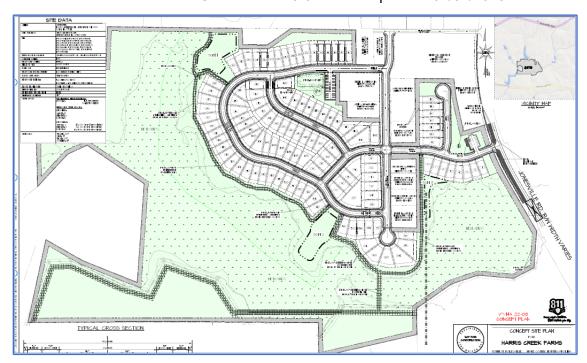
Agenda Item 11.a.1

Memo

To: Mayor Currin and Town Board of Commissioners

From: Meredith Gruber, Planning Director & Michael Elabarger, Senior Planner


Date: April 2, 2024

Re: Harris Creek Farm Rezoning (MA 22-05) and Annexation (ANX 22-05)

Background

Rezoning – MA 22-05

The Town of Rolesville Planning Department received a Rezoning (Map Amendment) application in August of 2022 for approximately 93 acres consisting of nineteen tracts of land on the western side of Jonesville Road near Universal Drive. After several revisions, the application request is to change the zoning from Wake County's Residential-30 (R-30) Zoning District to the Town's Land Development Ordinance (LDO) Residential Medium Density Conditional Zoning District (RM-CZ). Below is an image from the Concept Site Plan (Attachment 5), which proposes a maximum of 120 single family detached (SFD) lots. The Concept Site Plan also indicates an intent to provide at least a minimum of forty percent (40%) gross acreage preserved as undisturbed open space; this indicates the Applicant seeks to subdivide the project utilizing LDO Section 3.1.B., Cluster Development; based on the timing of this submittal, that entails the lot dimensions that existed in the LDO before TA 23-02 was adopted on 04/04/2023.

The Rezoning application includes a set of Conditions of Approval (see Attachment 8) and a Concept Site Plan (see Attachment 5).

Voluntary Annexation Petition ANX 22-05

A non-contiguous, voluntary Annexation Petition was submitted, reviewed, and processed simultaneously with the Rezoning application request. There will be a combined Legislative hearing at the Town Board of Commissioners' meeting. The Town Clerk investigated the Sufficiency of the request on December 7, 2022. See Attachment 13 for these files.

Neighborhood Meetings

The Applicant conducted a neighborhood meeting on July 12, 2023, at which there were 24 attendees. The Applicant held an additional Meeting on October 24, 2023, at which there were 10 attendees; see Attachment 9.

Comprehensive Plan

Land Use

The 2017 Comprehensive Plan Future Land Use map designates the subject property, and the entire area south of Harris Creek to Mitchell Mill Road, as appropriate for **Medium Density Residential** type of land uses, which it describes / defines as:

Predominantly single-family residential uses with portion of duplex, townhouse, or multifamily residential. These are lots or tracts at a density range of three to five (3-5) dwelling units per gross acre including preserved open space areas along with limited non-residential uses under planned unit development or form base code provisions.

As stated in Land Development Ordinance (LDO) Section 3.1.2.A., Purpose and Intent: "RM [Residential Medium Density zoning district] implements the Medium Density Residential future land use designation at a density range of three (3) to five (5) dwelling units per acre."

Community Transportation Plan

The Town of Rolesville's Community Transportation Plan (CTP, adopted 2021) includes recommendations for Thoroughfares, Collectors, and intersections. There are no plans for new Collector roadways in the vicinity of the subject property, but there is this Thoroughfare Recommendation (page 79/131):

• Jonesville Road is planned to be a 2-lane (with Two Way Left Turn Lane), curb and gutter, bike lanes, and Sidewalks.

Per the Concept Site Plan, the project is proposing one new primary site access (Street A) to Jonesville Road, located south of where Universal Drive lies and the Harris Creek bridge crossing.

Intersection Recommendations

• There are no intersection recommendations associated with the subject property.

• The closest intersection recommendations are located at Mitchell Mill and Rolesville Roads, for an intersection realignment.

Greenway and Bike Plans

As per the 2022 Greenway and Bike Plans, proposed pedestrian routes are shown in the following locations:

 A ten-foot (10') private maintained Greenway trail with public access easement, turns into a twenty-foot (20') trail easement before returning to a ten-foot (10') private maintained greenway trail with public access easement is shown on the northwest side of the property, along Harris Creek.

Consistency

The Applicant's rezoning request is consistent with the Town of Rolesville's Comprehensive Plan for the following reasons:

- The RM district is a direct fulfillment of the Medium Density Residential land use description.
- The proposed 120 Single-family detached lots/units fulfill the core intent of detached dwelling units in the Medium Density Residential land use description.
- The proposed vehicular circulation network is in harmony with / of no conflict with the Town's Community Transportation Plan.
- The proposed Greenways establish pedestrian connections as recommended by Rolesville's Greenway Plan.

Traffic

Traffic Impact Analysis

The consulting firm, Ramey Kemp Associates (now DRMP), performed the Traffic Impact Analysis (TIA) for this project on behalf of the Town. The TIA was done at the time that the application was requesting development of 68 Single Family Detached and 81 Single family Attached (townhome) housing units. As noted at the top of this Memo, the project conceived in the application has been scaled back to a maximum of 120 single family detached units, replacing 81 Townhome units with 52 single family detached units.

A trip generation letter (Attachment 12) was prepared by DRMP on March 27, 2024; the contents document the change in land use type and density of the proposed Harris Creek Farm rezoning application. The table below compares the trip generation between the approved TIA Concept Site Plan and the latest Concept Site Plan. The table shows a decrease in the total daily trips and a very small increase in the PM peak hour trips upon entering the site.

Table 1: Trip Generation Comparison

		Daile		Weekday		Weekday	
Land Use	Intensity	Daily AM Pea	k Hour	PM Peak Hour			
(ITE Code)			Trips (vph)		Trips (vph)		
		(vpd)	Enter	Exit	Enter	Exit	
Approved TIA Site Plan							
Single-Family Detached Housing (210)	68 DU	708	13	39	44	25	
Single-Family Attached Housing (215)	81 DU	568	9	27	26	19	
TOTAL		1,276	22	66	70	44	
Latest Site Plan							
Single-Family Detached Housing (210)	120 DU	1,193	22	66	74	44	
Difference		-83	0	0	4	0	

Attachment 10 is the Final Sealed Report dated May 08, 2023. Traffic conditions during weekday AM and PM peak hours were looked at in four (4) scenarios: 2022 Existing Traffic Conditions, 2027 No-build Traffic Conditions, 2027 Build Traffic Conditions and 2027 Build-Improved Traffic Conditions. See excerpted Table E-1 from the TIA report:

Table E-1: Site Trip Generation

Land Use (ITE Code)	Intensity Traf		Weekday AM Peak Hour Trips (vph)		Weekday PM Peak Hour Trips (vph)			
		(vpd)	Enter	Exit	Total	Enter	Exit	Total
Single-Family Home (210)	68 DU	708	13	39	52	44	25	69
Single Family Attached (215)	81 DU	568	9	27	36	26	19	45
Total Primary Trips	3	1,276	22	66	88	70	44	114

Four intersections were studied for capacity analysis and Level of Service (LOS) impact of this development – US 401 Bypass and Jonesville Road; US 401 Bypass and Eastern U-turn location; Mitchell Mill Road and Jonesville Road / Peebles Road and Jonesville Road and Universal Drive.

TIA Summary – Intersection Improvements				
Recommendations				
Future Traffic Conditions A growth rate of 0% was used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. The following adjacent developments were identified to be considered under future conditions:	 Cobblestone Crossing Mixed-Use (Cobblestone) Young Street PUD (The Point) Wheeler Tract (Rolesville Crossing) Louisbury Road Assemblage Kalas / Watkins Family Property (Kalas Falls) 5109 Mitchell Mill Hills at Harris Creek 			
US 401 Bypass and Jonesville Road	 Conduct a full signal warrant analysis prior to Full Build- out of the proposed development and install a traffic signal if warranted and approved by NCDOT and Town. 			
Mitchell Mill Road and Jonesville Road / Peebles Road	 Construct a south-bound (Jonesville Rd) left-turn lane with at least 100 feet of storage and appropriate deceleration and taper. It should be noted that this improvement was also identified by the 5109 Mitchell Mill Rd and Hills at Harris Creek TIA. 			
	 Construct an eastbound (Mitchell Mill Rd) left-turn lane with at least 100 feet of storage and appropriate deceleration and taper. It should be noted that this improvement was also identified by the 5109 Mitchell Mill Rd TIA. 			
	 Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate deceleration and taper. It should be noted that this improvement was also identified by the Hills at Harris Creek TIA. 			
	 Conduct a full signal warrant analysis prior to Full Buildout of the proposed development and install a traffic signal if warranted and approved by NCDOT and Town. Construct the eastbound approach (Site Drive) with one 			
Jonesville Road and Site Drive	 Construct the eastbound approach (Site Drive) with one ingress lane and one egress lane. Provide stop control for the eastbound approach (Site Drive). 			

Development Review

The Technical Review Committee (TRC) reviewed three versions of the Rezoning application, with all comments pertinent to the consideration of the proposed districts and the general development plan being resolved. Note that the TRC review of the Concept Site Plan (Attachment 5) was not an LDO subdivision and/or site development regulation review, as it is only a conceptual plan, and not an engineered and dimensioned layout. Should the proposed Zoning Districts be approved, the project would next process an administratively

reviewed/approved Major Preliminary Subdivision Plat (PSP) application, followed by Construction Infrastructure Drawings (CID).

Planning Board Recommendation

At the Planning Board meeting on December 18, 2023, there were eight public speakers in opposition to the rezoning request. One person submitted a letter in support if the rezoning application.

The Planning Board recommended approval of MA 22-08 with a vote of 3 - 1. The dissenting vote was due to the inclusion of townhomes in the proposed Concept Site Plan.

Since the Planning Board meeting in December, the applicant has revised the application to include single family detached lots only.

Staff Analysis and Recommendation

The proposed RM District is committing to far less than the LDO stated maximum densities and far less than the theoretical by-right subdivision yields. Collectively, the gross density of the proposed 120 dwelling units over 93 acres = 1.29 units per acre. The proposed housing type is consistent with the Comprehensive Plan Future Land Use designation of Medium Density Residential, and the proposed density matches the Low Density Future Land Use category.

Staff finds the proposed Rezoning request MA 22-08 is consistent with the Comprehensive Plan and recommends Approval.

Consistency and Reasonableness

As noted above under the Comprehensive Plan section of this report, the rezoning request for the subject parcel is consistent with Rolesville's vision. Map Amendment MA 22-08 is thus consistent with the Comprehensive Plan and other applicable Plans and is therefore reasonable.

Proposed Motions

- 1. Motion to (approve or deny) rezoning Map Amendment request MA 22-08 Harris Creek Farms.
- 2. (Following Approval) Motion to adopt a Plan Consistency Statement and Statement of Reasonableness for MA 22-08.
- 3. Motion to (approve or deny) the Voluntary Annexation Petition received under G.S. 160A-31 for ANX 22-05 Harris Creek Farms.

Or

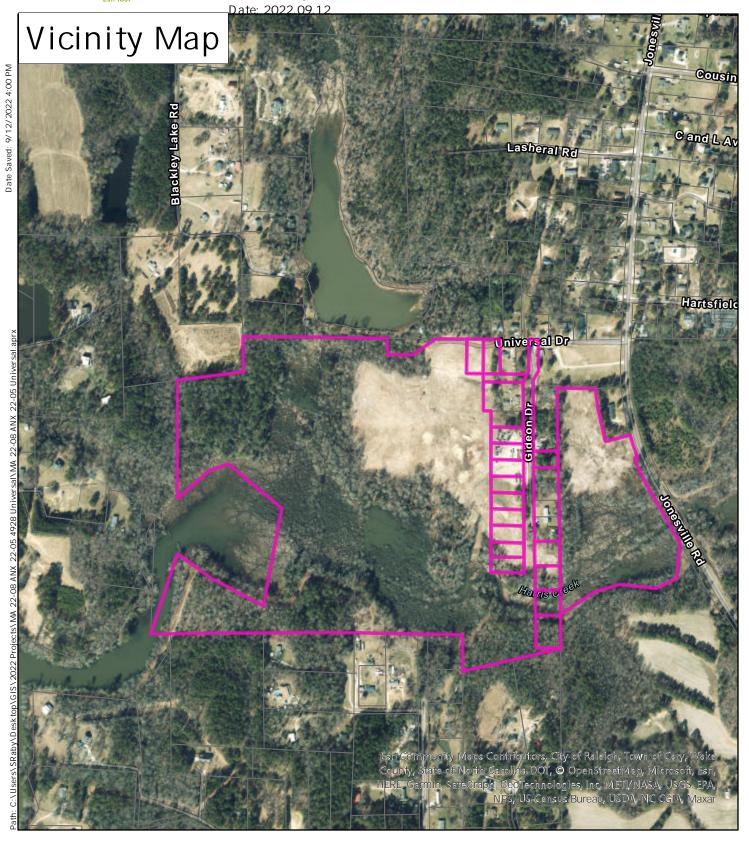
4. Motion to continue the legislative hearing for MA 22-08 and ANX 22-05 to a future Town Board of Commissioners' meeting.

Attachments

- 1 Vicinity Map
- 2 Zoning Map
- 3 Future Land Use Map
- 4 Map Amendment Application
- 5 Concept Site Plan, December 15, 2023
- 6 Zoning District Boundaries

- Zoning District Legal Descriptions 7
- Proposed Conditions of Approval 8
- Neighborhood Meeting Package, July 12, 2023 and October 14, 2023 9
- 10
- Traffic Impact Analysis (TIA), sealed dated May 8, 2023
 Traffic Impact Analysis (TIA NCDOT Congestion Management report, June 5, 2023 11
- Traffic Impact Analysis (TIA), Trip Generation Letter, March 27, 2024 12
- 13 **Annexation Petition and Attachments**
- **Applicant Presentation** 12

Attachment #1


Case: MA 22-08 ANX 22-05 Harris Creek Farms

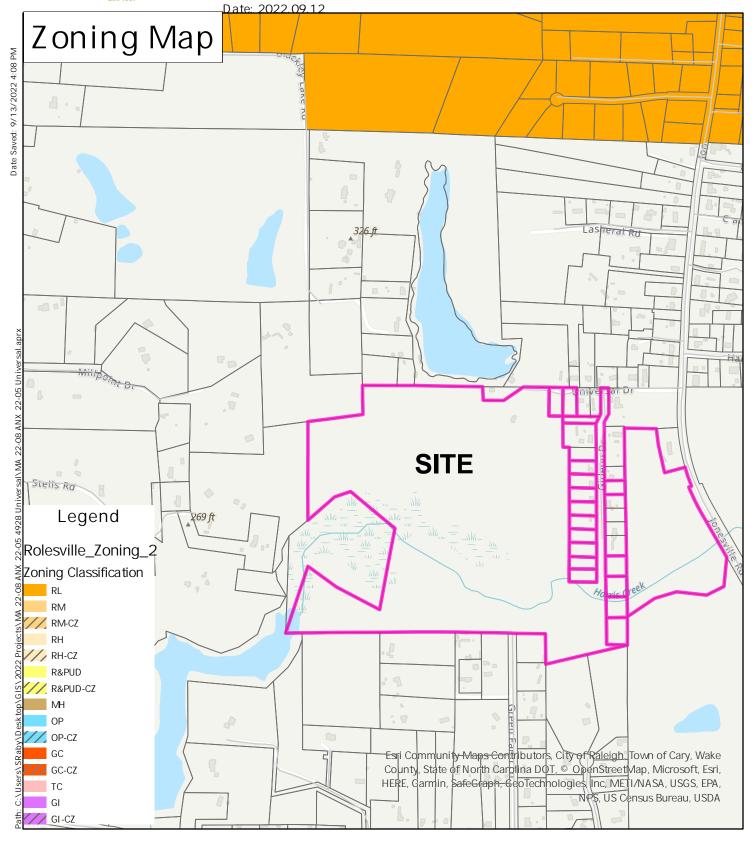
Address: 4928 Universal

PIN: 1757277811, 1757375276, 1757375365, 1757375464, 1757375575,

1757375665, 1757375765, 1757375865, 1757375975, 1757385064, 1757384572, 1757383572, 1757368816, 1757378013, 1757378109, 1757378303, 1757377990,

1757471559, 1757385349

0 0.07 0.15 0 0.3 Miles


Attachment #2

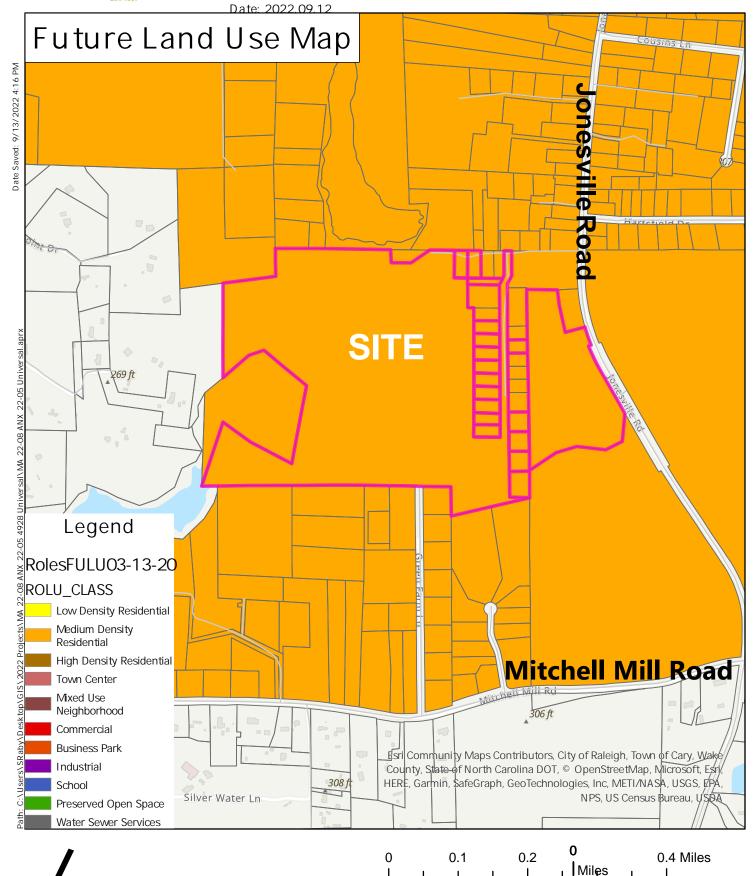
Case: MA 22-08 ANX 22-05 Harris Creek Farms

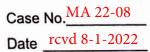
Address: 4928 Universal

PIN: 1757277811, 1757375276, 1757375365, 1757375464, 1757375575, 1757375665, 1757375765, 1757375865, 1757375975, 1757385064, 1757384572, 1757383572, 1757368816, 1757378013, 1757378109, 1757378303, 1757377990, 1757471559, 1757385349

*Site is approximately 1 mile from Carlton Pointe

Attachment #3

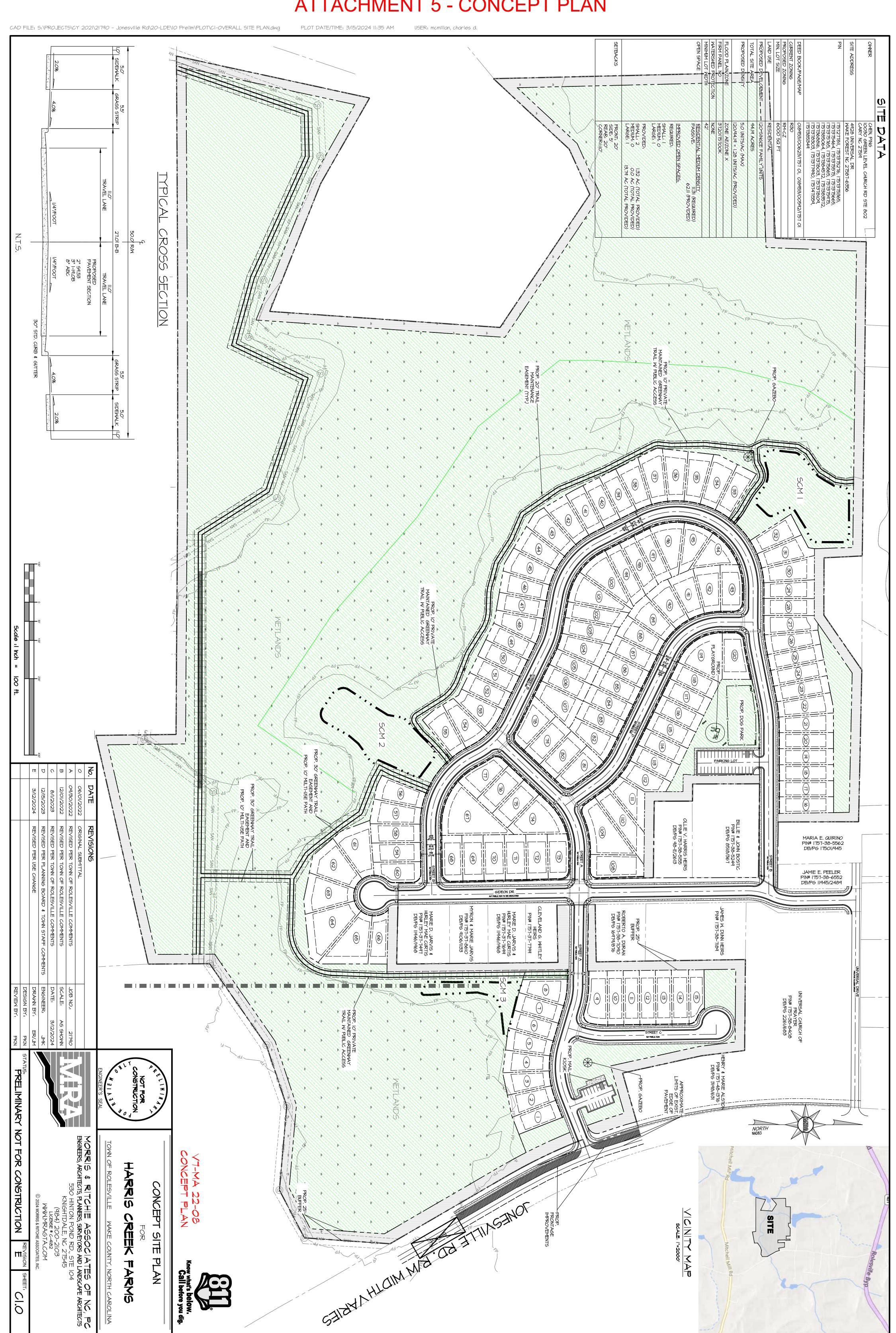

Case: MA 22-08 ANX 22-05 Harris Creek Farms

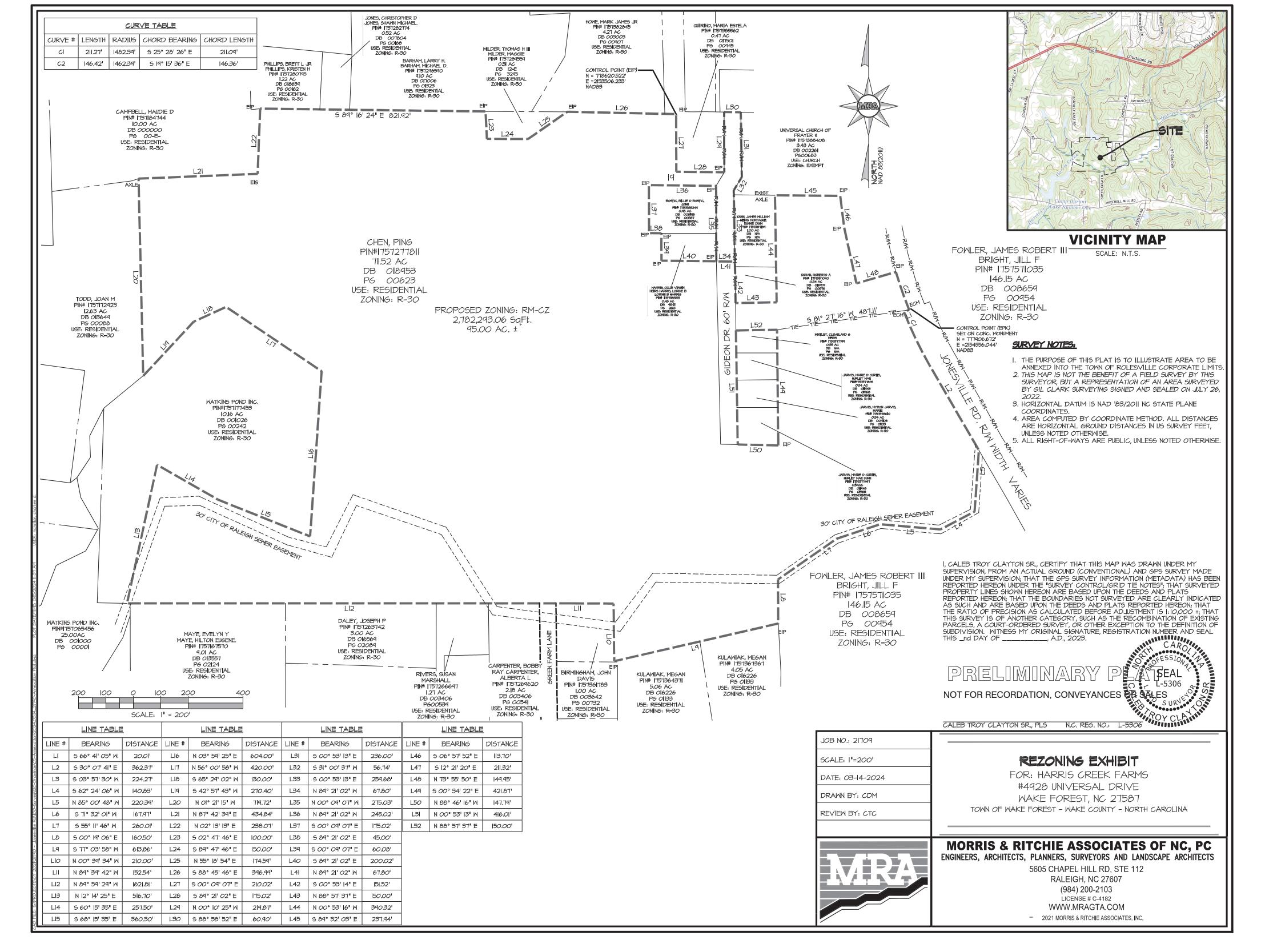

Address: 4928 Universal

PIN: 1757277811, 1757375276, 1757375365, 1757375464, 1757375575,

1757375665, 1757375765, 1757375865, 1757375975, 1757385064, 1757384572, 1757383572, 1757368816, 1757378013, 1757378109, 1757378303, 1757377990,

1757471559, 1757385349





Map Amendment Application

Contact Information	
Property Owner CHEN, PING	
Address 10030 GREEN LEVEL CHURCH RD STE 802	City/State/Zip CARY NC 27519-8195
Phone 919-798-0429	Email ping@thecscgrp.com
Developer The CSC Group, LLC	
Contact Name Ping Chen	
Address 10030 GREEN LEVEL CHURCH RD STE 802	City/State/Zip CARY NC 27519-8195
Phone 919-798-0429	Email ping@thecscgrp.com
Property Information	
Address 4928 UNIVERSAL DR.	
Wake County PIN(s) 1757277811, 1757375278, 1757375365, 1757375464, 1757375365, 1757375665, 17573	5765, 1757375865, 1757375875, 1757385064, 1757384572, 1757383572, 1757388816, 1757378013, 1757378108, 1757378303, 1757377990, 17574715
Current Zoning District R-30	_ Requested Zoning District RM and RH
Total Acreage 93.22	
Owner Signature	
I hereby certify that the information contained herein is	true and completed. I understand that if any item is
found to be otherwise after evidentiary hearing before	the Town Board of Commissioners, that the action of the
Board may be invalidated.	4100
Signature	Date 6/8/2022
STATE OF NORTH CAROLINA	
COUNTY OF # Wake	
I, a Notary Public, do hereby certify that	Chen
personally appeared before me this day and acknowle	edged the due execution of the foregoing instrument. This
the	_ day of <u>June</u> 20 <u>22</u> .
My commission expires 10/22/2024	Roule Alichetth Watson
0 1 111/11/11	NOTARY PUBLIC Waite County, NC
Signature Koula Ftlyhalip Malson	_ Seal My Commission Expires October 22, 2024

ATTACHMENT 5 - CONCEPT PLAN

MORRIS & RITCHIE ASSOCIATES OF NC, PC

AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS

<u>Legal Description – Exhibit "B"</u> 63.87 Acres Portion of Lands of Ping Chen Wake Forest Township – Wake County, North Carolina

All that certain parcel of land lying generally easterly of Jonesville Road, being located in Wake Forest Township, Wake County, North Carolina and being a portion of those lands described in deed dated January 24, 2023 from Ping Chen and Fanxing Li, Grantor to Kenneth Investment, LLC. and recorded in the Land Records of Wake County, North Carolina in Deed Book 19248, page 1884, being more particularly described as follows, to wit:

Beginning at a PK nail set in an existing concrete monument on the Southwestern right-of-way of Jonesville Road, having North Carolina state plane coordinates N: 777,906.672 E: 2,154,356.044. Thence, with said right-of way, South 66°41'05" West 20.01 feet to a concrete monument on the Southwestern right-of-way line of Jonesville Road; thence, with said right-ofway and along a curve with a cord bearing distance South 25°28'26" East 211.09 feet and a radius of 1,482.39 feet to an iron pipe; thence along said right-of-way, South 30°07'41" East 362.37 feet to an iron pipe; thence leaving said right-of-way, South 03°57'30" West 224.27 feet to a point; thence, South 62°24'06" West 140.83 feet to a point; thence, North 85°00'48" West 220.39 feet to a point; thence, South 71°32'01" West 167.97 feet to a point; thence, South 55°11'46" West 260.01 feet to a point; thence South 00°19'06" East 160.50 feet to an iron pipe; thence, South 77°03'58" West 613.86 feet to an iron pipe; thence, North 00°39'34" West 210.00 feet to an iron pipe; thence, North 89°39'42" West 152.54 feet to a point; thence, North 89°59'29" West 1,621.81 feet to an iron pipe; thence, North 12°14'25" East 516.70 feet to an iron pipe; thence, South 60°15'35" East 257.50 feet to an iron pipe; thence, South 68°15'35" East 360.30 feet to an iron pipe; thence, North 03°59'25" East 604.00 feet to an iron pipe; thence, North 56°00'58" West 420.00 feet to an iron pipe; thence, South 65°29'02" West 130.00 feet to an iron pipe; thence, South 42°57'43" West 270.40 feet to an iron pipe; thence, North 01°21'15" West 719.72 feet to an axle; thence, North 87°42'39" East 434.84 feet to an iron pipe; thence, North 02°13'13" East 238.07 feet to an iron pipe; thence, South 89°16'24" East 821.92 feet to an iron pipe; thence, South 02°47'46" East 100.00 feet to an iron pipe; thence, South 89°47'46" East 150.00 feet to an iron pipe; thence, North 55°18'54" East 174.59 feet to an iron pipe; thence, South 88°45'46" East 396.99 feet to an iron pipe; thence, South 00°09'07" East 210.02 feet to an iron pipe; thence, South 89°21'02" East 175.02 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence with said right-of-way, North 00°10'25" West 219.87 feet to a point; thence leaving said right of way, South 88°58'52" East 60.90 feet to a point on the Eastern right-of-way of Gideon Drive; thence, with said right-of-way South 00°53'13" East 236.00 feet to a point; thence, South 31°00'37" West 56.74 feet to a point; thence, South 00°53'13" East 259.68 feet to a point; thence, crossing said right-of-way, South 89°21'02" East 67.80 feet to an iron pipe; thence, with said right-of-way North 00°09'07" West 275.03 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence, leaving said right-of-way, North 89°21'02" West 245.02 feet to an iron pipe; thence, South 00°09'07 East 175.02 feet to an iron pipe; thence, South 89°21'02" East 45.00 feet to an iron pipe; thence,

MORRIS & RITCHIE ASSOCIATES OF NC, PC

AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS

South 00°09'07" East 60.08 feet to an iron pipe; thence, South 89°21'02" East 200.02 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence, leaving said right-of-way, South 89°21'02" East 67.80 feet to a point on the Eastern right-of-way of Gideon Drive; thence, with said right-of-way, South 00°53'14" East 151.52 feet to a point; thence leaving said right of way, North 88°57'37" East 150.00 feet to a point; thence, North 00°53'16" West 390.32 feet to an axle; thence, South 89°32'03" East 237.94 feet to an iron pipe; thence, South 06°57'52" East 113.70 feet to a point; thence, South 12°21'20" East 211.32 feet to an iron pipe; thence, North 73°55'50" East 149.95 feet to an iron pipe on the Southwestern right-of-way of Jonesville Road; thence, with said right-of-way and along a curve with a bearing and distance of South 19°15'36" East 146.36 feet and a radius of 1,462.39 feet to the point of beginning. Containing 95.00 AC.±.

Less than and except the following four (4) parcels; 1757-37-7799, 1757-37-7699, 1757-37-8610, and 1757-37-7497, being more particularly described as follows, to wit:

Commencing at a PK nail set in an existing concrete monument on the Southwestern right-ofway of Jonesville Road, having North Carolina state plane coordinates N: 777,906.672 E: 2,154,356.044. Thence, South 81°27'16" West 487.11 feet to the point of beginning; thence, South 00°34'22" East 421.87 feet to a point; thence, North 88°46'16" West 147.79 feet to a point; thence, North 00°53'13" West 416.01 feet to a point; thence North 88°57'37" East 150.00 feet to the point of beginning.

The total area of the Exhibit "B" herein described being a portion of Tract 1 as described in deed dated January 24, 2023 from Ping Chen and Fanxing Li, Grantor to Kenneth Investment, LLC. and recorded in the Land Records of Wake County, North Carolina in Deed Book 18953, page 592 and page 623, and containing a total area of 95.00 AC.± and being subject to any and all matters of which a current title package would disclose.

HARRIS CREEK FARMS VOLUNTARY REZONING CONDITIONS

- 1.The subject property shall be developed in general compliance with the map amendment (conditional rezoning) concept plan, dated 3/1/2024.
- 2. The development shall consist of maximum of 120 single-family detached dwelling units/lots as detailed in the map amendment (conditional rezoning) concept plan, dated 3/1/2024.
- 3. Single family detached dwelling unit facade anti-monotony: in order to promote variation in home appearance, no single-family front façade shall be duplicated for three (3) lots in a row, or directly across the street. For corner lots, this shall apply to the lots diagonally across the intersection.
- 4.All garage doors shall either contain windows or carriage style adornments.

5. Single-family detached dwelling units shall:

- A. Be a minimum of 1,500 heated square feet.
- **B**. Have cementitious siding that shall vary in type and color with brick, shakes, board and batten, or stone accents provided as decorative features
- **C**. Have at least two types of finishes on the front: lap siding, masonry, shakes, and board and batten.
- 7.A homeowners' association (HOA) shall be created, and all open spaces observed in map amendment (conditional rezoning) concept plan, dated 3/1/2024, shall be owned and maintained by the HOA.
- 8. <u>Foundations</u>: All foundations are to be monolithic poured slab foundations. Top of slabs shall be elevated a minimum of 18 inches above finished grade for all dwelling units. All foundations shall be treated with masonry on the front and street-facing sides for a minimum of 10".
- 9. Recreational amenities: the following recreational amenities shall be constructed as observed in map amendment (conditional rezoning) concept plan, dated 3/1/2024. Public greenway (approximately 5,600 linear feet), private multi-use paths (approximately 410 linear feet), gazebos, playgrounds, and a dog park. Amenities shall be built prior to the issuance of the building permit for the 70th lot.
- 10. <u>Landscaping</u>. At least twenty percent (20%) of all landscaping required by the LDO, that does not already qualify under LDO Section 6.2, shall utilize plant materials that are listed as native pollinator plants by the North Carolina Wildlife Federation. Where evergreen plantings or street trees are required by the LDO, native pollinator plantings shall not be required. Such plantings shall be clearly shown in construction drawings and installed as part of subdivision infrastructure. Nothing herein shall be constructed to limit the plant materials permitted on individual residential lots.

- 11. <u>Sidewalk Easement</u>. The development shall attempt to procure an easement from the owners of those properties with PINs 1757-48-1376 (Deed Book 19407, Page 984, Wake County Registry) and 1757-38-8408 (Deed Book 2261, Page 683, Wake County Registry), in order to provide a 5'-wide sidewalk running from the development's proposed access to Jonesville Road to the intersection with Universal Drive. If the development procures easements from both property owners, the sidewalk shall be located within said easements and constructed consistent with the Town of Rolesville Transportation Plan, and shall be completed prior to the issuance of the one hundredth (100th) building permit. If the development is unable to procure an easement from either property owner prior to the issuance of the first (1st) building permit, then the development shall pay a fee-in-lieu for the sidewalk construction to the Town of Rolesville. The fee-in-lieu shall be paid prior to the issuance of the one hundredth (100th) building permit.
- 12. <u>Universal Drive</u>. The development shall attempt to procure a minimum 20'-wide access easement (the "<u>Easement</u>") from the owner of that property with PIN 1757-38-8408 (Deed Book 2261, Page 683, Wake County Registry) for vehicular ingress and egress to and from Gideon Drive and Jonesville Road (the "<u>Easement Area</u>"). This Easement shall be recorded with the Wake County Registry. If the Easement is obtained and recorded, the development shall pave the Easement Area with a 20'-wide asphalt surface coat over top of the existing private gravel access drive. The paving shall be completed prior to the issuance of the development's one hundredth (100th) building permits. Following completion of the paving, the development shall be responsible for maintenance of the Easement Area; this maintenance responsibility shall expire if Universal Drive is dedicated as public right-of-way. If the development can not obtain and record the Easement before the issuance of the first (1st) building permit, then the development shall have no obligation to perform any work described in this Condition.
- 13. Prior to issuance of the first building permit for a dwelling unit, the development shall donate thirty-five thousand dollars and no cents (\$35,000.00) to Homes for Heroes.

