0.946 |      | 0.785 |       |      |
| Satd. Flow (perm)       | 460   | 1850  | 0    | 0     | 1818  | 1583  | 0     | 1723  | 0    | 1462  | 1771  | 0    |
| Right Turn on Red       |       |       | No   |       |       | No    |       |       | No   |       |       | No   |
| Satd. Flow (RTOR)       |       |       |      |       |       |       |       |       |      |       |       |      |
| Link Speed (mph)        |       | 45    |      |       | 45    |       |       | 45    |      |       | 45    |      |
| Link Distance (ft)      |       | 1536  |      |       | 1126  |       |       | 1017  |      |       | 1092  |      |
| Travel Time (s)         |       | 23.3  |      |       | 17.1  |       |       | 15.4  |      |       | 16.5  |      |
| Peak Hour Factor        | 0.90  | 0.90  | 0.90 | 0.90  | 0.90  | 0.90  | 0.90  | 0.90  | 0.90 | 0.90  | 0.90  | 0.90 |
| Adj. Flow (vph)         | 79    | 281   | 13   | 32    | 674   | 134   | 13    | 98    | 22   | 101   | 173   | 84   |
| Shared Lane Traffic (%) |       |       |      |       |       |       |       |       |      |       |       |      |
| Lane Group Flow (vph)   | 79    | 294   | 0    | 0     | 706   | 134   | 0     | 133   | 0    | 101   | 257   | 0    |
| Turn Type               | Perm  | NA    |      | Perm  | NA    | Perm  | Perm  | NA    |      | Perm  | NA    |      |
| Protected Phases        |       | 2     |      |       | 6     |       |       | 8     |      |       | 4     |      |
| Permitted Phases        | 2     |       |      | 6     |       | 6     | 8     |       |      | 4     |       |      |
| Detector Phase          | 2     | 2     |      | 6     | 6     | 6     | 8     | 8     |      | 4     | 4     |      |
| Switch Phase            |       |       |      |       |       |       |       |       |      |       |       |      |
| Minimum Initial (s)     | 12.0  | 12.0  |      | 12.0  | 12.0  | 12.0  | 7.0   | 7.0   |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 19.0  | 19.0  |      | 19.0  | 19.0  | 19.0  | 14.0  | 14.0  |      | 14.0  | 14.0  |      |
| Total Split (s)         | 40.0  | 40.0  |      | 40.0  | 40.0  | 40.0  | 20.0  | 20.0  |      | 20.0  | 20.0  |      |
| Total Split (%)         | 66.7% | 66.7% |      | 66.7% | 66.7% | 66.7% | 33.3% | 33.3% |      | 33.3% | 33.3% |      |
| Maximum Green (s)       | 33.0  | 33.0  |      | 33.0  | 33.0  | 33.0  | 13.0  | 13.0  |      | 13.0  | 13.0  |      |
| Yellow Time (s)         | 5.0   | 5.0   |      | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |      | 5.0   | 5.0   |      |
| All-Red Time (s)        | 2.0   | 2.0   |      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0   |      |
| Lost Time Adjust (s)    | -2.0  | -2.0  |      |       | -2.0  | -2.0  |       | -2.0  |      | -2.0  | -2.0  |      |
| Total Lost Time (s)     | 5.0   | 5.0   |      |       | 5.0   | 5.0   |       | 5.0   |      | 5.0   | 5.0   |      |
| Lead/Lag                |       |       |      |       |       |       |       |       |      |       |       |      |
| Lead-Lag Optimize?      |       |       |      |       |       |       |       |       |      |       |       |      |
| Vehicle Extension (s)   | 3.0   | 3.0   |      | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |      | 3.0   | 3.0   |      |
| Recall Mode             | None  | None  |      | None  | None  | None  | Min   | Min   |      | Min   | Min   |      |
| Act Effct Green (s)     | 26.5  | 26.5  |      |       | 26.5  | 26.5  |       | 13.3  |      | 13.3  | 13.3  |      |
| Actuated g/C Ratio      | 0.53  | 0.53  |      |       | 0.53  | 0.53  |       | 0.26  |      | 0.26  | 0.26  |      |
| v/c Ratio               | 0.33  | 0.30  |      |       | 0.74  | 0.16  |       | 0.29  |      | 0.26  | 0.55  |      |
| Control Delay           | 10.9  | 7.4   |      |       | 14.4  | 6.5   |       | 19.1  |      | 19.1  | 23.0  |      |
| Queue Delay             | 0.0   | 0.0   |      |       | 0.0   | 0.0   |       | 0.0   |      | 0.0   | 0.0   |      |
| Total Delay             | 10.9  | 7.4   |      |       | 14.4  | 6.5   |       | 19.1  |      | 19.1  | 23.0  |      |
| LOS                     | В     | A     |      |       | В     | А     |       | В     |      | В     | С     |      |
| Approach Delay          |       | 8.2   |      |       | 13.2  |       |       | 19.1  |      |       | 21.9  |      |
| Approach LOS            |       | A     |      |       | В     |       |       | В     |      |       | С     |      |


2027 Build AM Harris Creek Farm - Rolesville, NC 11:36 am 01/05/2023 2027 Build - Improved RKA

Synchro 11 Report Page 1

## Lanes, Volumes, Timings 3: Peebles Road/Jonesville Road & Mitchell Mill Road

|                                   | ٨           | <b>→</b> | 7   | 4   | ←          | ٩          | •   | t    | 1   | 1    | ţ    | ~   |
|-----------------------------------|-------------|----------|-----|-----|------------|------------|-----|------|-----|------|------|-----|
| Lane Group                        | EBL         | EBT      | EBR | WBL | WBT        | WBR        | NBL | NBT  | NBR | SBL  | SBT  | SBR |
| Queue Length 50th (ft)            | 12          | 45       |     |     | 150        | 19         |     | 32   |     | 24   | 67   |     |
| Queue Length 95th (ft)            | 37          | 81       |     |     | 258        | 40         |     | 80   |     | 65   | 147  |     |
| Internal Link Dist (ft)           |             | 1456     |     |     | 1046       |            |     | 937  |     |      | 1012 |     |
| Turn Bay Length (ft)              | 100         |          |     |     |            | 100        |     |      |     | 100  |      |     |
| Base Capacity (vph)               | 333         | 1342     |     |     | 1319       | 1148       |     | 536  |     | 455  | 552  |     |
| Starvation Cap Reductn            | 0           | 0        |     |     | 0          | 0          |     | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn             | 0           | 0        |     |     | 0          | 0          |     | 0    |     | 0    | 0    |     |
| Storage Cap Reductn               | 0           | 0        |     |     | 0          | 0          |     | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio                 | 0.24        | 0.22     |     |     | 0.54       | 0.12       |     | 0.25 |     | 0.22 | 0.47 |     |
| Intersection Summary              |             |          |     |     |            |            |     |      |     |      |      |     |
| Area Type:                        | Other       |          |     |     |            |            |     |      |     |      |      |     |
| Cycle Length: 60                  |             |          |     |     |            |            |     |      |     |      |      |     |
| Actuated Cycle Length: 50.        | 2           |          |     |     |            |            |     |      |     |      |      |     |
| Natural Cycle: 50                 |             |          |     |     |            |            |     |      |     |      |      |     |
| Control Type: Actuated-Un         | coordinated |          |     |     |            |            |     |      |     |      |      |     |
| Maximum v/c Ratio: 0.74           |             |          |     |     |            |            |     |      |     |      |      |     |
| Intersection Signal Delay: 1      | 4.4         |          |     | In  | tersectior | LOS: B     |     |      |     |      |      |     |
| Intersection Capacity Utilization | ation 76.2% |          |     | IC  | U Level o  | of Service | D   |      |     |      |      |     |
| Analysis Period (min) 15          |             |          |     |     |            |            |     |      |     |      |      |     |
|                                   |             |          |     |     |            |            |     |      |     |      |      |     |

#### Splits and Phases: 3: Peebles Road/Jonesville Road & Mitchell Mill Road



## Lanes, Volumes, Timings 3: Peebles Road/Jonesville Road & Mitchell Mill Road

|                         | ٨     | -     | 7    | 4     | -     | ٩     | 1     | Ť     | ۲    | 6     | ţ     | ~    |
|-------------------------|-------|-------|------|-------|-------|-------|-------|-------|------|-------|-------|------|
| Lane Group              | EBL   | EBT   | EBR  | WBL   | WBT   | WBR   | NBL   | NBT   | NBR  | SBL   | SBT   | SBR  |
| Lane Configurations     | N.    | ħ     |      |       | ŧ     | ř     |       | 4     |      | N.    | ef.   |      |
| Traffic Volume (vph)    | 138   | 459   | 19   | 14    | 387   | 102   | 19    | 113   | 31   | 163   | 69    | 49   |
| Future Volume (vph)     | 138   | 459   | 19   | 14    | 387   | 102   | 19    | 113   | 31   | 163   | 69    | 49   |
| Ideal Flow (vphpl)      | 1900  | 1900  | 1900 | 1900  | 1900  | 1900  | 1900  | 1900  | 1900 | 1900  | 1900  | 1900 |
| Storage Length (ft)     | 100   |       | 0    | 0     |       | 100   | 0     |       | 0    | 100   |       | 0    |
| Storage Lanes           | 1     |       | 0    | 0     |       | 1     | 0     |       | 0    | 1     |       | 0    |
| Taper Length (ft)       | 100   |       |      | 100   |       |       | 100   |       |      | 100   |       |      |
| Lane Util. Factor       | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00  | 1.00  | 1.00  | 1.00 | 1.00  | 1.00  | 1.00 |
| Frt                     |       | 0.994 |      |       |       | 0.850 |       | 0.975 |      |       | 0.938 |      |
| Flt Protected           | 0.950 |       |      |       | 0.998 |       |       | 0.994 |      | 0.950 |       |      |
| Satd. Flow (prot)       | 1770  | 1852  | 0    | 0     | 1859  | 1583  | 0     | 1805  | 0    | 1770  | 1747  | 0    |
| Flt Permitted           | 0.436 |       |      |       | 0.973 |       |       | 0.951 |      | 0.728 |       |      |
| Satd. Flow (perm)       | 812   | 1852  | 0    | 0     | 1812  | 1583  | 0     | 1727  | 0    | 1356  | 1747  | 0    |
| Right Turn on Red       |       |       | No   |       |       | No    |       |       | No   |       |       | No   |
| Satd. Flow (RTOR)       |       |       |      |       |       |       |       |       | -    |       |       |      |
| Link Speed (mph)        |       | 45    |      |       | 45    |       |       | 45    |      |       | 45    |      |
| Link Distance (ft)      |       | 1536  |      |       | 1126  |       |       | 1017  |      |       | 1092  |      |
| Travel Time (s)         |       | 23.3  |      |       | 17.1  |       |       | 15.4  |      |       | 16.5  |      |
| Peak Hour Factor        | 0.90  | 0.90  | 0.90 | 0.90  | 0.90  | 0.90  | 0.90  | 0.90  | 0.90 | 0.90  | 0.90  | 0.90 |
| Adj. Flow (vph)         | 153   | 510   | 21   | 16    | 430   | 113   | 21    | 126   | 34   | 181   | 77    | 54   |
| Shared Lane Traffic (%) |       |       |      | -     |       | -     |       |       |      | -     |       |      |
| Lane Group Flow (vph)   | 153   | 531   | 0    | 0     | 446   | 113   | 0     | 181   | 0    | 181   | 131   | 0    |
| Turn Type               | Perm  | NA    | -    | Perm  | NA    | Perm  | Perm  | NA    | -    | Perm  | NA    | -    |
| Protected Phases        |       | 2     |      |       | 6     |       |       | 8     |      |       | 4     |      |
| Permitted Phases        | 2     |       |      | 6     |       | 6     | 8     |       |      | 4     |       |      |
| Detector Phase          | 2     | 2     |      | 6     | 6     | 6     | 8     | 8     |      | 4     | 4     |      |
| Switch Phase            |       |       |      |       |       |       |       |       |      |       |       |      |
| Minimum Initial (s)     | 12.0  | 12.0  |      | 12.0  | 12.0  | 12.0  | 7.0   | 7.0   |      | 7.0   | 7.0   |      |
| Minimum Split (s)       | 19.0  | 19.0  |      | 19.0  | 19.0  | 19.0  | 14.0  | 14.0  |      | 14.0  | 14.0  |      |
| Total Split (s)         | 36.0  | 36.0  |      | 36.0  | 36.0  | 36.0  | 24.0  | 24.0  |      | 24.0  | 24.0  |      |
| Total Split (%)         | 60.0% | 60.0% |      | 60.0% | 60.0% | 60.0% | 40.0% | 40.0% |      | 40.0% | 40.0% |      |
| Maximum Green (s)       | 29.0  | 29.0  |      | 29.0  | 29.0  | 29.0  | 17.0  | 17.0  |      | 17.0  | 17.0  |      |
| Yellow Time (s)         | 5.0   | 5.0   |      | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |      | 5.0   | 5.0   |      |
| All-Red Time (s)        | 2.0   | 2.0   |      | 2.0   | 2.0   | 2.0   | 2.0   | 2.0   |      | 2.0   | 2.0   |      |
| Lost Time Adjust (s)    | -2.0  | -2.0  |      |       | -2.0  | -2.0  |       | -2.0  |      | -2.0  | -2.0  |      |
| Total Lost Time (s)     | 5.0   | 5.0   |      |       | 5.0   | 5.0   |       | 5.0   |      | 5.0   | 5.0   |      |
| Lead/Lag                |       |       |      |       |       |       |       |       |      |       |       |      |
| Lead-Lag Optimize?      |       |       |      |       |       |       |       |       |      |       |       |      |
| Vehicle Extension (s)   | 3.0   | 3.0   |      | 3.0   | 3.0   | 3.0   | 3.0   | 3.0   |      | 3.0   | 3.0   |      |
| Recall Mode             | None  | None  |      | None  | None  | None  | Min   | Min   |      | Min   | Min   |      |
| Act Effct Green (s)     | 21.1  | 21.1  |      |       | 21.1  | 21.1  |       | 13.9  |      | 13.9  | 13.9  |      |
| Actuated g/C Ratio      | 0.46  | 0.46  |      |       | 0.46  | 0.46  |       | 0.31  |      | 0.31  | 0.31  |      |
| v/c Ratio               | 0.41  | 0.62  |      |       | 0.53  | 0.15  |       | 0.34  |      | 0.44  | 0.25  |      |
| Control Delay           | 12.4  | 13.1  |      |       | 11.6  | 8.0   |       | 15.8  |      | 18.1  | 14.8  |      |
| Queue Delay             | 0.0   | 0.0   |      |       | 0.0   | 0.0   |       | 0.0   |      | 0.0   | 0.0   |      |
| Total Delay             | 12.4  | 13.1  |      |       | 11.6  | 8.0   |       | 15.8  |      | 18.1  | 14.8  |      |
| LOS                     | В     | В     |      |       | В     | A     |       | В     |      | В     | В     |      |
| Approach Delay          |       | 12.9  |      |       | 10.9  |       |       | 15.8  |      | _     | 16.7  |      |
| Approach LOS            |       | B     |      |       | В     |       |       | В     |      |       | В     |      |
|                         |       | -     |      |       |       |       |       | -     |      |       | -     |      |

2027 Build PM Harris Creek Farm - Rolesville, NC 11:14 am 04/14/2023 2027 Build - Improved RKA

Synchro 11 Report Page 1

## Lanes, Volumes, Timings 3: Peebles Road/Jonesville Road & Mitchell Mill Road

|                               | ٨           | <b>→</b> | 7   | •                                        | ←          | ٩          | 1   | Ť    | 1   | 1    | ţ    | ~   |
|-------------------------------|-------------|----------|-----|------------------------------------------|------------|------------|-----|------|-----|------|------|-----|
| Lane Group                    | EBL         | EBT      | EBR | WBL                                      | WBT        | WBR        | NBL | NBT  | NBR | SBL  | SBT  | SBR |
| Queue Length 50th (ft)        | 23          | 92       |     |                                          | 73         | 15         |     | 34   |     | 35   | 24   |     |
| Queue Length 95th (ft)        | 68          | 198      |     |                                          | 160        | 41         |     | 95   |     | 101  | 71   |     |
| Internal Link Dist (ft)       |             | 1456     |     |                                          | 1046       |            |     | 937  |     |      | 1012 |     |
| Turn Bay Length (ft)          | 100         |          |     |                                          |            | 100        |     |      |     | 100  |      |     |
| Base Capacity (vph)           | 581         | 1326     |     |                                          | 1297       | 1133       |     | 758  |     | 595  | 766  |     |
| Starvation Cap Reductn        | 0           | 0        |     |                                          | 0          | 0          |     | 0    |     | 0    | 0    |     |
| Spillback Cap Reductn         | 0           | 0        |     |                                          | 0          | 0          |     | 0    |     | 0    | 0    |     |
| Storage Cap Reductn           | 0           | 0        |     |                                          | 0          | 0          |     | 0    |     | 0    | 0    |     |
| Reduced v/c Ratio             | 0.26        | 0.40     |     |                                          | 0.34       | 0.10       |     | 0.24 |     | 0.30 | 0.17 |     |
| Intersection Summary          |             |          |     |                                          |            |            |     |      |     |      |      |     |
| Area Type:                    | Other       |          |     |                                          |            |            |     |      |     |      |      |     |
| Cycle Length: 60              |             |          |     |                                          |            |            |     |      |     |      |      |     |
| Actuated Cycle Length: 45.    | 5           |          |     |                                          |            |            |     |      |     |      |      |     |
| Natural Cycle: 40             |             |          |     |                                          |            |            |     |      |     |      |      |     |
| Control Type: Actuated-Unc    | coordinated |          |     |                                          |            |            |     |      |     |      |      |     |
| Maximum v/c Ratio: 0.62       |             |          |     |                                          |            |            |     |      |     |      |      |     |
| Intersection Signal Delay: 1  | 3.2         |          |     | In                                       | tersectior | LOS: B     |     |      |     |      |      |     |
| Intersection Capacity Utiliza | ation 81.0% |          |     | IC                                       | CU Level o | of Service | D   |      |     |      |      |     |
| Analysis Period (min) 15      |             |          |     |                                          |            |            |     |      |     |      |      |     |
| Splits and Dhasas: 2: Day     | oblas Bood/ | 1        |     | N 411 - 11 - 11 - 11 - 11 - 11 - 11 - 11 |            |            |     |      |     |      |      |     |

### Splits and Phases: 3: Peebles Road/Jonesville Road & Mitchell Mill Road

| 4 <sub>02</sub>        | ↓ Ø4 |  |
|------------------------|------|--|
| 35 s                   | 24.s |  |
| <b>◆</b> <sub>Ø6</sub> | 1 ps |  |
| 36 s                   | 245  |  |

# **APPENDIX G**

# CAPACITY ANALYSIS CALCULATIONS Jonesville Road & Universal Drive

| Int Delay, s/veh       | 0.2  |      |      |      |      |      |   |
|------------------------|------|------|------|------|------|------|---|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  | ł |
| Lane Configurations    | Y    |      |      | 4    | ħ    |      |   |
| Traffic Vol, veh/h     | 3    | 3    | 1    | 125  | 178  | 1    |   |
| Future Vol, veh/h      | 3    | 3    | 1    | 125  | 178  | 1    |   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    | 1 |
| Sign Control           | Stop | Stop | Free | Free | Free | Free | ; |
| RT Channelized         | -    | None | -    | None | -    | None | ļ |
| Storage Length         | 0    | -    | -    | -    | -    | -    | - |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    | - |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |   |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   | 1 |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    | 2 |
| Mvmt Flow              | 3    | 3    | 1    | 139  | 198  | 1    |   |

| Major/Minor          | Minor2 | ļ     | Major1 | Ν      | 1ajor2 |     |
|----------------------|--------|-------|--------|--------|--------|-----|
| Conflicting Flow All | 340    | 199   | 199    | 0      | -      | 0   |
| Stage 1              | 199    | -     | -      | -      | -      | -   |
| Stage 2              | 141    | -     | -      | -      | -      | -   |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | -      | -      | -   |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | -      | -      | -   |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | -      | -      | -   |
| Follow-up Hdwy       |        | 3.318 |        | -      | -      | -   |
| Pot Cap-1 Maneuver   | 656    | 842   | 1373   | -      | -      | -   |
| Stage 1              | 835    | -     | -      | -      | -      | -   |
| Stage 2              | 886    | -     | -      | -      | -      | -   |
| Platoon blocked, %   |        |       |        | -      | -      | -   |
| Mov Cap-1 Maneuver   | 655    | 842   | 1373   | -      | -      | -   |
| Mov Cap-2 Maneuver   | 655    | -     | -      | -      | -      | -   |
| Stage 1              | 834    | -     | -      | -      | -      | -   |
| Stage 2              | 886    | -     | -      | -      | -      | -   |
|                      |        |       |        |        |        |     |
| Approach             | EB     |       | NB     |        | SB     |     |
| HCM Control Delay, s | 9.9    |       | 0.1    |        | 0      |     |
| HCM LOS              | А      |       |        |        |        |     |
|                      |        |       |        |        |        |     |
| Minor Lane/Major Myr | nt     | NRI   |        | EBI n1 | CBT    | SBD |

| Minor Lane/Major Mvmt | NBL   | NBT E | EBLn1 | SBT | SBR |  |
|-----------------------|-------|-------|-------|-----|-----|--|
| Capacity (veh/h)      | 1373  | -     | 737   | -   | -   |  |
| HCM Lane V/C Ratio    | 0.001 | -     | 0.009 | -   | -   |  |
| HCM Control Delay (s) | 7.6   | 0     | 9.9   | -   | -   |  |
| HCM Lane LOS          | A     | А     | А     | -   | -   |  |
| HCM 95th %tile Q(veh) | 0     | -     | 0     | -   | -   |  |

| Int Delay, s/veh       | 0.2  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    | Y    |      |      | 4    | ħ    |      |
| Traffic Vol, veh/h     | 1    | 2    | 4    | 127  | 89   | 3    |
| Future Vol, veh/h      | 1    | 2    | 4    | 127  | 89   | 3    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | 0    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 1    | 2    | 4    | 141  | 99   | 3    |