Reviewed and Acknowledged	by the Property Owner or Applicant:
, 	-
Printed Name	
Signature	Date

REZONING AND ANNEXATION OF PROPERTY CONSISTING OF +/- 93.609 ACRES, LOCATED SOUTHWEST OF THE JONESVILLE ROAD AND UNIVERSAL DRIVE INTERSECTION, IN THE TOWN OF ROLESVILLE

REPORT OF MEETING WITH ADJACENT PROPERTY OWNERS AND TENANTS ON JULY 12, 2022

Pursuant to applicable provisions of the Unified Development Ordinance, a meeting was held with respect to a potential rezoning and annexation with adjacent neighbors on Wednesday, July 12, 2023, at 6:00 p.m. The property considered for this potential rezoning totals approximately 93.609 acres, and is located along southwest of the Jonesville Road and Universal Drive intersection, in the Town of Rolesville. This meeting was held at virtually via a Zoom Meeting. All owners and tenants of property within 500 feet of the subject property were invited to attend the meeting. Attached hereto as **Exhibit A** is a copy of the neighborhood meeting notice. A copy of the required mailing list for the meeting invitations is attached hereto as **Exhibit B**. A summary of the items discussed at the meeting is attached hereto as **Exhibit C**. Attached hereto as **Exhibit D** is a list of individuals who attended the meeting.

EXHIBIT A – NEIGHBORHOOD MEETING NOTICE

To: Neighboring Property Owners and Tenants

From: Samuel Morris Date: June 23, 2023

Re: Virtual Neighborhood Meeting for Annexation and Rezoning of Harris Creek Farm (f.k.a.

4928 Universal) (ANX 22-05 & MA 22-08)

You are invited to attend a virtual meeting to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). We have scheduled an informational meeting with surrounding neighbors on <u>Wednesday</u>, July 12, 2023 from 6:00 PM until 7:00 PM. This meeting will be held virtually. You can participate online or by telephone.

To join with video:

https://zoom.us/

Meeting ID: 871 7347 4235

Password: 922539

To join by telephone:

+1 646 558 8656

Meeting ID: 871 7347 4235

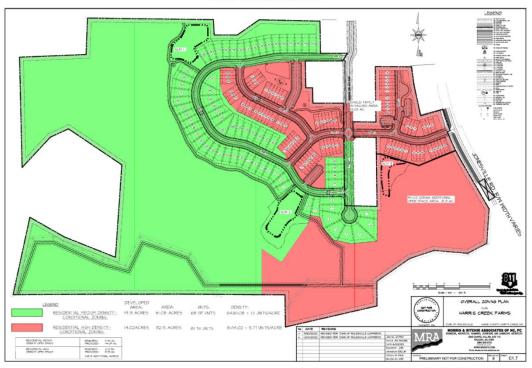
Password: 922539

The purpose of this meeting is to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). The property assemblage totals approximately 93.609 acres in size and is located southwest of the Jonesville Road and Universal Drive intersection.

The property is currently zoned Residential-30 (R-30) under Wake County zoning. The proposed rezoning would change the zoning to Residential Medium Density Conditional Zoning and Residential High Density Conditional Zoning (RM-CZ & RH-CZ) under the Town of Rolesville zoning. The purpose of the rezoning is to allow for the development of single family homes and townhomes.

The Town of Rolesville requires a neighborhood meeting involving the owners and tenants of property within 500 feet of the properties during the rezoning process. After the meeting, we will prepare a report for the Planning Department regarding the items discussed at the meeting.

Please do not hesitate to contact me directly if you have any questions or wish to discuss any issues. I can be reached at 919.780.5438 and smorris@longleaflp.com. Also, for more information about the rezoning, you may visit https://www.rolesvillenc.gov/projects/harris-creek-farm-fka-4928-universal or contact the Town of Rolesville Planning Department at 919.554.6517.


Attached to this invitation are the following materials:

- 1. Subject Property Current Aerial
- 2. Proposed Zoning Map

CURRENT PROPERTY MAP

PROPOSED ZONING

EXHIBIT B – NOTICE LIST

HUNT, FERDINAND V HUNT, LYDIA L 1000 SIMPSON ST APT 6B BRONX NY 10459-3348 FERRELL, CHARLES E FERRELL, GRETTA L 3805 JONESVILLE RD WAKE FOREST NC 27587-8181 HOWE, MARK JAMES JR PO BOX 61122 RALEIGH NC 27661-1122

JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR WAKE FOREST NC 27587-6360 JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR WAKE FOREST NC 27587-6360 DONAN, JESUS CORDON, LUCY DONAN 3617 GREEN FARM LN WAKE FOREST NC 27587-6828

WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN HAMPSTEAD NC 28443-0480 TODD, JOAN M 4180 STELLS RD WAKE FOREST NC 27587-6306 POWER ELEVEN CONSTRUCTION LLC 4125 DURHAM CHAPEL HILL BLVD STE 8A DURHAM NC 27707-2666

WILDER, THOMAS H III WILDER, MAGGIE 104 DARTMOUTH RD APT 326 RALEIGH NC 27609-8409 HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404 BOUTAVONG, KIT 3521 WOOD DUCK LN WAKE FOREST NC 27587-6874

FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181 BIRMINGHAM, JOHN DAVIS 3636 GREEN FARM LN WAKE FOREST NC 27587-6827 PEELER, JAMIE ELIZABETH 313 SHERWEE DR RALEIGH NC 27603-3521

BIRMINGHAM, JOHN D 3636 GREEN FARM LN WAKE FOREST NC 27587-6827 WW OVERTIME LLC 3728 GIDEON DR WAKE FOREST NC 27587-6360 BOYD, KATHERINE B PAYNE, M TRAVIS 4220 MILLPOINT DR WAKE FOREST NC 27587-6377

RIVERS, SUSAN MARSHALL 3627 GREEN FARM LN WAKE FOREST NC 27587-6828 LEE, BRENDA HEIRS BRENDEX MEEKS 3861 JONESVILLE RD WAKE FOREST NC 27587-8181 PHILLIPS, BRETT L JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

MCGEE, LORIE ANN MCGEE, BILLY RAY 3621 GREEN FARM LN WAKE FOREST NC 27587-6828 ALSTON, HENRY ALSTON, MARIE F 3741 JONESVILLE RD WAKE FOREST NC 27587-8179 PULLEN, MAGGIE H C/O SAREN GILMORE 3833 JONESVILLE RD WAKE FOREST NC 27587-8181

FOWLER, JAMES ROBERT III BRIGHT, JILL F 7400 FOWLER RD ZEBULON NC 27597-8318 BOSTIC, BILLIE D BOSTIC, JOHN J 9413 WHITE CARRIAGE DR WAKE FOREST NC 27587-7046 WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN HAMPSTEAD NC 28443-0480

CARTER, LISA CAROL 3604 GREEN FARM LN WAKE FOREST NC 27587-6827 BIRMINGHAM, JOHN D 3636 GREEN FARM LN WAKE FOREST NC 27587-6827 JARVIS, MYRON JARVIS, MARIE 3704 GIDEON DR WAKE FOREST NC 27587-6360

BLACKLEY LAKE FISHING CLUB C/O GLENN BARHAM 9001 BLACKLEY LAKE RD WAKE FOREST NC 27587-8110	BURNHAM, ABRAHAM T BURNHAM, KYLA L 3803 JONESVILLE RD WAKE FOREST NC 27587-8181	WHITLEY, CLEVELAND G HEIRS DEBRA WHITLEY 3720 GIDEON DR WAKE FOREST NC 27587-6360
CURTIS, HENDELL HEIRS 4917 UNIVERSAL DR WAKE FOREST NC 27587-6357	HARRIS, OLLIE VIRGIN HEIRS HARRIS, LORINE B LORINE B HARRIS PO BOX 225 FRANKLINTON NC 27525-0225	KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874
KULAWIAK, MEGAN	DALEY, JOSEPH P	BARHAM, LARRY H. BARHAM, MICHAEL D.
3533 WOOD DUCK LN	3619 GREEN FARM LN	5821 WILD ORCHID TRL
WAKE FOREST NC 27587-6874	WAKE FOREST NC 27587-6828	RALEIGH NC 27613-8549
PHILLIPS, BRETT LEE JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196	DUNN, JAMES WILLIAM HEIRS MONTAGUE, BUNNIE DUNN 2390 W RIVER RD FRANKLINTON NC 27525-7217	SMARTT, COLLIN 147 ROLLING CREEK CIR CLAYTON NC 27520-5132
QUIRINO, MARIA ESTELA	KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC
4916 UNIVERSAL DR	10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802
WAKE FOREST NC 27587-6356	CARY NC 27519-8195	CARY NC 27519-8195
KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC
10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802
CARY NC 27519-8195	CARY NC 27519-8195	CARY NC 27519-8195
KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC
10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802
CARY NC 27519-8195	CARY NC 27519-8195	CARY NC 27519-8195
KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC
10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802
CARY NC 27519-8195	CARY NC 27519-8195	CARY NC 27519-8195
KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC	KENNETH INVESTMENT LLC
10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802	10030 GREEN LEVEL CHURCH RD STE 802
CARY NC 27519-8195	CARY NC 27519-8195	CARY NC 27519-8195
KENNETH INVESTMENT LLC	SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN	WILSON, TIMOTHY LEE

3636 BRIDGES POND WAY

WAKE FOREST NC 27587-5611

BURNHAM, ABRAHAM T BURNHAM, KYLA L

WHITLEY, CLEVELAND G HEIRS

5409 KNOLLWOOD RD

RALEIGH NC 27609-4552

BLACKLEY LAKE FISHING CLUB

10030 GREEN LEVEL CHURCH RD STE 802

CARY NC 27519-8195

JP MORGAN MORTGAGE ACQUISITION CORP 4817 LONG GREEN DR WAKE FOREST NC 27587-5244 GHOLSON, RYAN PATRICK 7924 MANDREL WAY RALEIGH NC 27616-9503 SUAREZ, HELENA TRUSTEE THE HELENA SUAREZ FAMILY TRUST 9660 FALLS OF NEUSE RD # 138-286 RALEIGH NC 27615-2473

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 GARCIA, SALVADOR 4901 OLD POOLE RD RALEIGH NC 27610

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404 JONES, CHRISTOPHER D JONES, SHAWN MICHAEL 5108 CHRISTIAN SCHOOL RD PANTEGO NC 27860-9255 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181 FERRELL, CHARLES E FERRELL, SHARON R 3805 JONESVILLE RD WAKE FOREST NC 27587-8181 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

CARPENTER, BOBBY RAY CARPENTER, ALBERTA L 3629 GREEN FARM LN WAKE FOREST NC 27587-6828 RIVERS, SUSAN M 3627 GREEN FARM LN WAKE FOREST NC 27587-6828 HOLLOWAY, ROY D HOLLOWAY, MARTHA L 3613 GREEN FARM LN WAKE FOREST NC 27587-6828

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404 SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 MAYE, EVELYN Y MAYE, HILTON EUGENE 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240 NC FARM AND FORAGE LLC 9261 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

UNIVERSAL CHURCH OF PRAYER & 4912 UNIVERSAL DR WAKE FOREST NC 27587-6356

EXHIBIT C – MEETING MINUTES

- What is proposed timing for construction to start on the development
 - Developer and attorney explained proposed timeline with development plan and permits
- Would you have plans to do with the area that isn't a part of development?
 - Developer explained that wetland and southern land will remain the way it is (no development)
- How do we plan to avoid pollution from construction to the wells.
 - Developer and engineer explained their precautions in the construction process and state level regulations
- What about the blacktop water runoff and drying wells
 - Engineer explains storm drainage system and pond that will be on site state mandated process that requires permit from town to avoid flooding downstream properties.
- Worried about runoff into Watkins Pond What guarantee that it won't "get dirtied up".
 - Engineer explains codes and state mandated permits required to help control effects to the pond. Municipality will also come out to inspect site and silt fence.
- Who is the Developer on this project
 - Attorney explained who the client is and their members
- What is the price point of the townhomes and single-family homes
 - Developer explained projections on cost per unit. Do not have final pricing due to market changes and upgrades
- Will there be any fencing on the wooded areas into the private properties to separate the areas. Worried about people passing through to private property with greenways. Worried about "higher quality resident"
 - Developer and attorney explained Not projecting fencing due to where the wetlands are. Town of Rolesville will have public easement regarding the greenway it is up to the Town of Rolesville regarding fencing. Unlikely due to natural features.
- What is going to happen to the property that is not accessible from the road and is not in the wetlands? Will this ever be developed?
 - Developer explains it will not be developed and remained untouched. Units will not be added later to the plan.
- Will the land owner that is located along road next to development be able to access the road?
 - Attorney and developer explained that they will have access in and out as it is today. It is a public road
- The buffer at the NE corner of the development, where the words Universal Dr are on the map, appears to back up to the front yard at 4921 (the last home on the right). Will access to that end of Universal Dr beyond Gideon be cut off?
 - Attorney explained that the owners will still have access to their property. We are not allowed to cut off access. The scope of the rezoning should not effect that.

- Does this project have anything to do with the greenway plan?
 - Attorney explained that we do not have control of greenway development we give easement to the Town of Rolesville.
- Concerted that diesel fuel will get into the Watkins Pond
 - Engineer explained that the control of the fuel tank will be mandated at a state level by the contractor this is handled at the construction phase.
- Is the town mandating the developer to address the traffic concerns?
 - Attorney and Developer explained that an Impact analysis was done by Ramey Kemp. The NCDOT signed off on this. Based on increased trips and conditions on site they make recommendations on monitoring and approved intersections. The results will be included in the request. The Town of Rolesville contracts that traffic engineer and the developer and are not associated with the developer
- Are there plans to pave Universal Dr as well as Gideon?
 - The town is requiring developer to pave all of Gideon Drive, not Universal
- Concerned about increased traffic load on Universal Drive
 - Developer explained access points to the development and town requirements
- Will Universal not be eligible for paving?
 - Engineer explained it has not been required by the town to be paved for this development. Not anticipate increased traffic to Universal due to it being unpaved. It is not a public road.
- Who sends out the meeting notifications for the City of Rolesville public hearings?
 - Attorney explained the notices will be coming from the Town of Rolesville. Mailed and signs are typical notification types as well as posted on their website.
- Will there be an HOA with this development?
 - Developer explained there will be an HOA that will maintain open areas as well as amenities.
- Where will the amenities be located within the development?
 - Engineer explained what amenities they are expecting to create and location of same.
- What type of barriers do you see with the proposal plan?
 - Developer and attorney explained that they have met with staff and made modification to address any of these concerns. Also explained there is a good path forward considering policies and overall plan for the Town of Rolesville
- If the church gave permission to be paved on Universal, could it be paved? Do we need to request it be paved with the Town of Rolesville?
 - Attorney explained that yes you can pave it if is your private road
- Residents on Jonesville Road Concerned about safety on this road for children there are no sidewalks. How do we get sidewalks put in on that road
 - Attorney and engineer explained improvements can only be made on our property. We can not take other people's property to create sidewalks. We are only required to improve along out frontage. We are building roadway and sidewalk on the property.
- Will school busses be stopping on Jonesville Road or will it go into the development? Will the roads be able to accommodate this?

- Engineer and developer explained the education department will be making that decision later on in the process. We have not control/make on that decision.
- Has any analysis been done regarding any wildlife in the wetlands on the property?
 - Attorney and engineer explained the open space requirements as well as the other preliminary environmental analysis that are required. The development will be predominantly be taking place in the already cleared areas.
- What measure will be taking place for privacy to neighboring properties? Will there be n natural buffers?
 - Attorney, developer and engineer explained the tree preservation areas and that they will keep trees where they can. There will be vegetative buffers and open space around property line.
- Is there a sidewalk plan along the eastern portion of Gideon Drive?
 - The engineer explained the town street requirements will require sidewalk improvements.
- What is the architectural design for the homes in the development?
 - Developer explained that they will be colonial type design that generally matches other developments in the area. This will not be mandated affordable housing but will be market rate but not luxury
- Neighbors are worried that the prices of the homes are not in line with others in the area they are too inexpensive compared to the "nice homes" in the area. We are worried about property value decreasing based on this development.
 - Developer and attorney explained that the prices will change in the future based on market rate. It depends on what the market will be like in the next 3-5 years. There will be a range depending on the home type (townhomes and single family).
- Is there a date on the next meeting?
 - Attorney and developer explained that there has not been a meeting set yet. More documentation must be submitted. A link for the Town's portal was shared in the Zoom chat

EXHIBIT D – MEETING ATTENDEES

- 1. Sam Morris (Attorney with Longleaf Law Partners)
- 2. Kaline Shelton (Assistant at Longleaf Law Partners)
- 3. Steven George (Development Team)
- 4. Jeremy Keeny (Engineer)
- 5. Joan Todd
- 6. Natasha Hayes Smart
- 7. Marie Jarvis
- 8. Helena Suarez
- 9. Collin Smartt
- 10. Bill Harrell
- 11. Bryan Yaborough
- 12. Jackie
- 13. Lorine Harris
- 14. Steve
- 15. Brett
- 16. 919-453-4522
- 17. 919-602-5532
- 18. 919-621-1068
- 19. 984-204-0897
- 20. 434-265-0618
- 21. 919-272-1335
- 22. 919-438-9979
- 23. 919-491-6535
- 24. 919-827-5639

To: Neighboring Property Owners and Tenants

From: Samuel Morris
Date: October 13, 2023

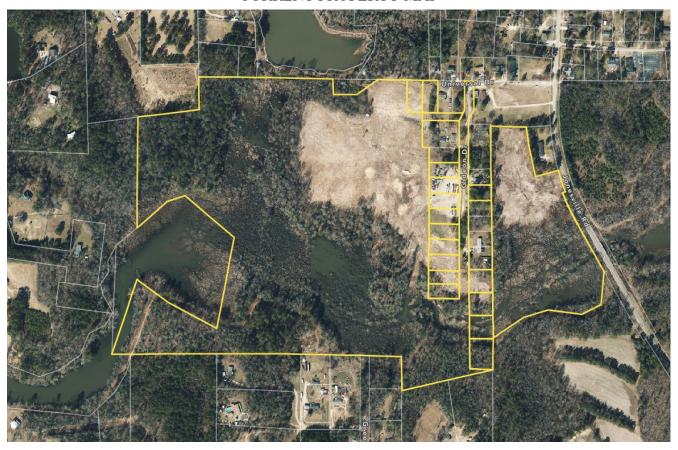
Re: Neighborhood Meeting for Annexation and Rezoning of Harris Creek Farm (f.k.a. 4928

Universal) (ANX 22-05 & MA 22-08)

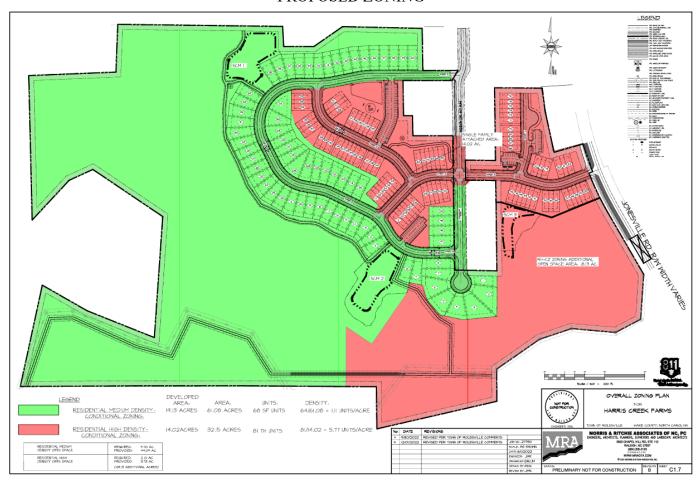
You are invited to attend a meeting to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). We have scheduled an informational meeting with surrounding neighbors on October 24, 2023 from 5:30 PM until 6:30 PM at the following location:

Rolesville Community Center 514 Southtown Circle Rolesville, NC 27571

The purpose of this meeting is to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). The property assemblage totals approximately 93 acres in size and is located southwest of the Jonesville Road and Universal Drive intersection.


The property is currently zoned Residential-30 (R-30) under Wake County zoning. The proposed rezoning would change the zoning to Residential Medium Density Conditional Zoning and Residential High Density Conditional Zoning (RM-CZ & RH-CZ) under the Town of Rolesville zoning. The purpose of the rezoning is to allow for the development of single family homes and townhomes.

Please do not hesitate to contact me directly if you have any questions or wish to discuss any issues. I can be reached at 919.780.5438 and smorris@longleaflp.com. Also, for more information about the rezoning, you may visit https://www.rolesvillenc.gov/projects/harris-creekfarm-fka-4928-universal or contact the Town of Rolesville Planning Department at 919.554.6517.


Attached to this invitation are the following materials:

- 1. Subject Property Current Aerial
- 2. Proposed Zoning Map

CURRENT PROPERTY MAP

PROPOSED ZONING

JONES, CHARLES ALFONSO JONES, ALLIE
3800 JONESVILLE RD
WAKE FOREST NC 27587-8180

JONES, CHARLES E JONES, DARLENE C 3816 JONESVILLE RD WAKE FOREST NC 27587-8180 BADGETT, ROBIN D BADGETT, TANA F 4817 MITCHELL MILL RD WAKE FOREST NC 27587-7242

HUNT, FERDINAND V HUNT, LYDIA L 1000 SIMPSON ST APT 6B BRONX NY 10459-3348 FERRELL, CHARLES E FERRELL, GRETTA L 3805 JONESVILLE RD WAKE FOREST NC 27587-8181 WALKER, ALESHIA FERRELL WALKER, AARON 5012 HARTSFIELD DR WAKE FOREST NC 27587-9638

HOWE, MARK JAMES JR PO BOX 61122 RALEIGH NC 27661-1122 JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR WAKE FOREST NC 27587-6360 JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR WAKE FOREST NC 27587-6360

DONAN, JESUS CORDON, LUCY DONAN 3617 GREEN FARM LN WAKE FOREST NC 27587-6828 WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN HAMPSTEAD NC 28443-0480 PRUDENT, VIRGINIA PRUDENT, ULRICK JR 3104 BILLIARD CT WAKE FOREST NC 27587-9388

TODD, JOAN M 4180 STELLS RD WAKE FOREST NC 27587-6306 FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181 PERRY, LISA R
PO BOX 581
ROLESVILLE NC 27571-0581

CHAPPELL, CONNIE B PERRY, BETTY ANN
BLACKLEY
4025 LOUISBURY RD
WAKE FOREST NC 27587-8118

POWER ELEVEN CONSTRUCTION LLC 4125 DURHAM CHAPEL HILL BLVD STE 8A DURHAM NC 27707-2666 SESSOMS, JOHN B 5021 HARTSFIELD DR WAKE FOREST NC 27587-9638

WILDER, THOMAS H III WILDER, MAGGIE 104 DARTMOUTH RD APT 326 RALEIGH NC 27609-8409 CHRIST HOLINESS CHURCH NUMBER 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638 BROWN, JAMES A BROWN, SHELBY W 4141 STELLS RD WAKE FOREST NC 27587-5242

GILMORE, JOSEPH H GILMORE, SARAH L 3833 JONESVILLE RD WAKE FOREST NC 27587-8181 ASWELL, FREDRICA T 3508 GREEN FARM LN WAKE FOREST NC 27587-6825 GASPER, REGUGIO TECHICAC 7817 S COLORADO DR RALEIGH NC 27616-0905

JEFFERYS, CHRISTOPHER JEFFERYS, STEPHANIE 2933 CANDLEHURST LN RALEIGH NC 27616-6250 MAYE, HILTON EUGENE MAYE, EVELYN YOUNG 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240 BERRY, WILLIAM ROSSER BERRY, JULIA D 9249 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404 HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404 HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

HARTSFIELD, ROZELIA J HEIRS PERRY, JAMES DONNELL PERRY, CYNTHIA D HOLLINGSWORTH, JACOB BROOKS 3509 WOOD DUCK LN HATTIE SMITH 3869 JONESVILLE RD 2450 MINERAL SPRINGS RD **WAKE FOREST NC 27587-8181 WAKE FOREST NC 27587-6874** BOYDTON VA 23917-4404 BOUTAVONG, KIT JONES, ERNESTINE BUGG, SAMUEL WILLIAM 3521 WOOD DUCK LN 3848 JONESVILLE RD 9245 BLACKLEY LAKE RD **WAKE FOREST NC 27587-6874 WAKE FOREST NC 27587-8196 WAKE FOREST NC 27587-8180** BROWN, JAMES ALLEN BROWN, SHELBY W MEDLIN, LISA C FERRELL, BRIAN L 4141 STELLS RD 3520 BRIDGES POND WAY 3807 JONESVILLE RD **WAKE FOREST NC 27587-5242 WAKE FOREST NC 27587-5606 WAKE FOREST NC 27587-8181** HARTSFIELD, MARY HEIRS MCDANIEL, STEPHEN MCDANIEL, SHARON K BIRMINGHAM, JOHN DAVIS C/O KAREN BUTLER **4213 MILLPOINT DR** 3636 GREEN FARM LN **WAKE FOREST NC 27587-5239 WAKE FOREST NC 27587-6827** 3816 7TH ST NW WASHINGTON DC 20011-5902

REEVES, LISA CAROL CARTER MAYE, HILTON EUGENE MAYE, EVELYN RUTH PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H
3604 GREEN FARM LN 4725 MITCHELL MILL RD 9237 BLACKLEY LAKE RD
WAKE FOREST NC 27587-6827 WAKE FOREST NC 27587-7240 WAKE FOREST NC 27587-8196

BROWN, WILHELMINIA ANNETTE BROWN, WILHELMINIA ANNETTE BIRMINGHAM, JOHN D
7506 LINNET RD 7506 LINNET RD 3636 GREEN FARM LN
WENDELL NC 27591-7279 WENDELL NC 27591-7279 WAKE FOREST NC 27587-6827

LEITSCHUH, KARI DAWN RUIZ, ALICIA GUADALUPE WW OVERTIME LLC
4605 MITCHELL MILL RD 3857 JONESVILLE RD 3728 GIDEON DR
WAKE FOREST NC 27587-7239 WAKE FOREST NC 27587-8181 WAKE FOREST NC 27587-6360

MILLER, BERNARD PRINCE, TINA ATKINS ATKINS, JEFFREY RAY BLACKMON, JOE
3516 WOOD DUCK LN PO BOX 111 4805 MITCHELL MILL RD
WAKE FOREST NC 27587-6873 WILLOW SPRING NC 27592-0111 WAKE FOREST NC 27587-7242

TOUTLOFF, KENNETH S TOUTLOFF, BILLIE ANNE DUNN, WILLIE JEAN COVINGTON, LINDA MANNING 3512 WOOD DUCK LN 4821 MITCHELL MILL RD 3812 JONESVILLE RD WAKE FOREST NC 27587-6873 WAKE FOREST NC 27587-7242 WAKE FOREST NC 27587-8180

CHRIST HOLINESS CHURCH FERRELL, BENJAMIN BOYD, KATHERINE B PAYNE, M TRAVIS 5016 HARTSFIELD DR C/O JESSE FERRELL 4220 MILLPOINT DR WAKE FOREST NC 27587-9638 248 CALIFORNIA AVE WAKE FOREST NC 27587-6377

PROVIDENCE RI 02905-2815

RIVERS, SUSAN MARSHALL 3627 GREEN FARM LN WAKE FOREST NC 27587-6828	RIVERS, SUSAN M 3627 GREEN FARM LN WAKE FOREST NC 27587-6828	LEE, BRENDA HEIRS BRENDEX MEEKS 3861 JONESVILLE RD WAKE FOREST NC 27587-8181
PHILLIPS, BRETT L JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196	MCGEE, LORIE ANN MCGEE, BILLY RAY 3621 GREEN FARM LN WAKE FOREST NC 27587-6828	BERGDOLT, BRIAN H 3612 MEDLIN WOODS RD WAKE FOREST NC 27587-7202
COTTON, DIANE MAYO 5020 MISTLETOE DR WAKE FOREST NC 27587-6373	LEE, WILLIE O'KELLY LEE, EDITH M 3845 JONESVILLE RD WAKE FOREST NC 27587-8181	PULLEN, MAGGIE H C/O SAREN GILMORE 3833 JONESVILLE RD WAKE FOREST NC 27587-8181
CARPENTER, BOBBY RAY CARPENTER, ALBERTA L 3629 GREEN FARM LN WAKE FOREST NC 27587-6828	CHRIST HOLINESS CHURCH # 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638	CARELOCK, TABATHA R 3513 GREEN FARM LN WAKE FOREST NC 27587-6826
CARELOCK, TABATHA R 3513 GREEN FARM LN WAKE FOREST NC 27587-6826	FOWLER, JAMES ROBERT III BRIGHT, JILL F 7400 FOWLER RD ZEBULON NC 27597-8318	JONES, TANYA ELISHA 3517 WOOD DUCK LN WAKE FOREST NC 27587-6874
PAYNE, JEFFREY 3808 JONESVILLE RD WAKE FOREST NC 27587-8180	MARTINEZ, ROBERTO ZETINA SANDOVAL, MARIA DE LOS ANGELES ORTIZ 4916 LASHERAL RD WAKE FOREST NC 27587-6375	HOLDEN, MARCIE L 3524 WOOD DUCK LN WAKE FOREST NC 27587-6873
VAN GORDER, JAMES 3200 MAYEVILLE LN WAKE FOREST NC 27587-5637	JONES, CHRISTOPHER D JONES, SHAWN MICHAEL 5108 CHRISTIAN SCHOOL RD PANTEGO NC 27860-9255	HOCUTT, JOHN E 3517 GREEN FARM LN WAKE FOREST NC 27587-6826

BOSTIC, BILLIE D BOSTIC, JOHN J

9413 WHITE CARRIAGE DR

WAKE FOREST NC 27587-7046

WATKINS POND INC

CARTER, LISA CAROL 3604 GREEN FARM LN **WAKE FOREST NC 27587-6827**

BIRMINGHAM, JOHN D 3636 GREEN FARM LN **WAKE FOREST NC 27587-6827** JARVIS, MYRON JARVIS, MARIE 3704 GIDEON DR **WAKE FOREST NC 27587-6360**

ANTHONY BRIDGES

98 BERKSHIRE LN

HAMPSTEAD NC 28443-0480

BLACKLEY LAKE FISHING CLUB C/O GLENN BARHAM 9001 BLACKLEY LAKE RD **WAKE FOREST NC 27587-8110**

FERRELL, CHARLES E FERRELL, SHARON R 3805 JONESVILLE RD **WAKE FOREST NC 27587-8181**

BURNHAM, ABRAHAM T BURNHAM, KYLA L 3803 JONESVILLE RD **WAKE FOREST NC 27587-8181**

JONES, CHARLES E JONES, DARLENE 3816 JONESVILLE RD **WAKE FOREST NC 27587-8180**

WHITLEY, CLEVELAND G HEIRS
DEBRA WHITLEY
3720 GIDEON DR
WAKE FOREST NC 27587-6360

CURTIS, HENDELL HEIRS 4917 UNIVERSAL DR WAKE FOREST NC 27587-6357 HAUFLER, DARREL EUGENE 4340 MILLPOINT DR WAKE FOREST NC 27587-6384

HARRIS, OLLIE VIRGIN HEIRS HARRIS, LORINE B
LORINE B HARRIS
PO BOX 225
FRANKLINTON NC 27525-0225

CHRIST HOLINESS CHURCH NUMBER 1 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638 KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

GREENE, JOE L
6415 HAWTHORNE ST
HYATTSVILLE MD 20785-1711

DALEY, JOSEPH P 3619 GREEN FARM LN WAKE FOREST NC 27587-6828

BARHAM, LARRY H. BARHAM, MICHAEL D. 5821 WILD ORCHID TRL RALEIGH NC 27613-8549 PHILLIPS, BRETT LEE JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 DUNN, JAMES WILLIAM HEIRS MONTAGUE,
BUNNIE DUNN
2390 W RIVER RD
FRANKLINTON NC 27525-7217

PERRY, ELWOOD RYAN 2004 TRAWICK RD RALEIGH NC 27604-3841 ALSTON, CHRISTOPHER 2172 WARRENTON RD HENDERSON NC 27537-9359 QUIRINO, MARIA ESTELA 4916 UNIVERSAL DR WAKE FOREST NC 27587-6356

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 ROUSE, ELLEN CURTIS 4009 TRESCO XING RALEIGH NC 27616-8473

HOLLOWAY, ROY D HOLLOWAY, MARTHA L 3613 GREEN FARM LN WAKE FOREST NC 27587-6828 SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN
3636 BRIDGES POND WAY
WAKE FOREST NC 27587-5611

KELLY, NICOLAS KELLY, PEARLINE L 5025 HARTSFIELD DR WAKE FOREST NC 27587-9638

WILSON, TIMOTHY LEE 5409 KNOLLWOOD RD RALEIGH NC 27609-4552 JP MORGAN MORTGAGE ACQUISITION CORP 4817 LONG GREEN DR WAKE FOREST NC 27587-5244 GHOLSON, RYAN PATRICK 7924 MANDREL WAY RALEIGH NC 27616-9503

SUAREZ, HELENA TRUSTEE THE HELENA SUAREZ
FAMILY TRUST
9660 FALLS OF NEUSE RD # 138-286
RALEIGH NC 27615-2473

INTROINVEST LLC 4921 UNIVERSAL DR WAKE FOREST NC 27587-6357 TYNER, BRENDA W TRUSTEE NANCY H WATKINS
IRREVOCABLE TRUST
PO BOX 221
ROLESVILLE NC 27571-0221

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 GARCIA, SALVADOR 4901 OLD POOLE RD RALEIGH NC 27610

SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

BERRY, WILLIAM R BERRY, JULIA D 9241 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 NC FARM AND FORAGE LLC 9261 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 MAYE, EVELYN Y MAYE, HILTON EUGENE 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240

UNIVERSAL CHURCH OF PRAYER & 4912 UNIVERSAL DR WAKE FOREST NC 27587-6356

REZONING AND ANNEXATION OF PROPERTY CONSISTING OF +/- 93 ACRES, LOCATED SOUTHWEST OF THE JONESVILLE ROAD AND UNIVERSAL DRIVE INTERSECTION, IN THE TOWN OF ROLESVILLE

REPORT OF MEETING WITH ADJACENT PROPERTY OWNERS AND TENANTS ON OCTOBER 24, 2022

Pursuant to applicable provisions of the Unified Development Ordinance, a meeting was held with respect to a potential rezoning and annexation with adjacent neighbors on Tuesday, October 24, 2023, at 5:30 p.m. The property considered for this potential rezoning totals approximately 93 acres and is located southwest of the Jonesville Road and Universal Drive intersection, in the Town of Rolesville. This meeting was held at the Rolesville Community Center. All owners and tenants of property within 1000 feet of the subject property were invited to attend the meeting. Attached hereto as **Exhibit A** is a copy of the neighborhood meeting notice. A copy of the required mailing list for the meeting invitations is attached hereto as **Exhibit B**. A summary of the items discussed at the meeting is attached hereto as **Exhibit C**. Attached hereto as **Exhibit D** is a list of individuals who attended the meeting.