| Major/Minor          | Minor2 |       | Major1 | Ν     | /lajor2 |     |
|----------------------|--------|-------|--------|-------|---------|-----|
| Conflicting Flow All | 250    | 101   | 102    | 0     | -       | 0   |
| Stage 1              | 101    | -     | -      | -     | -       | -   |
| Stage 2              | 149    | -     | -      | -     | -       | -   |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | -     | -       | -   |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | -     | -       | -   |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | -     | -       | -   |
| Follow-up Hdwy       | 3.518  | 3.318 | 2.218  | -     | -       | -   |
| Pot Cap-1 Maneuver   | 739    | 954   | 1490   | -     | -       | -   |
| Stage 1              | 923    | -     | -      | -     | -       | -   |
| Stage 2              | 879    | -     | -      | -     | -       | -   |
| Platoon blocked, %   |        |       |        | -     | -       | -   |
| Mov Cap-1 Maneuver   |        | 954   | 1490   | -     | -       | -   |
| Mov Cap-2 Maneuver   | 737    | -     | -      | -     | -       | -   |
| Stage 1              | 920    | -     | -      | -     | -       | -   |
| Stage 2              | 879    | -     | -      | -     | -       | -   |
|                      |        |       |        |       |         |     |
| Approach             | EB     |       | NB     |       | SB      |     |
| HCM Control Delay, s |        |       | 0.2    |       | 0       |     |
| HCM LOS              | A 5.2  |       | 0.2    |       | U       |     |
|                      | ~ ~    |       |        |       |         |     |
|                      |        |       |        |       |         |     |
| Minor Lane/Major Mvi | mt     | NBL   | NBTI   | EBLn1 | SBT     | SBR |
| Capacity (veh/h)     |        | 1490  | -      | 869   | -       | -   |
| HCM Lane V/C Ratio   |        | 0.003 | -      | 0.004 | -       | -   |

|                       | 1100  | v     |     |   |   |  |
|-----------------------|-------|-------|-----|---|---|--|
| HCM Lane V/C Ratio    | 0.003 | - 0.0 | )04 | - | - |  |
| HCM Control Delay (s) | 7.4   | 0 9   | 9.2 | - | - |  |
| HCM Lane LOS          | А     | А     | А   | - | - |  |
| HCM 95th %tile Q(veh) | 0     | -     | 0   | - | - |  |

| Int Delay, s/veh       | 0.1  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    | Y    |      |      | 4    | ħ    |      |
| Traffic Vol, veh/h     | 3    | 3    | 1    | 339  | 294  | 1    |
| Future Vol, veh/h      | 3    | 3    | 1    | 339  | 294  | 1    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | 0    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 3    | 3    | 1    | 377  | 327  | 1    |

| Major/Minor          | Minor2 | I     | Major1 | Ν     | lajor2 |     |
|----------------------|--------|-------|--------|-------|--------|-----|
| Conflicting Flow All | 707    | 328   | 328    | 0     | -      | 0   |
| Stage 1              | 328    | -     | -      | -     | -      | -   |
| Stage 2              | 379    | -     | -      | -     | -      | -   |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | -     | -      | -   |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | -     | -      | -   |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | -     | -      | -   |
| Follow-up Hdwy       |        | 3.318 | 2.218  | -     | -      | -   |
| Pot Cap-1 Maneuver   | 402    | 713   | 1232   | -     | -      | -   |
| Stage 1              | 730    | -     | -      | -     | -      | -   |
| Stage 2              | 692    | -     | -      | -     | -      | -   |
| Platoon blocked, %   |        |       |        | -     | -      | -   |
| Mov Cap-1 Maneuver   |        | 713   | 1232   | -     | -      | -   |
| Mov Cap-2 Maneuver   |        | -     | -      | -     | -      | -   |
| Stage 1              | 729    | -     | -      | -     | -      | -   |
| Stage 2              | 692    | -     | -      | -     | -      | -   |
|                      |        |       |        |       |        |     |
| Approach             | EB     |       | NB     |       | SB     |     |
| HCM Control Delay, s |        |       | 0      |       | 0      |     |
| HCM LOS              | B      |       | 0      |       | 0      |     |
|                      | D      |       |        |       |        |     |
|                      |        |       |        |       |        |     |
| Minor Lane/Major Mvi | mt     | NBL   | NBT E  | EBLn1 | SBT    | SBR |

| Minor Lane/Major Wivmt | INBL  | INB LEBEU L | SBI | SBR |  |
|------------------------|-------|-------------|-----|-----|--|
| Capacity (veh/h)       | 1232  | - 514       | -   | -   |  |
| HCM Lane V/C Ratio     | 0.001 | - 0.013     | -   | -   |  |
| HCM Control Delay (s)  | 7.9   | 0 12.1      | -   | -   |  |
| HCM Lane LOS           | Α     | A B         | -   | -   |  |
| HCM 95th %tile Q(veh)  | 0     | - 0         | -   | -   |  |

| Int Delay, s/veh       | 0.1  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    | Y    |      |      | 4    | ħ    |      |
| Traffic Vol, veh/h     | 1    | 2    | 4    | 296  | 336  | 3    |
| Future Vol, veh/h      | 1    | 2    | 4    | 296  | 336  | 3    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | 0    | -    | -    | -    | -    | -    |
| Veh in Median Storage  | ,# 0 | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 1    | 2    | 4    | 329  | 373  | 3    |

| Major/Minor          | Minor2 |       | Major1 | Majo | or2 |   |
|----------------------|--------|-------|--------|------|-----|---|
| Conflicting Flow All | 712    | 375   | 376    | 0    | -   | 0 |
| Stage 1              | 375    | -     | -      | -    | -   | - |
| Stage 2              | 337    | -     | -      | -    | -   | - |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | -    | -   | - |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | -    | -   | - |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | -    | -   | - |
| Follow-up Hdwy       | 3.518  | 3.318 | 2.218  | -    | -   | - |
| Pot Cap-1 Maneuver   | 399    | 671   | 1182   | -    | -   | - |
| Stage 1              | 695    | -     | -      | -    | -   | - |
| Stage 2              | 723    | -     | -      | -    | -   | - |
| Platoon blocked, %   |        |       |        | -    | -   | - |
| Mov Cap-1 Maneuver   | 397    | 671   | 1182   | -    | -   | - |
| Mov Cap-2 Maneuver   | 397    | -     | -      | -    | -   | - |
| Stage 1              | 692    | -     | -      | -    | -   | - |
| Stage 2              | 723    | -     | -      | -    | -   | - |
|                      |        |       |        |      |     |   |
| Approach             | EB     |       | NB     |      | SB  |   |
| HCM Control Delay, s | 11.6   |       | 0.1    |      | 0   |   |
| HCM LOS              | В      |       |        |      |     |   |

| Minor Lane/Major Mvmt | NBL   | NBT I | EBLn1 | SBT | SBR |
|-----------------------|-------|-------|-------|-----|-----|
| Capacity (veh/h)      | 1182  | -     | 546   | -   | -   |
| HCM Lane V/C Ratio    | 0.004 | -     | 0.006 | -   | -   |
| HCM Control Delay (s) | 8.1   | 0     | 11.6  | -   | -   |
| HCM Lane LOS          | А     | Α     | В     | -   | -   |
| HCM 95th %tile Q(veh) | 0     | -     | 0     | -   | -   |

| Int Delay, s/veh       | 0.4  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    | Y    |      |      | 4    | ħ    |      |
| Traffic Vol, veh/h     | 16   | 6    | 2    | 356  | 300  | 5    |
| Future Vol, veh/h      | 16   | 6    | 2    | 356  | 300  | 5    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | 0    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 18   | 7    | 2    | 396  | 333  | 6    |

| Major/Minor          | Minor2 |       | Major1 | Majo | or2 |   |
|----------------------|--------|-------|--------|------|-----|---|
| Conflicting Flow All | 736    | 336   | 339    | 0    | -   | 0 |
| Stage 1              | 336    | -     | -      | -    | -   | - |
| Stage 2              | 400    | -     | -      | -    | -   | - |
| Critical Hdwy        | 6.42   | 6.22  | 4.12   | -    | -   | - |
| Critical Hdwy Stg 1  | 5.42   | -     | -      | -    | -   | - |
| Critical Hdwy Stg 2  | 5.42   | -     | -      | -    | -   | - |
| Follow-up Hdwy       |        | 3.318 |        | -    | -   | - |
| Pot Cap-1 Maneuver   | 386    | 706   | 1220   | -    | -   | - |
| Stage 1              | 724    | -     | -      | -    | -   | - |
| Stage 2              | 677    | -     | -      | -    | -   | - |
| Platoon blocked, %   |        |       |        | -    | -   | - |
| Mov Cap-1 Maneuver   |        | 706   | 1220   | -    | -   | - |
| Mov Cap-2 Maneuver   |        | -     | -      | -    | -   | - |
| Stage 1              | 723    | -     | -      | -    | -   | - |
| Stage 2              | 677    | -     | -      | -    | -   | - |
|                      |        |       |        |      |     |   |
| Approach             | EB     |       | NB     | :    | SB  |   |
| HCM Control Delay, s | 13.7   |       | 0      |      | 0   |   |
| HCM LOS              | В      |       |        |      |     |   |

| Minor Lane/Major Mvmt | NBL   | NBT I | EBLn1 | SBT | SBR |
|-----------------------|-------|-------|-------|-----|-----|
| Capacity (veh/h)      | 1220  | -     | 439   | -   | -   |
| HCM Lane V/C Ratio    | 0.002 | -     | 0.056 | -   | -   |
| HCM Control Delay (s) | 8     | 0     | 13.7  | -   | -   |
| HCM Lane LOS          | А     | А     | В     | -   | -   |
| HCM 95th %tile Q(veh) | 0     | -     | 0.2   | -   | -   |

| Int Delay, s/veh       | 0.4  |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    | Y    |      |      | 4    | ħ    |      |
| Traffic Vol, veh/h     | 10   | 4    | 8    | 307  | 354  | 17   |
| Future Vol, veh/h      | 10   | 4    | 8    | 307  | 354  | 17   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | 0    | -    | -    | -    | -    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 11   | 4    | 9    | 341  | 393  | 19   |

| Major/Minor          | Minor2    | ļ     | Major1 | Ν    | /lajor2 |     |
|----------------------|-----------|-------|--------|------|---------|-----|
| Conflicting Flow All | 762       | 403   | 412    | 0    | -       | 0   |
| Stage 1              | 403       | -     | -      | -    | -       | -   |
| Stage 2              | 359       | -     | -      | -    | -       | -   |
| Critical Hdwy        | 6.42      | 6.22  | 4.12   | -    | -       | -   |
| Critical Hdwy Stg 1  | 5.42      | -     | -      | -    | -       | -   |
| Critical Hdwy Stg 2  | 5.42      | -     | -      | -    | -       | -   |
| Follow-up Hdwy       | 3.518     | 3.318 | 2.218  | -    | -       | -   |
| Pot Cap-1 Maneuver   | 373       | 647   | 1147   | -    | -       | -   |
| Stage 1              | 675       | -     | -      | -    | -       | -   |
| Stage 2              | 707       | -     | -      | -    | -       | -   |
| Platoon blocked, %   |           |       |        | -    | -       | -   |
| Mov Cap-1 Maneuver   | 369       | 647   | 1147   | -    | -       | -   |
| Mov Cap-2 Maneuver   | 369       | -     | -      | -    | -       | -   |
| Stage 1              | 668       | -     | -      | -    | -       | -   |
| Stage 2              | 707       | -     | -      | -    | -       | -   |
|                      |           |       |        |      |         |     |
| Approach             | EB        |       | NB     |      | SB      |     |
| HCM Control Delay, s |           |       | 0.2    |      | 0       |     |
| HCM LOS              | 13.9<br>B |       | 0.2    |      | U       |     |
|                      | D         |       |        |      |         |     |
|                      |           |       |        |      |         |     |
| Minor Lane/Major Mvr | nt        | NBL   | NBT E  | BLn1 | SBT     | SBR |
| Connectity (yeh/h)   |           | 11/7  |        | 101  |         |     |

| Capacity (veh/h)      | 1147  | - 421   | - | - |  |
|-----------------------|-------|---------|---|---|--|
| HCM Lane V/C Ratio    | 0.008 | - 0.037 | - | - |  |
| HCM Control Delay (s) | 8.2   | 0 13.9  | - | - |  |
| HCM Lane LOS          | А     | A B     | - | - |  |
| HCM 95th %tile Q(veh) | 0     | - 0.1   | - | - |  |

# **APPENDIX H**

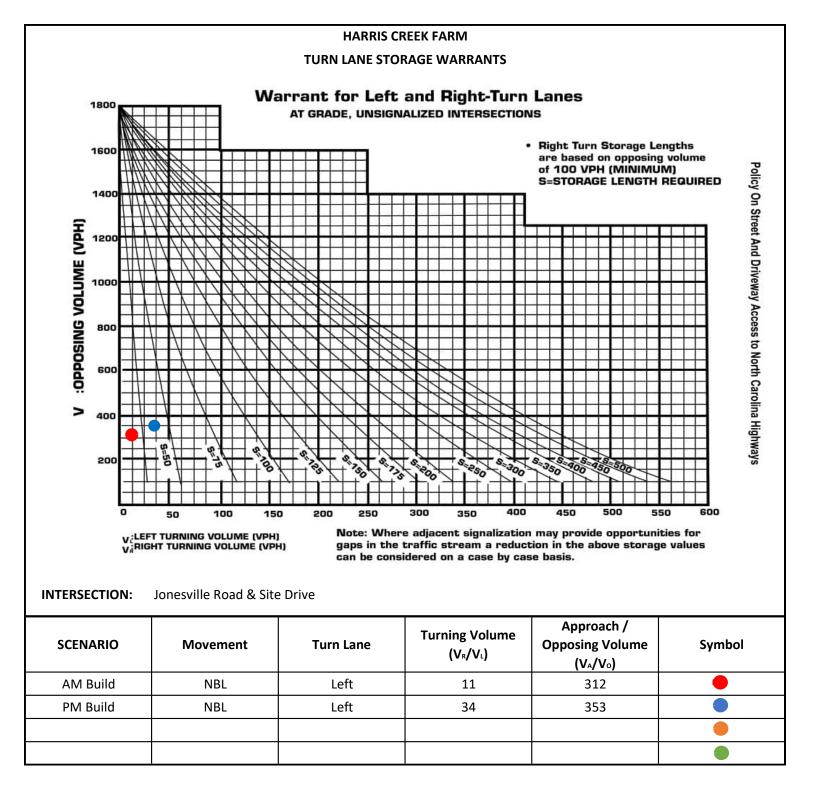
# CAPACITY ANALYSIS CALCULATIONS Jonesville Road &

**Site Drive** 

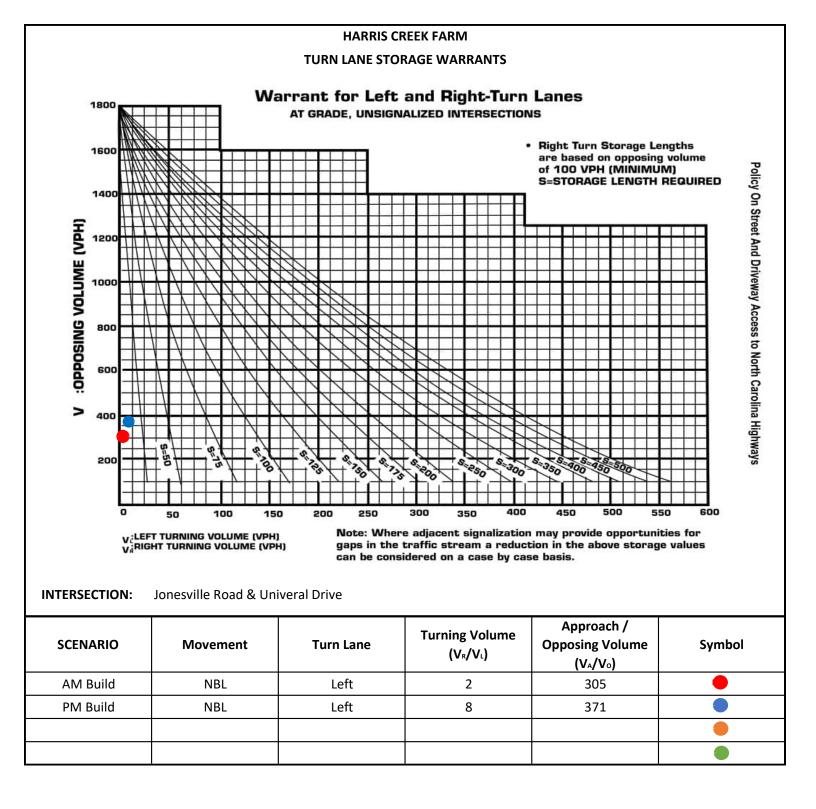
| Int Delay, s/veh       | 1    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    | Y    |      | 1    | Ť    | ħ    |      |
| Traffic Vol, veh/h     | 17   | 33   | 11   | 335  | 306  | 6    |
| Future Vol, veh/h      | 17   | 33   | 11   | 335  | 306  | 6    |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | 0    | -    | 50   | -    | -    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 19   | 37   | 12   | 372  | 340  | 7    |

| Major/Minor          | Minor2 |      | Major1 | Ν     | /lajor2 |     |
|----------------------|--------|------|--------|-------|---------|-----|
| Conflicting Flow All | 740    | 344  | 347    | 0     | -       | 0   |
| Stage 1              | 344    | -    | -      | -     | -       | -   |
| Stage 2              | 396    | -    | -      | -     | -       | -   |
| Critical Hdwy        | 6.42   | 6.22 | 4.12   | -     | -       | -   |
| Critical Hdwy Stg 1  | 5.42   | -    | -      | -     | -       | -   |
| Critical Hdwy Stg 2  | 5.42   | -    | -      | -     | -       | -   |
| Follow-up Hdwy       |        |      |        | -     | -       | -   |
| Pot Cap-1 Maneuver   | 384    | 699  | 1212   | -     | -       | -   |
| Stage 1              | 718    | -    | -      | -     | -       | -   |
| Stage 2              | 680    | -    | -      | -     | -       | -   |
| Platoon blocked, %   |        |      |        | -     | -       | -   |
| Mov Cap-1 Maneuver   |        | 699  | 1212   | -     | -       | -   |
| Mov Cap-2 Maneuver   |        | -    | -      | -     | -       | -   |
| Stage 1              | 711    | -    | -      | -     | -       | -   |
| Stage 2              | 680    | -    | -      | -     | -       | -   |
|                      |        |      |        |       |         |     |
| Approach             | EB     |      | NB     |       | SB      |     |
| HCM Control Delay, s |        |      | 0.3    |       | 0       |     |
| HCM LOS              | B      |      | 0.0    |       | Ū       |     |
|                      | 2      |      |        |       |         |     |
|                      | . 1    |      |        |       | ODT     | 000 |
| Minor Lane/Major Mvr | mt     | NBL  | NBL    | EBLn1 | SBT     | SBR |
| Capacity (veh/h)     |        | 1212 | -      | 544   | -       | -   |

| Capacity (ven/n)      | 1212 | - 544   | - | - |  |
|-----------------------|------|---------|---|---|--|
| HCM Lane V/C Ratio    | 0.01 | - 0.102 | - | - |  |
| HCM Control Delay (s) | 8    | - 12.4  | - | - |  |
| HCM Lane LOS          | А    | - B     | - | - |  |
| HCM 95th %tile Q(veh) | 0    | - 0.3   | - | - |  |


| Int Delay, s/veh       | 1    |      |      |      |      |      |
|------------------------|------|------|------|------|------|------|
| Movement               | EBL  | EBR  | NBL  | NBT  | SBT  | SBR  |
| Lane Configurations    | Y    |      | 3    | Ť    | ħ    |      |
| Traffic Vol, veh/h     | 11   | 22   | 34   | 308  | 335  | 18   |
| Future Vol, veh/h      | 11   | 22   | 34   | 308  | 335  | 18   |
| Conflicting Peds, #/hr | 0    | 0    | 0    | 0    | 0    | 0    |
| Sign Control           | Stop | Stop | Free | Free | Free | Free |
| RT Channelized         | -    | None | -    | None | -    | None |
| Storage Length         | 0    | -    | 50   | -    | -    | -    |
| Veh in Median Storage, | # 0  | -    | -    | 0    | 0    | -    |
| Grade, %               | 0    | -    | -    | 0    | 0    | -    |
| Peak Hour Factor       | 90   | 90   | 90   | 90   | 90   | 90   |
| Heavy Vehicles, %      | 2    | 2    | 2    | 2    | 2    | 2    |
| Mvmt Flow              | 12   | 24   | 38   | 342  | 372  | 20   |

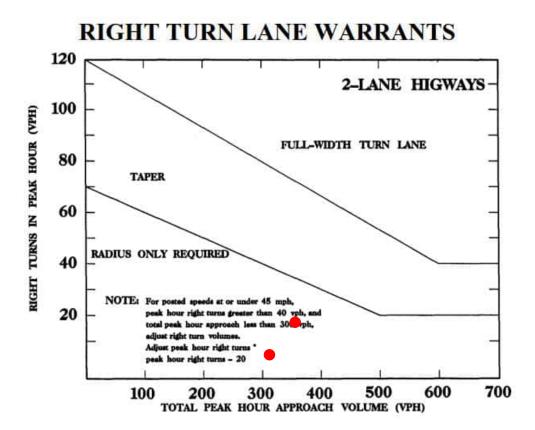
| Minor2 | 1                                                                                                              | Major1                                                                                                                                                                                                                                                                                                                                                                               | Ν                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | /lajor2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 800    | 382                                                                                                            | 392                                                                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | , <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 382    | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 418    | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6.42   | 6.22                                                                                                           | 4.12                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.42   | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5.42   | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 3.518  | 3.318                                                                                                          | 2.218                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 354    | 665                                                                                                            | 1167                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 690    | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 664    | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 342    | 665                                                                                                            | 1167                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 342    | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 667    | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 664    | -                                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| FR     |                                                                                                                | NR                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 0      |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|        |                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| nt     | NBL                                                                                                            | NBT E                                                                                                                                                                                                                                                                                                                                                                                | BLn1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SBT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SBR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|        | 1167                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                    | 506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|        | 800<br>382<br>418<br>6.42<br>5.42<br>3.518<br>354<br>690<br>664<br>342<br>342<br>667<br>664<br>EB<br>12.7<br>B | 800       382         382       -         418       -         6.42       6.22         5.42       -         5.42       -         3.518       3.318         354       665         690       -         664       -         342       665         342       -         667       -         667       -         667       -         664       -         12.7       B         att       NBL | 800         382         392           382         -         -           418         -         -           6.42         6.22         4.12           5.42         -         -           3.518         3.318         2.218           354         665         1167           690         -         -           664         -         -           342         665         1167           342         -         -           667         -         -           664         -         -           8         NB         12.7         0.8           8         -         -           12.7         0.8         B           1167         -         - | 800         382         392         0           382         -         -         -           418         -         -         -           6.42         6.22         4.12         -           5.42         -         -         -           5.42         -         -         -           3.518         3.318         2.218         -           354         665         1167         -           690         -         -         -           354         665         1167         -           664         -         -         -           342         665         1167         -           342         665         1167         -           664         -         -         -           664         -         -         -           664         -         -         -           8         -         -         -           12.7         0.8         -         -           9         -         -         -         -           1167         -         506         - | 800         382         392         0         -           382         -         -         -         -         -           418         -         -         -         -         -         -           6.42         6.22         4.12         -         -         -         -         -           5.42         -         -         -         -         -         -         -         -         -         -         5.42         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         3.518         3.318         2.218         -         -         -         -         -         -         -         -         -         -         -         -         -         6690         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         - |


| HCM Lane V/C Ratio    | 0.032 | - 0.072 | - | - |
|-----------------------|-------|---------|---|---|
| HCM Control Delay (s) | 8.2   | - 12.7  | - | - |
| HCM Lane LOS          | А     | - B     | - | - |
| HCM 95th %tile Q(veh) | 0.1   | - 0.2   | - | - |