EXHIBIT A – NEIGHBORHOOD MEETING NOTICE

To: Neighboring Property Owners and Tenants

From: Samuel Morris
Date: October 13, 2023

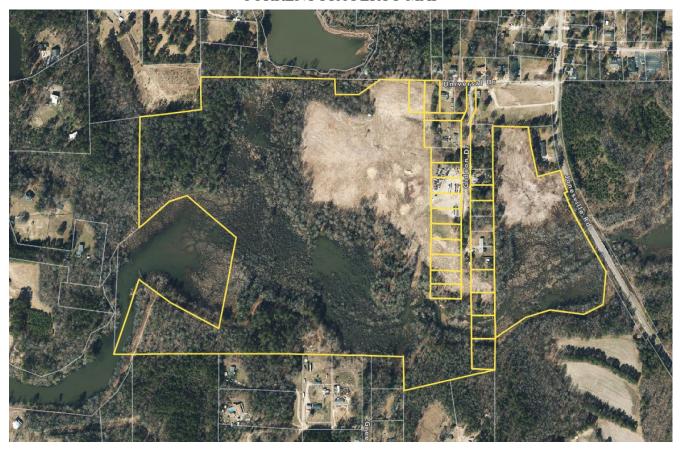
Re: Neighborhood Meeting for Annexation and Rezoning of Harris Creek Farm (f.k.a. 4928

Universal) (ANX 22-05 & MA 22-08)

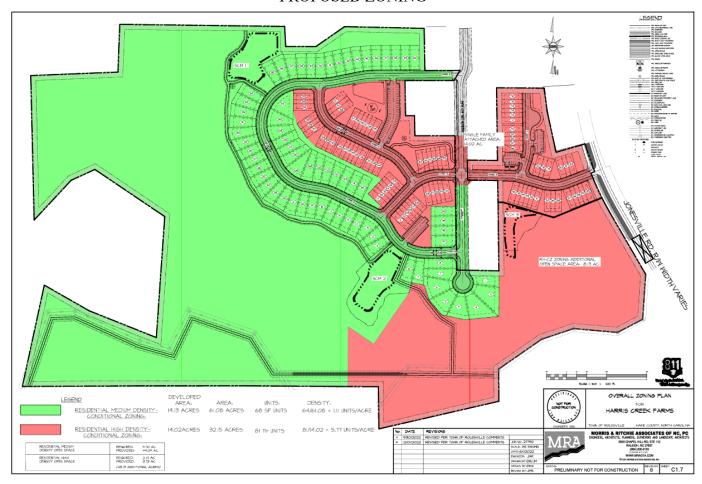
You are invited to attend a meeting to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). We have scheduled an informational meeting with surrounding neighbors on October 24, 2023 from 5:30 PM until 6:30 PM at the following location:

Rolesville Community Center 514 Southtown Circle Rolesville, NC 27571

The purpose of this meeting is to discuss the proposed annexation and rezoning of Harris Creek Farm (f.k.a. 4928 Universal) (ANX 22-05 & MA 22-08). The property assemblage totals approximately 93 acres in size and is located southwest of the Jonesville Road and Universal Drive intersection.


The property is currently zoned Residential-30 (R-30) under Wake County zoning. The proposed rezoning would change the zoning to Residential Medium Density Conditional Zoning and Residential High Density Conditional Zoning (RM-CZ & RH-CZ) under the Town of Rolesville zoning. The purpose of the rezoning is to allow for the development of single family homes and townhomes.

Please do not hesitate to contact me directly if you have any questions or wish to discuss any issues. I can be reached at 919.780.5438 and smorris@longleaflp.com. Also, for more information about the rezoning, you may visit https://www.rolesvillenc.gov/projects/harris-creekfarm-fka-4928-universal or contact the Town of Rolesville Planning Department at 919.554.6517.


Attached to this invitation are the following materials:

- 1. Subject Property Current Aerial
- 2. Proposed Zoning Map

CURRENT PROPERTY MAP

PROPOSED ZONING

EXHIBIT B – NOTICE LIST

JONES, CHARLES ALFONSO JONES, ALLIE
3800 JONESVILLE RD
WAKE FOREST NC 27587-8180

JONES, CHARLES E JONES, DARLENE C 3816 JONESVILLE RD WAKE FOREST NC 27587-8180 BADGETT, ROBIN D BADGETT, TANA F 4817 MITCHELL MILL RD WAKE FOREST NC 27587-7242

HUNT, FERDINAND V HUNT, LYDIA L 1000 SIMPSON ST APT 6B BRONX NY 10459-3348 FERRELL, CHARLES E FERRELL, GRETTA L 3805 JONESVILLE RD WAKE FOREST NC 27587-8181 WALKER, ALESHIA FERRELL WALKER, AARON 5012 HARTSFIELD DR WAKE FOREST NC 27587-9638

HOWE, MARK JAMES JR PO BOX 61122 RALEIGH NC 27661-1122 JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR WAKE FOREST NC 27587-6360 JARVIS, MARIE D CURTIS, HURLEY MAE 3704 GIDEON DR WAKE FOREST NC 27587-6360

DONAN, JESUS CORDON, LUCY DONAN 3617 GREEN FARM LN WAKE FOREST NC 27587-6828 WATKINS POND INC ANTHONY BRIDGES 98 BERKSHIRE LN HAMPSTEAD NC 28443-0480 PRUDENT, VIRGINIA PRUDENT, ULRICK JR 3104 BILLIARD CT WAKE FOREST NC 27587-9388

TODD, JOAN M 4180 STELLS RD WAKE FOREST NC 27587-6306 FERRELL, BRIAN L 3807 JONESVILLE RD WAKE FOREST NC 27587-8181 PERRY, LISA R
PO BOX 581
ROLESVILLE NC 27571-0581

CHAPPELL, CONNIE B PERRY, BETTY ANN
BLACKLEY
4025 LOUISBURY RD
WAKE FOREST NC 27587-8118

POWER ELEVEN CONSTRUCTION LLC 4125 DURHAM CHAPEL HILL BLVD STE 8A DURHAM NC 27707-2666 SESSOMS, JOHN B 5021 HARTSFIELD DR WAKE FOREST NC 27587-9638

WILDER, THOMAS H III WILDER, MAGGIE 104 DARTMOUTH RD APT 326 RALEIGH NC 27609-8409 CHRIST HOLINESS CHURCH NUMBER 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638 BROWN, JAMES A BROWN, SHELBY W 4141 STELLS RD WAKE FOREST NC 27587-5242

GILMORE, JOSEPH H GILMORE, SARAH L 3833 JONESVILLE RD WAKE FOREST NC 27587-8181 ASWELL, FREDRICA T 3508 GREEN FARM LN WAKE FOREST NC 27587-6825 GASPER, REGUGIO TECHICAC 7817 S COLORADO DR RALEIGH NC 27616-0905

JEFFERYS, CHRISTOPHER JEFFERYS, STEPHANIE 2933 CANDLEHURST LN RALEIGH NC 27616-6250 MAYE, HILTON EUGENE MAYE, EVELYN YOUNG 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240 BERRY, WILLIAM ROSSER BERRY, JULIA D 9249 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196

HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404 HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404 HARTSFIELD, ROZELIA J HEIRS HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404

HARTSFIELD, ROZELIA J HEIRS PERRY, JAMES DONNELL PERRY, CYNTHIA D HOLLINGSWORTH, JACOB BROOKS 3509 WOOD DUCK LN HATTIE SMITH 3869 JONESVILLE RD 2450 MINERAL SPRINGS RD **WAKE FOREST NC 27587-8181 WAKE FOREST NC 27587-6874** BOYDTON VA 23917-4404 BOUTAVONG, KIT JONES, ERNESTINE BUGG, SAMUEL WILLIAM 3521 WOOD DUCK LN 3848 JONESVILLE RD 9245 BLACKLEY LAKE RD **WAKE FOREST NC 27587-6874 WAKE FOREST NC 27587-8196 WAKE FOREST NC 27587-8180** BROWN, JAMES ALLEN BROWN, SHELBY W MEDLIN, LISA C FERRELL, BRIAN L 4141 STELLS RD 3520 BRIDGES POND WAY 3807 JONESVILLE RD **WAKE FOREST NC 27587-5242 WAKE FOREST NC 27587-5606 WAKE FOREST NC 27587-8181** HARTSFIELD, MARY HEIRS MCDANIEL, STEPHEN MCDANIEL, SHARON K BIRMINGHAM, JOHN DAVIS C/O KAREN BUTLER **4213 MILLPOINT DR** 3636 GREEN FARM LN **WAKE FOREST NC 27587-5239 WAKE FOREST NC 27587-6827** 3816 7TH ST NW WASHINGTON DC 20011-5902

REEVES, LISA CAROL CARTER MAYE, HILTON EUGENE MAYE, EVELYN RUTH PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H
3604 GREEN FARM LN 4725 MITCHELL MILL RD 9237 BLACKLEY LAKE RD
WAKE FOREST NC 27587-6827 WAKE FOREST NC 27587-7240 WAKE FOREST NC 27587-8196

BROWN, WILHELMINIA ANNETTE BROWN, WILHELMINIA ANNETTE BIRMINGHAM, JOHN D
7506 LINNET RD 7506 LINNET RD 3636 GREEN FARM LN
WENDELL NC 27591-7279 WENDELL NC 27591-7279 WAKE FOREST NC 27587-6827

LEITSCHUH, KARI DAWN RUIZ, ALICIA GUADALUPE WW OVERTIME LLC
4605 MITCHELL MILL RD 3857 JONESVILLE RD 3728 GIDEON DR
WAKE FOREST NC 27587-7239 WAKE FOREST NC 27587-8181 WAKE FOREST NC 27587-6360

MILLER, BERNARD PRINCE, TINA ATKINS ATKINS, JEFFREY RAY BLACKMON, JOE
3516 WOOD DUCK LN PO BOX 111 4805 MITCHELL MILL RD
WAKE FOREST NC 27587-6873 WILLOW SPRING NC 27592-0111 WAKE FOREST NC 27587-7242

TOUTLOFF, KENNETH S TOUTLOFF, BILLIE ANNE DUNN, WILLIE JEAN COVINGTON, LINDA MANNING 3512 WOOD DUCK LN 4821 MITCHELL MILL RD 3812 JONESVILLE RD WAKE FOREST NC 27587-6873 WAKE FOREST NC 27587-7242 WAKE FOREST NC 27587-8180

CHRIST HOLINESS CHURCH FERRELL, BENJAMIN BOYD, KATHERINE B PAYNE, M TRAVIS 5016 HARTSFIELD DR C/O JESSE FERRELL 4220 MILLPOINT DR WAKE FOREST NC 27587-9638 248 CALIFORNIA AVE WAKE FOREST NC 27587-6377

PROVIDENCE RI 02905-2815

RIVERS, SUSAN MARSHALL 3627 GREEN FARM LN WAKE FOREST NC 27587-6828	RIVERS, SUSAN M 3627 GREEN FARM LN WAKE FOREST NC 27587-6828	LEE, BRENDA HEIRS BRENDEX MEEKS 3861 JONESVILLE RD WAKE FOREST NC 27587-8181
PHILLIPS, BRETT L JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196	MCGEE, LORIE ANN MCGEE, BILLY RAY 3621 GREEN FARM LN WAKE FOREST NC 27587-6828	BERGDOLT, BRIAN H 3612 MEDLIN WOODS RD WAKE FOREST NC 27587-7202
COTTON, DIANE MAYO 5020 MISTLETOE DR WAKE FOREST NC 27587-6373	LEE, WILLIE O'KELLY LEE, EDITH M 3845 JONESVILLE RD WAKE FOREST NC 27587-8181	PULLEN, MAGGIE H C/O SAREN GILMORE 3833 JONESVILLE RD WAKE FOREST NC 27587-8181
CARPENTER, BOBBY RAY CARPENTER, ALBERTA L 3629 GREEN FARM LN WAKE FOREST NC 27587-6828	CHRIST HOLINESS CHURCH # 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638	CARELOCK, TABATHA R 3513 GREEN FARM LN WAKE FOREST NC 27587-6826
CARELOCK, TABATHA R 3513 GREEN FARM LN WAKE FOREST NC 27587-6826	FOWLER, JAMES ROBERT III BRIGHT, JILL F 7400 FOWLER RD ZEBULON NC 27597-8318	JONES, TANYA ELISHA 3517 WOOD DUCK LN WAKE FOREST NC 27587-6874
PAYNE, JEFFREY 3808 JONESVILLE RD WAKE FOREST NC 27587-8180	MARTINEZ, ROBERTO ZETINA SANDOVAL, MARIA DE LOS ANGELES ORTIZ 4916 LASHERAL RD WAKE FOREST NC 27587-6375	HOLDEN, MARCIE L 3524 WOOD DUCK LN WAKE FOREST NC 27587-6873
VAN GORDER, JAMES 3200 MAYEVILLE LN WAKE FOREST NC 27587-5637	JONES, CHRISTOPHER D JONES, SHAWN MICHAEL 5108 CHRISTIAN SCHOOL RD PANTEGO NC 27860-9255	HOCUTT, JOHN E 3517 GREEN FARM LN WAKE FOREST NC 27587-6826

BOSTIC, BILLIE D BOSTIC, JOHN J

9413 WHITE CARRIAGE DR

WAKE FOREST NC 27587-7046

WATKINS POND INC

ANTHONY BRIDGES 98 BERKSHIRE LN **HAMPSTEAD NC 28443-0480**

BIRMINGHAM, JOHN D 3636 GREEN FARM LN **WAKE FOREST NC 27587-6827** JARVIS, MYRON JARVIS, MARIE 3704 GIDEON DR **WAKE FOREST NC 27587-6360**

BLACKLEY LAKE FISHING CLUB C/O GLENN BARHAM 9001 BLACKLEY LAKE RD **WAKE FOREST NC 27587-8110**

CARTER, LISA CAROL

3604 GREEN FARM LN

WAKE FOREST NC 27587-6827

FERRELL, CHARLES E FERRELL, SHARON R 3805 JONESVILLE RD **WAKE FOREST NC 27587-8181**

BURNHAM, ABRAHAM T BURNHAM, KYLA L 3803 JONESVILLE RD **WAKE FOREST NC 27587-8181**

JONES, CHARLES E JONES, DARLENE 3816 JONESVILLE RD **WAKE FOREST NC 27587-8180**

WHITLEY, CLEVELAND G HEIRS
DEBRA WHITLEY
3720 GIDEON DR
WAKE FOREST NC 27587-6360

CURTIS, HENDELL HEIRS 4917 UNIVERSAL DR WAKE FOREST NC 27587-6357 HAUFLER, DARREL EUGENE 4340 MILLPOINT DR WAKE FOREST NC 27587-6384

HARRIS, OLLIE VIRGIN HEIRS HARRIS, LORINE B LORINE B HARRIS PO BOX 225 FRANKLINTON NC 27525-0225 CHRIST HOLINESS CHURCH NUMBER 1 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638 KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

KULAWIAK, MEGAN 3533 WOOD DUCK LN WAKE FOREST NC 27587-6874

GREENE, JOE L
6415 HAWTHORNE ST
HYATTSVILLE MD 20785-1711

DALEY, JOSEPH P 3619 GREEN FARM LN WAKE FOREST NC 27587-6828

BARHAM, LARRY H. BARHAM, MICHAEL D. 5821 WILD ORCHID TRL RALEIGH NC 27613-8549 PHILLIPS, BRETT LEE JR PHILLIPS, KRISTEN HOPE 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 DUNN, JAMES WILLIAM HEIRS MONTAGUE,
BUNNIE DUNN
2390 W RIVER RD
FRANKLINTON NC 27525-7217

PERRY, ELWOOD RYAN 2004 TRAWICK RD RALEIGH NC 27604-3841 ALSTON, CHRISTOPHER 2172 WARRENTON RD HENDERSON NC 27537-9359 QUIRINO, MARIA ESTELA 4916 UNIVERSAL DR WAKE FOREST NC 27587-6356

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 ROUSE, ELLEN CURTIS 4009 TRESCO XING RALEIGH NC 27616-8473

HOLLOWAY, ROY D HOLLOWAY, MARTHA L 3613 GREEN FARM LN WAKE FOREST NC 27587-6828 SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN
3636 BRIDGES POND WAY
WAKE FOREST NC 27587-5611

KELLY, NICOLAS KELLY, PEARLINE L 5025 HARTSFIELD DR WAKE FOREST NC 27587-9638

WILSON, TIMOTHY LEE 5409 KNOLLWOOD RD RALEIGH NC 27609-4552 JP MORGAN MORTGAGE ACQUISITION CORP 4817 LONG GREEN DR WAKE FOREST NC 27587-5244 GHOLSON, RYAN PATRICK 7924 MANDREL WAY RALEIGH NC 27616-9503

SUAREZ, HELENA TRUSTEE THE HELENA SUAREZ
FAMILY TRUST
9660 FALLS OF NEUSE RD # 138-286
RALEIGH NC 27615-2473

INTROINVEST LLC 4921 UNIVERSAL DR WAKE FOREST NC 27587-6357 TYNER, BRENDA W TRUSTEE NANCY H WATKINS
IRREVOCABLE TRUST
PO BOX 221
ROLESVILLE NC 27571-0221

PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 PHILLIPS, BRETT L JR PHILLIPS, KRISTEN H 9237 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 GARCIA, SALVADOR 4901 OLD POOLE RD RALEIGH NC 27610

SOUTTER, SUSAN R SOUTTER, ROBERT QUENTIN 3636 BRIDGES POND WAY WAKE FOREST NC 27587-5611 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 KENNETH INVESTMENT LLC 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195

BERRY, WILLIAM R BERRY, JULIA D 9241 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 NC FARM AND FORAGE LLC 9261 BLACKLEY LAKE RD WAKE FOREST NC 27587-8196 MAYE, EVELYN Y MAYE, HILTON EUGENE 4725 MITCHELL MILL RD WAKE FOREST NC 27587-7240

UNIVERSAL CHURCH OF PRAYER & 4912 UNIVERSAL DR WAKE FOREST NC 27587-6356

EXHIBIT C – MEETING MINUTES

• Introduction of Development Team:

 Developer Steve George with The CSC Group, Attorney Samuel Morris with Longleaf Law Partners, and Engineer Jeremy Keeney with Morris & Ritchie Associates.

• Development Team Presentation:

- o Purpose of this neighborhood meeting and past meetings.
- o Discussion regarding rezoning and annexation process in Rolesville.
- Description and location of the Subject Property.
- o Discussion regarding current zoning of the property under Wake County.
- Discussion regarding Rolesville Future Land Use Map and Comprehensive Plan guidance
- o Description of proposed rezoning and reasons for the request.
- Explanation of proposed building types and densities on the Subject Property.
- Discussion regarding wetlands and open space that will be preserved on the property.
- Forecast future meetings and public hearings.

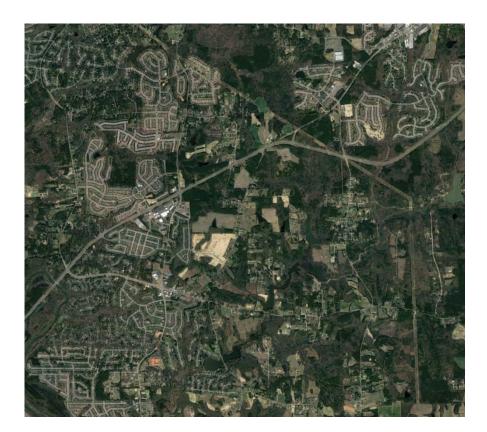
• Q & A:

- What is the name of the development company?
 - The CSC Group, which is a local real estate development group.
- What is the price point and square footage of the townhomes and single-family homes?
 - Developer explained potential projections on cost per unit for townhouses and detached units. They will likely be between 1,800 and 3,000 square feet. Do not have final pricing due to potential market changes.
- Was there a traffic impact analysis?
 - The development team explained that a Traffic Impact Analysis was done by Ramey Kemp, who was retained by the Town. The NCDOT signed off on this. Based on increased trips and conditions on site they make

recommendations on monitoring and approved intersections. The results and requirements have been included in the rezoning request.

o Will Universal Dr Gideon Dr be paved/improved?

- The town is requiring the developer to pave and improve all of Gideon Drive, not Universal, but we are working privately with the Church regarding Universal Drive.
- What measure will be taking place for privacy to neighboring properties? Will there be any natural buffers?
 - The development team explained that there will be 25' vegetative buffers around all adjacent private property.
- o Will there be sidewalks Gideon Drive?
 - The engineer explained the town street requirements will require sidewalk improvements along Gideon.
- What is proposed timeline for the development?
 - Development team explained the typical rezoning timeline with development plan and permits, and that construction would not likely occur over a year.
- o Inquiry regarding the size, location, and purpose of stormwater ponds.
 - The engineer explained the details and purpose of the proposed stormwater pond.
- Questions regarding density, configuration, and approval process for nearby
 Mitchell Mill Reserve development.
 - The development team explained the details and nature of the approved Mithcell Mill Reserve case. Engineer explained that background traffic data from that rezoning was considered and used during our TIA.
- Will the homes be built-to-rent, or will they be for sale? What is to stop an owner from renting out a unit that they purchase?
 - The homes will be for sale. NC law limits the ability to prohibit people from leasing their property. Individual owners could buy a unit as an investment.


EXHIBIT D – MEETING ATTENDEES

- 1. Sam Morris
- 2. Steven George
- Jeremy Keeny
 John Birmingham
 Guy Jones
 Myron Jarvis
 Marie Jarvis

- 8. Matthew Jarvis
- 9. Darlene Jones
- 10. Bryan Harris

RAMEY KEMP ASSOCIATES

TOGETHER WE ARE LIMITLESS

Harris Creek Farm **Traffic Impact Analysis Rolesville, North Carolina**

TRAFFIC IMPACT ANALYSIS

FOR

HARRIS CREEK FARM

LOCATED

IN

ROLESVILLE, NORTH CAROLINA

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By: Infrastructure Consulting Services, Inc. *dba*

Ramey Kemp Associates 5808 Faringdon Place Raleigh, NC 27609

License #F-1489

MAY 2023

Prepared By: <u>DAR</u>

Reviewed By: <u>JAE</u>

TRAFFIC IMPACT ANALYSIS HARRIS CREEK FARM ROLESVILLE, NORTH CAROLINA

EXECUTIVE SUMMARY

1. Development Overview

A Traffic Impact Analysis (TIA) was conducted for the proposed Harris Creek Farm development in accordance with the Town of Rolesville (Town) Land Development Ordinance (LDO) and North Carolina Department of Transportation (NCDOT) capacity analysis guidelines. The proposed development, anticipated to be completed in 2027, is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The proposed development is expected to consist of 68 single-family homes and 81 townhomes. Site access is proposed via two (2) full-movement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions
- 2027 Build-Improved Traffic Conditions

2. Existing Traffic Conditions

The study area for the TIA was determined through coordination with the Town and NCDOT and consists of the following existing intersections:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Mitchell Mill Road and Jonesville Road / Peebles Road
- Jonesville Road and Universal Drive

Existing peak hour traffic volumes were determined based on traffic counts conducted at the study intersections listed above except for Jonesville Road and Universal Drive, in November of 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning.

Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive were estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive. It was estimated that there will be 8 AM trips: 2 enter 6 exit and 10 PM trips: 7 enter 3 exit. The trips were distributed to the north and south along Jonesville Road the same as site trips. Through traffic volumes were balanced from the Mitchell Mill Road/Jonesville Road intersection.

Previously collected counts from the year 2021 were projected to the 2022 existing analysis year using a compounded annual growth rate of 2%. Weekday AM and PM traffic volumes were balanced between study intersections, where appropriate.

3. Site Trip Generation

The proposed development is assumed to consist of 68 single-family homes and 81 townhomes,. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11th Edition. Table E-1 provides a summary of the trip generation potential for the site.

Table E-1: Site Trip Generation

Land Use (ITE Code)	Intensity	tensity Traffic (vnh)			Weekday PM Peak Hour Trips (vph)			
		(vpd)	Enter	Exit	Total	Enter	Exit	Total
Single-Family Home (210)	68 DU	708	13	39	52	44	25	69
Single Family Attached (215)	81 DU	568	9	27	36	26	19	45
Total Primary Trips		1,276	22	66	88	70	44	114

4. Future Traffic Conditions

Through coordination with the Town and NCDOT, it was determined that an annual growth rate of 0% would be used to generate 2027 projected weekday AM and PM peak hour traffic volumes. A growth rate of 0% was used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. The following adjacent developments were identified to be considered under future conditions:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

5. Capacity Analysis Summary

The analysis considered weekday AM and PM peak hour traffic for 2022 existing, 2027 no-build, 2027 build, and 2027 build-improved conditions. Refer to Section 7 of the TIA for the capacity analysis summary performed at each study intersection.

6. Recommendations

Based on the findings of this study, specific geometric and traffic control improvements have been identified at study intersections. The improvements are summarized below and are illustrated in Figure E-1.

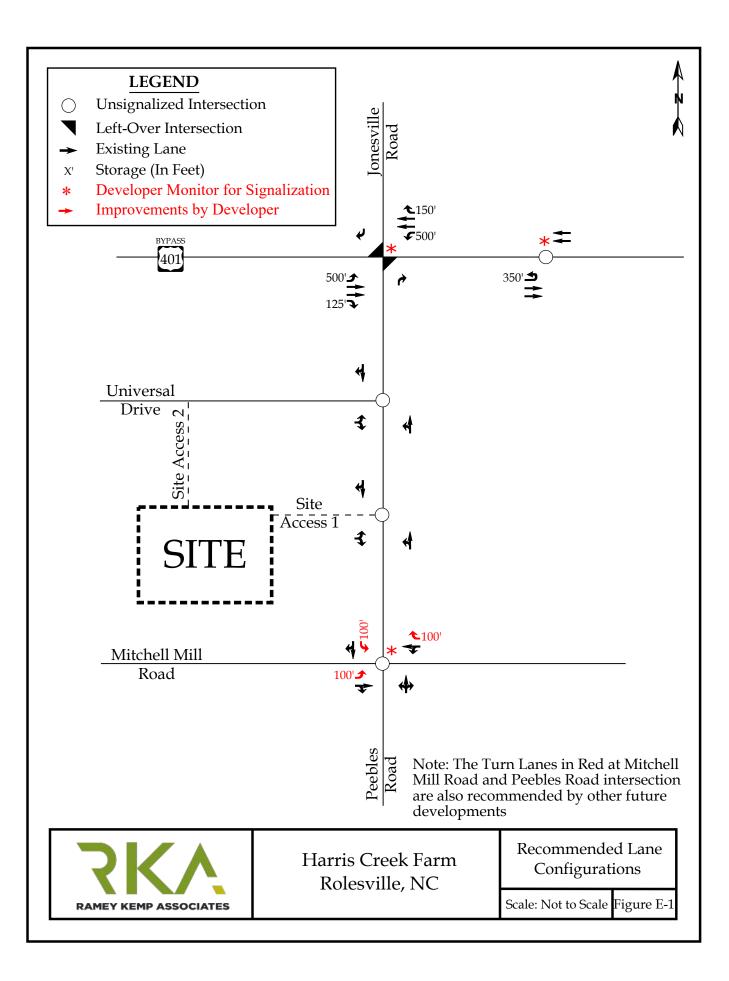
Recommended Improvements by Developer

US 401 Bypass and Jonesville Road

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.


Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA and Hills at Harris Creek TIA
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the Hills at Harris Creek TIA
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Jonesville Road and Site Drive

- Construct the eastbound approach (Site Drive) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Drive).

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1	. Site Location and Study Area	1
1.2	. Proposed Land Use and Site Access	2
1.3	. Adjacent Land Uses	2
1.4	. Existing Roadways	2
2.	2022 EXISTING PEAK HOUR CONDITIONS	7
2.1	. 2022 Existing Peak Hour Traffic Volumes	7
2.2	. Analysis of 2022 Existing Peak Hour Traffic Conditions	7
3.	2027 NO-BUILD PEAK HOUR CONDITIONS	9
3.1	. Ambient Traffic Growth	9
3.2	. Adjacent Development Traffic	9
3.3	. Future Roadway Improvements	11
3.4	. 2027 No-Build Peak Hour Traffic Volumes	11
3.5	. Analysis of 2027 No-Build Peak Hour Traffic Conditions	11
4.	SITE TRIP GENERATION AND DISTRIBUTION	15
4.1	. Trip Generation	15
4.2	. Site Trip Distribution and Assignment	16
5.	2027 BUILD TRAFFIC CONDITIONS	19
5.1	. 2027 Build Peak Hour Traffic Volumes	19
5.2	. Analysis of 2027 Build Peak Hour Traffic Conditions	19
6.	TRAFFIC ANALYSIS PROCEDURE	21
6.1	. Adjustments to Analysis Guidelines	21
7.	CAPACITY ANALYSIS	22
7.1	. US 401 Bypass and Jonesville Road	22
7.2	. US 401 Bypass and Eastern U-Turn Location	25
7.3	. Mitchell Mill Road and Jonesville Road / Peebles Road	28
7.4	. Jonesville Road and Universal Drive	30
7.5	. Jonesville Road and Site Drive	31
8.	CONCLUSIONS	32

RAMEY KEMP ASSOCIATES

9. RECOMMENDATIONS	33
LIST OF FIGURES	
Figure 1 – Site Location Map	4
Figure 2 – Preliminary Site Plan	5
Figure 3 – Existing Lane Configurations	6
Figure 4 – 2022 Existing Peak Hour Traffic	8
Figure 5 – 2027 Projected Peak Hour Traffic	12
Figure 6 – Adjacent Development Trips	13
Figure 7 – 2027 No-Build Peak Hour Traffic	14
Figure 8 – Site Trip Distribution	17
Figure 9 – Site Trip Assignment	18
Figure 10 – 2027 Build Peak Hour Traffic	20
Figure 11 – Recommended Lane Configurations	35

LIST OF TABLES

Table 1: Existing Roadway Inventory	3
Table 2: Adjacent Development Information	10
Table 3: Trip Generation Summary	15
Table 4: Highway Capacity Manual – Levels-of-Service and Delay	21
Table 5: Analysis Summary of US 401 Bypass and Jonesville Road	22
Table 6: Analysis Summary of US 401 Bypass and Eastern U-Turn Locati	on
	25
Table 7: Analysis Summary of Mitchell Mill Road and Jonesville Road	1 /
Peebles Road	28
Table 8: Analysis Summary of Jonesville Road and Universal Drive	30
Table 9: Analysis Summary of Jonesville Road and Site Drive	31

TECHNICAL APPENDIX

Appendix A: Scoping Documentation

Appendix B: Traffic Counts

Appendix C: Adjacent Development Information

Appendix D: Capacity Calculations – US 401 Bypass & Jonesville Road

Appendix E: Capacity Calculations - US 401 Bypass & Eastern U-Turn

Location

Appendix F: Capacity Calculations – Mitchell Mill Road & Jonesville Road /

Peebles Road

Appendix G: Capacity Calculations – Jonesville Road & Universal Drive

Appendix H: Capacity Calculations – Jonesville Road & Site Drive

Appendix I: Turn Lane Warrants

Appendix J: MUTCD / ITRE Signal Warrant Analysis

TRAFFIC IMPACT ANALYSIS HARRIS CREEK FARM ROLESVILLE, NORTH CAROLINA

1. INTRODUCTION

The contents of this report present the findings of the Traffic Impact Analysis (TIA) conducted for the proposed Harris Creek Farm development in Rolesville, North Carolina. The proposed development, anticipated to be completed in 2027, is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The proposed development is expected to consist of 68 single-family homes and 81 townhomes. The purpose of this study is to determine the potential impacts to the surrounding transportation system created by traffic generated by the proposed development, as well as recommend improvements to mitigate the impacts.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

1.1. Site Location and Study Area

The proposed development is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. Refer to Figure 1 for the site location map. The study area for the TIA was determined through coordination with the North Carolina Department of Transportation (NCDOT) and the Town of Rolesville (Town) and consists of the following existing intersections:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Jonesville Road and Universal Drive
- Mitchell Mill Road and Jonesville Road / Peebles Road

Refer to Appendix A for the approved scoping documentation.

1.2. Proposed Land Use and Site Access

The site is to be located on the west side of Jonesville Road near Universal Drive. The proposed development is anticipated to be completed in 2027, and is assumed to consist of the following uses:

- 68 single-family homes
- 81 townhomes

Site access to the proposed development is expected to be provided via two (2) full-movement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive. Refer to Figure 2 for a copy of the preliminary site plan.

1.3. Adjacent Land Uses

The proposed development is located in an area consisting primarily of undeveloped land and residential development.

1.4. Existing Roadways

Existing lane configurations (number of traffic lanes on each intersection approach), storage capacities, and other intersection and roadway information within the study area are shown in Figure 3. Table 1 provides a summary of this information, as well.

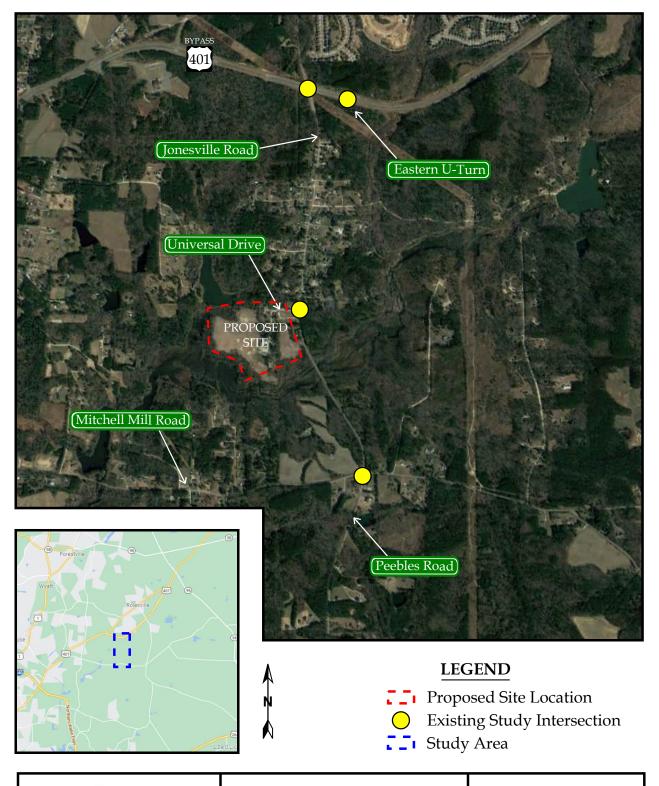
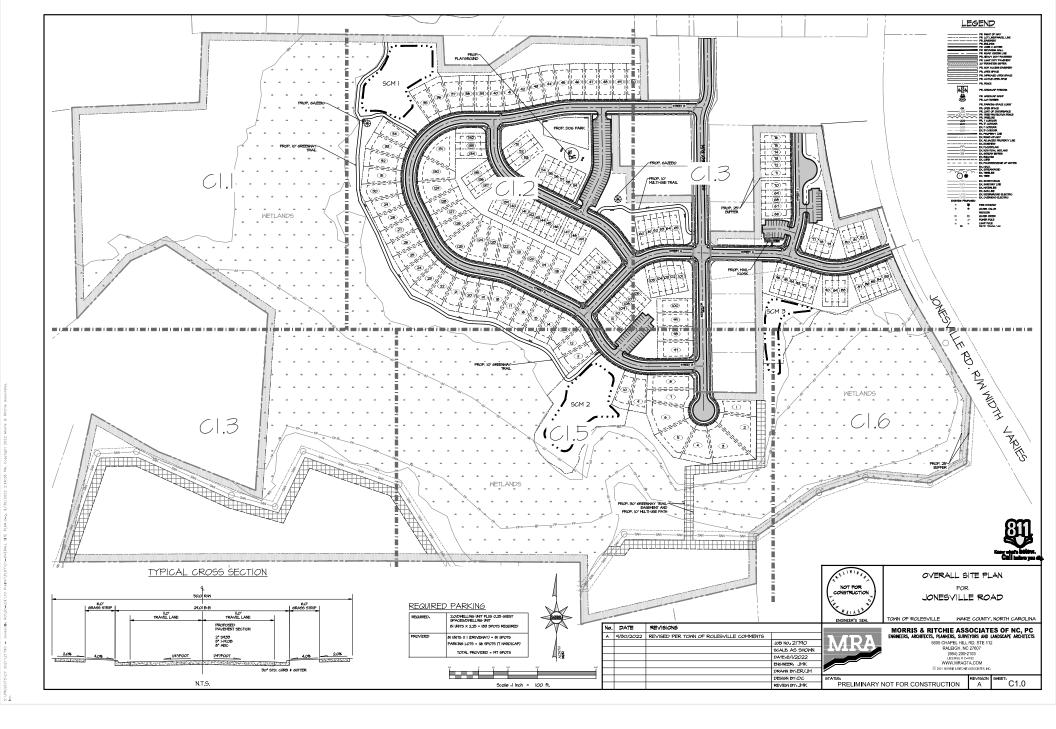
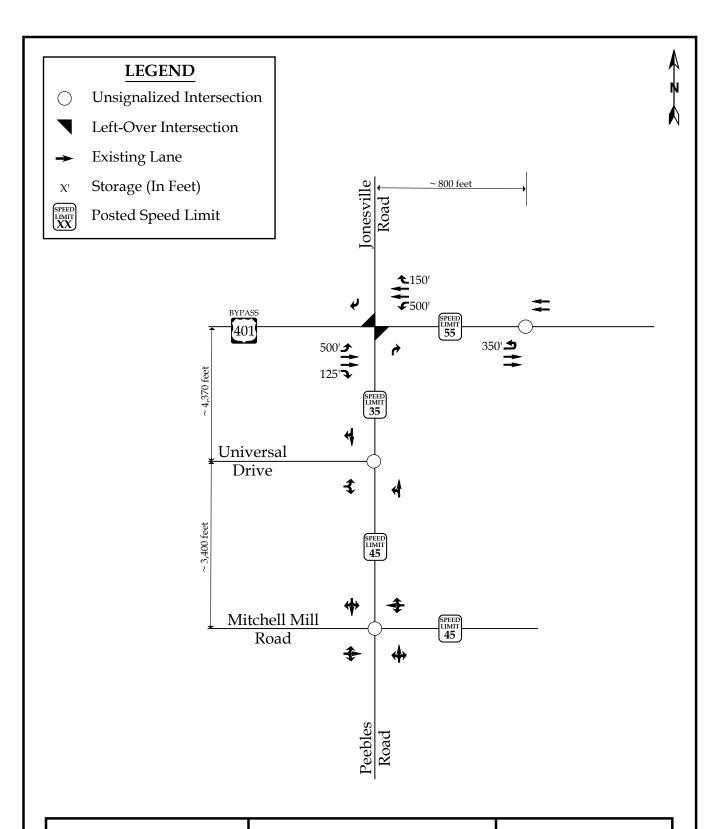


Table 1: Existing Roadway Inventory

Road Name	Route Number	Typical Cross- Section	Speed Limit	Maintained By	2019 AADT (vpd)
US 401 Bypass		4-lane divided	55 mph	NCDOT	17,500
Jonesville Road	SR 2226	2-lane undivided	35 mph / 45 mph	NCDOT	2,210*
Mitchell Mill Road	SR 2224	2-lane undivided	45 mph	45 mph NCDOT	
Peebles Road	SR 2929	2-lane undivided	45 mph NCDOT		1,700*

^{*}ADT based on 2022 existing traffic volumes and assuming the weekday PM peak hour volume is 10% of the average daily traffic.