# **APPENDIX I**

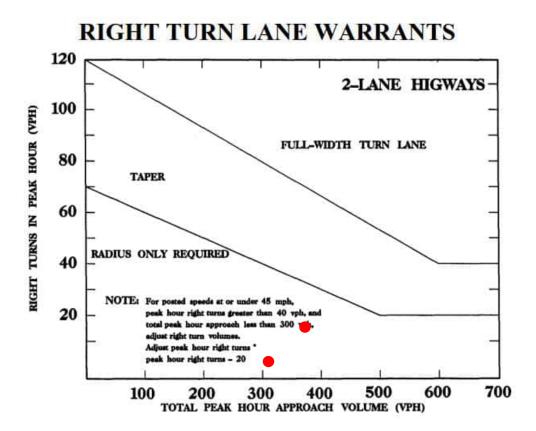
**TURN LANE WARRANTS** 











### Jonesville Road and Site Drive

| 2027 Build                                                            |            |    |     |    |
|-----------------------------------------------------------------------|------------|----|-----|----|
| Peak HourApproachRight TurnApproachWarranted?VolumeVolumeVolumeVolume |            |    |     |    |
| AM                                                                    | Southbound | 6  | 312 | No |
| PM                                                                    | Southbound | 18 | 353 | No |



### Jonesville Road and Universal Drive

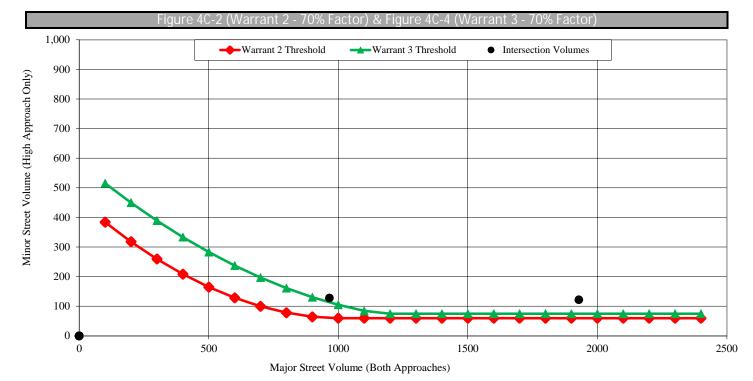
| 2027 Build                                                            |            |    |     |    |
|-----------------------------------------------------------------------|------------|----|-----|----|
| Peak HourApproachRight TurnApproachWarranted?VolumeVolumeVolumeVolume |            |    |     |    |
| AM                                                                    | Southbound | 5  | 305 | No |
| PM                                                                    | Southbound | 17 | 371 | No |



# **APPENDIX J**

# MUTCD / ITRE SIGNAL WARRANT ANALYSIS

# Warrants 1 - 3 (Volume Warrants)


| Project Name             | Harris C                 | Harris Creek Farm       |                                |  |  |
|--------------------------|--------------------------|-------------------------|--------------------------------|--|--|
| Project/File #           | 204                      | 20498 - 09              |                                |  |  |
| Scenario                 | 2027 No-Build            |                         | ]                              |  |  |
| Intersection Information |                          |                         |                                |  |  |
| Major Street (E/W Road)  | US 401 Bypass            | Minor Street (N/S Road) | Jonesville Road / WB Left-Over |  |  |
| Analyzed with            | 2 or more approach lanes | Analyzed with           | 1 Approach Lane                |  |  |
| Total Approach Volume    | 2895 vehicles            | Total Approach Volume   | 894 vehicles                   |  |  |
| Total Ped/Bike Volume    | 0 crossings              | Total Ped/Bike Volume   | 0 crossings                    |  |  |
| Right turn reduction of  | 0 percent applied        | Right turn reduction of | 100 percent applied            |  |  |

No high speed or isolated community reduction applied to the Volume Warrant thresholds.

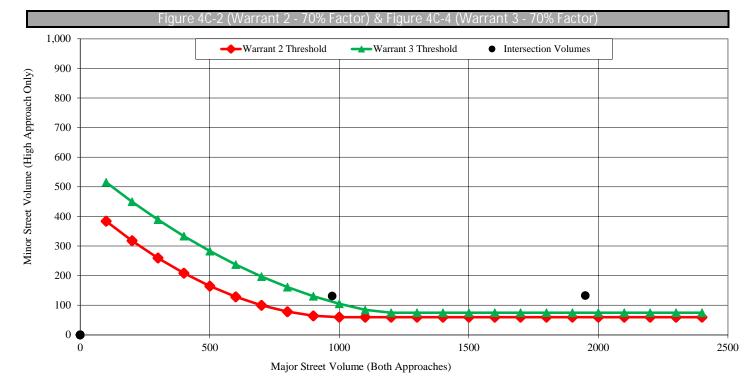
| Warrant 1, Eight Hour Vehicular Volume |               |               |                               |  |  |
|----------------------------------------|---------------|---------------|-------------------------------|--|--|
| Condition A Condition B Condition A+B* |               |               |                               |  |  |
| Condition Satisfied?                   | Not Satisfied | Not Satisfied | Not Satisfied                 |  |  |
| Required values reached for            | 2 hours       | 2 hours       | 2 (Cond. A) & 2 (Cond. B)     |  |  |
| Criteria - Major Street (veh/hr)       | 420           | 630           | 336 (Cond. A) & 504 (Cond. B) |  |  |
| Criteria - Minor Street (veh/hr)       | 105           | 53            | 84 (Cond. A) & 42 (Cond. B)   |  |  |

| Warrant 2, Four Hour Vehicular Volume |                  |  |  |  |
|---------------------------------------|------------------|--|--|--|
|                                       |                  |  |  |  |
| Condition Satisfied?                  | Not Satisfied    |  |  |  |
| Required values reached for           | 2 hours          |  |  |  |
| Criteria                              | See Figure Below |  |  |  |

| Warrant 3, Peak Hour Vehicular Volume                      |                                |                  |  |  |
|------------------------------------------------------------|--------------------------------|------------------|--|--|
|                                                            | Condition A                    | Condition B      |  |  |
| Condition Satisfied?                                       | Not Satisfied                  | Satisfied        |  |  |
| Required values reached for                                | 2051 total, 122 minor, 0 delay | 2 hours          |  |  |
| Criteria - Total Approach Volume (veh in one hour)         | 800                            |                  |  |  |
| Criteria - Minor Street High Side Volume (veh in one hour) | 100                            | See Figure Below |  |  |
| Criteria - Minor Street High Side Delay (veh-hrs)          | 4                              |                  |  |  |



# Warrants 1 - 3 (Volume Warrants)


| Project Name            | Harris C                 | Harris Creek Farm       |                                |  |
|-------------------------|--------------------------|-------------------------|--------------------------------|--|
| Project/File #          | 204                      | 20498 - 09              |                                |  |
| Scenario                | 2027 Build               |                         | ]                              |  |
|                         | Intersectio              | on Information          |                                |  |
| Major Street (E/W Road) | US 401 Bypass            | Minor Street (N/S Road) | Jonesville Road / WB Left-Over |  |
| Analyzed with           | 2 or more approach lanes | Analyzed with           | 1 Approach Lane                |  |
| Total Approach Volume   | 2923 vehicles            | Total Approach Volume   | 958 vehicles                   |  |
| Total Ped/Bike Volume   | 0 crossings              | Total Ped/Bike Volume   | 0 crossings                    |  |
| Right turn reduction of | 0 percent applied        | Right turn reduction of | 100 percent applied            |  |

No high speed or isolated community reduction applied to the Volume Warrant thresholds.

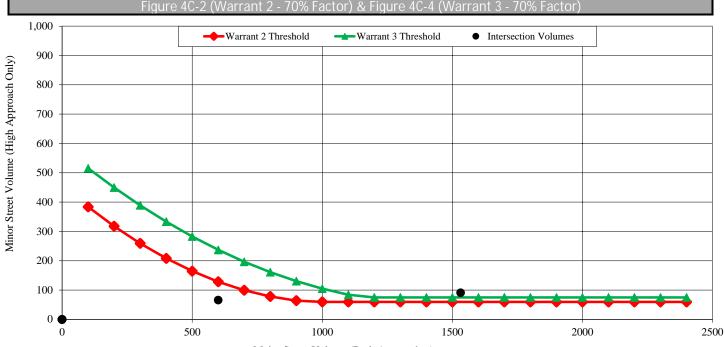
| Warrant 1, Eight Hour Vehicular Volume |               |               |                               |  |  |
|----------------------------------------|---------------|---------------|-------------------------------|--|--|
| Condition A Condition B Condition A+B* |               |               |                               |  |  |
| Condition Satisfied?                   | Not Satisfied | Not Satisfied | Not Satisfied                 |  |  |
| Required values reached for            | 2 hours       | 2 hours       | 2 (Cond. A) & 2 (Cond. B)     |  |  |
| Criteria - Major Street (veh/hr)       | 420           | 630           | 336 (Cond. A) & 504 (Cond. B) |  |  |
| Criteria - Minor Street (veh/hr)       | 105           | 53            | 84 (Cond. A) & 42 (Cond. B)   |  |  |

| Warrant 2, Four Hour Vehicular Volume |                  |  |  |  |
|---------------------------------------|------------------|--|--|--|
|                                       |                  |  |  |  |
| Condition Satisfied?                  | Not Satisfied    |  |  |  |
| Required values reached for           | 2 hours          |  |  |  |
| Criteria                              | See Figure Below |  |  |  |

| Warrant 3, Peak Hour Vehicular Volume                      |                                |                  |  |  |
|------------------------------------------------------------|--------------------------------|------------------|--|--|
|                                                            | Condition A                    | Condition B      |  |  |
| Condition Satisfied?                                       | Not Satisfied                  | Satisfied        |  |  |
| Required values reached for                                | 2083 total, 133 minor, 0 delay | 2 hours          |  |  |
| Criteria - Total Approach Volume (veh in one hour)         | 800                            |                  |  |  |
| Criteria - Minor Street High Side Volume (veh in one hour) | 100                            | See Figure Below |  |  |
| Criteria - Minor Street High Side Delay (veh-hrs)          | 4                              |                  |  |  |



# Warrants 1 - 3 (Volume Warrants)


| Project Name<br>Project/File #<br>Scenario | Harris Creek Farm<br>20498 - 09<br>2022 Existing |                                           |                                            |
|--------------------------------------------|--------------------------------------------------|-------------------------------------------|--------------------------------------------|
| Intersection Information                   |                                                  |                                           | - Fostern II Turn Location                 |
| Major Street (E/W Road)<br>Analyzed with   | US 401 Bypass<br>2 or more approach lanes        | Minor Street (N/S Road)<br>Analyzed with  | Eastern U-Turn Location<br>1 Approach Lane |
| Total Approach Volume                      | 2132 vehicles                                    | 2132 vehicles Total Approach Volume       |                                            |
| Total Ped/Bike Volume                      | 0 crossings                                      | Total Ped/Bike Volume                     | 0 crossings                                |
| Right turn reduction of                    | 0 percent applied                                | 0 percent applied Right turn reduction of |                                            |

No high speed or isolated community reduction applied to the Volume Warrant thresholds.

| Warrant 1, Eight Hour Vehicular Volume |               |               |                               |  |
|----------------------------------------|---------------|---------------|-------------------------------|--|
|                                        | Condition A   | Condition B   | Condition A+B*                |  |
| Condition Satisfied?                   | Not Satisfied | Not Satisfied | Not Satisfied                 |  |
| Required values reached for            | 0 hours       | 1 hour        | 1 (Cond. A) & 2 (Cond. B)     |  |
| Criteria - Major Street (veh/hr)       | 420           | 630           | 336 (Cond. A) & 504 (Cond. B) |  |
| Criteria - Minor Street (veh/hr)       | 105           | 53            | 84 (Cond. A) & 42 (Cond. B)   |  |

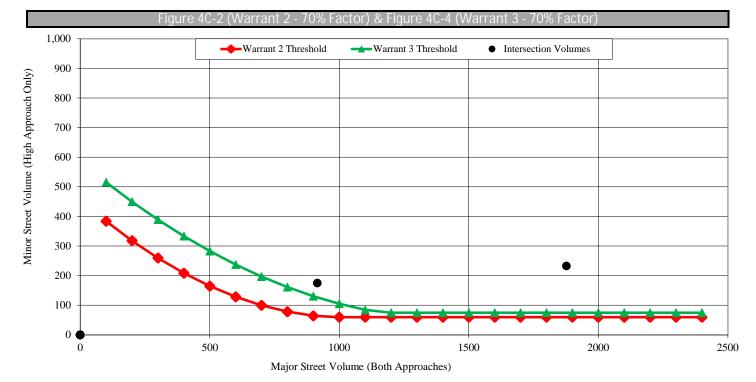
| Warrant 2, Four Hour Venicular Volume |                  |  |  |
|---------------------------------------|------------------|--|--|
|                                       |                  |  |  |
| Condition Satisfied?                  | Not Satisfied    |  |  |
| Required values reached for           | 1 hour           |  |  |
| Criteria                              | See Figure Below |  |  |

| vvarrant 3, Peak Hour venicular volume                     |                               |                  |  |
|------------------------------------------------------------|-------------------------------|------------------|--|
| Condition A Condition                                      |                               |                  |  |
| Condition Satisfied?                                       | Not Satisfied                 | Satisfied        |  |
| Required values reached for                                | 1623 total, 91 minor, 0 delay | 1 hour           |  |
| Criteria - Total Approach Volume (veh in one hour)         | 650                           |                  |  |
| Criteria - Minor Street High Side Volume (veh in one hour) | 100                           | See Figure Below |  |
| Criteria - Minor Street High Side Delay (veh-hrs)          | 4                             |                  |  |



Major Street Volume (Both Approaches)

# Warrants 1 - 3 (Volume Warrants)


| Project Name            | Harris Creek Farm        |                         |                         |
|-------------------------|--------------------------|-------------------------|-------------------------|
| Project/File #          | 204                      | 20498 - 09              |                         |
| Scenario                | 2027 No-Build            |                         |                         |
|                         | Intersectio              | on Information          |                         |
| Major Street (E/W Road) | US 401 Bypass            | Minor Street (N/S Road) | Eastern U-Turn Location |
| Analyzed with           | 2 or more approach lanes | Analyzed with           | 1 Approach Lane         |
| Total Approach Volume   | 2792 vehicles            | Total Approach Volume   | 408 vehicles            |
| Total Ped/Bike Volume   | 0 crossings              | Total Ped/Bike Volume   | 0 crossings             |
| Right turn reduction of | 0 percent applied        | Right turn reduction of | 0 percent applied       |

No high speed or isolated community reduction applied to the Volume Warrant thresholds.

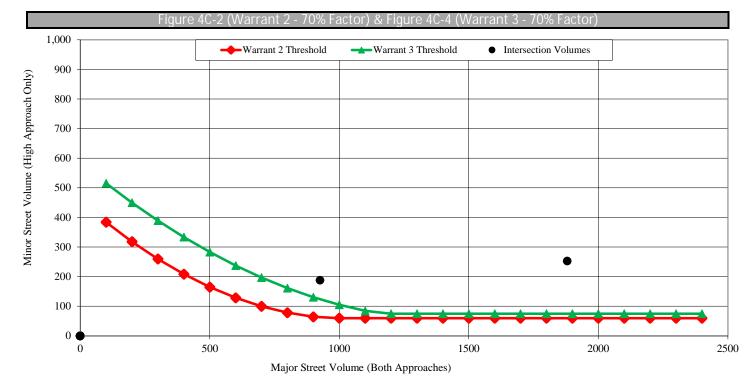
| Warrant 1, Eight Hour Vehicular Volume |               |               |                               |  |
|----------------------------------------|---------------|---------------|-------------------------------|--|
| Condition A Condition B Condition A+B* |               |               |                               |  |
| Condition Satisfied?                   | Not Satisfied | Not Satisfied | Not Satisfied                 |  |
| Required values reached for            | 2 hours       | 2 hours       | 2 (Cond. A) & 2 (Cond. B)     |  |
| Criteria - Major Street (veh/hr)       | 420           | 630           | 336 (Cond. A) & 504 (Cond. B) |  |
| Criteria - Minor Street (veh/hr)       | 105           | 53            | 84 (Cond. A) & 42 (Cond. B)   |  |

| Warrant 2, Four Hour Vehicular Volume |                  |  |  |
|---------------------------------------|------------------|--|--|
|                                       |                  |  |  |
| Condition Satisfied?                  | Not Satisfied    |  |  |
| Required values reached for           | 2 hours          |  |  |
| Criteria                              | See Figure Below |  |  |

| Warrant 3, Peak Hour Vehicular Volume                      |                                |                  |  |
|------------------------------------------------------------|--------------------------------|------------------|--|
|                                                            | Condition A                    | Condition B      |  |
| Condition Satisfied?                                       | Not Satisfied                  | Satisfied        |  |
| Required values reached for                                | 2110 total, 233 minor, 0 delay | 2 hours          |  |
| Criteria - Total Approach Volume (veh in one hour)         | 650                            |                  |  |
| Criteria - Minor Street High Side Volume (veh in one hour) | 100                            | See Figure Below |  |
| Criteria - Minor Street High Side Delay (veh-hrs)          | 4                              |                  |  |



# Warrants 1 - 3 (Volume Warrants)


| Project Name            | Harris Creek Farm        |                         | 7                       |
|-------------------------|--------------------------|-------------------------|-------------------------|
| Project/File #          | 2049                     | 20498 - 09              |                         |
| Scenario                | 2027 Build               |                         | ]                       |
|                         | Intersectio              | on Information          |                         |
| Major Street (E/W Road) | US 401 Bypass            | Minor Street (N/S Road) | Eastern U-Turn Location |
| Analyzed with           | 2 or more approach lanes | Analyzed with           | 1 Approach Lane         |
| Total Approach Volume   | 2806 vehicles            | Total Approach Volume   | 441 vehicles            |
| Total Ped/Bike Volume   | 0 crossings              | Total Ped/Bike Volume   | 0 crossings             |
| Right turn reduction of | 0 percent applied        | Right turn reduction of | 0 percent applied       |

No high speed or isolated community reduction applied to the Volume Warrant thresholds.

| Warrant 1, Eight Hour Vehicular Volume |               |               |                               |  |
|----------------------------------------|---------------|---------------|-------------------------------|--|
| Condition A Condition B Condition A+B* |               |               |                               |  |
| Condition Satisfied?                   | Not Satisfied | Not Satisfied | Not Satisfied                 |  |
| Required values reached for            | 2 hours       | 2 hours       | 2 (Cond. A) & 2 (Cond. B)     |  |
| Criteria - Major Street (veh/hr)       | 420           | 630           | 336 (Cond. A) & 504 (Cond. B) |  |
| Criteria - Minor Street (veh/hr)       | 105           | 53            | 84 (Cond. A) & 42 (Cond. B)   |  |

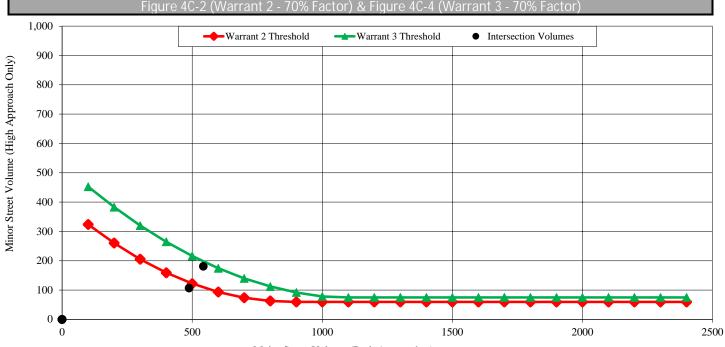
| Warrant 2, Four Hour Vehicular Volume |                  |  |  |
|---------------------------------------|------------------|--|--|
|                                       |                  |  |  |
| Condition Satisfied?                  | Not Satisfied    |  |  |
| Required values reached for           | 2 hours          |  |  |
| Criteria                              | See Figure Below |  |  |

| Warrant 3, Peak Hour Vehicular Volume                      |                                |                  |  |
|------------------------------------------------------------|--------------------------------|------------------|--|
|                                                            | Condition A                    | Condition B      |  |
| Condition Satisfied?                                       | Not Satisfied                  | Satisfied        |  |
| Required values reached for                                | 2133 total, 253 minor, 0 delay | 2 hours          |  |
| Criteria - Total Approach Volume (veh in one hour)         | 650                            |                  |  |
| Criteria - Minor Street High Side Volume (veh in one hour) | 100                            | See Figure Below |  |
| Criteria - Minor Street High Side Delay (veh-hrs)          | 4                              |                  |  |



# Warrants 1 - 3 (Volume Warrants)

| Project Name<br>Project/File # | Harris Creek Farm<br>20498 - 09<br>2022 Existing |                         |                   |
|--------------------------------|--------------------------------------------------|-------------------------|-------------------|
| Scenario                       |                                                  |                         |                   |
|                                | Intersec                                         | tion Information        |                   |
| Major Street (E/W Road)        | Mitchell Mill Road                               | Minor Street (N/S Road) | Jonesville Road   |
| Analyzed with                  | 1 approach lane                                  | Analyzed with           | 1 Approach Lane   |
| Total Approach Volume          | 1031 vehicles                                    | Total Approach Volume   | 469 vehicles      |
| Total Ped/Bike Volume          | 0 crossings                                      | Total Ped/Bike Volume   | 0 crossings       |
| Right turn reduction of        | 0 percent applied Right turn reduction of        |                         | 0 percent applied |


No high speed or isolated community reduction applied to the Volume Warrant thresholds.