Harris Creek Farm Rolesville, NC Site Location Map

Scale: Not to Scale

Figure 1

Harris Creek Farm Rolesville, NC 2022 Existing Lane Configurations

Scale: Not to Scale

Figure 3

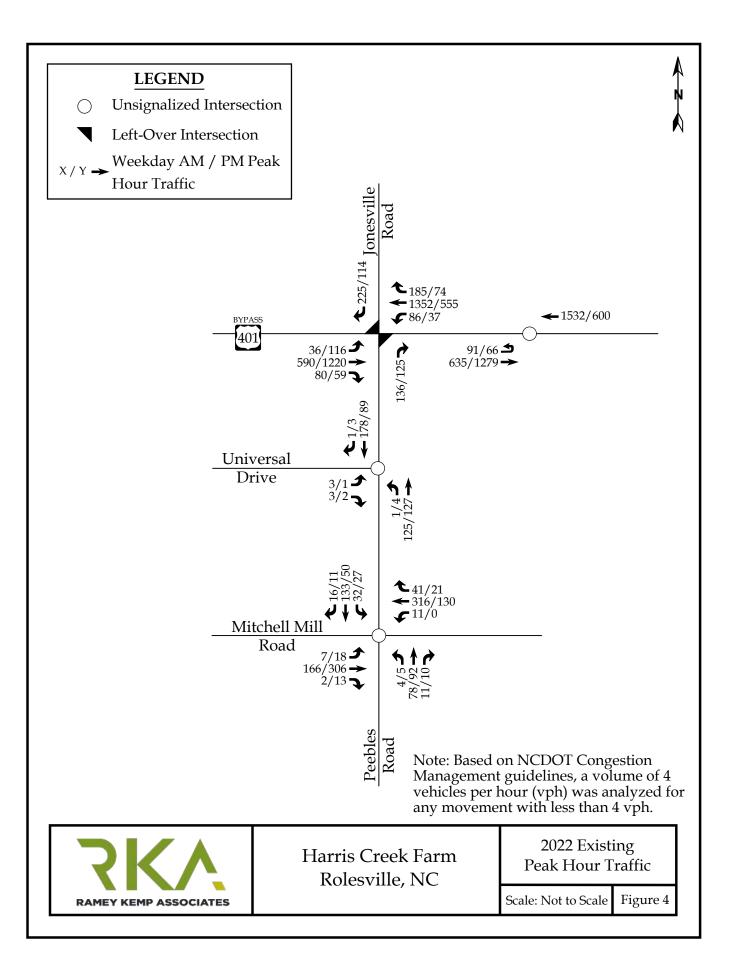
2. 2022 EXISTING PEAK HOUR CONDITIONS

2.1. 2022 Existing Peak Hour Traffic Volumes

Existing peak hour traffic volumes were determined based on previously collected traffic counts conducted at the study intersections listed below, in November of 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Mitchell Mill Road and Jonesville Road / Peebles Road

Previously collected counts from the year 2021 were projected to the 2022 existing analysis year using a compounded annual growth rate of 2%.


Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive were estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive. It was estimated that there will be 8 AM trips: 2 enter 6 exit and 10 PM trips: 7 enter 3 exit. The trips were distributed to the north and south along Jonesville Road the same as site trips. Through traffic volumes were balanced from the Mitchell Mill Road/Jonesville Road intersection.

Weekday AM and PM traffic volumes were balanced between study intersections, where appropriate. Refer to Figure 4 for 2022 existing weekday AM and PM peak hour traffic volumes. A copy of the count data is located in Appendix B of this report.

2.2. Analysis of 2022 Existing Peak Hour Traffic Conditions

The 2022 existing weekday AM and PM peak hour traffic volumes were analyzed to determine the current levels of service at the study intersections under existing roadway conditions. The results of the analysis are presented in Section 7 of this report.

3. 2027 NO-BUILD PEAK HOUR CONDITIONS

In order to account for growth of traffic and subsequent traffic conditions at a future year, nobuild traffic projections are needed. No-build traffic is the component of traffic due to the growth of the community and surrounding area that is anticipated to occur regardless of whether or not the proposed development is constructed. No-build traffic is comprised of existing traffic growth within the study area and additional traffic created as a result of adjacent approved developments.

3.1. Ambient Traffic Growth

Through coordination with NCDOT and the Town, it was determined that an annual growth rate of 0% would be used to generate 2027 projected weekday AM and PM peak hour traffic volumes. A growth rate of 0% was used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. Refer to Figure 5 for 2027 projected peak hour traffic.

3.2. Adjacent Development Traffic

Through coordination with NCDOT and the Town, the following adjacent developments were identified to be included in this study:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

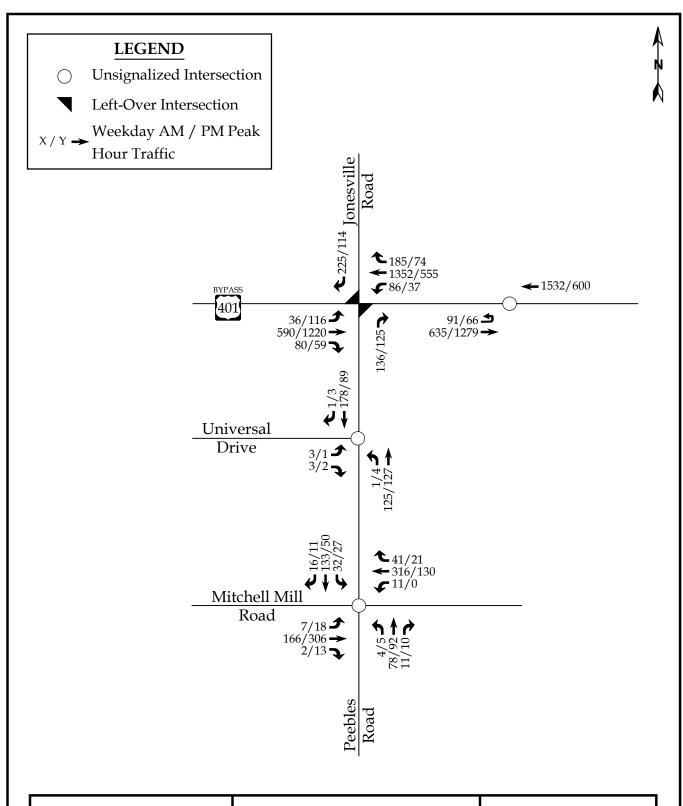
Table 2, on the following page, provides a summary of the adjacent developments. Adjacent development trips are shown in Figure 6. Adjacent development information can be found in Appendix C.

Table 2: Adjacent Development Information

Development Name	Location	Build- Out Year	Land Use / Intensity	TIA Performed
Cobblestone Crossing Mixed- Use	Northwest quadrant of the intersection of Main Street and Young Street	2023	180 multi-family homes 18,200 sq. ft. municipal flex space 50,000 sq. ft. general retail	March 2021 by RKA
Young Street PUD	Along both sides of US 401 Bypass west of Young Street	2025	96 single-family homes 525 single-family homes 320 multi-family homes 122,800 sq. ft. general retail	June 2019 by Kimley Horn
Wheeler Tract	Northeast quadrant of the intersection of Rolesville Road and Mitchell Mill Road	2026	233 single-family homes 125 multi-family homes	June 2019 by RKA
Louisbury Road Assemblage	West of Louisbury Road and south of Stells Road	2025	152 single-family homes	May 2020 by RKA
Kalas / Watkins Family Property	Along the west side of Rolesville Road, north of Mitchell Mill Road	2025	439 single-family homes 96 multi-family homes	August 2019 by Stantec
5109 Mitchell Mill	Along both sides of Jonesville Road north of Mitchell Mill Road	2028	69 single-family homes 195 single-family homes 129 multi-family homes 50,000 sq. ft. shopping center	August 2022 by RKA
Hills at Harris Creek	North of Mitchell Mill Road, west of Manly Farm Road and east of Gro Peg Lane	2027	211 single-family homes 109 multi-family homes 25,400 sq. ft. general retail	May 2022 by RKA

3.3. Future Roadway Improvements

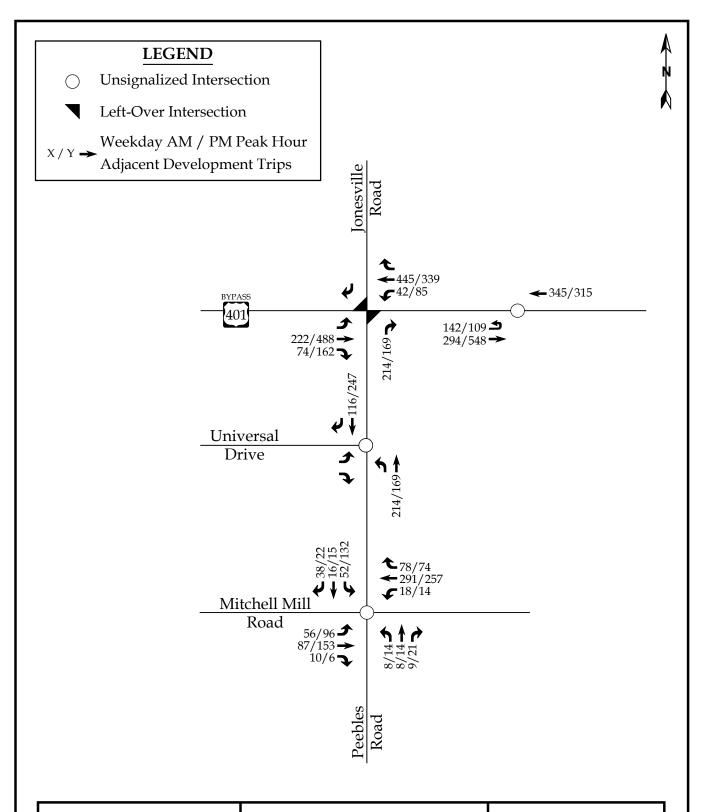
Based on coordination with NCDOT and the Town, it was determined there were two previously approved TIA's that recommended roadway improvements that were considered under future conditions with this study. Both developments are to construct improvements at the intersection of Jonesville Road and Mitchell Mill Road. An exclusive eastbound left-turn lane was identified in the 5109 Mitchell Mill Road TIA. An exclusive westbound right-turn lane was identified in the Hills at Harris Creek TIA. In both the 5109 Mitchell Mill Road TIA and the Hills at Harris Creek TIA an exclusive southbound left-turn lane improvement was identified. It should be noted that per the Rolesville Community Transportation Plan (dated May 2022), the ultimate cross-section of Jonesville Road is identified as a 2-lane roadway with a center two-way-left-turn-lane (TWLTL) and Mitchell Mill Road is identified as a 4-lane median-divided roadway.


3.4. 2027 No-Build Peak Hour Traffic Volumes

The 2027 no-build traffic volumes were determined by projecting the 2022 existing peak hour traffic to the year 2027 and adding the adjacent development trips. Refer to Figure 7 for an illustration of the 2027 no-build peak hour traffic volumes at the study intersections.

3.5. Analysis of 2027 No-Build Peak Hour Traffic Conditions

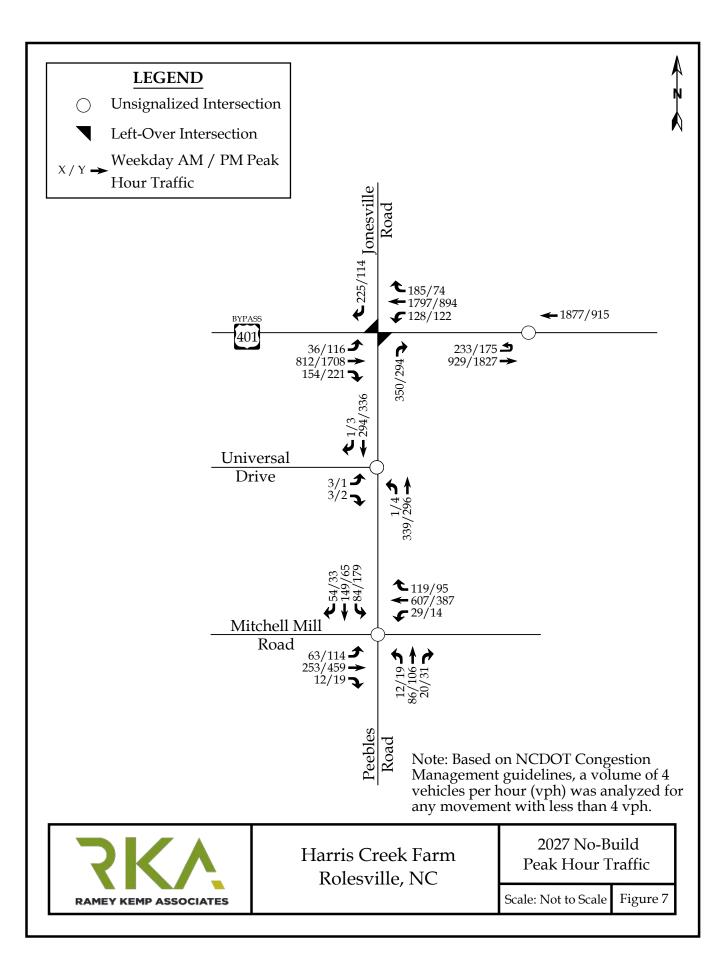
The 2027 no-build AM and PM peak hour traffic volumes at the study intersections were analyzed with existing geometric roadway conditions and traffic control. The analysis results are presented in Section 7 of this report.



Harris Creek Farm Rolesville, NC 2027 Projected Peak Hour Traffic

Scale: Not to Scale

Figure 5



Harris Creek Farm Rolesville, NC Peak Hour Adjacent Developement Trips

Scale: Not to Scale

Figure 6

4. SITE TRIP GENERATION AND DISTRIBUTION

4.1. Trip Generation

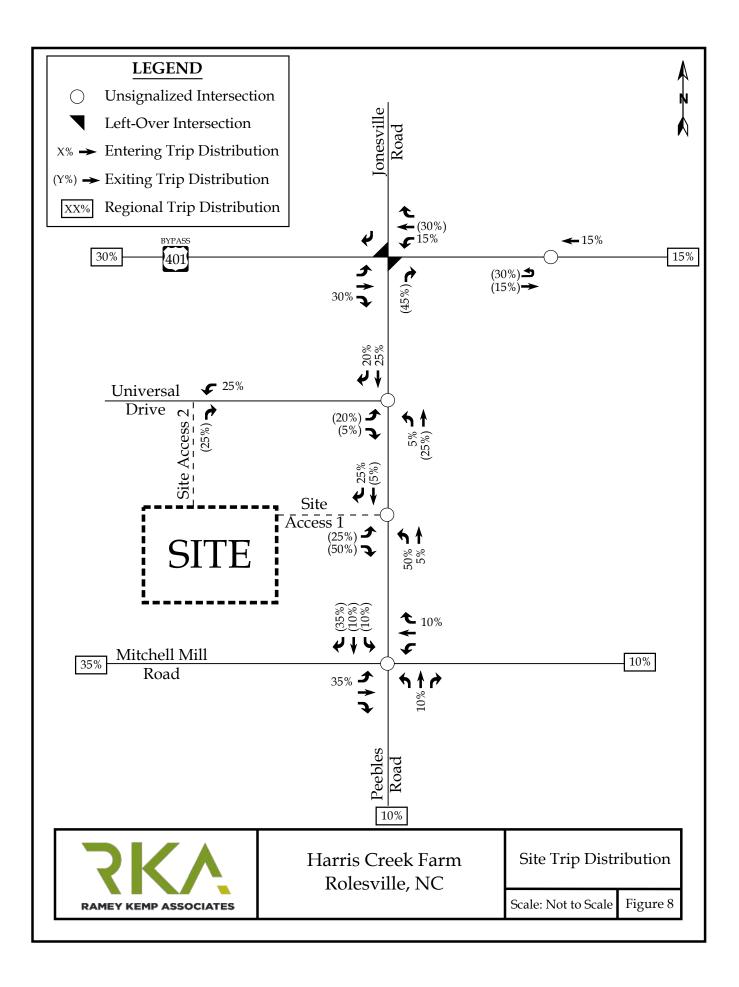
The proposed development is assumed to consist of 68 single-family homes and 81 townhomes. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11th Edition. Table 3 provides a summary of the trip generation potential for the site.

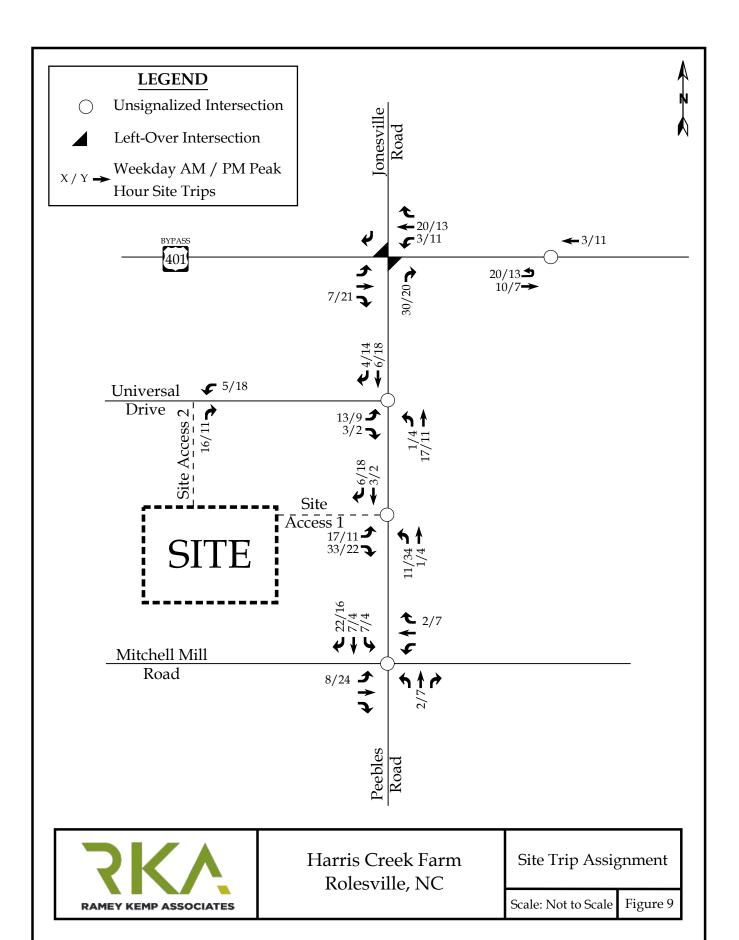
Table 3: Trip Generation Summary

Land Use (ITE Code)	Intensity	Daily Traffic (vpd)		eekday k Hour (vph)		Weekday PM Peak Hour Trips (vph)				
			Enter	Exit	Total	Enter	Exit	Total		
Single-Family Home (210)	68 DU	708	13	39	52	44	25	69		
Single Family Attached (215)	81 DU	568	9	27	36	26	19	45		
Total Primary Trips	6	1,276	22	66	88	70	44	114		

It is estimated that the proposed development will generate approximately 1,276 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.

4.2. Site Trip Distribution and Assignment

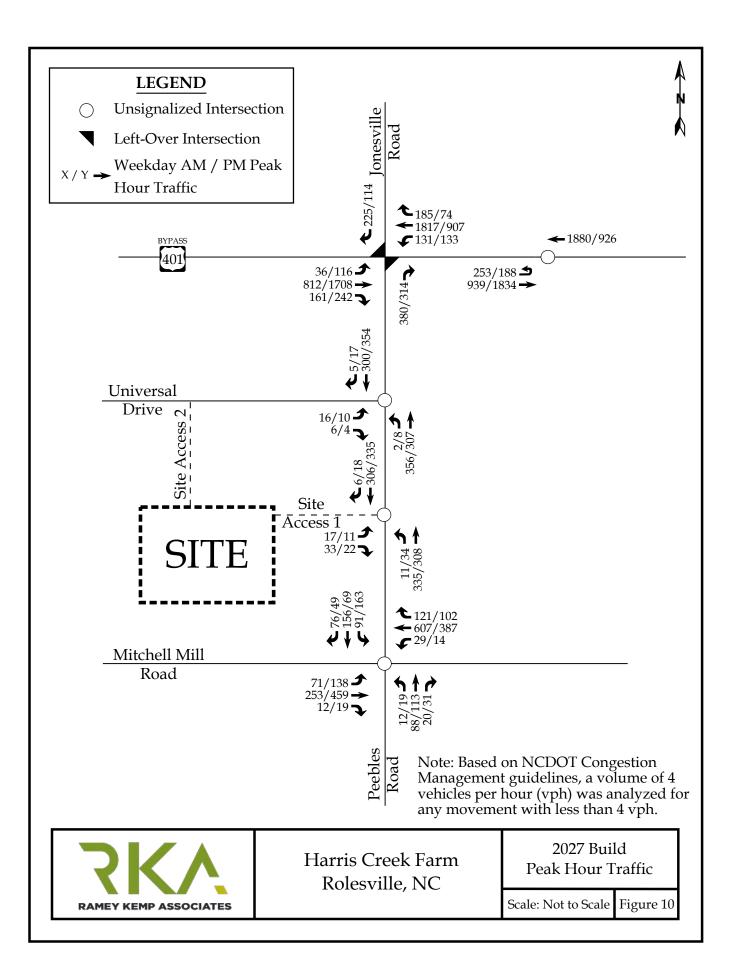

Trip distribution percentages used in assigning site trips for this development were approved during the scoping process and were estimated based on a combination of existing traffic patterns, population centers adjacent to the study area, and engineering judgment.


It is estimated that the residential site trips will be regionally distributed as follows:

- 35% to/from the west via Mitchell Mill Road
- 30% to/from the west via US 401 Bypass
- 15% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 10% to/from the east via Mitchell Mill Road

The site trip distribution is shown in Figure 8 and the peak hour site trip assignment is shown in Figure 9.

5. 2027 BUILD TRAFFIC CONDITIONS


5.1. 2027 Build Peak Hour Traffic Volumes

To estimate traffic conditions with the site fully built-out, the total site trips were added to the 2027 no-build traffic volumes to determine the 2027 build traffic volumes. Refer to Figure 10 for an illustration of the 2027 build peak hour traffic volumes with the proposed site fully developed.

5.2. Analysis of 2027 Build Peak Hour Traffic Conditions

Study intersections were analyzed with the 2027 build traffic volumes using the same methodology previously discussed for existing and no-build traffic conditions. Intersections were analyzed with improvements necessary to accommodate future traffic volumes. The results of the capacity analysis for each intersection are presented in Section 7 of this report.

6. TRAFFIC ANALYSIS PROCEDURE

Study intersections were analyzed using the methodology outlined in the *Highway Capacity Manual* (HCM), 6th Edition published by the Transportation Research Board. Capacity and level of service are the design criteria for this traffic study. A computer software package, Synchro (Version 11), was used to complete the analyses for most of the study area intersections. Please note that the unsignalized capacity analysis does not provide an overall level of service for an intersection; only delay for an approach with a conflicting movement.

The HCM defines capacity as "the maximum hourly rate at which persons or vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions." Level of service (LOS) is a term used to represent different driving conditions, and is defined as a "qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers." Level of service varies from Level "A" representing free flow, to Level "F" where breakdown conditions are evident. Refer to Table 4 for HCM levels of service and related average control delay per vehicle for both signalized and unsignalized intersections. Control delay as defined by the HCM includes "initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay." An average control delay of 50 seconds at a signalized intersection results in LOS "D" operation at the intersection.

Table 4: Highway Capacity Manual – Levels-of-Service and Delay

UNSIGNA	ALIZED INTERSECTION	SIGNALIZED INTERSECTION						
LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)	LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)					
A	0-10	A	0-10					
В	10-15	В	10-20					
С	15-25	С	20-35					
D	25-35	D	35-55					
E	35-50	E	55-80					
F	>50	F	>80					

6.1. Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to Town LDO and NCDOT Congestions Management Guidelines.

7. CAPACITY ANALYSIS

7.1. US 401 Bypass and Jonesville Road

The existing unsignalized intersection of US 401 Bypass Road and Jonesville Road was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 5. Refer to Table 5 for a summary of the analysis results. Refer to Appendix D for the Synchro capacity analysis reports.

Table 5: Analysis Summary of US 401 Bypass and Jonesville Road

ANALYSIS	A P P R	LANE	PEAK	DAY AM HOUR F SERVICE	PEAK	DAY PM (HOUR F SERVICE
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
	EB WB* NB	2 TH, 1 RT 1 LT 1 RT	 C ¹ B ²	N/A	 E ¹ C ²	N/A
2022 Existing	EB** WB SB	1 LT 2 TH, 1 RT 1 RT	F ¹ E ²	N/A	C ¹ B ²	N/A
2007 N. D. 111	EB WB* NB	2 TH, 1 RT 1 LT 1 RT	 D¹ D²	N/A	 F ¹ F ²	N/A
2027 No-Build	EB** WB SB	1 LT 2 TH, 1 RT 1 RT	F ¹ F ²	N/A	E ¹ B ²	N/A
2027 Build	EB WB* NB	2 TH, 1 RT 1 LT 1 RT	 D¹ D²	N/A	 F ¹ F ²	N/A
2027 Bund	EB** WB SB	1 LT 2 TH, 1 RT 1 RT	F ¹ F ²	N/A	E ¹ B ²	N/A
2027 Build-	EB WB* NB	2 TH, 1 RT 1 LT 1 RT	В В В	B (16)	B D C	C (23)
Improved	EB** WB SB	1 LT 2 TH, 1 RT 1 RT	F ¹ F ²	N/A	E ¹ B ²	N/A

^{*}Synchro analyzed the WB left-turns as SB through movements due to the nature of the superstreet and synchro limitations.

^{2.} Level of service for minor-street approach.

^{**}Synchro analyzed the EB left-turns as NB through movements due to the nature of the superstreet and synchro limitations.

^{1.} Level of service for major-street left-turn movement.

Capacity analysis of 2022 existing traffic conditions indicates that the major-street left-turn movements and minor-street approaches are expected to operate at LOS D or better with the exception of the eastbound left-turn movement during the weekday AM peak hour (LOS F), the westbound left-turn movement during the weekday PM peak hour (LOS E), and the southbound minor-street approach during the weekday AM peak hour (LOS E).

Under 2027 no-build and 2027 build traffic conditions, the major-street left-turn movements are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the westbound left-turn movement during the weekday AM peak hour (LOS D) under 2027 no-build and 2027 build traffic conditions. The minor-street approaches are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the northbound approach during the weekday AM peak hour (LOS D) and the southbound approach during the weekday PM peak hour (LOS B) under 2027 no-build and 2027 build traffic conditions. It should be noted that the proposed development is expected to account for approximately 2% of the overall traffic at this intersection during the weekday AM and PM peak hours. The proposed development is expected to account for 8% and 6% of the northbound right movements during the AM and PM peak hours, respectively.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the *Manual on Uniform Traffic Control Devices* (MUTCD) and within the *Guidelines for Signalization of Intersections with Two or Three Approaches Final Report*, published by ITRE. Based on a review of the peak hour signal warrant at this intersection, the intersection is expected to meet the peak hour warrant for both the weekday AM and PM peak hours under 2027 no-build and 2027 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the northbound right-turn movement demand is expected to be over 85%

capacity during the weekday AM peak hour and exceed capacity during the weekday PM peak hour under 2027 no-build and 2027 build traffic conditions. Refer to Appendix J for a copy of the MUTCD warrants and the ITRE 95th percentile queue length calculations.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-of-service under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the northbound right-turn and westbound left-turn movements at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.2. US 401 Bypass and Eastern U-Turn Location

The existing unsignalized intersection of US 401 Bypass and Eastern U-Turn Location was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 6. Refer to Table 6 for a summary of the analysis results. Refer to Appendix E for the Synchro capacity analysis reports.

Table 6: Analysis Summary of US 401 Bypass and Eastern U-Turn Location

ANALYSIS	A P P R	LANE	PEAK	DAY AM HOUR SERVICE	PEAK	DAY PM (HOUR F SERVICE
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
2022 Existing	EB* WB	1 UT 2 TH	C ¹	N/A	B ¹	N/A
2027 No-Build	EB* WB	1 UT 2 TH	F1 	N/A	C¹	N/A
2027 Build	EB* WB	1 UT 2 TH	F ¹	N/A	C ¹	N/A
2027 Build - Improved	EB* WB	1 UT 2 TH	D B	C (21)	B A	B (11)

^{*}Synchro analyzed the EB u-turn as a NB left-turn movement due to the nature of the superstreet and synchro limitations.

Capacity analysis of 2022 existing and 2027 no-build traffic conditions indicates that the major-street u-turn movement is expected to operate at LOS C or better during the weekday AM and PM peak hours, with the exception of the weekday AM peak hour under 2027 no-build conditions (LOS F).

Under 2027 build traffic conditions, the major-street u-turn movement is expected to operate at LOS F during the weekday AM peak hour and at LOS C during the weekday PM peak hour. It should be noted that the proposed development is expected to account for approximately 1% of the overall traffic at this intersection during the weekday AM and PM peak hours. The proposed development is expected to account for approximately 8% and 7%

^{1.} Level of service for major-street u-turn movement.

of the overall eastbound u-turn movements at this intersection during the weekday AM and PM peak hours, respectively.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the Manual on Uniform Traffic Control Devices (MUTCD) and within the Guidelines for Signalization of Intersections with Two or Three Approaches Final Report, published by ITRE. Based on a review of signal warrants at this intersection, the peak hour warrant (warrant 3) from the MUTCD is expected to be met for the weekday AM peak hour under 2027 no-build and build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the eastbound u-turn movement demand is expected to exceed capacity during the weekday AM peak hour under 2027 no-build and 2027 build traffic conditions. Refer to Appendix J for a copy of the MUTCD warrants and the ITRE 95th percentile queue length calculations.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-of-service under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the eastbound u-turn movement at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town

and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.3. Mitchell Mill Road and Jonesville Road / Peebles Road

The existing unsignalized four-way stop intersection of Mitchell Mill Road and Jonesville Road / Peebles Road was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 7. Refer to Table 7 for a summary of the analysis results. Refer to Appendix F for the Synchro capacity analysis reports.

Table 7: Analysis Summary of Mitchell Mill Road and Jonesville Road /
Peebles Road

ANALYSIS	A P P R	LANE	PEAK	DAY AM HOUR SERVICE	WEEKDAY PM PEAK HOUR LEVEL OF SERVICE			
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)		
2022 Existing	EB WB NB SB	1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT	$egin{array}{c} B^1 \ B^1 \ B^1 \end{array}$	B (13)	$egin{array}{c} B^1 \ A^1 \ A^1 \ A^1 \end{array}$	B (11)		
2027 No-Build	EB WB NB SB	1 LT, 1 TH-RT 1 LT-TH, 1 RT 1 LT-TH-RT 1 LT, 1 TH-RT	C ₁ C ₁ C ₁	F (95)	F1 C1 C1	F (57)		
2027 Build	EB WB NB SB	1 LT, 1 TH-RT 1 LT-TH, 1 RT 1 LT-TH-RT 1 LT, 1 TH-RT	C ₁ C ₁	F (104)	C ₁ C ₁	F (61)		
2027 Build - Improved	EB WB NB SB	1 LT, 1 TH-RT 1 LT-TH, 1 RT 1 LT-TH-RT 1 LT, 1 TH-RT	A B B C	B (14)	B B B	B (13)		

^{1.} Level of service for all-way stop controlled approach.

Capacity analysis of 2022 existing indicates that the intersection is expected to operate at an overall LOS B or better during the weekday AM and PM peak hours. Under 2027 no-build and 2027 build traffic conditions, this intersection is expected to operate at an overall LOS F during the weekday AM and PM peak hours. It should be noted that the proposed development is expected to account for approximately 3% and 4% of the overall traffic at this

intersection during the weekday AM and PM peak hours, respectively. The proposed development is expected to account for approximately 11% and 17% of the eastbound left movement and 17% and 7% of the westbound right movements during the weekday AM and PM peak hours, respectively.

Several turn lanes expected to be constructed by adjacent developments were included in the 2027 no-build and 2027 build scenarios. An exclusive eastbound left-turn lane was identified in the 5109 Mitchell Mill Road TIA. An exclusive westbound right-turn lane was identified in the Hills at Harris Creek TIA. In both the 5109 Mitchell Mill Road TIA and the Hills at Harris Creek TIA an exclusive southbound left-turn lane improvement was identified.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels-of-service. The peak hour warrant (warrant 3) from the *Manual on Uniform Traffic Control Devices* (MUTCD) was considered. Based on a review of the peak hour signal warrant at this intersection, the intersection is expected to meet the peak hour warrant for both the weekday AM and PM peak hours under 2027 no-build and 2027 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Refer to Appendix J for a copy of the MUTCD warrants.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.4. Jonesville Road and Universal Drive

The existing unsignalized intersection of Jonesville Road and Universal Drive was analyzed under 2027 build traffic conditions with the lane configurations and traffic control shown in Table 8. Refer to Table 8 for a summary of the analysis results. Refer to Appendix G for the synchro capacity analysis reports.

Table 8: Analysis Summary of Jonesville Road and Universal Drive

ANALYSIS	A P P R	LANE	PEAK	DAY AM HOUR SERVICE	WEEKDAY PM PEAK HOUR LEVEL OF SERVICE		
SCENARIO	O A C H	A C	Approach	Overall (seconds)	Approach	Overall (seconds)	
2022 Existing	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	A ² A ¹	N/A	A ² A ¹	N/A	
2027 No-Build	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	B ² A ¹	N/A	B ² A ¹	N/A	
2027 Build	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	B ² A ¹	N/A	B ² A ¹	N/A	

^{1.} Level of service for major-street left-turn movement.

Capacity analysis of 2027 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B or better during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways*. Based on the estimated low volume of right-turn and left-turn movements into the proposed development at this intersection, exclusive right-turn and left-turn lanes are not recommended. Refer to Appendix I for a copy of the turn lane warrants. No improvements are recommended by the developer.

^{2.} Level of service for minor-street approach.

2027 Build

7.5. Jonesville Road and Site Drive

The proposed intersection of Jonesville Road and Site Drive was analyzed under 2027 build traffic conditions with the lane configurations and traffic control shown in Table 9. Refer to Table 9 for a summary of the analysis results. Refer to Appendix H for the synchro capacity analysis reports.

Α **WEEKDAY AM WEEKDAY PM** P **PEAK HOUR PEAK HOUR** P LEVEL OF SERVICE **LEVEL OF SERVICE ANALYSIS** R LANE **SCENARIO** 0 **CONFIGURATIONS Overall** Α Overall **Approach Approach** C (seconds) (seconds) Н EB 1 LT-RT B^2 B^2

 A^1

Table 9: Analysis Summary of Jonesville Road and Site Drive

1 LT-TH

1 TH-RT

NB

SB

Capacity analysis of 2027 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B or better during the weekday AM and PM peak hours.

N/A

 A^1

N/A

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways*. Based on the estimated low volume of right-turn and left-turn movements into the proposed development at this intersection, exclusive right-turn and left-turn lanes are not recommended. Refer to Appendix I for a copy of the turn lane warrants. No improvements are recommended by the developer.

^{1.} Level of service for major-street left-turn movement.

^{2.} Level of service for minor-street approach.

8. CONCLUSIONS

This Traffic Impact Analysis was conducted to determine the potential traffic impacts of the proposed Harris Creek Farm development to be located on the west side of Jonesville Road near Universal Drive in Rolesville, North Carolina. The development is expected to consist of 68 single-family homes and 81 townhomes and to be built-out in 2027. Site access is proposed via two (2) full-movement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

Trip Generation

It is estimated that the proposed development will generate approximately 1,276 site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.

Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to NCDOT Congestion Management Guidelines. Refer to section 6.1 of this report for a detailed description of any adjustments to these guidelines made throughout the analysis.

<u>Intersection Capacity Analysis Summary</u>

All the study area intersections (including the proposed site driveways) are expected to operate at acceptable levels-of-service under existing and future year conditions with the exception of those identified in Section 7 of this report.

9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 11 for an illustration of the recommended lane configurations for the proposed development.