| Warrant T, Eight Hour Vehicular Volume |               |               |                               |  |
|----------------------------------------|---------------|---------------|-------------------------------|--|
|                                        | Condition A   | Condition B   | Condition A+B*                |  |
| Condition Satisfied?                   | Not Satisfied | Not Satisfied | Not Satisfied                 |  |
| Required values reached for            | 2 hours       | 1 hour        | 2 (Cond. A) & 2 (Cond. B)     |  |
| Criteria - Major Street (veh/hr)       | 350           | 525           | 280 (Cond. A) & 420 (Cond. B) |  |
| Criteria - Minor Street (veh/hr)       | 105           | 53            | 84 (Cond. A) & 42 (Cond. B)   |  |

\* Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

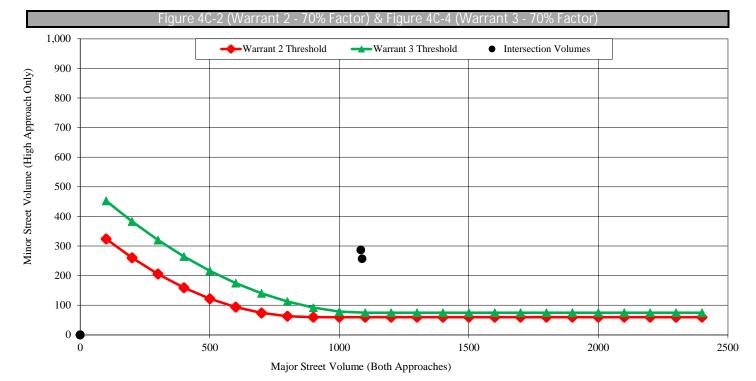
| Warrant 2, Four Hour Vehicular Volume |                  |  |  |  |
|---------------------------------------|------------------|--|--|--|
|                                       |                  |  |  |  |
| Condition Satisfied?                  | Not Satisfied    |  |  |  |
| Required values reached for           | 1 hour           |  |  |  |
| Criteria                              | See Figure Below |  |  |  |

| Warrant 3, Peak Hour Venicular Volume                      |                               |                  |  |  |
|------------------------------------------------------------|-------------------------------|------------------|--|--|
| Condition A Condition B                                    |                               |                  |  |  |
| Condition Satisfied?                                       | Not Satisfied                 | Not Satisfied    |  |  |
| Required values reached for                                | 817 total, 181 minor, 0 delay | 0 hours          |  |  |
| Criteria - Total Approach Volume (veh in one hour)         | 800                           |                  |  |  |
| Criteria - Minor Street High Side Volume (veh in one hour) | 100                           | See Figure Below |  |  |
| Criteria - Minor Street High Side Delay (veh-hrs)          | 4                             |                  |  |  |



Major Street Volume (Both Approaches)

# Warrants 1 - 3 (Volume Warrants)


| Project Name            | Harris Creek Farm  |                         |                   |
|-------------------------|--------------------|-------------------------|-------------------|
| Project/File #          | 20498 - 09         |                         |                   |
| Scenario                | 2027 No-Build      |                         |                   |
|                         | Intersect          | tion Information        |                   |
| Major Street (E/W Road) | Mitchell Mill Road | Minor Street (N/S Road) | Jonesville Road   |
| Analyzed with           | 1 approach lane    | Analyzed with           | 1 Approach Lane   |
| Total Approach Volume   | 2171 vehicles      | Total Approach Volume   | 818 vehicles      |
| Total Ped/Bike Volume   | 0 crossings        | Total Ped/Bike Volume   | 0 crossings       |
| Right turn reduction of | 0 percent applied  | Right turn reduction of | 0 percent applied |

No high speed or isolated community reduction applied to the Volume Warrant thresholds.

| Warrant 1, Eight Hour Vehicular Volume |               |               |                               |  |
|----------------------------------------|---------------|---------------|-------------------------------|--|
| Condition A Condition B Condition A+B* |               |               |                               |  |
| Condition Satisfied?                   | Not Satisfied | Not Satisfied | Not Satisfied                 |  |
| Required values reached for            | 2 hours       | 2 hours       | 2 (Cond. A) & 2 (Cond. B)     |  |
| Criteria - Major Street (veh/hr)       | 350           | 525           | 280 (Cond. A) & 420 (Cond. B) |  |
| Criteria - Minor Street (veh/hr)       | 105           | 53            | 84 (Cond. A) & 42 (Cond. B)   |  |

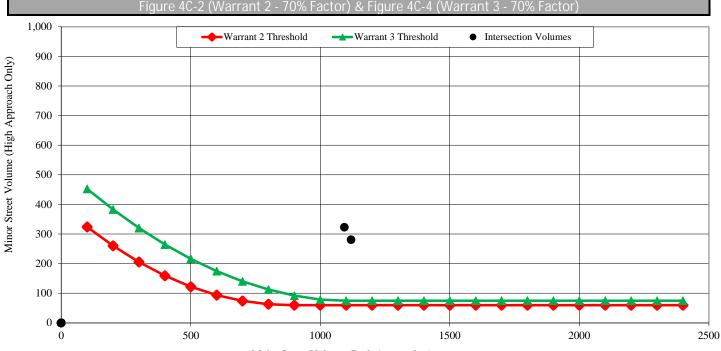
| Warrant 2, Four Hour Vehicular Volume |                  |  |  |  |
|---------------------------------------|------------------|--|--|--|
|                                       |                  |  |  |  |
| Condition Satisfied?                  | Not Satisfied    |  |  |  |
| Required values reached for           | 2 hours          |  |  |  |
| Criteria                              | See Figure Below |  |  |  |

| Warrant 3, Peak Hour Vehicular Volume                      |                                |                  |  |
|------------------------------------------------------------|--------------------------------|------------------|--|
|                                                            | Condition A                    | Condition B      |  |
| Condition Satisfied?                                       | Not Satisfied                  | Satisfied        |  |
| Required values reached for                                | 1488 total, 287 minor, 0 delay | 2 hours          |  |
| Criteria - Total Approach Volume (veh in one hour)         | 800                            |                  |  |
| Criteria - Minor Street High Side Volume (veh in one hour) | 100                            | See Figure Below |  |
| Criteria - Minor Street High Side Delay (veh-hrs)          | 4                              |                  |  |



# Warrants 1 - 3 (Volume Warrants)

| Project Name            | Harris Creek Farm                         |                         |                   |
|-------------------------|-------------------------------------------|-------------------------|-------------------|
| Project/File #          | 20498 - 09                                |                         |                   |
| Scenario                | 2027 Build                                |                         |                   |
|                         | Intersec                                  | tion Information        |                   |
| Major Street (E/W Road) | Mitchell Mill Road                        | Minor Street (N/S Road) | Jonesville Road   |
| Analyzed with           | 1 approach lane                           | Analyzed with           | 1 Approach Lane   |
| Total Approach Volume   | 2212 vehicles                             | Total Approach Volume   | 887 vehicles      |
| Total Ped/Bike Volume   | 0 crossings                               | Total Ped/Bike Volume   | 0 crossings       |
| Right turn reduction of | 0 percent applied Right turn reduction of |                         | 0 percent applied |


No high speed or isolated community reduction applied to the Volume Warrant thresholds.

| Warrant 1, Eight Hour Vehicular Volume |               |               |                               |  |
|----------------------------------------|---------------|---------------|-------------------------------|--|
|                                        | Condition A   | Condition B   | Condition A+B*                |  |
| Condition Satisfied?                   | Not Satisfied | Not Satisfied | Not Satisfied                 |  |
| Required values reached for            | 2 hours       | 2 hours       | 2 (Cond. A) & 2 (Cond. B)     |  |
| Criteria - Major Street (veh/hr)       | 350           | 525           | 280 (Cond. A) & 420 (Cond. B) |  |
| Criteria - Minor Street (veh/hr)       | 105           | 53            | 84 (Cond. A) & 42 (Cond. B)   |  |

\* Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

| Warrant 2, Four Hour Vehicular Volume |                  |  |  |
|---------------------------------------|------------------|--|--|
|                                       |                  |  |  |
| Condition Satisfied?                  | Not Satisfied    |  |  |
| Required values reached for           | 2 hours          |  |  |
| Criteria                              | See Figure Below |  |  |

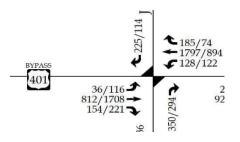
| Warrant 3, Peak Hour Vehicular Volume                      |                                |                  |  |  |
|------------------------------------------------------------|--------------------------------|------------------|--|--|
|                                                            | Condition A                    | Condition B      |  |  |
| Condition Satisfied?                                       | Not Satisfied                  | Satisfied        |  |  |
| Required values reached for                                | 1536 total, 323 minor, 0 delay | 2 hours          |  |  |
| Criteria - Total Approach Volume (veh in one hour)         | 800                            |                  |  |  |
| Criteria - Minor Street High Side Volume (veh in one hour) | 100                            | See Figure Below |  |  |
| Criteria - Minor Street High Side Delay (veh-hrs)          | 4                              |                  |  |  |

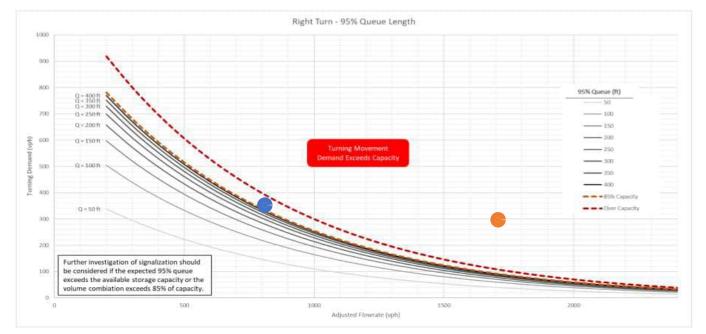


Major Street Volume (Both Approaches)

## US 401 Bypass & Jonesville Road [Minor-Street Right-Turn] [No-Build]

#### AM Peak Hour


| vph | g/c | а       | b        | С        |
|-----|-----|---------|----------|----------|
| 720 | 0.7 | 0.00004 | 0.0108   | 0.2587   |
| 812 | 0.7 | 3.5E-05 | 0.010033 | 0.310936 |
| 900 | 0.7 | 0.00003 | 0.0093   | 0.3609   |


| PM Pea | ak Hour |         |          |          |
|--------|---------|---------|----------|----------|
| vph    | g/c     | а       | b        | С        |
| 1620   | 0.7     | 0.00004 | 0.0108   | 0.2587   |
| 1708   | 0.7     | 3.5E-05 | 0.010067 | 0.308664 |
| 1800   | 0.7     | 0.00003 | 0.0093   | 0.3609   |

| Distance to Upstream Signal | 8800   | ft  |
|-----------------------------|--------|-----|
| Posted Speed Limit          | 55     | mph |
| Travel Time                 | 109.09 | S   |

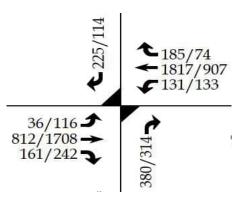
| CVAF                       | 1   |
|----------------------------|-----|
| Conflicting Volume (vph)   | 812 |
| Adjusted Conflicting (vph) | 812 |
| Turning Volume (vph)       | 350 |

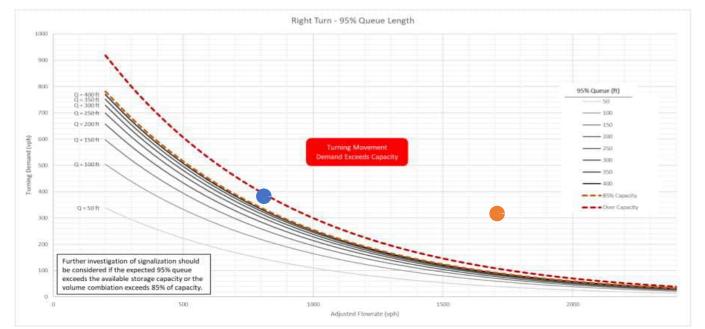
| CVAF |                         |  | 1    |
|------|-------------------------|--|------|
| Cor  | flicting Volume (vph)   |  | 1708 |
| Adju | usted Conflicting (vph) |  | 1708 |
| Τι   | Irning Volume (vph)     |  | 294  |





## US 401 Bypass & Jonesville Road [Minor-Street Right-Turn] [Build]


| AM Pea | ak Hour |         |          |          |
|--------|---------|---------|----------|----------|
| vph    | g/c     | а       | b        | С        |
| 720    | 0.7     | 0.00004 | 0.0108   | 0.2587   |
| 812    | 0.7     | 3.5E-05 | 0.010033 | 0.310936 |
| 900    | 0.7     | 0.00003 | 0.0093   | 0.3609   |


| PM Pea | ak Hour |         |          |          |
|--------|---------|---------|----------|----------|
| vph    | g/c     | а       | b        | С        |
| 1620   | 0.7     | 0.00004 | 0.0108   | 0.2587   |
| 1708   | 0.7     | 3.5E-05 | 0.010067 | 0.308664 |
| 1800   | 0.7     | 0.00003 | 0.0093   | 0.3609   |

| Distance to Upstream Signal | 8800   | ft  |
|-----------------------------|--------|-----|
| Posted Speed Limit          | 55     | mph |
| Travel Time                 | 109.09 | S   |

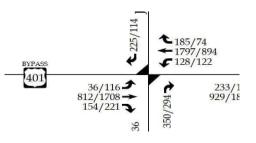
| CVAF                       | 1   |
|----------------------------|-----|
| Conflicting Volume (vph)   | 812 |
| Adjusted Conflicting (vph) | 812 |
| Turning Volume (vph)       | 380 |

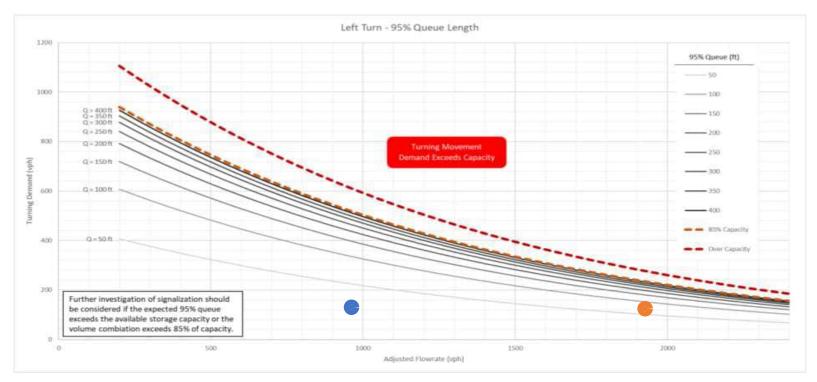
| CVAF                       | 1    |
|----------------------------|------|
| Conflicting Volume (vph)   | 1708 |
| Adjusted Conflicting (vph) | 1708 |
| Turning Volume (vph)       | 314  |





## US 401 Bypass & Jonesville Road [Major-Street Left-Turn] [No-Build]


| AM Pea | ak Hour |         |         |         |
|--------|---------|---------|---------|---------|
| vph    | g/c     | а       | b       | С       |
| 900    | 0.7     | 0.00004 | 0.0097  | 0.4284  |
| 966    | 0.7     | 4.0E-05 | 0.00915 | 0.46261 |
| 1080   | 0.7     | 0.00004 | 0.0082  | 0.5217  |


| PM Pea | ak Hour |         |          |          |
|--------|---------|---------|----------|----------|
| vph    | g/c     | а       | b        | С        |
| 1800   | 0.7     | 0.00004 | 0.0097   | 0.4284   |
| 1929   | 0.7     | 4.0E-05 | 0.008625 | 0.495265 |
| 1980   | 0.7     | 0.00004 | 0.0082   | 0.5217   |

| Distance to Upstream Signal | 8800   | ft  |
|-----------------------------|--------|-----|
| Posted Speed Limit          | 55     | mph |
| Travel Time                 | 109.09 | S   |

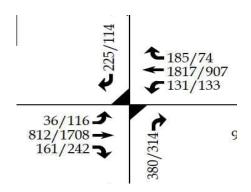
| CVAF                       | 1   |
|----------------------------|-----|
| Conflicting Volume (vph)   | 966 |
| Adjusted Conflicting (vph) | 966 |
| Turning Volume (vph)       | 128 |

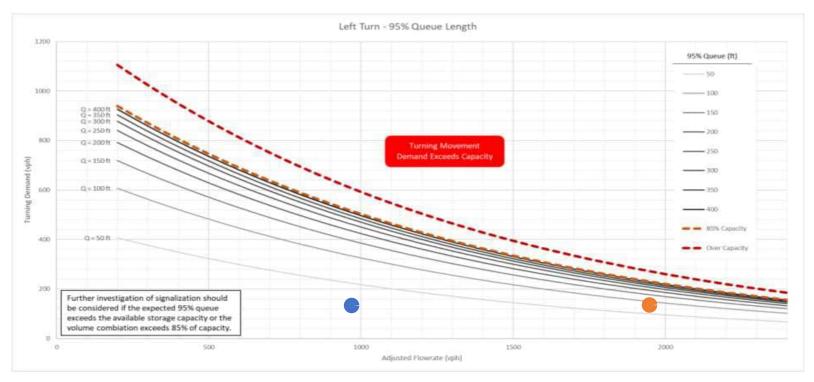
| CVAF                       | 1    |
|----------------------------|------|
| Conflicting Volume (vph)   | 1929 |
| Adjusted Conflicting (vph) | 1929 |
| Turning Volume (vph)       | 122  |





## US 401 Bypass & Jonesville Road [Major-Street Left-Turn] [Build]


| AM Pea | ak Hour |         |          |          |
|--------|---------|---------|----------|----------|
| vph    | g/c     | а       | b        | С        |
| 900    | 0.7     | 0.00004 | 0.0097   | 0.4284   |
| 973    | 0.7     | 4.0E-05 | 0.009092 | 0.466238 |
| 1080   | 0.7     | 0.00004 | 0.0082   | 0.5217   |


| PM Pea | ak Hour |         |         |         |
|--------|---------|---------|---------|---------|
| vph    | g/c     | а       | b       | С       |
| 1800   | 0.7     | 0.00004 | 0.0097  | 0.4284  |
| 1950   | 0.7     | 4.0E-05 | 0.00845 | 0.50615 |
| 1980   | 0.7     | 0.00004 | 0.0082  | 0.5217  |

| Distance to Upstream Signal | 8800   | ft  |
|-----------------------------|--------|-----|
| Posted Speed Limit          | 55     | mph |
| Travel Time                 | 109.09 | S   |

| CVAF                       | 1   |
|----------------------------|-----|
| Conflicting Volume (vph)   | 973 |
| Adjusted Conflicting (vph) | 973 |
| Turning Volume (vph)       | 131 |

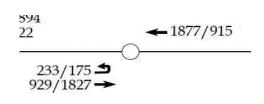
| CVAF                       | 1    |
|----------------------------|------|
| Conflicting Volume (vph)   | 1950 |
| Adjusted Conflicting (vph) | 1950 |
| Turning Volume (vph)       | 133  |

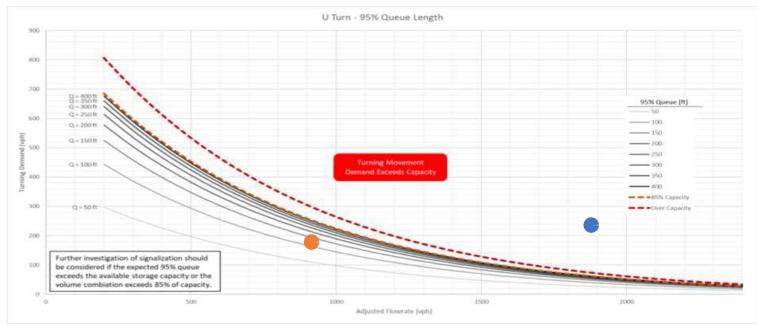




## US 401 Bypass & Eastern U-Turn Location [Major-Street U-Turn] [No-Build]

#### AM Peak Hour


| vph  | g/c | а       | b        | С        |
|------|-----|---------|----------|----------|
| 1800 | 0.7 | 0.00003 | 0.0072   | 0.5106   |
| 1877 | 0.7 | 3.0E-05 | 0.007114 | 0.522064 |
| 1980 | 0.7 | 0.00003 | 0.007    | 0.5374   |


| PM Pea | ak Hour |         |          |          |
|--------|---------|---------|----------|----------|
| vph    | g/c     | а       | b        | С        |
| 900    | 0.7     | 0.00003 | 0.0072   | 0.5106   |
| 915    | 0.7     | 3.0E-05 | 0.007183 | 0.512833 |
| 1080   | 0.7     | 0.00003 | 0.007    | 0.5374   |

| Distance to Upstream Signal | 10000  | ft  |
|-----------------------------|--------|-----|
| Posted Speed Limit          | 55     | mph |
| Travel Time                 | 123.97 | S   |

| CVAF                       | 1    |
|----------------------------|------|
| Conflicting Volume (vph)   | 1877 |
| Adjusted Conflicting (vph) | 1877 |
| Turning Volume (vph)       | 233  |

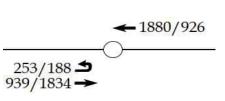
| CVAF                       | 1   |
|----------------------------|-----|
| Conflicting Volume (vph)   | 915 |
| Adjusted Conflicting (vph) | 915 |
| Turning Volume (vph)       | 175 |





### US 401 Bypass & Eastern U-Turn Location [Major-Street U-Turn] [Build]

#### AM Peak Hour


| vph  | g/c | а       | b        | С        |
|------|-----|---------|----------|----------|
| 1800 | 0.7 | 0.00003 | 0.0072   | 0.5106   |
| 1880 | 0.7 | 3.0E-05 | 0.007111 | 0.522511 |
| 1980 | 0.7 | 0.00003 | 0.007    | 0.5374   |


#### **PM Peak Hour** vph g/c b а С 900 0.7 0.00003 0.0072 0.5106 0.514471 926 0.7 3.0E-05 0.007171 0.5374 1080 0.7 0.00003 0.007

| Distance to Upstream Signal | 10000  | ft  |
|-----------------------------|--------|-----|
| Posted Speed Limit          | 55     | mph |
| Travel Time                 | 123.97 | S   |

| CVAF                       | 1    |
|----------------------------|------|
| Conflicting Volume (vph)   | 1880 |
| Adjusted Conflicting (vph) | 1880 |
| Turning Volume (vph)       | 253  |

| CVAF                       | 1   |
|----------------------------|-----|
| Conflicting Volume (vph)   | 926 |
| Adjusted Conflicting (vph) | 926 |
| Turning Volume (vph)       | 188 |