Recommended Improvements by Developer

US 401 Bypass and Jonesville Road

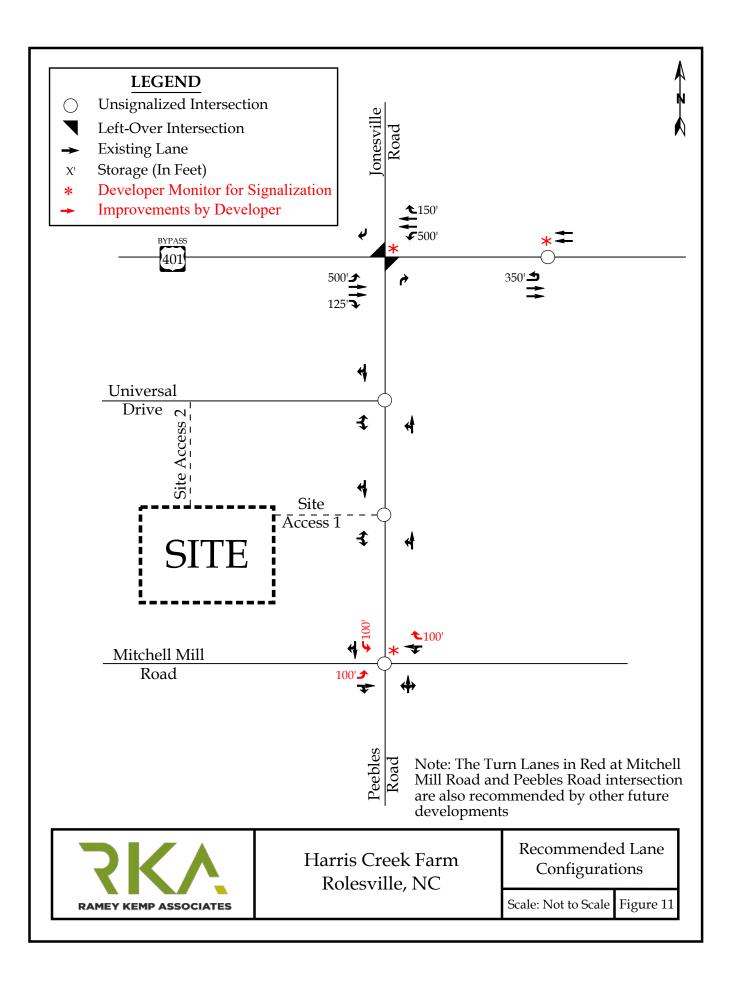
 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA and Hills at Harris Creek TIA
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the Hills at Harris Creek TIA
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA



 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Jonesville Road and Site Drive

- Construct the eastbound approach (Site Drive) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Drive).

TECHNICAL APPENDIX

APPENDIX A

SCOPING DOCUMENTATION

RAMEY KEMP ASSOCIATES

TOGETHER WE ARE LIMITLESS

March 17, 2023

Jeremy L. Warren, PE NCDOT District 1 Engineer 4009 District Drive Raleigh, NC 27507 <u>jlwarren@ncdot.gov</u> [Sent via Email]

Reference: Harris Creek Farm

Rolesville, North Carolina

Subject: Memorandum of Understanding for TIA Report

Dear Mr. Warren:

The following is a Memorandum of Understanding (MOU) outlining the proposed scope of work and assumptions related to the Traffic Impact Analysis (TIA) for the proposed Harris Creek Farm development in Rolesville, North Carolina. The proposed development is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The development is expected to consist of 68 single-family homes and 81 townhomes and is anticipated to be built out by 2027. Refer to the attached site location map. Site access to the proposed development is expected to be provided via two (2) full-movement driveway connections: one on Jonesville Road and one on Universal Drive. Refer to the attachments for a copy of the preliminary site plan.

Study Area

The study area is proposed to consist of the following intersections:

- Mitchell Mill Road & Jonesville Road / Peebles Road (unsignalized)
- US 401 Bypass and Jonesville Road (unsignalized)
- US 401 Bypass and Eastern U-Turn Location (unsignalized)
- Jonesville Road and Universal Drive (unsignalized)
- Jonesville Road and Site Driveway (unsignalized)

Existing Traffic Volumes

Existing peak hour traffic volumes will be determined based on previously collected traffic counts at the study intersections below, in November 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning:

- Mitchell Mill Road & Jonesville Road / Peebles Road
- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location

These previously collected counts will be projected to the year 2022 using a compounded annual growth rate of 2%.

Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive will be estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive (AM trips: 2 enter 6 exit and PM trips: 7 enter 3 exit, distributed to the north and south along Jonesville Road the same as site trips). Through traffic volumes will be balanced from the Mitchell Mill Road/Jonesville Road intersection.

Refer to the attachments for an illustration of 2022 existing peak hour traffic volumes.

Background Traffic Volumes

Background traffic volumes will be determined by projecting 2022 existing traffic volumes to the year 2027 using a 0% annual growth rate. A growth rate of 0% will be used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. It is assumed that the following adjacent developments are to be included in this study:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

Future Roadway Improvements

There are no future roadway improvements within the study area to consider under future traffic conditions.

Trip Generation

Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11th Edition. Refer to Table 1, on the following page, for a summary of the proposed site trip generation for full buildout of the proposed development.

Table 1: Trip Generation Summary

Land Use (ITE Code)	Intensity	Daily Traffic		Weekday eak Hour (vph)		Weekday Peak Hour Trips (vph)		
		(vpd)	Enter	Exit	Total	Enter	Exit	Total
Single-Family Home (210)	68 DU	710	13	39	52	44	25	69
Multi-Family Home (Low-Rise) (220)	81 DU	568	9	27	36	26	19	45
Total Trips	_	1,268	22	66	88	70	44	114

It is estimated that the proposed development will generate approximately 1,268 site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.

Trip Distribution and Assignment

Site trips are distributed based on the locations of existing traffic patterns, population centers adjacent to the study area, and engineering judgment. A summary of the overall distributions is below.

Residential

- 30% to/from the west via US 401 Bypass
- 15% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 35% to/from the west via Mitchell Mill Road
- 10% to/from the east via Mitchell Mill Road

Refer to the attached site trip distribution figure.

Analysis Scenarios

All capacity analyses will be performed utilizing Synchro (Version 11). All study intersections will be analyzed during the weekday AM and PM peak hours under the following proposed traffic scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

Report

The TIA report will be prepared based on the Town and NCDOT requirements.

If you find this memorandum of understanding acceptable, please let me know so that we may include it in the TIA report. If you have any questions or concerns, please do not hesitate to contact me.

Sincerely,

Ramey Kemp Associates,

J. Andrew Eagle, PE, PTOE

Senior Traffic Engineering Project Manager

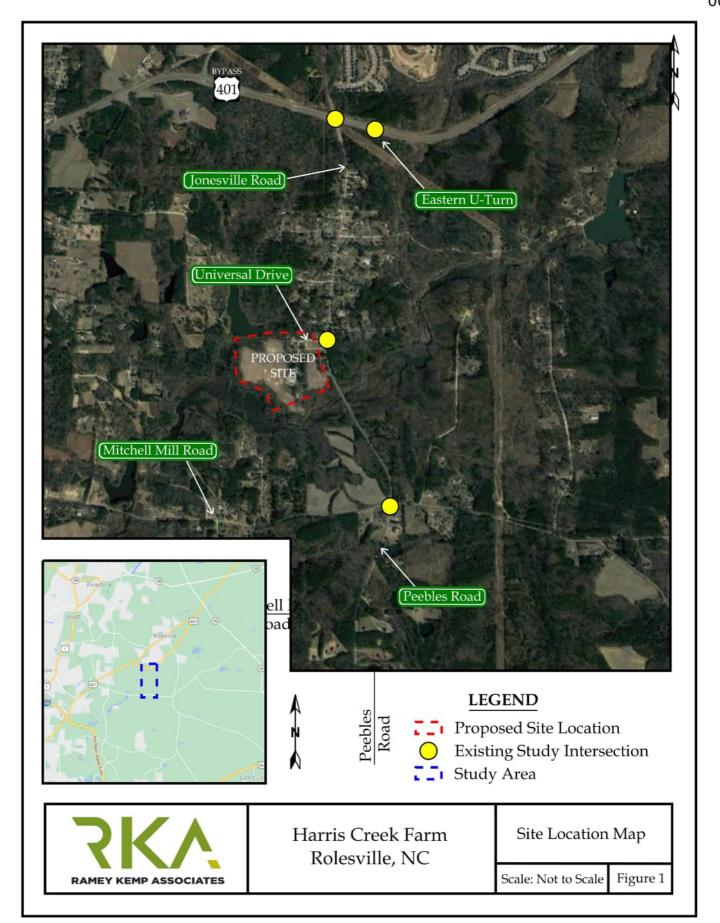
Attachments: Site Location Map

Site Plan

2022 Existing Traffic Volumes Figure Proposed Site Trip Distribution Figure

cc: Matthew J. Nolfo, NCDOT

Holt Willis, NCDOT


Clarence Bunting, NCDOT

Nicholas Lineberger, NCDOT

Daniel Collins, NCDOT

Meredith Gruber, Town of Rolesville Michael Elabarger, Town of Rolesville

REZONING AND ANNEXATION

FOR JONESVILLE ROAD

ROLESVILLE, NORTH CAROLINA

CASE NUMBER: MA 22-08

A. Town of Rolesville Planning Department 502 Southtown Circle Rolesville, NC 27571 B. Wake County

Matershed Management Waverly F. Akins Building 337 S. Salisbury St Raleigh, NC 27601 Contact: Karyn Pageau Phone: (919)-796-8769 Email: karyn.pageau@wakegov.com

AGENCY CONTACTS

C. City of Raleigh Public Utilities Department Oné Exchangé Plaza Suite 620 Raleigh, NC 27601 P.O.Box 590 Raleigh, NC 27602 Phone: 919-996-3245 Email: publicutilityinfo@raleighnc.gov

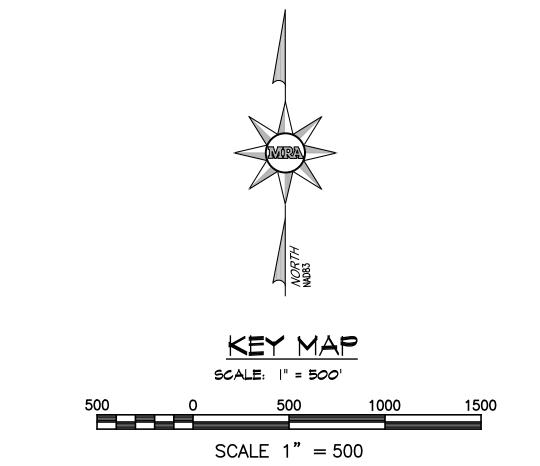
D. NCDOT Division 5, District | Office 4009 District Drive Raleiah, NC 27607 Contact: Amy Neidringhaus, District Engineer Phone: 919-733-3213

Email: anneidringhaus@ncdot.gov

STREET DATA

STREET C

STREET D


1,200 LF

2,368 LF 450 LF

743 LF

	Sheet List 7	T able	
Sheet Number	Sheet Title	Date	Revised Date
CO.0	COVER - REZONING	8/1/2022	9/30/2022
CO.I	EXISTING CONDITIONS	8/1/2022	9/30/2022
CI.O	OVERALL SITE PLAN	8/1/2022	9/30/2022
CI.I	SITE PLAN - SHEET I OF 6	8/01/2022	9/30/2022
CI.2	SITE PLAN - SHEET 2 OF 6	8/1/2022	9/30/2022
CI.3	SITE PLAN - SHEET 3 OF 6	8/1/2022	9/30/2022
CI.4	SITE PLAN - SHEET 4 OF 6	8/1/2022	9/30/2022
CI.5	SITE PLAN - SHEET 5 OF 6	8/1/2022	9/30/2022
CI.6	SITE PLAN - SHEET 6 OF 6	8/1/2022	9/30/2022
CI.7	OVERALL ZONING PLAN	8/1/2022	9/30/2022

|--|

9112	
OWNER	CHEN, PING 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519
SITE ADDRESS	4928 UNIVERSAL DR WAKE FOREST NC 27587-6356
PIN	17572778 , 1757375276, 1757375365, 1757375464, 1757375465, 1757375464, 1757375465, 1757375465, 1757375465, 1757385064, 1757384572, 17573688 6, 17573780 3, 175737809, 1757378303, 1757377990, 1757471559, 1757385349
DEED BOOK/PAGE/MAP	018953/00623/1757 01, 018953/00592/1757 01
CURRENT ZONING	R30
PROPOSED ZONING	RM, RH
MIN. LOT SIZE	5000 SQ FT (SINGLE FAMILY CLUSTER) 2000 SQ FT (TOWNHOMES)
LAND USE	RESIDENTIAL
PROPOSED DEVELOPMENT	149 UNITS 68 SINGLE FAMILY UNITS 81 TOWNHOUSE UNITS
TOTAL SITE AREA	93.23 ACRES
RESIDENTIAL HIGH DENSITY	32.15 ACRES (14.02 AC. + 18.12 AC (ADDITIONAL OPEN SPACE)
RESIDENTIAL MEDIUM DENSITY	61.08 ACRES

9.0 UNITS/AC(MAX) PROPOSED DENSITY 81/14.02 = 5.77 UNITS/AC (PROVIDED) SINGLE FAMILY (RM) 5.0 UNITS/AC (MAX) 68/61.08 = 1.11 UNITS/AC FLOOD PLAIN/ZONE FIRM PANEL NO WATERSHED PROTECTION 20' TOWNHOMES MINIMUM LOT WIDTH 40' SINGLE FAMILY (CLUSTER)

> 19.95 (PROVIDED) RESIDENTIAL MEDIUM DENSITY
> 9.70 (REQUIRED) 44.09 (PROVIDED) IMPROVED OPEN SPACES: REQUIRED: SMALL: I MEDIUM: 2 LARGE: 0

RESIDENTIAL HIGH DENSITY

SMALL: I MEDIUM: I 0.73 AC (TOTAL PROVIDED) I.OI AC (TOTAL PROVIDED) 13.79 AC (TOTAL PROVIDED) 2.0/DWELLING UNIT PLUS 0.25 GUEST SPACES/DWELLING UNIT 81 UNITS X 2.25 = 183 SPOTS

81 UNITS X I (DRIVEWAY) = 81 SPOTS PARKING LOTS = 116 SPOTS TOTAL PROVIDED = 197 SPOTS FRONT: 20' SETBACKS TOWNHOMES: SIDE: 10' REAR: 15' CORNER: 15'

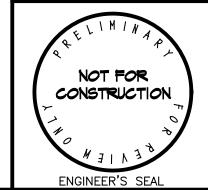
> SINGLE FAMILY: FRONT: 20' (CLUSTER) REAR: 20' CORNER: 10' (CLUSTER)

MIN. WIDTH BETWEEN

STRUCTURES: 30'

PROJECT TEAM

THE CSC GROUP LLC 10030 GREEN LEVEL CHURCH RD STE 802 ATTN: PING CHENG


LAND PLANNERS, MORRIS & RITCHIE ASSOCIATES OF NC, PC CIVIL ENGINEER: 5605 CHAPEL HILL ROAD, SUITE 112 RALEIGH, NC 27607

919-798-0429

ATTN: MR. JEREMY M KEENY, PE, PLS MORRIS & RITCHIE ASSOCIATES OF NC, PC. 5605 CHAPEL HILL ROAD, SUITE II2 RALEIGH, NC 27607

ATTN: MR. JEREMY M KEENY, PE, PLS MORRIS & RITCHIE ASSOCIATES OF NC, PC. 5605 CHAPEL HILL ROAD, SUITE II2 RALEIGH, NC 27607 ATTN: MR. JAMIE B. GUERRERO, PE, CPSWQ

FOR SITE PLAN REVIEW ONLY NOT FOR CONSTRUCTION PLAN IS SUBJECT TO REVISIONS DURING THE CONSTRUCTION APPROVAL PROCESS

COVER - REZONING

JONESVILLE ROAD

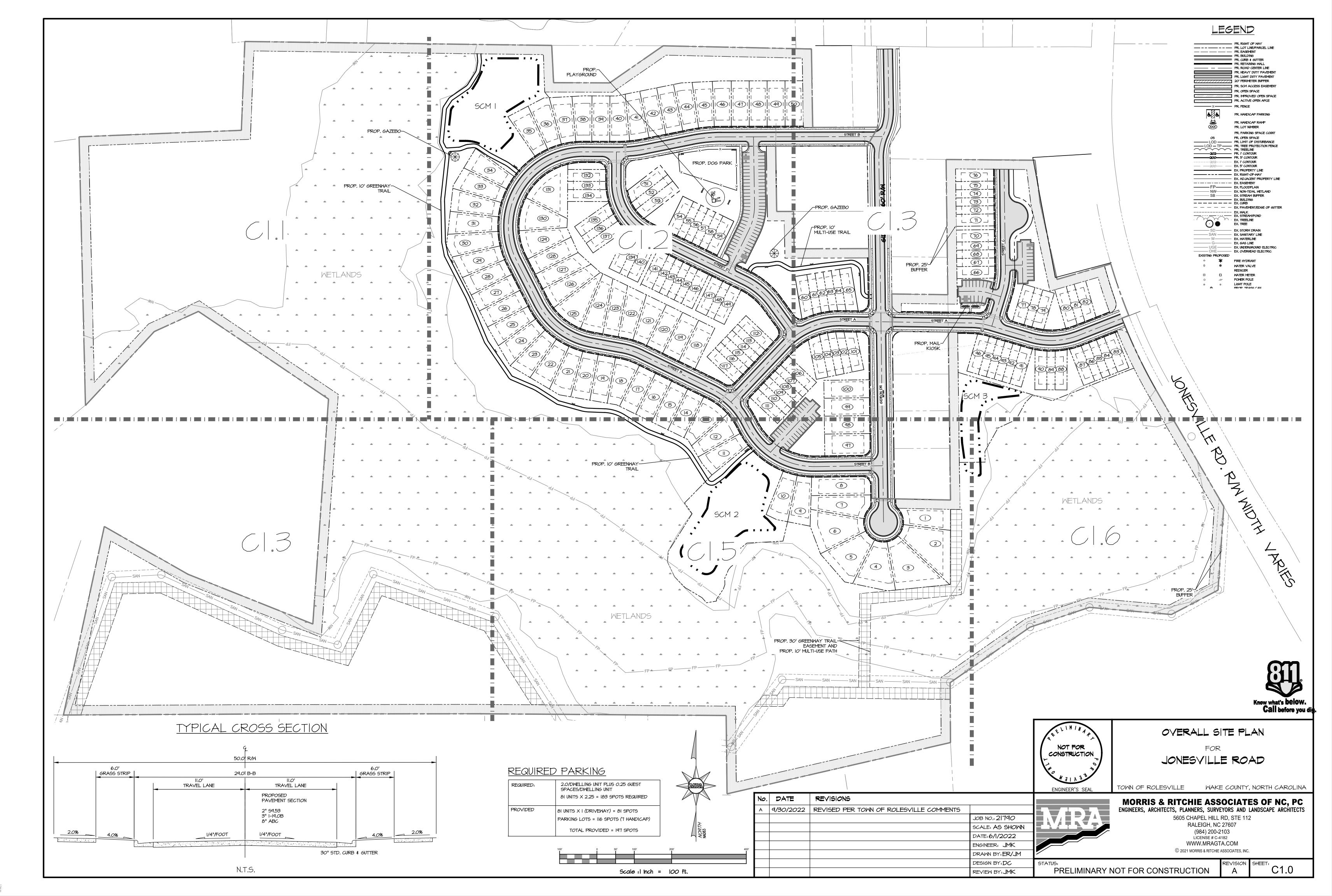
TOWN OF ROLESVILLE MAKE COUNTY, NORTH CAROLINA

JOB NO.: 21790 SCALE: AS SHOWN DATE: 6/1/2022

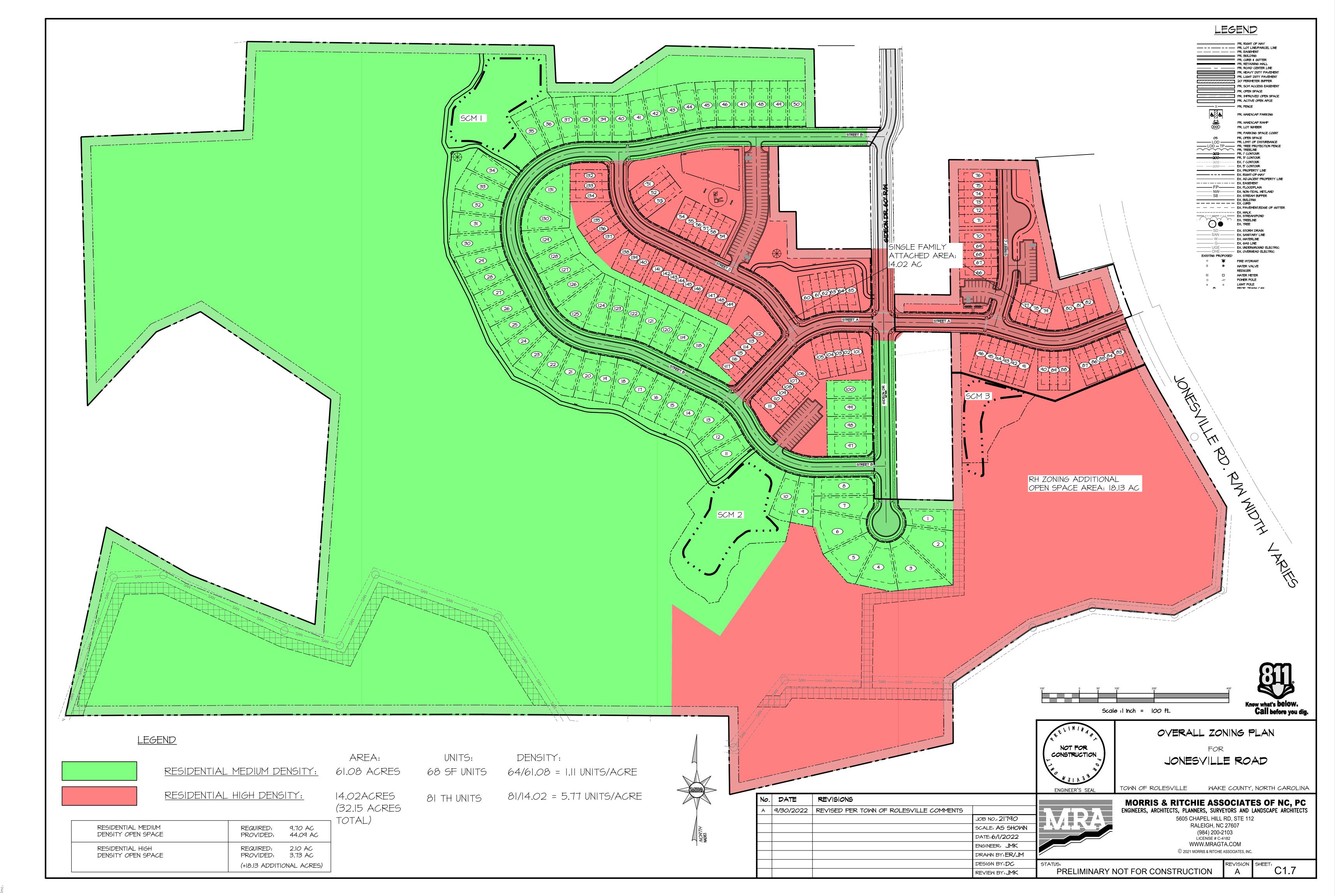
MORRIS & RITCHIE ASSOCIATES OF NC, PC ENGINEERS, ARCHITECTS, PLANNERS, SURVEYORS AND LANDSCAPE ARCHITECTS 5605 CHAPEL HILL RD, STE 112 RALEIGH, NC 27607 (984) 200-2103

LICENSE # C-4182 WWW.MRAGTA.COM © 2022 MORRIS & RITCHIE ASSOCIATES, INC.

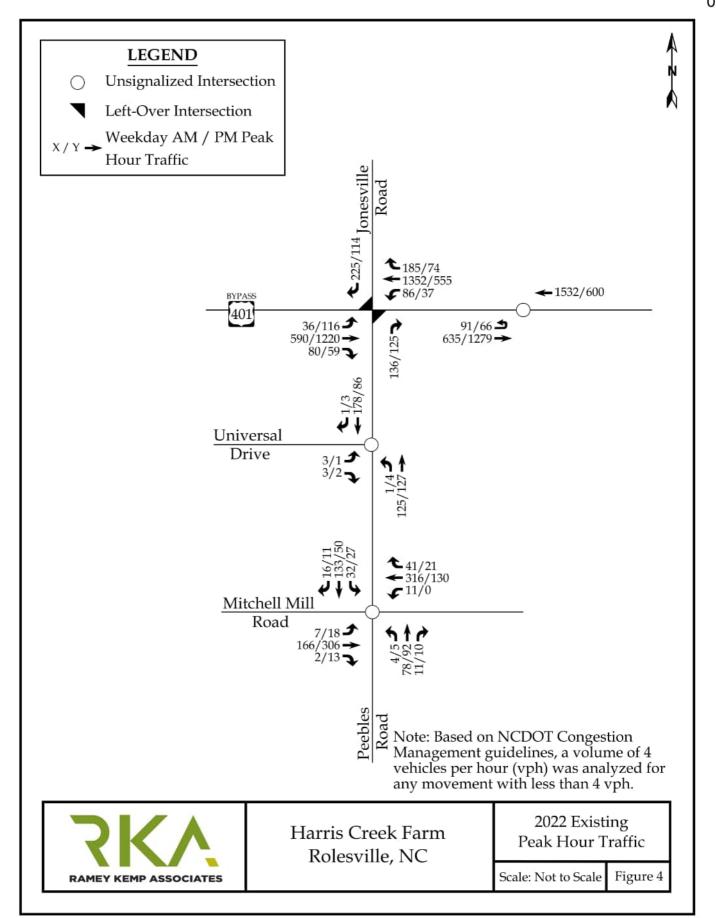
ENGINEER: JMK DRAWN BY: ER/JM DESIGN BY: DC REVIEW BY: JMK

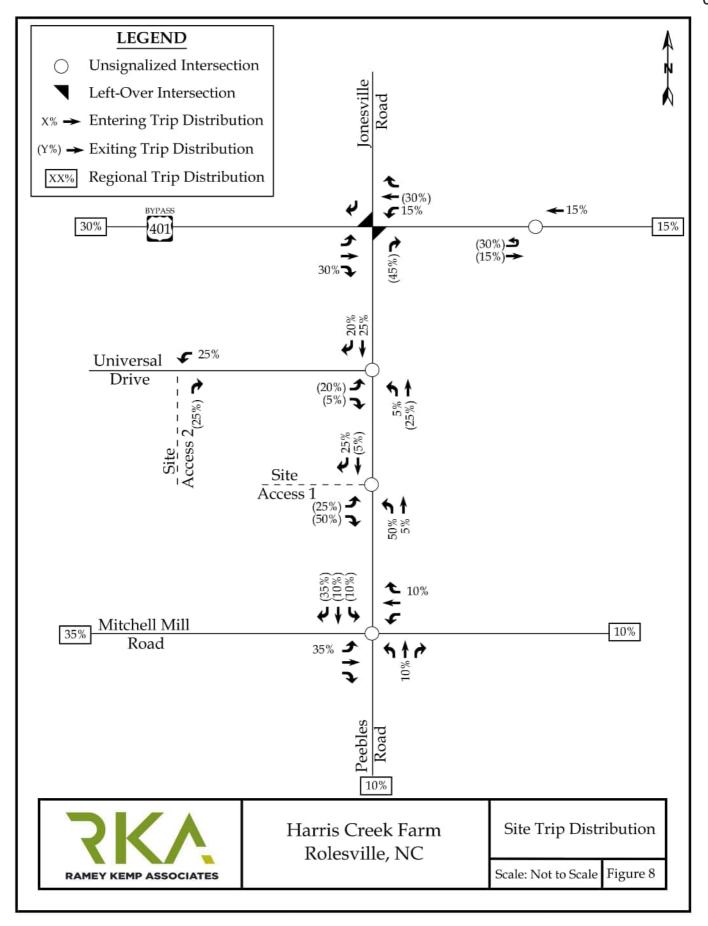

PRELIMINARY NOT FOR CONSTRUCTION

REVISIONS A 9/30/2022 REVISED PER TOWN OF ROLESVILLE COMMENTS


No. DATE

OPEN SPACE


PARKING



S:\PROJECTS\CY 2021\21790 - Jonesville Rd\20-LDE\10 Prelim\PLOT\C1-OVERALL SITE PLAN.dwg, 9/30/2022 2:46:28 PM,

S:\PROJECTS\CY 2021\21790 - Jonesville Rd\20-LDE\10 Prelim\PLOT\C1-0VERALL SITE PLAN.dwg, 9/30/2022 2:47:34 PM, Copyright 2022 h

APPENDIX B

TRAFFIC COUNTS

File Name: Rolesville(US 401 and Jonesville)AM Peak

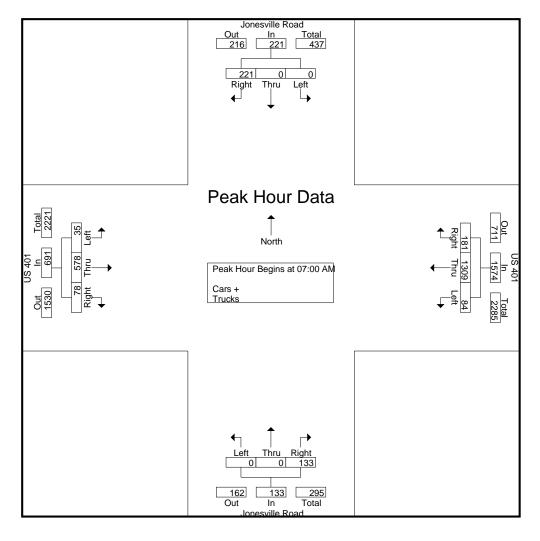
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

	Groups Printed- Cars + - Trucks													1			
		Jonesvil	lle Roa	d		US	401		Jonesville Road US 401								
		South	bound			West	bound		Northbound				Eastbound				
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00 AM	63	0	0	63	24	380	21	425	23	0	0	23	18	182	3	203	714
07:15 AM	42	0	0	42	39	362	24	425	37	0	0	37	11	125	7	143	647
07:30 AM	51	0	0	51	80	318	23	421	48	0	0	48	24	136	15	175	695
07:45 AM	65	0	0	65	38	249	16	303	25	0	0	25	25	135	10	170	563
Total	221	0	0	221	181	1309	84	1574	133	0	0	133	78	578	35	691	2619
08:00 AM	61	0	0	61	26	236	13	275	23	0	0	23	30	120	10	160	519
08:15 AM	36	0	0	36	12	233	9	254	16	0	0	16	13	94	9	116	422
08:30 AM	24	0	0	24	10	213	5	228	9	0	0	9	6	91	3	100	361
08:45 AM	28	0	0	28	9	145	5	159	10	0	0	10	11	85	2	98	295
Total	149	0	0	149	57	827	32	916	58	0	0	58	60	390	24	474	1597
Grand Total	370	0	0	370	238	2136	116	2490	191	0	0	191	138	968	59	1165	4216
Apprch %	100	0	0		9.6	85.8	4.7		100	0	0		11.8	83.1	5.1		
Total %	8.8	0	0	8.8	5.6	50.7	2.8	59.1	4.5	0	0	4.5	3.3	23	1.4	27.6	
Cars +	366	0	0	366	233	2094	114	2441	188	0	0	188	135	916	57	1108	4103
% Cars +	98.9	0	0	98.9	97.9	98	98.3	98	98.4	0	0	98.4	97.8	94.6	96.6	95.1	97.3
Trucks	4	0	0	4	5	42	2	49	3	0	0	3	3	52	2	57	113
% Trucks	1.1	0	0	1.1	2.1	2	1.7	2	1.6	0	0	1.6	2.2	5.4	3.4	4.9	2.7


File Name: Rolesville(US 401 and Jonesville)AM Peak

Site Code:

Start Date : 11/9/2021

Page No : 2

		Jonesvi	lle Roa	ıd	US 401				Jonesville Road				US 401				
		South	bound			Westbound				Northbound				Eastbound			
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 07:0	00 AM t	o 08:45 A	M - Pea	k 1 of 1											
Peak Hour for I	Entire In	tersecti	on Beg	ins at 07:	00 AM												
07:00 AM	63	0	0	63	24	380	21	425	23	0	0	23	18	182	3	203	714
07:15 AM	42	0	0	42	39	362	24	425	37	0	0	37	11	125	7	143	647
07:30 AM	51	0	0	51	80	318	23	421	48	0	0	48	24	136	15	175	695
07:45 AM	65	0	0	65	38	249	16	303	25	0	0	25	25	135	10	170	563
Total Volume	221	0	0	221	181	1309	84	1574	133	0	0	133	78	578	35	691	2619
% App. Total	100	0	0		11.5	83.2	5.3		100	0	0		11.3	83.6	5.1		
PHF	.850	.000	.000	.850	.566	.861	.875	.926	.693	.000	.000	.693	.780	.794	.583	.851	.917

File Name: Rolesville(US 401 and Jonesville)PM Peak

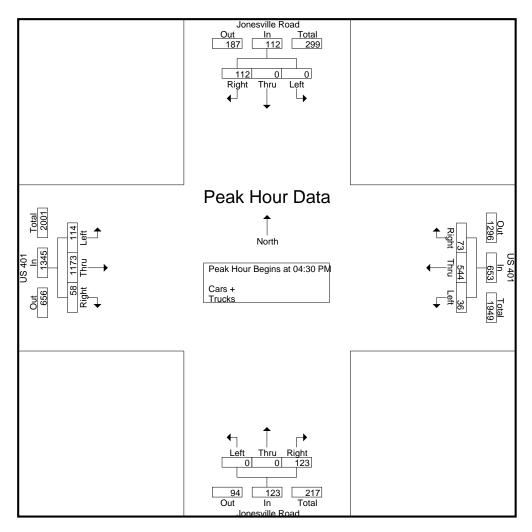
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

							roups r	<u>rintea- C</u>	<u>ars + - </u>	Trucks							,
		Jonesvi	lle Roa	ıd		US	401			Jonesvi	ille Roa	d		US	401		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	47	0	0	47	13	124	6	143	21	0	0	21	37	217	22	276	487
04:15 PM	34	0	0	34	13	119	6	138	26	0	0	26	15	231	20	266	464
04:30 PM	30	0	0	30	19	118	12	149	32	0	0	32	12	291	28	331	542
04:45 PM	15	0	0	15	22	137	6	165	32	0	0	32	8	303	30	341	553
Total	126	0	0	126	67	498	30	595	111	0	0	111	72	1042	100	1214	2046
05:00 PM	37	0	0	37	10	143	7	160	23	0	0	23	23	322	30	375	595
05:15 PM	30	0	0	30	22	146	11	179	36	0	0	36	15	257	26	298	543
05:30 PM	39	0	0	39	20	145	3	168	34	0	0	34	23	262	14	299	540
05:45 PM	24	0	0	24	10	112	9	131	22	0	0	22	11	227	21	259	436
Total	130	0	0	130	62	546	30	638	115	0	0	115	72	1068	91	1231	2114
Grand Total	256	0	0	256	129	1044	60	1233	226	0	0	226	144	2110	191	2445	4160
Apprch %	100	0	0		10.5	84.7	4.9		100	0	0		5.9	86.3	7.8		
Total %	6.2	0	0	6.2	3.1	25.1	1.4	29.6	5.4	0	0	5.4	3.5	50.7	4.6	58.8	
Cars +	252	0	0	252	127	1020	60	1207	223	0	0	223	142	2051	191	2384	4066
<u> % Cars +</u>	98.4	0	0	98.4	98.4	97.7	100	97.9	98.7	0	0	98.7	98.6	97.2	100	97.5	97.7
Trucks	4	0	0	4	2	24	0	26	3	0	0	3	2	59	0	61	94
% Trucks	1.6	0	0	1.6	1.6	2.3	0	2.1	1.3	0	0	1.3	1.4	2.8	0	2.5	2.3



File Name: Rolesville(US 401 and Jonesville)PM Peak

Site Code:

Start Date : 11/9/2021

		Jonesvi	lle Roa	d		US	401			Jonesvi	ille Roa	d		US	401]
		South	bound			West	bound			North	bound			Eastl	oound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 04:0	0 PM to	o 05:45 P	M - Pea	k 1 of 1			Ţ				J				
Peak Hour for I	Entire In	tersection	on Beg	ins at 04:	30 PM												
04:30 PM	30	0	0	30	19	118	12	149	32	0	0	32	12	291	28	331	542
04:45 PM	15	0	0	15	22	137	6	165	32	0	0	32	8	303	30	341	553
05:00 PM	37	0	0	37	10	143	7	160	23	0	0	23	23	322	30	375	595
05:15 PM	30	0	0	30	22	146	11_	179	36	0	0	36	15	257	26	298	543
Total Volume	112	0	0	112	73	544	36	653	123	0	0	123	58	1173	114	1345	2233
% App. Total	100	0	0		11.2	83.3	5.5		100	0	0		4.3	87.2	8.5		
PHF	.757	.000	.000	.757	.830	.932	.750	.912	.854	.000	.000	.854	.630	.911	.950	.897	.938

TRAFFIC DATA COLLECTION

File Name: Rolesville(US 401 and Eastern U Turn)AM Peak

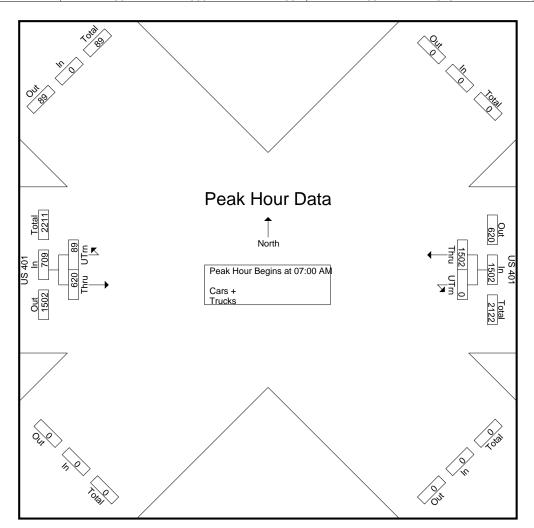
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

		Gr	<u>oups Printed- Cars</u>	+ - Trucks			
		US 401			US 401		
		Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
07:00 AM	421	0	421	198	12	210	631
07:15 AM	410	0	410	136	24	160	570
07:30 AM	392	0	392	149	36	185	577
07:45 AM	279	0	279	137	17	154	433
Total	1502	0	1502	620	89	709	2211
08:00 AM	253	0	253	130	20	150	403
08:15 AM	243	0	243	98	13	111	354
08:30 AM	223	0	223	94	7	101	324
08:45 AM	147	0	147	85	9	94	241
Total	866	0	866	407	49	456	1322
Grand Total	2368	0	2368	1027	138	1165	3533
Apprch %	100	0		88.2	11.8		
Total %	67	0	67	29.1	3.9	33	
Cars +	2318	0	2318	973	136	1109	3427
% Cars +	97.9	0	97.9	94.7	98.6	95.2	97
Trucks	50	0	50	54	2	56	106
% Trucks	2.1	0	2.1	5.3	1.4	4.8	3



File Name: Rolesville(US 401 and Eastern U Turn)AM Peak

Site Code:

Start Date : 11/9/2021

		US 401			US 401		
		Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
Peak Hour Analysis From 07:00	O AM to 08:45 AM	- Peak 1 of 1					
Peak Hour for Entire Intersection	n Begins at 07:00	AM					
07:00 AM	421	0	421	198	12	210	631
07:15 AM	410	0	410	136	24	160	570
07:30 AM	392	0	392	149	36	185	577
07:45 AM	279	0	279	137	17	154	433
Total Volume	1502	0	1502	620	89	709	2211
% App. Total	100	0		87.4	12.6		
PHF	.892	.000	.892	.783	.618	.844	.876

File Name: Rolesville(US 401 and Eastern U Turn)PM Peak

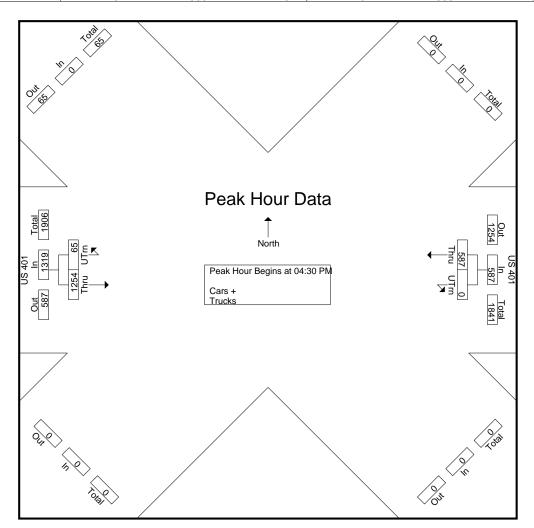
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

		Gro	oups Printed- Cars	+ - Trucks			
		US 401			US 401		
		Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
04:00 PM	130	0	130	240	12	252	382
04:15 PM	128	0	128	237	15	252	380
04:30 PM	129	0	129	311	19	330	459
04:45 PM	149	0	149	317	19	336	485
Total	536	0	536	1105	65	1170	1706
05:00 PM	149	0	149	342	8	350	499
05:15 PM	160	0	160	284	19	303	463
05:30 PM	161	0	161	273	22	295	456
05:45 PM	120	0	120	235	12	247	367
Total	590	0	590	1134	61	1195	1785
Grand Total	1126	0	1126	2239	126	2365	3491
Apprch %	100	0		94.7	5.3		
Total %	32.3	0	32.3	64.1	3.6	67.7	
Cars +	1101	0	1101	2175	125	2300	3401
% Cars +	97.8	0	97.8	97.1	99.2	97.3	97.4
Trucks	25	0	25	64	1	65	90
% Trucks	2.2	0	2.2	2.9	0.8	2.7	2.6


ATTIC DATA COLLECTION

File Name: Rolesville(US 401 and Eastern U Turn)PM Peak

Site Code:

Start Date : 11/9/2021

		US 401			US 401		
		Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
Peak Hour Analysis From 04:00	PM to 05:45 PM	- Peak 1 of 1					
Peak Hour for Entire Intersection	n Begins at 04:30	PM					
04:30 PM	129	0	129	311	19	330	459
04:45 PM	149	0	149	317	19	336	485
05:00 PM	149	0	149	342	8	350	499
05:15 PM	160	0	160	284	19	303	463
Total Volume	587	0	587	1254	65	1319	1906
% App. Total	100	0		95.1	4.9		
PHF	.917	.000	.917	.917	.855	.942	.955

File Name: Rolesville(Jonesville and Mitchell Mill)AM Peak

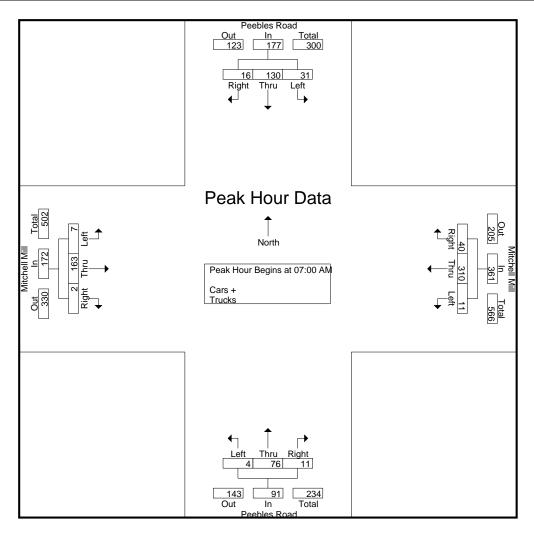
Site Code:

Start Date : 11/30/2021

Page No : 1

Groups Printed- Cars + - Trucks

						G	roups F	<u> Printed- C</u>	ars + -	<u> Trucks</u>							
		Peeble	s Road	t		Mitch	ell Mill			Peeble	s Road	t		Mitch	ell Mill		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00 AM	4	17	13	34	8	73	5	86	6	11	3	20	0	74	1	75	215
07:15 AM	4	36	7	47	8	101	2	111	3	26	1	30	0	32	1	33	221
07:30 AM	6	34	5	45	16	87	3	106	0	24	0	24	1	33	1	35	210
07:45 AM	2	43	6	51	8	49	1	58	2	15	0	17	1	24	4	29	155
Total	16	130	31	177	40	310	11	361	11	76	4	91	2	163	7	172	801
08:00 AM	7	31	12	50	4	53	1	58	1	8	2	11	0	28	3	31	150
08:15 AM	12	17	3	32	1	37	1	39	1	7	0	8	1	24	1	26	105
08:30 AM	6	4	2	12	3	49	2	54	1	4	2	7	0	19	0	19	92
08:45 AM	1	13	3	17	4	32	1	37	1	3	1	5	1	18	2	21	80
Total	26	65	20	111	12	171	5	188	4	22	5	31	2	89	6	97	427
Grand Total	42	195	51	288	52	481	16	549	15	98	9	122	4	252	13	269	1228
Apprch %	14.6	67.7	17.7		9.5	87.6	2.9		12.3	80.3	7.4		1.5	93.7	4.8		
Total %	3.4	15.9	4.2	23.5	4.2	39.2	1.3	44.7	1.2	8	0.7	9.9	0.3	20.5	1.1	21.9	
Cars +	42	195	50	287	52	479	16	547	15	98	9	122	4	249	13	266	1222
% Cars +	100	100	98	99.7	100	99.6	100	99.6	100	100	100	100	100	98.8	100	98.9	99.5
Trucks	0	0	1	1	0	2	0	2	0	0	0	0	0	3	0	3	6
% Trucks	0	0	2	0.3	0	0.4	0	0.4	0	0	0	0	0	1.2	0	1.1	0.5


TRAFFIC DATA COLLECTION

File Name: Rolesville(Jonesville and Mitchell Mill)AM Peak

Site Code:

Start Date : 11/30/2021

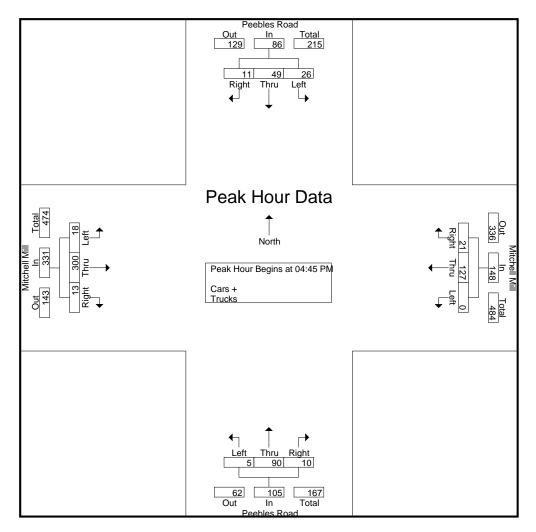
		Peeble	s Road	k	Mitchell Mill					Peeble	s Road	I		Mitch	ell Mill		
		South	bound			Westl	bound			North	bound			Easth	oound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 07:0	00 AM t	o 08:45 A	M - Pea	k 1 of 1			_				_				
Peak Hour for I	Entire In	tersecti	on Beg	ins at 07:	00 AM												
07:00 AM	4	17	13	34	8	73	5	86	6	11	3	20	0	74	1	75	215
07:15 AM	4	36	7	47	8	101	2	111	3	26	1	30	0	32	1	33	221
07:30 AM	6	34	5	45	16	87	3	106	0	24	0	24	1	33	1	35	210
07:45 AM	2	43	6	51	8	49	1	58	2	15	0	17	1	24	4	29	155
Total Volume	16	130	31	177	40	310	11	361	11	76	4	91	2	163	7	172	801
% App. Total	9	73.4	17.5		11.1	85.9	3		12.1	83.5	4.4		1.2	94.8	4.1		
PHF	.667	.756	.596	.868	.625	.767	.550	.813	.458	.731	.333	.758	.500	.551	.438	.573	.906

File Name: Rolesville(Jonesville and Mitchell Mill)PM Peak

Site Code:

Start Date : 11/30/2021

						G	roups F	<u> Printed- C</u>	ars + -	Trucks							
		Peeble	s Road	d		Mitch	ell Mill			Peeble	s Road	d		Mitch	ell Mill		
		South	bound			West	bound			North	bound			Eastl	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	7	11	13	31	6	25	1	32	1	14	1	16	2	44	6	52	131
04:15 PM	6	11	4	21	2	27	2	31	1	17	3	21	1	62	4	67	140
04:30 PM	3	13	3	19	4	30	2	36	0	27	1	28	3	64	3	70	153
04:45 PM	2	8	5	15	4	37	0	41	3	18	0	21	3	71	3	77	154
Total	18	43	25	86	16	119	5	140	5	76	5	86	9	241	16	266	578
05:00 PM	1	15	6	22	5	31	0	36	3	19	2	24	1	78	5	84	166
05:15 PM	3	15	6	24	4	23	0	27	3	26	1	30	4	89	7	100	181
05:30 PM	5	11	9	25	8	36	0	44	1	27	2	30	5	62	3	70	169
05:45 PM	1	7	4	12	2	21	1	24	2	13	2	17	4	55	6	65	118
Total	10	48	25	83	19	111	1	131	9	85	7	101	14	284	21	319	634
Grand Total	28	91	50	169	35	230	6	271	14	161	12	187	23	525	37	585	1212
Apprch %	16.6	53.8	29.6		12.9	84.9	2.2		7.5	86.1	6.4		3.9	89.7	6.3		
Total %	2.3	7.5	4.1	13.9	2.9	19	0.5	22.4	1.2	13.3	1_	15.4	1.9	43.3	3.1	48.3	
Cars +	28	91	50	169	35	229	6	270	14	161	12	187	23	524	37	584	1210
<u> % Cars +</u>	100	100	100	100	100	99.6	100	99.6	100	100	100	100	100	99.8	100	99.8	99.8
Trucks	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	2
% Trucks	0	0	0	0	0	0.4	0	0.4	0	0	0	0	0	0.2	0	0.2	0.2


TRAFFIC DATA COLLECTION

File Name: Rolesville(Jonesville and Mitchell Mill)PM Peak

Site Code:

Start Date : 11/30/2021

		Peeble	s Road	t		Mitch	ell Mill			Peeble	s Road			Mitch	ell Mill		
		South	bound			West	bound			North	bound			Eastl	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	ılysis Fro	om 04:0	0 PM t	o 05:45 P	M - Pea	k 1 of 1			_				_				
Peak Hour for I	Entire In	tersecti	on Beg	ins at 04:	45 PM												
04:45 PM	2	8	5	15	4	37	0	41	3	18	0	21	3	71	3	77	154
05:00 PM	1	15	6	22	5	31	0	36	3	19	2	24	1	78	5	84	166
05:15 PM	3	15	6	24	4	23	0	27	3	26	1	30	4	89	7	100	181
05:30 PM	5	11	9	25	8	36	0	44	1	27	2	30	5	62	3	70	169
Total Volume	11	49	26	86	21	127	0	148	10	90	5	105	13	300	18	331	670
% App. Total	12.8	57	30.2		14.2	85.8	0		9.5	85.7	4.8		3.9	90.6	5.4		
PHF	.550	.817	.722	.860	.656	.858	.000	.841	.833	.833	.625	.875	.650	.843	.643	.828	.925

APPENDIX C

ADJACENT DEVELOPMENT INFORMATION

TRAFFIC IMPACT ANALYSIS

FOR

COBBLESTONE CROSSING MIXED-USE

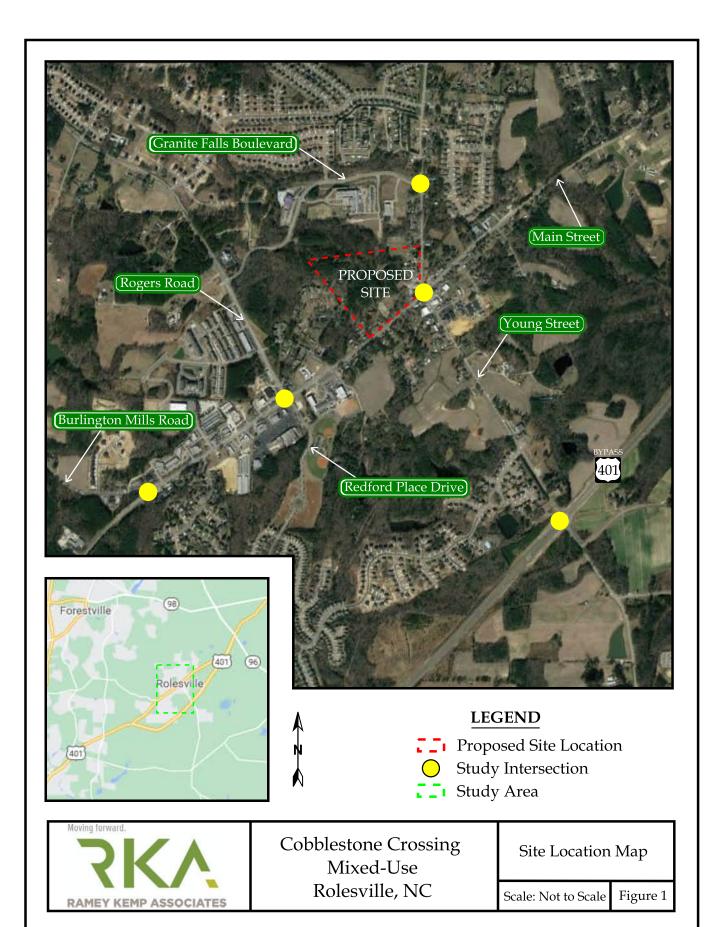
LOCATED

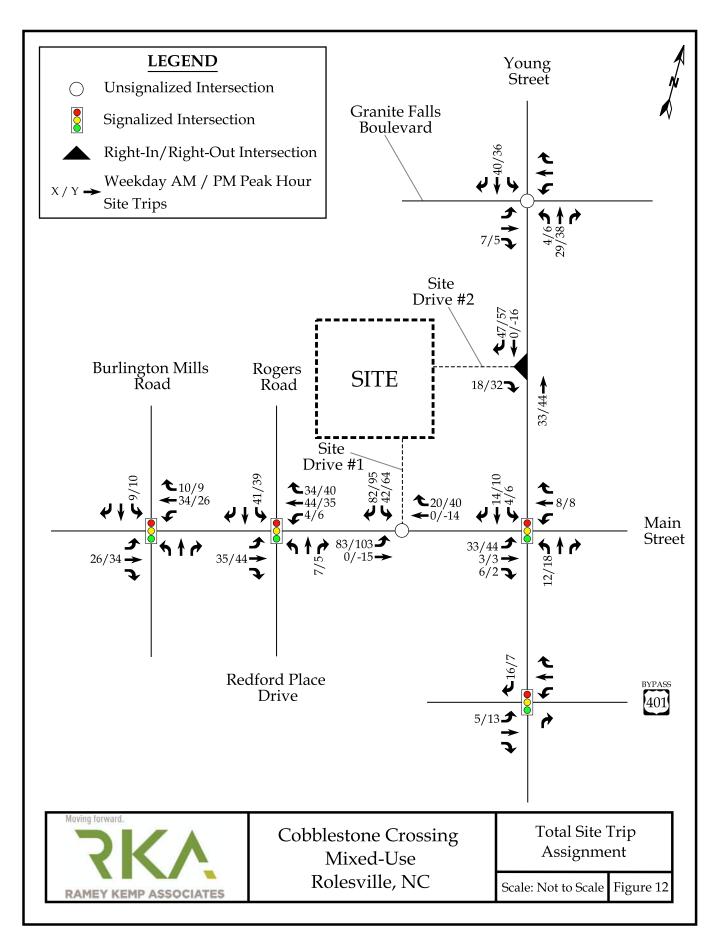
IN

ROLESVILLE, NORTH CAROLINA

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By:
Ramey Kemp & Associates, Inc.
5808 Faringdon Place, Suite 100
Raleigh, NC 27609
License #C-0910


3-15-2021


MARCH 2021

RKA Project No. 20498

Prepared By: TF

Reviewed By: MK

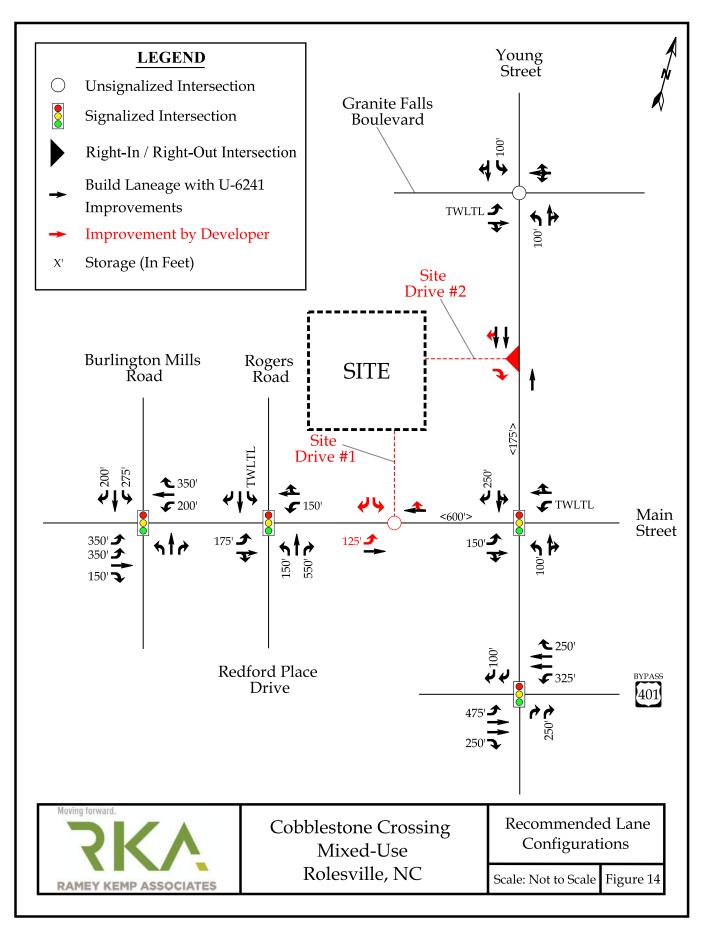
9. RECOMMENDATIONS

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configuration for the proposed development.

Improvements by STIP U-6241

STIP U-6241 is expected to realign Burlington Mills Road and install a traffic signal at the relocated intersection on Main Street. STIP U-6241 is also expected to provide improvements to the pedestrian and bike facilities along Main Street and add a concrete median island along Main Street west of Rogers Road. These improvements associated with STIP U-6241 will alter the existing lane configurations at the study intersections along Main Street.

Recommended Improvements by Developer


Main Street and Site Drive 1

- Construct the southbound approach with one ingress and two egress lanes.
- Provide stop control for the southbound approach.
- Install an eastbound left-turn lane with at least 125 feet of storage and appropriate decel and taper.

Young Street and Site Drive 2

- Construct the eastbound approach with one ingress and egress lane.
- Provide stop control for the eastbound approach.

Revised Traffic Impact Analysis for

Young Street PUD

Rolesville, North Carolina

Prepared for:

Ashton Woods Raleigh, North Carolina

Prepared by:

Kimley-Horn and Associates, Inc. NC License #F-0102 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000

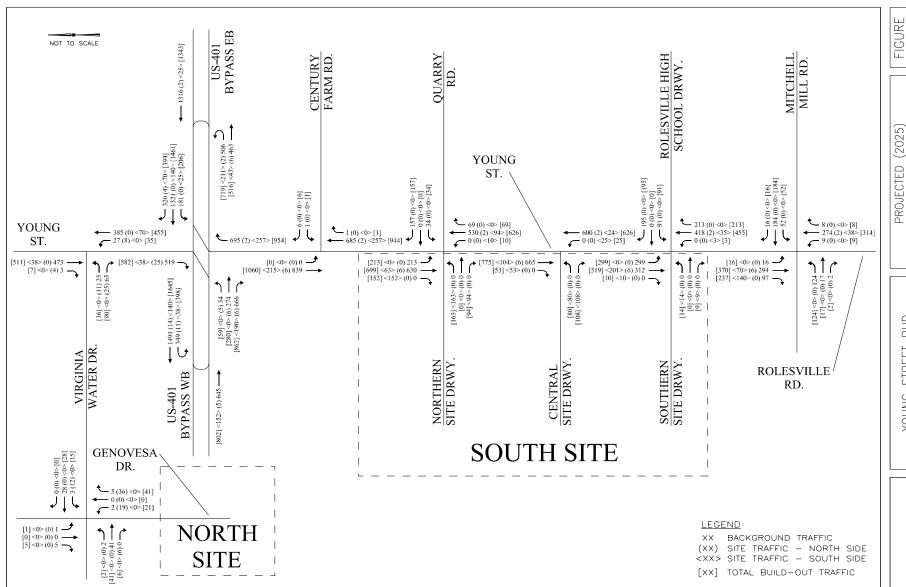

> June 2019 015956012

Docustomed by:

034394

034394

Fellow Francisco

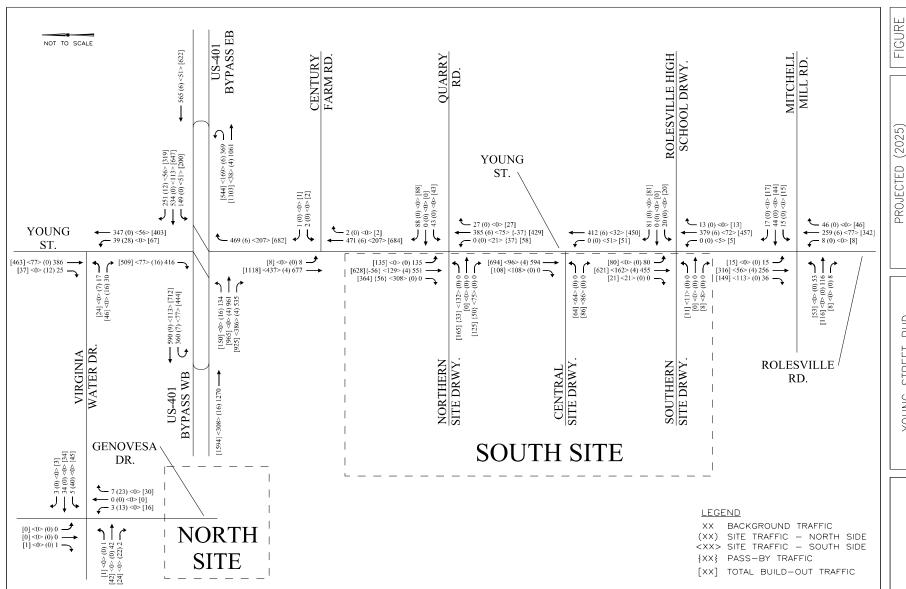


Kimley»Horn

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

SITE LOCATION

FIGURE 1



T PUD BUILD—OUT AM PEAK HOUR NC TRAFFIC VOLUMES – ANALYSIS COMMERCIAL BUILD—OUT

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley» Horn

THIS DOCUMENT, TOGETHER WITH THE CONCEPTS, AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPAR RELANCE ON THIS DOCUMENT WITHOUT WRITEN AUTHORIZATION AND ASSOCIATES, INC. SHALL BE WITHOUT LUBULITY TO KIMLEY-HORN AND ASSOCIATES, INC.

PROJECTED (2025)
BUILD-OUT PM PEAK HOUR
TRAFFIC VOLUMES COMMERCIAL BUILD-OUT

9

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley.» Horn

THIS DOCUMENT, TOGETHER WITH THE CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPAR. RELAKCE ON THIS DOCUMENT WITHOUT WRITTEN AUTHORIZATION AND ASSOCIATES, INC. SHALL BE WITHOUT LUBGLITY TO KIMLEY-HORN AND ASSOCIATES, INC.

7.0 Recommendations

Residential Build-out

The following improvements are recommended to be performed to accommodate projected site traffic volumes at build-out of the residential portion of the development:

US 401 Bypass:

 Coordinate the traffic signals at the intersections of US 401 at Young Street and the Superstreet U-turns

Young Street at Quarry Road/North Site Driveway:

- Construct a northbound left-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Construct a southbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Restripe the existing westbound left-turn lane on Quarry Road to a shared left/through lane
- Provide an exclusive left-turn lane with 275 feet of storage and appropriate tapers and a shared through/right lane on the North Site Driveway
- Install a traffic signal when warranted

Young Street at Central Site Driveway:

- Construct a northbound left-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Construct a southbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Provide exclusive left and right-turn lanes on the Central Site Driveway with 125 feet of storage and appropriate tapers for the left-turn lane

Young Street at Rolesville High School Driveway/South Site Driveway:

- Construct a northbound left-turn lane on Young Street with 50 feet of storage and appropriate tapers
- Provide one egress lane on the South Site Driveway

Rolesville Road at Mitchell Mill Road:

• Install a traffic signal when warranted

Analyses indicate that with the recommended improvements in place, all of the study intersections except for Young Street at Century Farm Road and Young Street at Rolesville High School Driveway/South Site Driveway are expected to operate at an acceptable LOS at build-out of the residential-only phase of the development.

Kimley » Horn

Analyses indicate that the intersection of Young Street at Century Farm Road is expected to operate with long delays on the minor street approach (Century Farm Road) in the AM peak hour at project build-out. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic traffic simulations indicate that no queuing issues are expected at this intersection.

Analyses indicate that the intersection of Young Street at the Rolesville High School Driveway/South Site Driveway is expected to operate with long delays on the minor street approach (Rolesville High School Driveway) in the AM peak hour and school PM peak hour with or without the proposed project in place in the study year 2025. SimTraffic traffic simulations also indicate the possibility of long queues on the westbound left-turn movement at this intersection in the AM peak hour and school PM peak hour. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. This intersection is not expected to meet 4-hour or 8-hour MUTCD traffic signal warrants.

Commercial Build-out

The following additional improvements are recommended to be performed in addition to those recommended above for the residential phase to accommodate projected site traffic volumes when the retail portion of the site is developed:

US 401 Bypass Eastbound at Young Street:

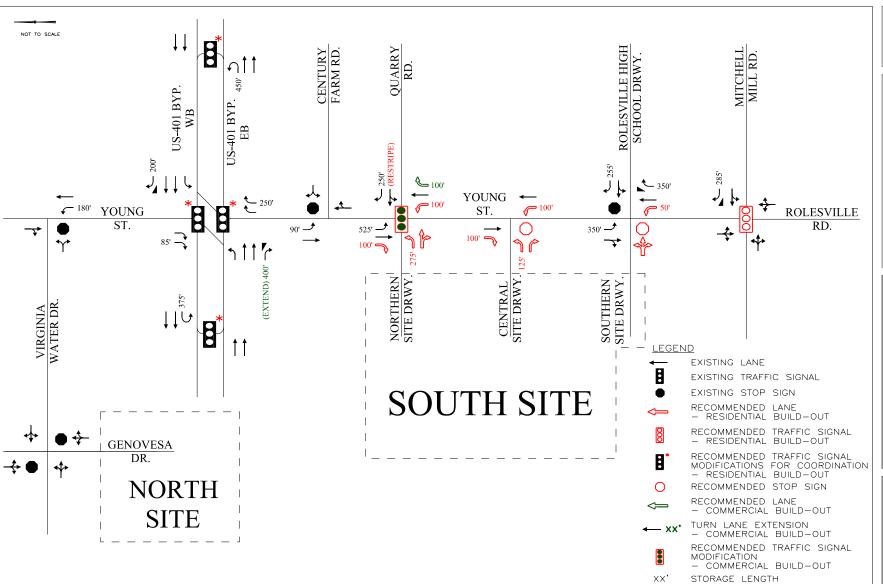
• Extend the storage of the existing eastbound right-turn lane on US 401 Bypass by approximately 175 feet to provide 400 feet of storage and appropriate tapers

Young Street at Quarry Road/North Site Driveway:

- Construct a northbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Modify the traffic signal to accommodate the additional laneage

Analyses indicate that with the recommended improvements in place, all of the study intersections except for Young Street at Century Farm Road, Young Street at the Central Site Driveway, and Young Street at Rolesville High School Driveway/South Site Driveway are expected to operate at acceptable LOS at commercial build-out of the development.

Analyses indicate that the intersection of Young Street at Century Farm Road is expected to operate with long delays on the minor street approach (Century Farm Road) in the AM peak hour at project build-out. It is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic


traffic simulations indicate that short queues are likely on the minor street approach in the AM peak hour at commercial build-out.

Analyses indicate that the intersection of Young Street at the Central Site Driveway is expected to operate with long delays on the minor street approach (Central Site Driveway) in the AM peak hour in the commercial build-out traffic condition. It is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic traffic simulations indicate the possibility of long queues on the eastbound left-turn movement at this intersection in the AM peak hour in the commercial build-out condition.

Analyses indicate that the intersection of Young Street at the Rolesville High School Driveway/South Site Driveway is expected to operate with long delays on the minor street approach (Rolesville High School Driveway) in the AM peak hour and school PM peak hour with or without the proposed project in place in the study year 2025. SimTraffic traffic simulations also indicate the possibility of long queues on the westbound left-turn movement at this intersection in the AM peak hour and school PM peak hour. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. This intersection is not expected to meet 4-hour or 8-hour MUTCD traffic signal warrants.

As shown in the analysis, the impact of site traffic associated with the commercial build-out of this proposed PUD is generally consistent with the currently-approved PUD for the site. The proposed PUD is expected to generate no more than 50 additional peak hour trips in each of the studied peak hours compared to the approved PUD, and delays at commercial build-out of both plans are generally consistent at each of the study intersections.

The recommended laneage for the development is shown on **Figure 17**.

FIGURE

RECOMMENDED ROADWAY LANEAGE

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley» Horn

AND DESIGNS PRESENTED HERBIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE, AND CLIENT FOR WHICH IT AUTHORIZATION AND ADAPTATION BY KMALEY-HORN AND ASSOCIATES, INC. SHALL BE WITHOUT LABILITY TO KMALEY-HORN AND ASSOCIATES, INC. THIS DOCUMENT, TOGETHER WITH THE CONCEPTS RELIANCE ON THIS DOCUMENT WITHOUT WRITTEN

TRAFFIC IMPACT ANALYSIS

FOR

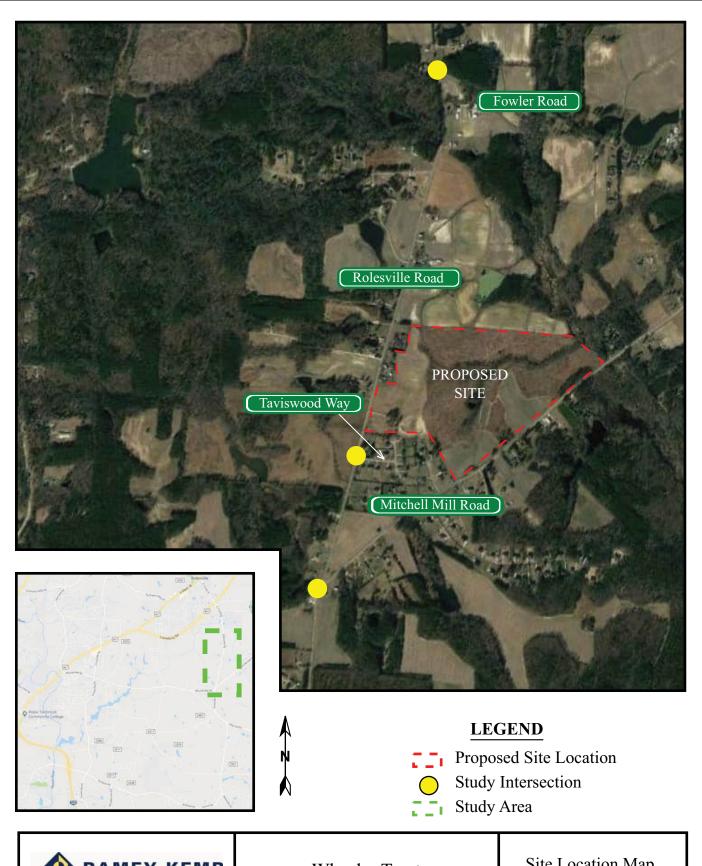
WHEELER TRACT

LOCATED

IN

ROLESVILLE, NC

Prepared For: Hopper Communities 173 Paraggi Court Clayton, NC 27527

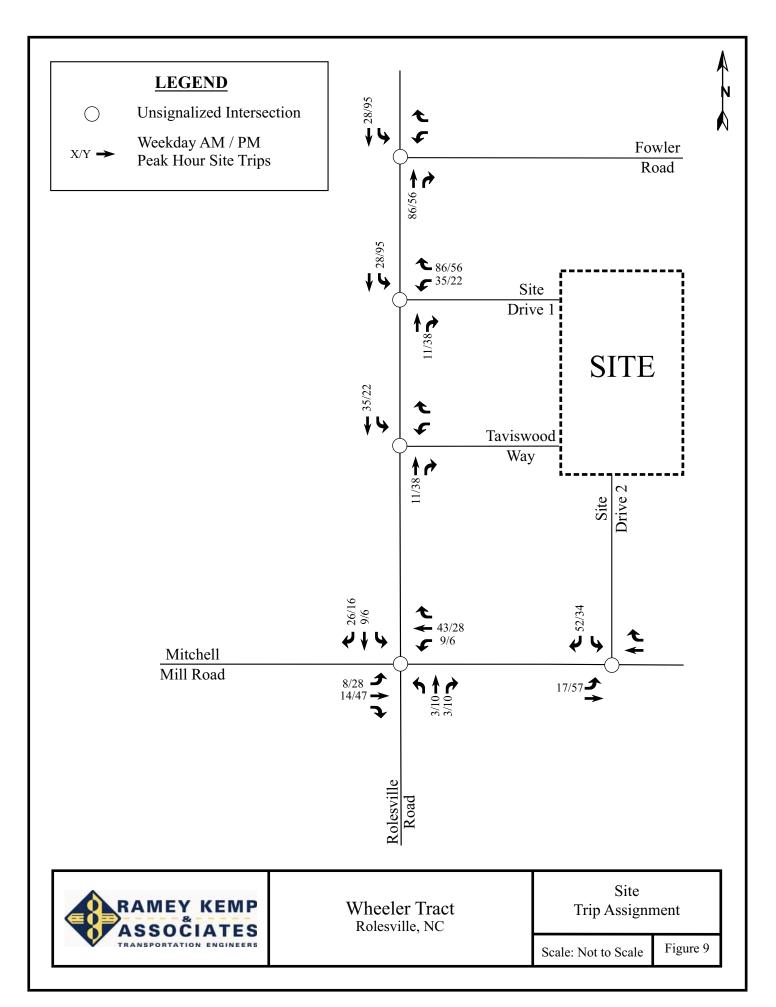

Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910

June 2019

CAROLLESSIONES SEAL TO SEAL TO

Prepared By: CAB

Reviewed By: JTR



Wheeler Tract Rolesville, NC

Site Location Map

Scale: Not to Scale

Figure 1

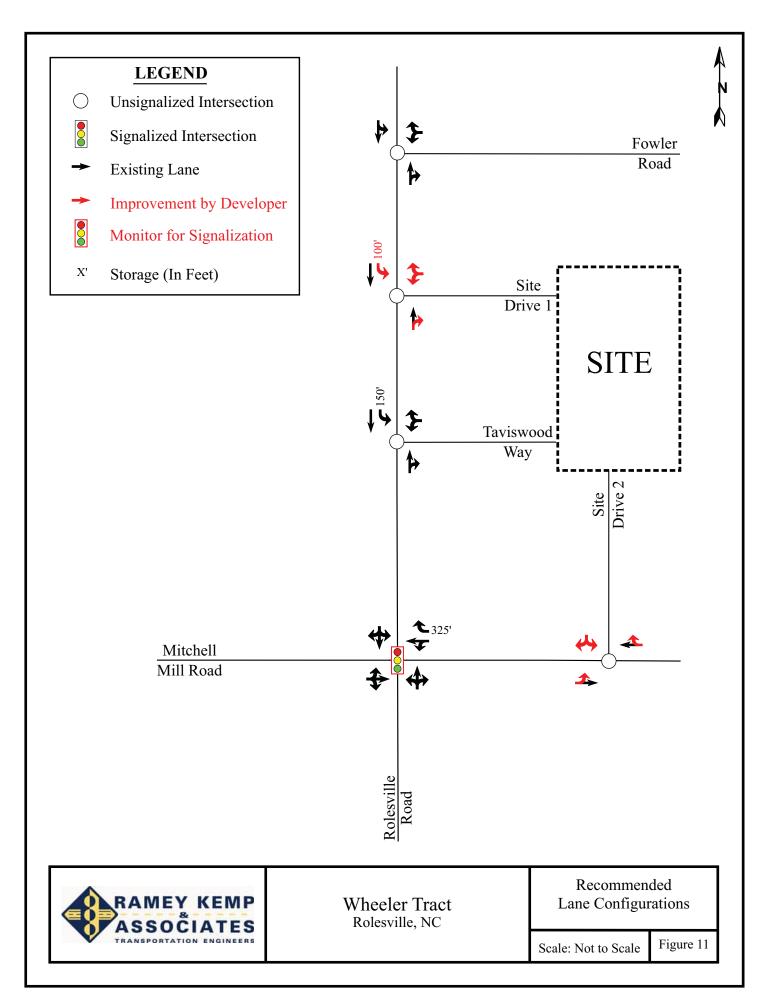
9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 11 for an illustration of the recommended lane configuration for the proposed development.

Recommended Improvements by Developer

Rolesville Road and Mitchell Mill Road

• Monitor intersection for signalization.


Rolesville Road and Site Drive 1

- Provide site access via a full movement intersection with one ingress lane and one egress lane.
- Provide stop control for westbound Site Drive 1 approach.
- Provide a designated southbound left-turn lane with at least 100 feet of storage and appropriate deceleration and taper.

Mitchell Mill Road and Site Drive 2

- Provide site access via a full movement intersection with one ingress lane and one egress lane.
- Provide stop control for southbound Site Drive 2 approach.

TRAFFIC IMPACT ANALYSIS

FOR

LOUISBURY ROAD ASSEMBLAGE

LOCATED

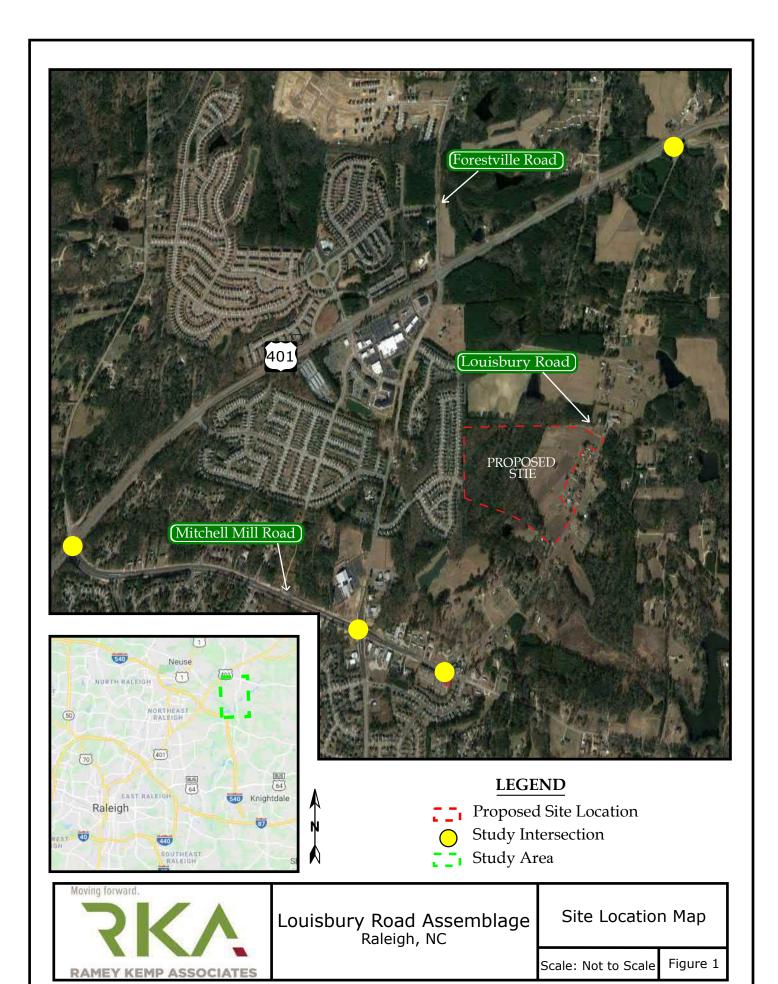
IN

RALEIGH, NC

Prepared For: McAdams Company 2905 Meridian Parkway Durham, NC 27713

Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910

May 2020


Prepared By: <u>DT</u>

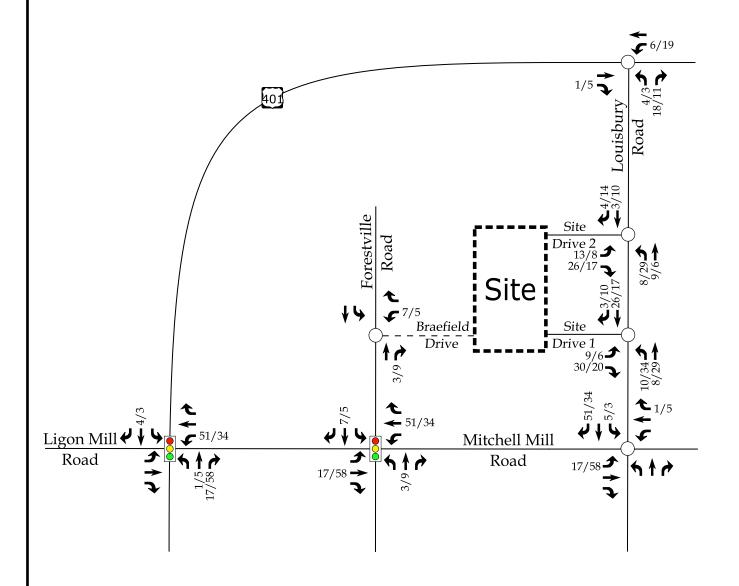
andrew Kyle Ritta

047058

5/8/2020

Reviewed By: <u>DR</u>

LEGEND


Unsignalized Intersection

Signalized Intersection

X / Y → Weekday AM / PM Peak Hour Site Trips

RAMEY KEMP ASSOCIATES

Moving forward.

Louisbury Road Assemblage Raleigh, NC Site Trip Assignment

Scale: Not to Scale

Figure 7

12. RECOMMENDATIONS

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 9 for an illustration of the recommended lane configuration for the proposed development.

Recommended Improvements by Developer

Mitchell Mill Road and Louisbury Road

• Monitor for signalization after site is constructed.

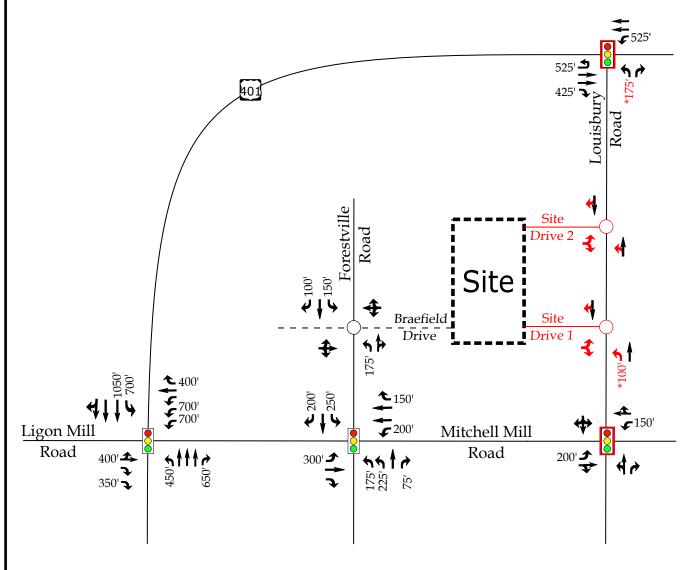
US 401 and Louisbury Road

- Per NCDOT, extend northbound left turn lane to 175' of storage.
- Monitor for signalization after site is constructed.

Louisbury Road and Site Drive 1

- Provide site access via full movement intersection with one (1) ingress lane and one (1) egress lane.
- Per NCDOT, provide northbound left turn lane with 100' of storage.
- Provide stop control for eastbound approach.

Louisbury Road and Site Drive 2


- Provide site access via full movement intersection with one (1) ingress lane and one (1) egress lane.
- Provide stop control for eastbound approach.

LEGEND

- Unsignalized Intersection
- Signalized Intersection
- Monitor for Signalization at Full Build-Out
- → Existing Lane
- → Improvement by Developer
- X' Storage (In Feet)

^{*}Based on NCDOT Review

RAMEY KEMP ASSOCIATES

Louisbury Road Assemblage Raleigh, NC Recommended Lane Configurations

Scale: Not to Scale

Figure 9

Kalas / Watkins Family Property Traffic Impact Analysis

Rolesville Road, Rolesville, North Carolina

August 24, 2019

Prepared for:

Mitchell Mill Road Investors LLC PO Box 3557 Cary, NC 27519

Prepared by:

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606

Sign-off Sheet

This document entitled Kalas / Watkins Family Property Traffic Impact Analysis was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Mitchell Mill Road Investors LLC (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Maggie Rogers

Reviewed by _

(signature)

Matt Peach, PE, PTOE

Approved by

(signature)

Christa Greene, PE

SEAL 039265

SEAL 039265

SEAL 039265

SEAL 039265

SEAL 039265

SEAL 039265

Introduction August 24, 2019

1.0 INTRODUCTION

The purpose of this report is to evaluate the transportation impacts of the proposed Kalas / Watkins Family Property development located on the west side of Rolesville Road just north of Mitchell Mill Road in Rolesville, NC. The project location is shown below in Figure 1.

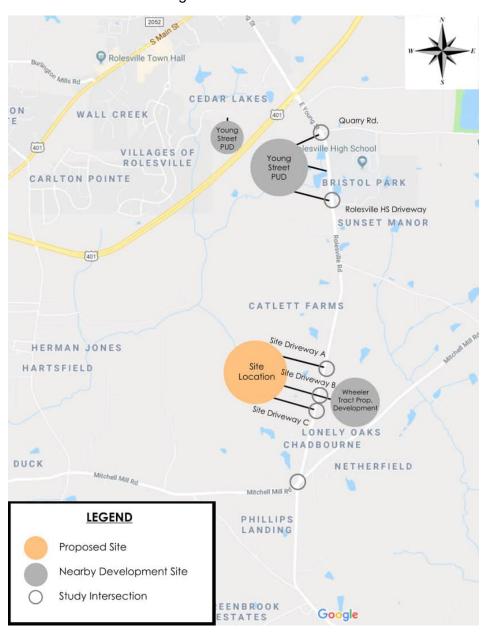
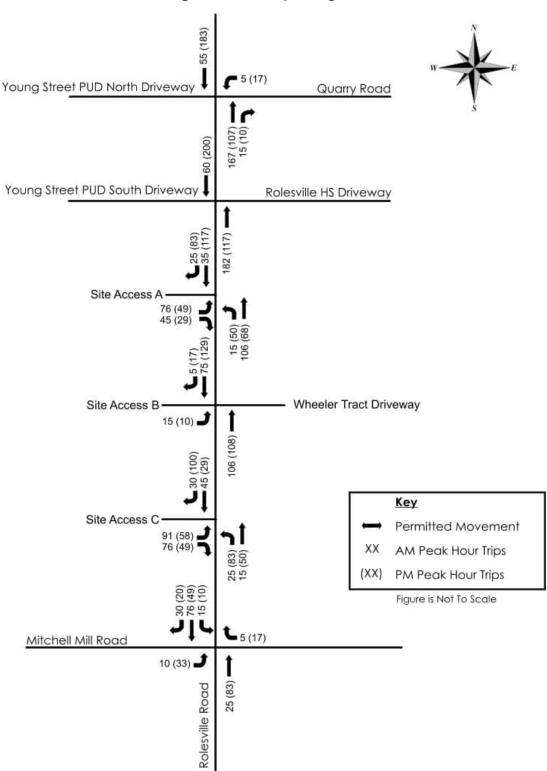



Figure 1: Site Location

Trip Generation and Distribution August 24, 2019

Figure 6: Site Trip Assignment

Traffic Analysis August 24, 2019

5.4 2025 BUILD WITH IMPROVEMENTS

Geometric improvements such as the installation of turn-lanes are recommended and therefore analyzed in this scenario. These items are listed below as well as in the recommendations section.

Rolesville Road at Site Driveway A

- Construct Driveway A as a full-movement access point onto Rolesville Road with one ingress lane and one
 egress lane.
- Construct an exclusive eastbound right-turn lane with 100 feet of full-width storage and appropriate taper on Driveway A.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.

Rolesville Road at Site Driveway B / Wheeler Tract Driveway

- Construct Driveway B as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 50 feet of full-width storage and appropriate taper on Rolesville Road.

Rolesville Road at Site Driveway C

- Construct Driveway C as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive eastbound right-turn lane with 100 feet of full-width storage and appropriate taper on Driveway C.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road
- Construct an exclusive southbound right-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.

Accordingly, all study area intersections and approaches operate at acceptable levels of service with the following exceptions:

- The east and westbound approaches to the intersection of Rolesville Road at Rolesville High School Driveway / Young Street PUD Southern Driveway operates at LOS F in the AM peak hour. This causes high overall delays at the intersection. Furthermore, the eastbound approach operates at LOS F and westbound approach operates at LOS E in the PM peak hour.
- The east and westbound approaches at the intersection of Rolesville Road at Site Driveway B / Wheeler Tract Driveway operate at LOS E in the AM peak hour.

The east and westbound approaches to the intersection of Rolesville Road at Rolesville High School Driveway / Young Street PUD Southern Driveway performs unacceptably across analysis scenarios. These delays can be

KALAS / WATKINS FAMILY PROPERTY TRAFFIC IMPACT ANALYSIS

Traffic Analysis August 24, 2019

attributed to both the Young Street PUD and High School traffic on the side street approaches. The Kalas / Watkins development is projected to only add through volumes to the intersection and are anticipated to have a minimal impact on overall delays at this intersection.

Delays on the eastbound approach of Site Driveway B at Rolesville Road can be attributed to high thru volumes on Rolesville Road during the AM peak hour. Traffic volumes using this approach are anticipated to be minor (i.e. 15 vehicles in the AM peak hour and 10 vehicles in the PM peak hour) and side street delays should dissipate after High School Traffic passes through the network. Table 8 lists the results of the capacity analysis under the 2025 build-improved traffic conditions. The recommended improvements are illustrated in figure 14.

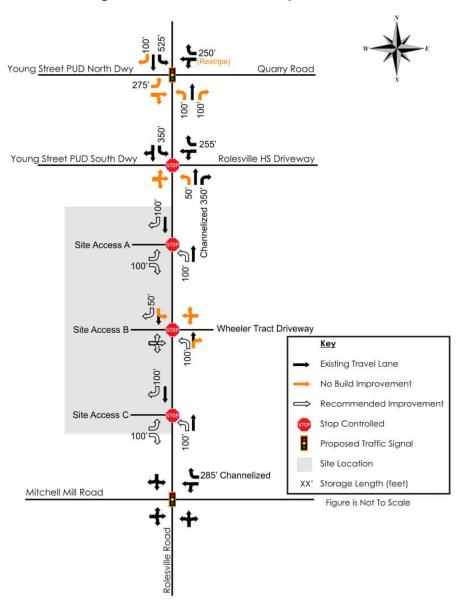


Figure 14: Recommended Improvements

TRAFFIC IMPACT ANALYSIS

FOR

5109 MITCHELL MILL ROAD

LOCATED

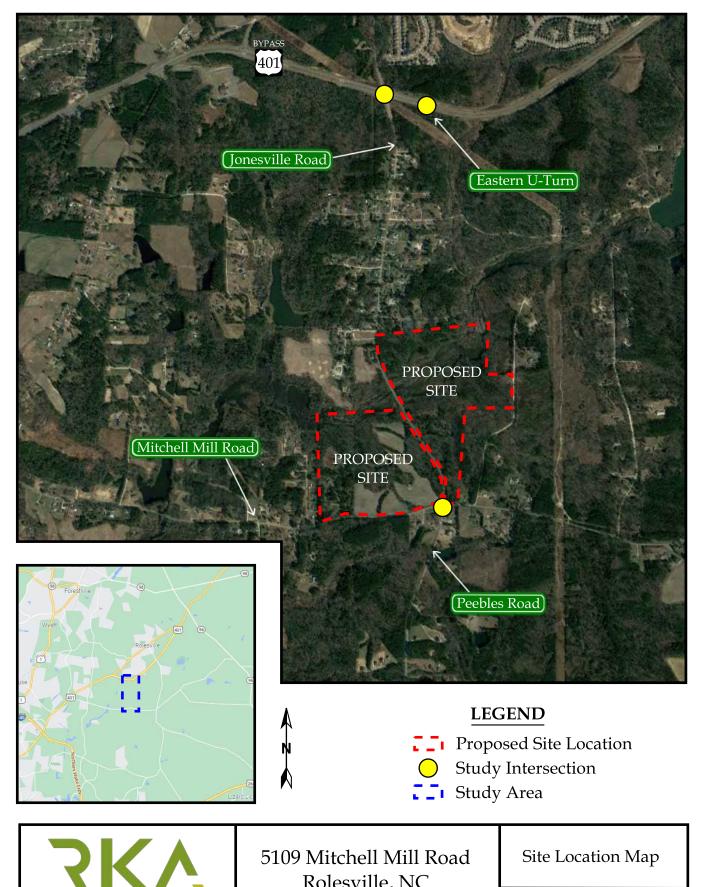
IN

ROLESVILLE, NORTH CAROLINA

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By: Infrastructure Consulting Services, Inc.

Ramey Kemp Associates

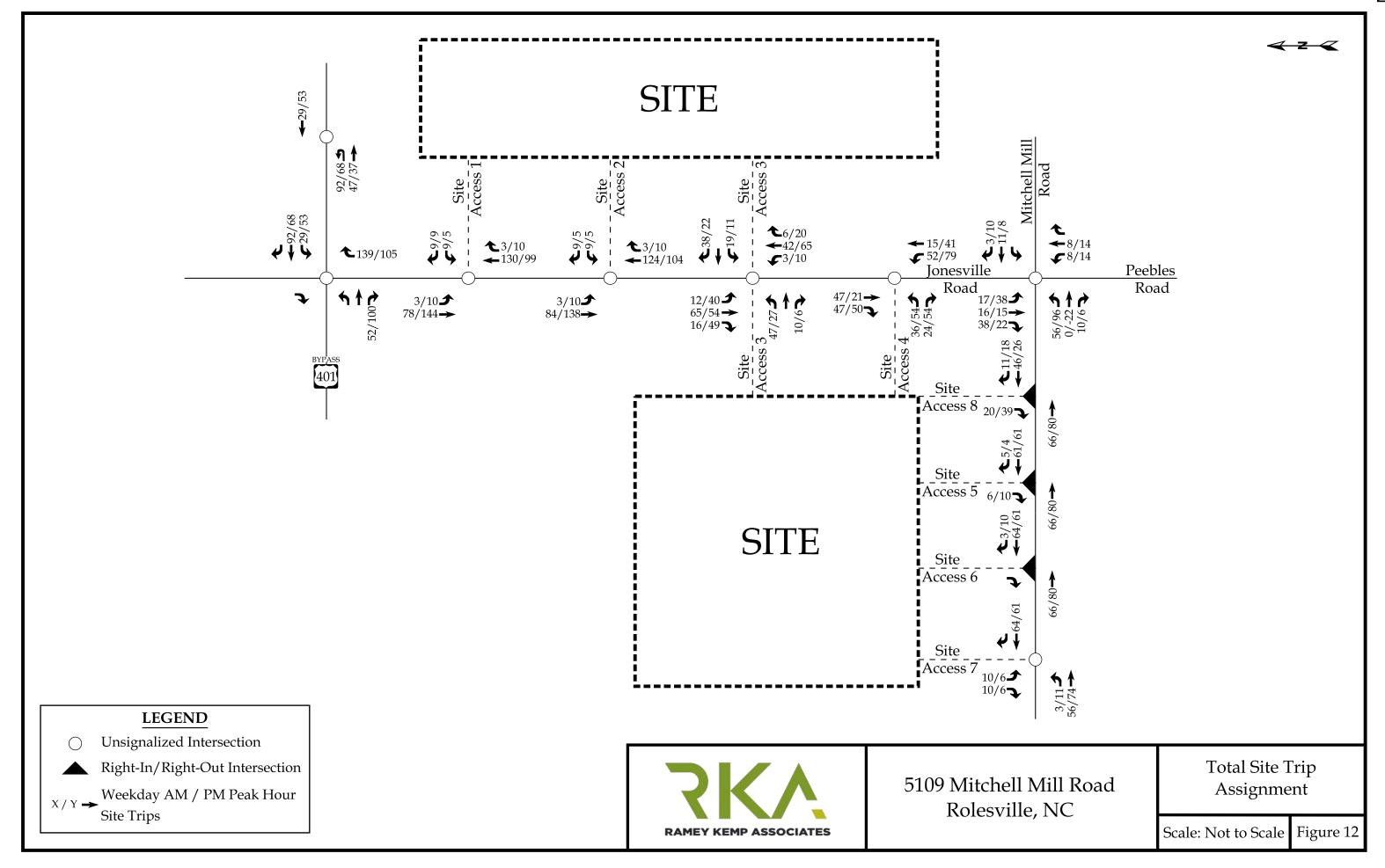

5808 Faringdon Place Raleigh, NC 27609 License #F-1489

AUGUST 2022

RKA Project No. 20498 - 004

Prepared By: TF

Reviewed By: CH



RAMEY KEMP ASSOCIATES

Rolesville, NC

Scale: Not to Scale

Figure 1

9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configurations for the proposed development.

Recommended Improvements by Developer

Required Frontage Improvements per Rolesville Community Transportation Plan

- Widen Jonesville Road along the site frontage between Site Access 1 and Mitchell Mill Road to this roadway's ultimate section (2-lane w/ TWLTL).
- Widen one-half section of Mitchell Mill Road along the site frontage to this roadway's ultimate section (4-lane median divided).

US 401 Bypass and Jonesville Road

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Jonesville Road and Site Access 1

- Construct the westbound approach (Site Access 1) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 1).
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 2

- Construct the westbound approach (Site Access 2) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 2).
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 3

- Construct the eastbound and westbound approaches (Site Access 3) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound and westbound approaches (Site Access 3).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 4

- Construct the eastbound approach (Site Access 4) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Access 4).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

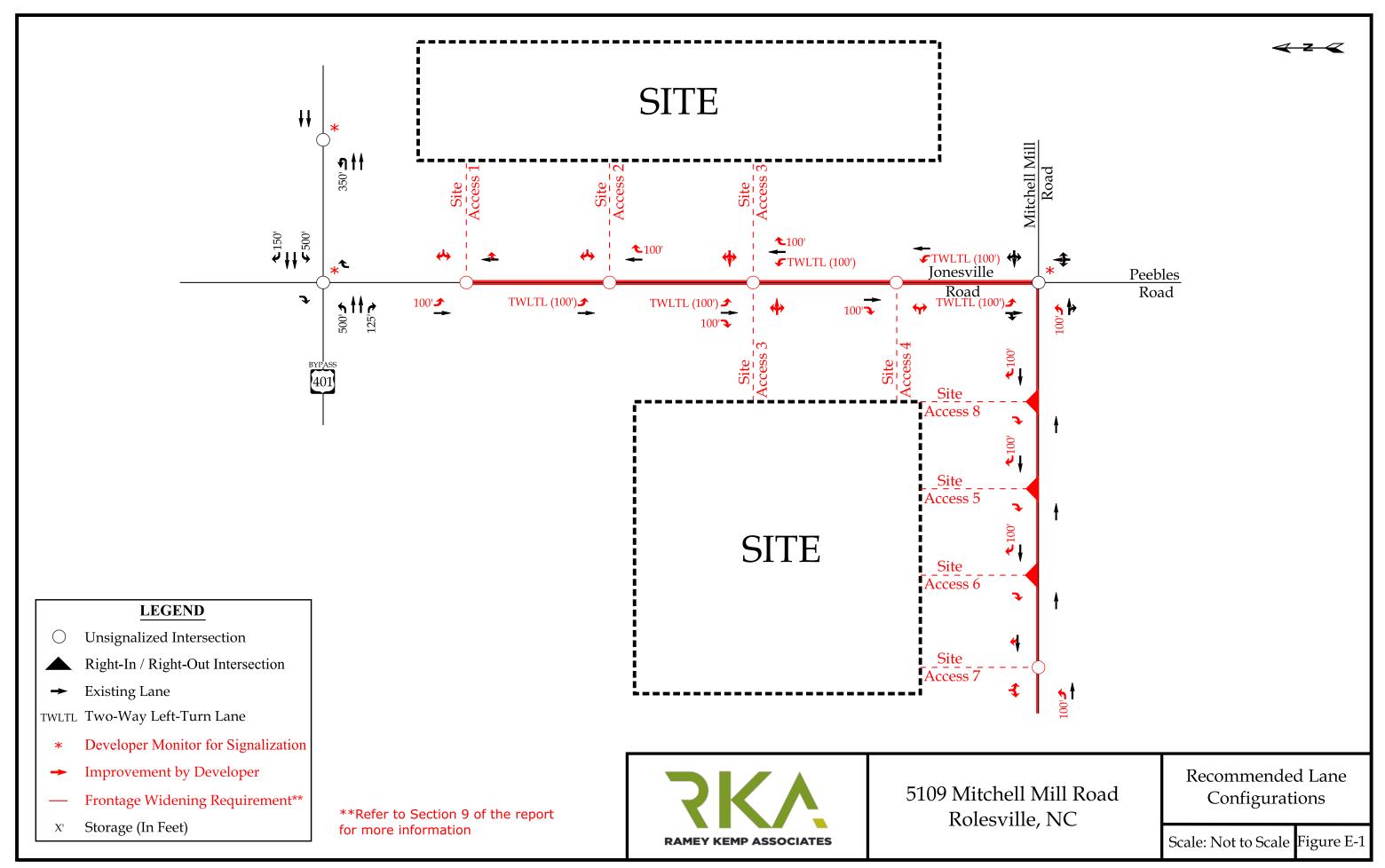
Mitchell Mill Road and Site Access 5

- Construct the southbound approach (Site Access 5) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 5). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 6

- Construct the southbound approach (Site Access 6) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 6). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 7


- Construct the southbound approach (Site Access 7) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 7)
- Construct an exclusive eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 8

- Construct the southbound approach (Site Access 8) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 8). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

TRAFFIC IMPACT ANALYSIS

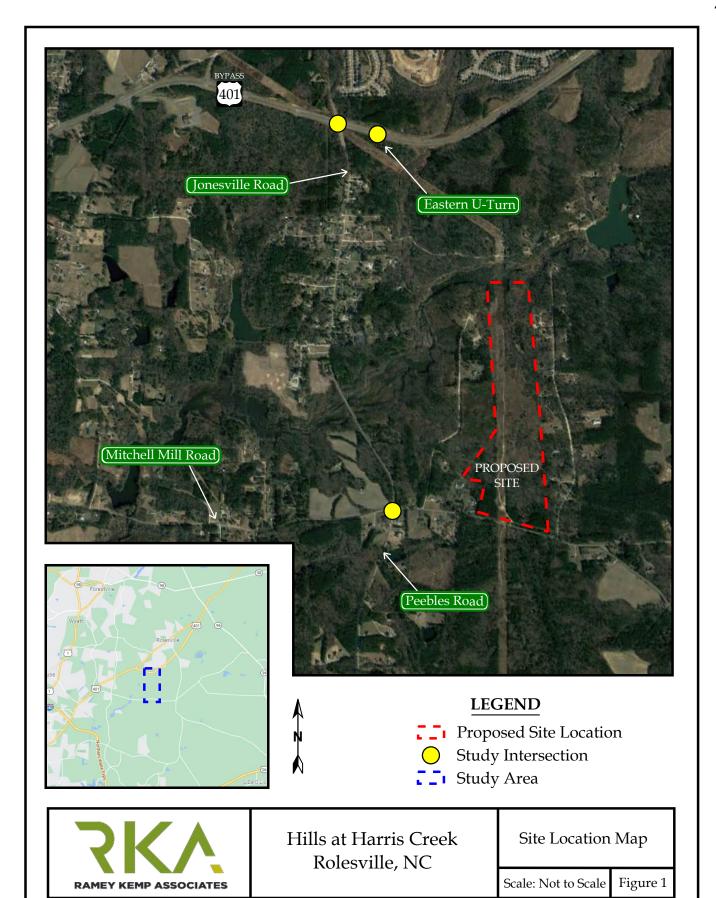
FOR

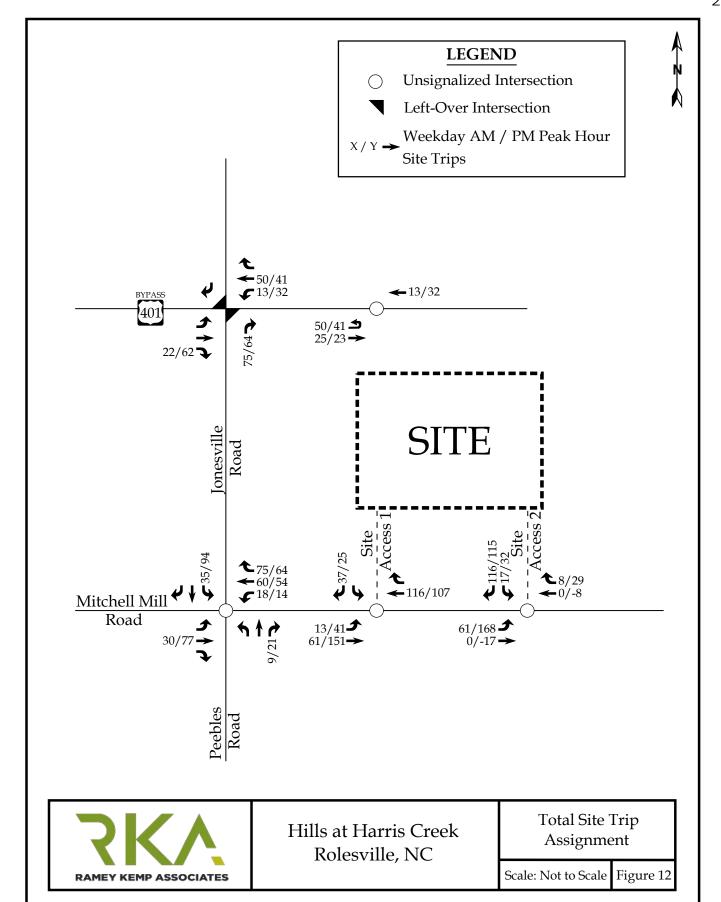
HILLS AT HARIS CREEK

LOCATED

IN

ROLESVILLE, NORTH CAROLINA


Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571


Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910 SEAL PIESSION SINGLE MICHIGANIAN CAROLINA CAROLI

MAY 2022

Prepared By: TF

Reviewed By: JMC

9. RECOMMENDATIONS

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configurations for the proposed development.

Recommended Improvements by Developer

Required Frontage Improvements per Rolesville Community Transportation Plan

 Widen one-half section of Mitchell Mill Road along the site frontage to this roadway's ultimate section (4-lane median divided).

US 401 Bypass and Jonesville Road

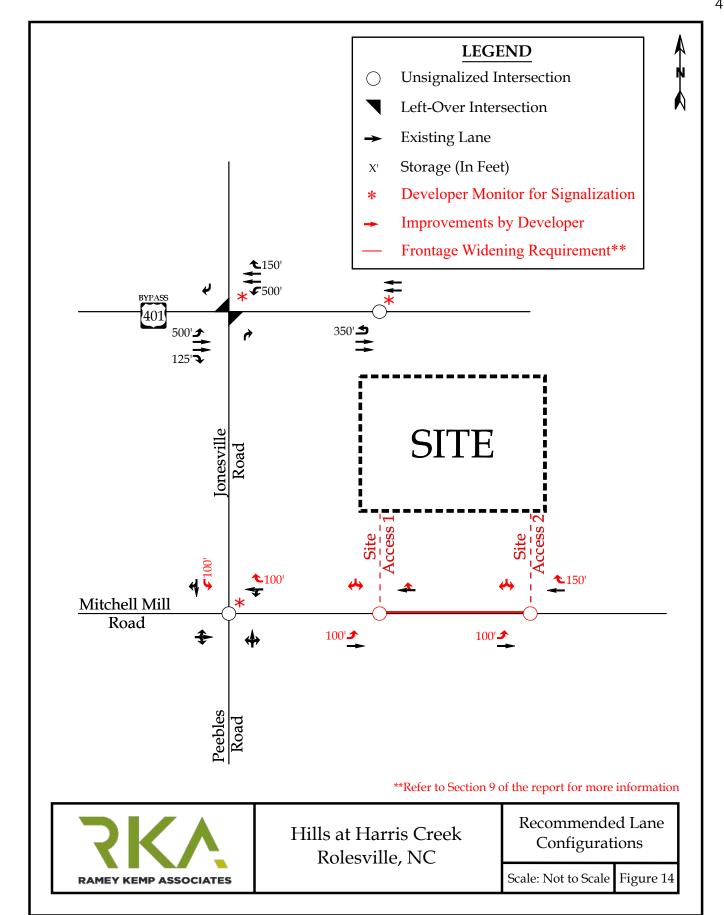
 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA.
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.


Mitchell Mill Road and Site Access 1

- Construct the southbound approach (Site Access 1) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 1).
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 2

- Construct the southbound approach (Site Access 2) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 2).
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 150 feet of storage and appropriate decel and taper.
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

APPENDIX D

CAPACITY ANALYSIS CALCULATIONS US 401 BYPASS

&

JONESVILLE ROAD

HCM 6th TWSC 2022 Existing Timing Plan: AM Peak Hour

Intersection												
Int Delay, s/veh	3.5											
		EST	ED 5)A/DI	MAIDT	14/55	NE	NET	NES	051	057	055
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1	7						F		1	
Traffic Vol, veh/h	0	590	80	0	0	0	0	0	136	0	86	0
Future Vol, veh/h	0	590	80	0	0	0	0	0	136	0	86	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	656	89	0	0	0	0	0	151	0	96	0
Major/Minor M	lajor1					N	/linor1		N	Minor2		
		^	0			- 1					GEO	
Conflicting Flow All	-	0	0				-	-	328	-	656	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	6.04	-	656	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	668	0	384	0
Stage 1	0	-	-				0	0	-	0	400	0
Stage 2	0	-	-				0	0	-	0	460	0
Platoon blocked, %		-	-						000		001	
Mov Cap-1 Maneuver	-	-	-				-	-	668	-	384	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	384	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	460	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						12			17.5		
HCM LOS	- 0						В			C		
TIOW LOO							J					
Minor Lang/Major Mumb		NBLn1	EDT	EBR S	CDI n1							
Minor Lane/Major Mvmt	. r		EBT									
Capacity (veh/h)		668	-	-	•••							
HCM Lane V/C Ratio		0.226	-		0.249							
HCM Control Delay (s)		12	-	-								
HCM Lane LOS		В	-	-	C							
HCM 95th %tile Q(veh)		0.9	-	-	1							

HCM 6th TWSC 2022 Existing Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	^	T T	VVDL	1101	44DI\	NDL	וטוו	T T	ODL	1001	ODIN
Traffic Vol, veh/h	0	1220	59	0	0	0	0	0	125	0	T 37	0
Future Vol, veh/h	0	1220	59	0	0	0	0	0	125	0	37	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1356	66	0	0	0	0	0	139	0	41	0
Major/Minor N	1ajor1					N	Minor1		N	/linor2		
Conflicting Flow All	-	0	0				-	-	678	-	1356	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	1356	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	395	0	148	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	216	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuver	-	-	-				-	-	395	-	148	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	148	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	216	-
Approach	EB			_	_		NB	_		SB	_	
HCM Control Delay, s	0						19			38.4		
HCM LOS							С			Е		
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		395	-	-	148							
HCM Lane V/C Ratio		0.352	-	-	0.278							
HCM Control Delay (s)		19	-	-								
HCM Lane LOS		С	-	-	Е							
HCM 95th %tile Q(veh)		1.6	-	-	1.1							

Intersection												
Int Delay, s/veh	8.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	^	T T	TTDL	1101	ופייי	NDL	וטוו	TADIX	ODL	1001	CDIC
Traffic Vol, veh/h	0	812	154	0	0	0	0	0	350	0	128	0
Future Vol, veh/h	0	812	154	0	0	0	0	0	350	0	128	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	- -	-	None	- -	-	None
Storage Length	_	_	125	_	_	-	_	_	0	_	_	-
Veh in Median Storage,	# -	0	_	_	0	_	_	0	_	_	0	-
Grade, %	_	0	-	-	0	_	-	0	_	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	902	171	0	0	0	0	0	389	0	142	0
Major/Minor N	/lajor1					N	Minor1		N	Minor2		
Conflicting Flow All	-	0	0				-	-	451	-	902	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	902	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	556	0	276	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	355	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuver	-	-	-				-	-	556	-	276	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	276	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	355	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						25.2			31.1		
HCM LOS							D			D		
Minor Lane/Major Mvmt	t _	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		556	-	-	276							
HCM Lane V/C Ratio		0.699	-	-	0.515							
HCM Control Delay (s)		25.2	-	-								
HCM Lane LOS		D	-	-	D							
HCM 95th %tile Q(veh)		5.5	-	-	2.7							

HCM 6th TWSC 2027 No-Build Timing Plan: PM Peak Hour

Sement Sell EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR	Intersection													
## Configurations	Int Delay, s/veh	52.7												
fice Vol, vehr/h	Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
fice Vol, vehr/h	Lane Configurations		11	7						7		1		
Fileting Peds, #/hr	Traffic Vol, veh/h	0			0	0	0	0	0	294	0		0	
Fileting Peds, #/hr	Future Vol, veh/h	0	1708	221	0	0	0	0	0	294	0	122	0	
Control Free Free Free Stop	Conflicting Peds, #/hr				0			0						
Channelized - Yield - None - None - None age Length - 125 0 - 0 0 0 0 0 0 0 - 0	Sign Control		Free		Stop			Stop		Stop	Stop			
age Length 125 0	RT Channelized													
in Median Storage, # - 0	Storage Length	_	_		_	_	-	_	_		_	_	-	
See, %		# -	0			0	_		0			0	_	
K Hour Factor 90 90 90 90 90 90 90 9	Grade, %													
vy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Peak Hour Factor		-											
at Flow 0 1898 246 0 0 0 0 0 327 0 136 0 bor/Minor Major1 Minor1 Minor2 Flicting Flow All - 0 0 - 949 - 1898 - Stage 1 0 1898 - Stage 2 1898 1898 - call Hdwy 6,94 - 6,54 - call Hdwy Stg 1 6,94 - 6,54 - call Hdwy Stg 2 5,54 - call Hdwy W 5,54 - - call Hdwy W 6,94 - 6,94 - 6,54 call Hdwy Stg 1 5,54 - call Hdwy Stg 2														
Minor Major Minor Minor Minor														
Stage 1	WIVIIIL FIOW	U	1090	240	U	U	U	U	U	321	U	130	U	
Stage 1	Major/Minor M	laior1					N	/linor1		N	Minor?			
Stage 1			^	0								1000		
Stage 2														
Call Hdwy									-					
cal Hdwy Stg 1								-	-					
Call Hdwy Stg 2	Critical Hdwy			-				-	-		-			
Description		-	-	-				-	-		-		-	
Cap-1 Maneuver 0 0 0 ~ 261 0 ~ 69 0 Stage 1 0 0 0 0 - 0 - 0 Stage 2 0 0 0 0 - 0 ~ 116 0 Don blocked, %	Critical Hdwy Stg 2	-	-	-				-	-		-		-	
Stage 1 0 - - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 0 - 0 - 0 - 0 - 0 - 0 - 0 - </td <td>Follow-up Hdwy</td> <td></td> <td>-</td> <td>-</td> <td></td>	Follow-up Hdwy		-	-										
Stage 2 0 - - 0 0 - 0 116 0 Con blocked, % - - - - - 69 - Cap-1 Maneuver - - - - - 69 - Cap-2 Maneuver - - - - - - 69 - Stage 1 -	Pot Cap-1 Maneuver		-	-				0	0	~ 261		~ 69		
Cap-1 Maneuver	Stage 1	0	-	-				0	0	-	0	-	0	
Cap-1 Maneuver - - - 261 - 69 - Cap-2 Maneuver - - - - - 69 - Stage 1 - </td <td>Stage 2</td> <td>0</td> <td>-</td> <td>-</td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>-</td> <td>0</td> <td>~ 116</td> <td>0</td> <td></td>	Stage 2	0	-	-				0	0	-	0	~ 116	0	
Cap-2 Maneuver - - - - - 69 - Stage 1 - <td>Platoon blocked, %</td> <td></td> <td>-</td> <td>-</td> <td></td>	Platoon blocked, %		-	-										
Stage 1	Mov Cap-1 Maneuver	-	-	-				-	-	~ 261	-	~ 69	-	
Stage 2	Mov Cap-2 Maneuver	-	-	-				-	-	-	-	~ 69	-	
Stage 2	Stage 1	-	-	-				_	-	-	-	-	-	
NB		_	-	_				-	_	_	-	~ 116	-	
M Control Delay, s 0 180.2 \$579.5 M LOS F F F Or Lane/Major Mvmt NBLn1 EBT EBR SBLn1 acity (veh/h) 261 69 M Lane V/C Ratio 1.252 1.965 M Control Delay (s) 180.2 - \$579.5 M Lane LOS F - F M 95th %tile Q(veh) 15.9 - 12.4	Jan Gr													
M Control Delay, s 0 180.2 \$ 579.5 M LOS F F F Or Lane/Major Mvmt NBLn1 EBT EBR SBLn1 acity (veh/h) 261 69 M Lane V/C Ratio 1.252 1.965 M Control Delay (s) 180.2 - \$ 579.5 M Lane LOS F - F M 95th %tile Q(veh) 15.9 - 12.4	Approach	EB						NB			SB			
## ILOS F F F	HCM Control Delay, s	0								\$	579.5			
or Lane/Major Mvmt NBLn1 EBT EBR SBLn1 acity (veh/h) 261 69 M Lane V/C Ratio 1.252 1.965 M Control Delay (s) 180.2\$ 579.5 M Lane LOS F - F M 95th %tile Q(veh) 15.9 - 12.4	HCM LOS									Ψ				
acity (veh/h) 261 69 M Lane V/C Ratio 1.252 1.965 M Control Delay (s) 180.2\$ 579.5 M Lane LOS F - F M 95th %tile Q(veh) 15.9 - 12.4											_			
acity (veh/h) 261 69 M Lane V/C Ratio 1.252 1.965 M Control Delay (s) 180.2\$ 579.5 M Lane LOS F - F M 95th %tile Q(veh) 15.9 - 12.4	Minor Lane/Major Mvmt		NBLn1	EBT	EBR S	SBLn1								
M Lane V/C Ratio 1.252 1.965 M Control Delay (s) 180.2\$ 579.5 M Lane LOS F - F M 95th %tile Q(veh) 15.9 - 12.4	Capacity (veh/h)			-	_									
M Control Delay (s) 180.2\$ 579.5 M Lane LOS F F M 95th %tile Q(veh) 15.9 12.4	HCM Lane V/C Ratio			_	_									
M Lane LOS F F M 95th %tile Q(veh) 15.9 12.4														
M 95th %tile Q(veh) 15.9 12.4														
es es es estados estad														
			10.8			12.4								
pluma ayanada ganagity . C. Dolay ayanada 200a Commutatian Nat Daffined . * All major valuma in what are	Notes													
olume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon	~: Volume exceeds capa	acity	\$: De	lay exc	eeds 30)0s	+: Comp	outation	Not De	efined	*: All	major v	olume ir	n platoon

HCM 2010 TWSC 2027 Build Timing Plan: AM Peak Hour

Intersection												
Int Delay, s/veh	10.2											
	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Movement	EDL			WDL	WDI	WDK	INDL	INDI		SDL		SDK
Lane Configurations	^	^	104	0	^	0	^	^	200	^	121	0
Traffic Vol, veh/h	0	812	161	0	0	0	0	0	380	0	131	0
Future Vol, veh/h	0	812	161	0	0	0	0	0	380	0	131	0
Conflicting Peds, #/hr	0	_ 0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,		0	-	-	-	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	902	179	0	0	0	0	0	422	0	146	0
Major/Minor N	/lajor1					N	/linor1		N	Minor2		
Conflicting Flow All		0	0				-	-	451	-	902	-
Stage 1	-	-	-				_	-	-	-	0	_
Stage 2	-	-	_				-	_	_	-	902	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	_	-	_				_	_		_		_
Critical Hdwy Stg 2	_	_	-				_	-	_	-	5.54	-
Follow-up Hdwy	_	_	_				_	_	3.32	_	4.02	_
Pot Cap-1 Maneuver	0	_	-				0	0	556	0	276	0
Stage 1	0	_	_				0	0	-	0	-	0
Stage 2	0	_	-				0	0	_	0	355	0
Platoon blocked, %	•	_	_				•				- 500	
Mov Cap-1 Maneuver	_	_	_				_	_	556	_	276	_
Mov Cap-2 Maneuver	_	_	_				_	_	-	_	276	_
Stage 1	_	_	_				_	_	_	_	-	_
Stage 2	<u>-</u>	<u>-</u>	_				_	_	_	_	355	<u>-</u>
Clayo Z											300	
							ND			0.0		
Approach	EB						NB			SB		
HCM Control Delay, s	0						29.1			31.7		
HCM LOS							D			D		
Minor Lane/Major Mvmt	t 1	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		556	-	-								
HCM Lane V/C Ratio		0.759	-	_	0.527							
HCM Control Delay (s)		29.1	_	-								
HCM Lane LOS		D	_	_	D							
HCM 95th %tile Q(veh)		6.7	-	_	2.9							
// (// (///////////////////		3.,										

HCM 2010 TWSC 2027 Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	64.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7						7		†	
Traffic Vol, veh/h	0	1708	242	0	0	0	0	0	314	0	133	0
Future Vol, veh/h	0	1708	242	0	0	0	0	0	314	0	133	0
Conflicting Peds, #/hr		0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	_	_	125	_	_	-	_	_	0	_	_	-
Veh in Median Storag	ie.# -	0	-	_	_	_	_	0	_	_	0	_
Grade, %	-	0	-	-	0	-	-	0	_	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1898	269	0	0	0	0	0	349	0	148	0
				<u> </u>					0.0			
							A. 4					
Major/Minor	Major1						Minor1			Minor2	1005	
Conflicting Flow All	-	0	0				-	-	949	-	1898	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	1898	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0		~ 261	0	~ 69	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	~ 116	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuver		-	-				-	-	~ 261	-	~ 69	-
Mov Cap-2 Maneuver	r -	-	-				-	-	-	-	~ 69	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	~ 116	-
Approach	EB						NB			SB		
HCM Control Delay, s	s 0						213			\$ 655		
HCM LOS							F			F		
							•			•		
NA: 1 /NA: NA		NDI 4	БОТ	EDD (2DL 4							
Minor Lane/Major Mv	mt l	NBLn1	EBT		SBLn1							
Capacity (veh/h)		261	-	-	69							
HCM Lane V/C Ratio		1.337	-		2.142							
HCM Control Delay (s	5)	213	-	-	\$ 655							
HCM Lane LOS		F	-	-	F							
HCM 95th %tile Q(vel	h)	18.2	-	-	13.8							
Notes												
~: Volume exceeds ca	apacity	\$: De	lav exc	eeds 30)0s	+: Com	putation	Not De	efined	*: All	maior v	olume i
. Totallio oxooodo ot	Locality	ψ. Δ0	ONO	2040 00		. 55111	p a ta ti Oi i		J.11134	. / ul	ajoi v	3141110

	٠	-	•	•	•	•	1	1	^	/	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		† †	7						7		^	
Traffic Volume (vph)	0	812	161	0	0	0	0	0	380	0	131	0
Future Volume (vph)	0	812	161	0	0	0	0	0	380	0	131	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		125	0		0	0		0	0		0
Storage Lanes	0		1	0		0	0		1	0		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850						0.865			
Flt Protected												
Satd. Flow (prot)	0	3539	1583	0	0	0	0	0	1611	0	1863	0
Flt Permitted						-	-	-		-		
Satd. Flow (perm)	0	3539	1583	0	0	0	0	0	1611	0	1863	0
Right Turn on Red	•		No			No			No	No		No
Satd. Flow (RTOR)										, , ,		
Link Speed (mph)		55			55			35			45	
Link Distance (ft)		278			727			1295			275	
Travel Time (s)		3.4			9.0			25.2			4.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.00	902	179	0.00	0.00	0.00	0.00	0.00	422	0.00	146	0.00
Shared Lane Traffic (%)	•	002	170	•	•	· ·	•	•	122	•	110	V
Lane Group Flow (vph)	0	902	179	0	0	0	0	0	422	0	146	0
Turn Type		NA	Perm		•		•	•	Prot	•	NA	J
Protected Phases		2	. 0						4		4	
Permitted Phases		_	2						•		•	
Detector Phase		2	2						4		4	
Switch Phase		_	-						•		•	
Minimum Initial (s)		14.0	14.0						7.0		7.0	
Minimum Split (s)		21.0	21.0						14.0		14.0	
Total Split (s)		28.0	28.0						32.0		32.0	
Total Split (%)		46.7%	46.7%						53.3%		53.3%	
Maximum Green (s)		21.0	21.0						25.0		25.0	
Yellow Time (s)		5.0	5.0						5.0		5.0	
All-Red Time (s)		2.0	2.0						2.0		2.0	
Lost Time Adjust (s)		-2.0	-2.0						-2.0		-2.0	
Total Lost Time (s)		5.0	5.0						5.0		5.0	
Lead/Lag		0.0	0.0						0.0		0.0	
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0	3.0						3.0		3.0	
Recall Mode		None	None						Min		Min	
Act Effct Green (s)		20.8	20.8						20.4		20.4	
Actuated g/C Ratio		0.40	0.40						0.40		0.40	
v/c Ratio		0.63	0.28						0.66		0.20	
Control Delay		15.5	13.2						18.6		11.0	
Queue Delay		0.0	0.0						0.0		0.0	
Total Delay		15.5	13.2						18.6		11.0	
LOS		В	В						В		В	
Approach Delay		15.1						18.6			11.0	
Approach LOS		В						В			В	
, ipprodon 200												

1: Jonesville Road/WB Left-Over & US 401 Bypass EB

	٠.	→	•	•	•	•	1	1	*	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)		114	36						107		30	
Queue Length 95th (ft)		194	84						187		59	
Internal Link Dist (ft)		198			647			1215			195	
Turn Bay Length (ft)			125									
Base Capacity (vph)	1	1629	728						870		1006	
Starvation Cap Reductn		0	0						0		0	
Spillback Cap Reductn		0	0						0		0	
Storage Cap Reductn		0	0						0		0	
Reduced v/c Ratio		0.55	0.25						0.49		0.15	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 51.4												
Natural Cycle: 40												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 15	5.6			In	tersection	LOS: B						
Intersection Capacity Utilizat	ion 58.7%			IC	U Level o	of Service	В					
Analysis Period (min) 15												
Splits and Phases: 1: Jone	esville Road/V	VB Left	-Over &	US 401 B	ypass EB							

	٨	→	•	1	•	•	1	1	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		11	7						7		^	
Traffic Volume (vph)	0	1708	242	0	0	0	0	0	314	0	133	0
Future Volume (vph)	0	1708	242	0	0	0	0	0	314	0	133	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		125	0		0	0		0	0		0
Storage Lanes	0		1	0		0	0		1	0		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850						0.865			
Flt Protected												
Satd. Flow (prot)	0	3539	1583	0	0	0	0	0	1611	0	1863	0
Flt Permitted												
Satd. Flow (perm)	0	3539	1583	0	0	0	0	0	1611	0	1863	0
Right Turn on Red			No			No			No	No		No
Satd. Flow (RTOR)										,,,,		
Link Speed (mph)		55			55			35			45	
Link Distance (ft)		278			727			1295			275	
Travel Time (s)		3.4			9.0			25.2			4.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.00	1898	269	0.00	0.00	0.00	0.00	0.00	349	0.00	148	0.00
Shared Lane Traffic (%)		1000	200			•	•		0.10			•
Lane Group Flow (vph)	0	1898	269	0	0	0	0	0	349	0	148	0
Turn Type	•	NA	Perm			•			Prot	· ·	NA	•
Protected Phases		2	. 0						4		4	
Permitted Phases		_	2						•		•	
Detector Phase		2	2						4		4	
Switch Phase		_	<u>-</u>						•		•	
Minimum Initial (s)		14.0	14.0						7.0		7.0	
Minimum Split (s)		21.0	21.0						14.0		14.0	
Total Split (s)		40.0	40.0						20.0		20.0	
Total Split (%)		66.7%	66.7%						33.3%		33.3%	
Maximum Green (s)		33.0	33.0						13.0		13.0	
Yellow Time (s)		5.0	5.0						5.0		5.0	
All-Red Time (s)		2.0	2.0						2.0		2.0	
Lost Time Adjust (s)		-2.0	-2.0						-2.0		-2.0	
Total Lost Time (s)		5.0	5.0						5.0		5.0	
Lead/Lag		0.0	0.0						0.0		5.0	
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0	3.0						3.0		3.0	
Recall Mode		None	None						Min		Min	
Act Effct Green (s)		35.0	35.0						15.0		15.0	
Actuated g/C Ratio		0.58	0.58						0.25		0.25	
v/c Ratio		0.30	0.38						0.25		0.23	
Control Delay		20.8	7.3						46.6		20.6	
		0.0	0.0						0.0		0.0	
Queue Delay									46.6			
Total Delay		20.8	7.3								20.6	
LOS		C	Α					40.0	D		C	
Approach Delay		19.1						46.6			20.6	
Approach LOS		В						D			С	

1: Jonesville Road/WB Left-Over & US 401 Bypass EB

	٠	-	•	1	←	•	4	Ť	-	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)		285	43						121		44	
Queue Length 95th (ft)		#481	78						#254		87	
Internal Link Dist (ft)		198			647			1215			195	
Turn Bay Length (ft)			125									
Base Capacity (vph)		2064	923						402		465	
Starvation Cap Reductn		0	0						0		0	
Spillback Cap Reductn		0	0						0		0	
Storage Cap Reductn		0	0						0		0	
Reduced v/c Ratio		0.92	0.29						0.87		0.32	
Intersection Summary												
Area Type: C	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Natural Cycle: 60												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.92												
Intersection Signal Delay: 22				ln	tersection	LOS: C						
Intersection Capacity Utilizati	on 75.0%			IC	U Level c	of Service	D					
Analysis Period (min) 15												
# 95th percentile volume ex	xceeds cap	acity, qu	eue may	be longer								

Splits and Phases: 1: Jonesville Road/WB Left-Over & US 401 Bypass EB

Queue shown is maximum after two cycles.

Intersection												
Int Delay, s/veh	6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	7		^				7
Traffic Vol, veh/h	0	0	0	0	1352	185	0	36	0	0	0	225
Future Vol, veh/h	0	0	0	0	1352	185	0	36	0	0	0	225
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0
Veh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	1502	206	0	40	0	0	0	250
Major/Minor			1	Major2		N	Minor1		N	/linor2		
Conflicting Flow All				-	_	0	_	1708	_	_	_	751
Stage 1				-	-	-	-	0	-	-	-	_
Stage 2				_	-	_	-	1708	_	_	_	_
Critical Hdwy				-	-	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				_	-	_	_	-	_	-	_	
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-
Follow-up Hdwy				_	-	_	-	4.02	_	_	_	3.32
Pot Cap-1 Maneuver				0	-	-	0	90	0	0	0	353
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	_	-	0	145	0	0	0	_
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	_	-	-	90	-	-	-	353
Mov Cap-2 Maneuver				-	-	-	-	90	-	-	-	_
Stage 1				-	_	-	-	-	-	-	-	_
Stage 2				-	_	-	-	145	-	-	-	-
3 -												
Approach				WB			NB			SB		
HCM Control Delay, s				0			73.7			36.5		
HCM LOS							F			E		
Minor Lane/Major Mvm	t _	NBLn1	WBT	WBR S	SBLn1							
Capacity (veh/h)		90	-	-	353							
HCM Lane V/C Ratio		0.444	-	-	0.708							
HCM Control Delay (s)		73.7	-	-	36.5							
HCM Lane LOS		F	-	-	Е							
HCM 95th %tile Q(veh)		1.9	-	-	5.2							

Intersection												
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	7		^				7
Traffic Vol, veh/h	0	0	0	0	555	74	0	116	0	0	0	114
Future Vol, veh/h	0	0	0	0	555	74	0	116	0	0	0	114
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0
Veh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	617	82	0	129	0	0	0	127
Major/Minor			1	Major2		N	Minor1		N	Minor2		
Conflicting Flow All					-	0	-	699	_	-	-	309
Stage 1				-	_	-	-	0	-	-	-	_
Stage 2				-	-	-	-	699	-	-	-	-
Critical Hdwy				-	_	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	-	-	-	_	-	-	_
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	-	0	362	0	0	0	687
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	-	-	0	440	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	-	-	-	362	-	-	-	687
Mov Cap-2 Maneuver				-	-	-	-	362	-	-	-	-
Stage 1				-	-	-	-	-	-	-	-	-
Stage 2				-	-	-	-	440	-	-	-	-
_												
Approach				WB			NB			SB		
HCM Control Delay, s				0			20.3			11.4		
HCM LOS							С			В		
Minor Lane/Major Mvm	t N	NBLn1	WBT	WBR :	SBLn1							
Capacity (veh/h)		362	_	_	687							
HCM Lane V/C Ratio		0.356	-	-	0.184							
HCM Control Delay (s)		20.3	_	_								
HCM Lane LOS		С	-	-	В							
HCM 95th %tile Q(veh)		1.6	_	_	0.7							

Intersection													
Int Delay, s/veh	15.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations					^	7		^				7	
raffic Vol, veh/h	0	0	0	0	1797	185	0	36	0	0	0	225	
uture Vol, veh/h	0	0	0	0	1797	185	0	36	0	0	0	225	
onflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
ign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
T Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0	
eh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
eak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Ivmt Flow	0	0	0	0	1997	206	0	40	0	0	0	250	
lajor/Minor			ı	Major2		ı	Minor1		ľ	Minor2			
Conflicting Flow All					-	0	-	2203	-	-	-	999	
Stage 1				-	-	-	-	0	-	-	-	-	
Stage 2				-	-	-	-	2203	-	-	-	-	
ritical Hdwy				-	-	-	-	6.54	-	-	-	6.94	
ritical Hdwy Stg 1				-	-	-	-	-	-	-	-	-	
ritical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-	
ollow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32	
ot Cap-1 Maneuver				0	-	-	0	44	0	0	0	~ 242	
Stage 1				0	-	-	0	-	0	0	0	-	
Stage 2				0	-	-	0	81	0	0	0	-	
latoon blocked, %					-	-							
lov Cap-1 Maneuver				-	-	-	-	44	-	-	-	~ 242	
lov Cap-2 Maneuver				-	-	-	-	44	-	-	-	-	
Stage 1				-	-	-	-	-	-	-	-	-	
Stage 2				-	-	-	-	81	-	-	-	-	
pproach				WB			NB			SB			
ICM Control Delay, s				0			250.5			110.8			
ICM LOS							F			F			
linor Lane/Major Mvmt	1	NBLn1	WBT	WBR S	SBLn1								
apacity (veh/h)		44	-	_	242								
CM Lane V/C Ratio		0.909	-	-	1.033								
ICM Control Delay (s)		250.5	-		110.8								
CM Lane LOS		F	-	-	F								
ICM 95th %tile Q(veh)		3.6	-	-	10.2								
Notes													
: Volume exceeds capa	acity	\$. Da	lav ovo	eeds 30	ηρε	+: Com	outation	Not D	afined	*· \\	majory	oluma i	n platoon
volume exceeds capa	acity	φ. De	ay exc	ccus 30	105	+. COM	pulation	ואטנ שנ	-iiiieu	. All	najui V	olulle II	ii piatuuii

Intersection												
	5.5											
Movement E	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	-02	וטו	LDIX	TTDL	↑ ↑	₩ M	TIDE	<u> </u>	אטוי	ODL	ושט	7 JUG
Traffic Vol, veh/h	0	0	0	0	894	74	0	116	0	0	0	114
Future Vol, veh/h	0	0	0	0	894	74	0	116	0	0	0	114
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	_	_	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	_	-	-	-	0
Veh in Median Storage, #	-	1	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	993	82	0	129	0	0	0	127
Major/Minor			ľ	Major2		Ν	/linor1		Ν	/linor2		
Conflicting Flow All				<u>-</u>	-	0	-	1075	-	-	-	497
Stage 1				-	-	-	-	0	-	-	-	-
Stage 2				-	-	-	-	1075	-	-	-	-
Critical Hdwy				-	-	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	-	0	218	0	0	0	519
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	-	-	0	294	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	-	-	-	218	-	-	-	519
Mov Cap-2 Maneuver				-	-	-	-	218	-	-	-	-
Stage 1				-	-	-	-	-	-	-	-	-
Stage 2				-	-	-	-	294	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				0			42.9			14.2		
HCM LOS							Е			В		
Minor Lane/Major Mvmt	N	IBLn1	WBT	WBR S								
Capacity (veh/h)		218	-	-	0.0							
HCM Lane V/C Ratio		0.591	-		0.244							
HCM Control Delay (s)		42.9	-	-								
HCM Lane LOS		Е	-	-	В							
HCM 95th %tile Q(veh)		3.3	-	-	0.9							

HCM 2010 TWSC 2027 Build Timing Plan: AM Peak Hour

Intersection													
Int Delay, s/veh	15.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	LDI	LDIX	VVDL	↑ ↑	VVDIX	NDL	_	NDIN	ODL	וטט	JDIN #	
Traffic Vol, veh/h	0	0	0	0	1817	185	0	↑ 36	0	0	0	225	
Future Vol, veh/h	0	0	0	0	1817	185	0	36	0	0	0	225	
	0	0	0	0	0	0	0	0	0	0	0	0	
Conflicting Peds, #/hr													
	Stop	Stop	Stop	Free	Free	Free	Stop	Stop -	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	- 4 117	45600	-	-	-	150	-	-	-	-	-	0	
/eh in Median Storage, a			-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
/Ivmt Flow	0	0	0	0	2019	206	0	40	0	0	0	250	
/lajor/Minor			ľ	Major2		N	/linor1		N	Minor2			
Conflicting Flow All					-	0	-	2225	-	-	-	1010	
Stage 1				-	-	-	-	0	-	-	-	-	
Stage 2				_	_	_	_	2225	_	_	_	_	
Critical Hdwy				_	_	_	_	6.54	_	_	_	6.94	
Critical Hdwy Stg 1				_	_	_	_	-	_	_	_	-	
Critical Hdwy Stg 2				_	_	_	_	5.54	_	_	_	_	
Follow-up Hdwy				_	_	_	_	4.02	_	_	_	3.32	
Pot Cap-1 Maneuver				0	_	_	0	43	0	0	0	~ 238	
Stage 1				0	_	_	0	-	0	0	0	-	
Stage 2				0	_	_	0	79	0	0	0	_	
Platoon blocked, %				U	_	_	U	13	U	U	U		
Mov Cap-1 Maneuver				_	_	_	_	43	_	_		~ 238	
Mov Cap-1 Maneuver				_	_	_	_	43	_	_		230	
Stage 1				<u>-</u>	-	<u>-</u>		43	<u>-</u>		-	_	
Stage 2				_		_	_	79	_	-	_	_	
Staye 2				-	-	-	-	13	-	-	-	-	
Approach				WB			NB			SB			
HCM Control Delay, s				0			260.9			116.8			
HCM LOS							F			F			
Minor Lane/Major Mvmt	N	NBLn1	WBT	WBR S	SRI n1								
Capacity (veh/h)	1	43	1101	VVDIC	238								
HCM Lane V/C Ratio		0.93	-	-	1.05								
		260.9	-	-	116.8								
HCM Control Delay (s) HCM Lane LOS			-										
		F	-	-	10 F								
HCM 95th %tile Q(veh)		3.7	-	-	10.5								
Votes													
~: Volume exceeds capa	acity	\$: De	elay exc	eeds 30	00s	+: Comp	outation	Not De	efined	*: All	major v	olume ii	n platoon

HCM 2010 TWSC 2027 Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	7		↑				7
Traffic Vol, veh/h	0	0	0	0	907	74	0	116	0	0	0	114
Future Vol, veh/h	0	0	0	0	907	74	0	116	0	0	0	114
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	_	_	-	_	-	150	_	_	-	_	-	0
Veh in Median Storage,	# 747	71104	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	_	_	0	-	_	0	_	_	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	1008	82	0	129	0	0	0	127
	-											
Major/Minor			ı	Major2		- 1	Minor1		N	Minor2		
Conflicting Flow All					-	0	-	1090	-	-	-	504
Stage 1				_	_	_	-	0	-	-	_	-
Stage 2				-	_	-	-	1090	-	-	-	_
Critical Hdwy				_	-	-	-	6.54	-	_	-	6.94
Critical Hdwy Stg 1				-	_	-	-	-	-	-	-	-
Critical Hdwy Stg 2				_	-	_	-	5.54	-	-	-	_
Follow-up Hdwy				_	_	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	_	0	214	0	0	0	513
Stage 1				0	_	-	0		0	0	0	-
Stage 2				0	-	_	0	289	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	-	-	-	214	-	-	-	513
Mov Cap-2 Maneuver				-	-	-	-	214	-	-	-	-
Stage 1				-	_	-	-	-	-	-	-	-
Stage 2				-	-	-	-	289	-	-	-	-
Ŭ												
Approach				WB			NB			SB		
HCM Control Delay, s				0			44.4			14.3		
HCM LOS							Е			В		
Minor Lane/Major Mvmt	<u>t</u> N	IBLn1	WBT	WBR :	SBLn1							
Capacity (veh/h)		214	-	-	513							
HCM Lane V/C Ratio		0.602	-	-	0.247							
HCM Control Delay (s)		44.4	-	-								
HCM Lane LOS		Е	-	-	В							
HCM 95th %tile Q(veh)		3.4	-	-	1							

APPENDIX E

CAPACITY ANALYSIS CALCULATIONS US 401 BYPASS

&

EASTERN U-TURN LOCATION

Intersection						
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WDI	WDT	NBL	NBR
	EDI	EDK	WBL	WBT		INDK
Lane Configurations	٥	٥	٥	1522	01	٥
Traffic Vol, veh/h	0	0	0	1532	91	0
Future Vol, veh/h	0	0	0	1532	91	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	- 4 0	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	1702	101	0
Major/Minor		N	Major2	N	/linor1	
Conflicting Flow All			-	_	851	_
Stage 1			_	_	0	_
Stage 2			_	_	851	_
Critical Hdwy			_	_	6.84	_
Critical Hdwy Stg 1			_	_	- 0.04	_
Critical Hdwy Stg 2				_	5.84	_
Follow-up Hdwy			-	_	3.52	_
Pot Cap-1 Maneuver			0	_	299	0
Stage 1			0	-	233	0
			0	-	379	0
Stage 2			U	-	3/9	U
Platoon blocked, %				-	000	
Mov Cap-1 Maneuver			-	-	299	-
Mov Cap-2 Maneuver			-	-	299	-
Stage 1			-	-	-	-
Stage 2			-	-	379	-
Approach			WB		NB	
HCM Control Delay, s			0		23.1	
HCM LOS			U		C	
I IOIVI LOO					U	
Minor Lane/Major Mvmt	1	NBLn1	WBT			
Capacity (veh/h)		299	-			
HCM Lane V/C Ratio		0.338	-			
HCM Control Delay (s)		23.1	-			
HCM Lane LOS		С	-			
HCM 95th %tile Q(veh)		1.4	-			

Intersection						
Int Delay, s/veh	1.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
	CDI	LDK	VVDL			אטוו
Lane Configurations	^	0	0	^	7	0
Traffic Vol, veh/h	0	0	0	600	66	0
Future Vol, veh/h	0	0	0	600	66	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 2	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	667	73	0
IVIVIIIL I IOVV	U	U	U	001	13	U
Major/Minor		N	Major2	N	/linor1	
Conflicting Flow All			_	-	334	-
Stage 1			-	-	0	_
Stage 2			_	_	334	_
Critical Hdwy			_	_	6.84	_
Critical Hdwy Stg 1			_	_	0.04	_
Critical Hdwy Stg 2			_	_	5.84	_
			-	-	3.52	-
Follow-up Hdwy			-	-		
Pot Cap-1 Maneuver			0	-	636	0
Stage 1			0	-	-	0
Stage 2			0	-	697	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	-	636	-
Mov Cap-2 Maneuver			-	-	636	-
Stage 1			-	-	-	-
Stage 2			_	-	697	-
Approach			WB		NB	
HCM Control Delay, s			0		11.4	
HCM LOS					В	
		IDI (14/5-			
Minor Lane/Major Mvmt		NBLn1	WBT			
Capacity (veh/h)		636	-			
HCM Lane V/C Ratio		0.115	-			
HCM Control Delay (s)		11.4	-			
HCM Lane LOS		В	-			
HCM 95th %tile Q(veh)		0.4	-			

ntersection									
nt Delay, s/veh	16.8								
<u> </u>		EDD	MDI	MOT	NDI	NDD			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
ane Configurations	^	^	^	^	200	^			
raffic Vol, veh/h	0	0	0	1877	233	0			
uture Vol, veh/h	0	0	0	1877	233	0			
onflicting Peds, #/hr	0	0	0	0	0	0			
ign Control	Stop	Stop	Free	Free	Stop	Stop			
T Channelized	-	None	-	None	-	None			
torage Length	-	-	-	-	0	-			
eh in Median Storage,	# 2	-	-	0	0	-			
rade, %	0	-	-	0	0	-			
eak Hour Factor	90	90	90	90	90	90			
leavy Vehicles, %	2	2	2	2	2	2			
lvmt Flow	0	0	0	2086	259	0			
ajor/Minor		N	Major2	N	/linor1				
onflicting Flow All				-	1043	-			
Stage 1			-	-	0	-			
Stage 2			_	-	1043	_			
ritical Hdwy			-	_	6.84	-			
itical Hdwy Stg 1			-	_	-	_			
ritical Hdwy Stg 2			_	_	5.84	_			
ollow-up Hdwy			_	_	3.52	_			
ot Cap-1 Maneuver			0	_	~ 225	0			
Stage 1			0	_	-	0			
Stage 2			0	_	300	0			
latoon blocked, %				_	000	v			
lov Cap-1 Maneuver			_	_	~ 225	_			
ov Cap 1 Maneuver			_		~ 225	_			
Stage 1			_		-	_			
Stage 2			_	_	300	_			
Olago Z					500				
oproach			WB		NB				
			0 0		152				
ICM Control Delay, s ICM LOS			U		152 F				
ICIVI LOS					Г				
linor Lane/Major Mvmt		NBLn1	WBT						
		225							
apacity (veh/h) CM Lane V/C Ratio			-						
		1.151 152	-						
CM Control Delay (s)			-						
CM Lane LOS		F	-						
ICM 95th %tile Q(veh)		12.2	-						
otes									
Volume exceeds capa	acity	\$: De	lay exc	eeds 30)0s	+: Com	outation Not Defined	*: All major volum	e in platoon

Intersection						
Int Delay, s/veh	2.7					
		EDD	WDI	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	•	•	^	ሻ	•
Traffic Vol, veh/h	0	0	0	915	175	0
Future Vol, veh/h	0	0	0	915	175	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 2	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	1017	194	0
		_				
Major/Minor		N	Major2		/linor1	
Conflicting Flow All			-	-	509	-
Stage 1			-	-	0	-
Stage 2			-	-	509	-
Critical Hdwy			-	-	6.84	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	5.84	-
Follow-up Hdwy			-	-	3.52	-
Pot Cap-1 Maneuver			0	-	494	0
Stage 1			0	-	_	0
Stage 2			0	-	569	0
Platoon blocked, %				_		
Mov Cap-1 Maneuver			_	_	494	_
Mov Cap-1 Maneuver				_	494	_
Stage 1			_	_	434	
			_	-	569	_
Stage 2			-	-	509	-
Approach			WB		NB	
HCM Control Delay, s			0		16.9	
HCM LOS					С	
Minor Lane/Major Mvmt	ľ	NBLn1	WBT			
Capacity (veh/h)		494	-			
HCM Lane V/C Ratio		0.394	-			
HCM Control Delay (s)		16.9	-			
HCM Lane LOS		С	-			
HCM 95th %tile Q(veh)		1.9	-			

HCM 2010 TWSC 2027 Build Timing Plan: AM Peak Hour

Intersection									
Int Delay, s/veh	22.5								
		EDD	WDI	WDT	NDI	NDD			
Movement Configurations	EBT	EBR	WBL	WBT	NBL	NBR			
Lane Configurations	0	. 0	0	1000	252	0			
Traffic Vol, veh/h		0	0	1880	253	0			
Future Vol, veh/h	0	0	0	1880	253	0			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Stop	Stop			
RT Channelized	-			None	-				
Storage Length	- 	-	-	-	0	-			
Veh in Median Storage,		-	-	0	0	-			
Grade, %	0	-	-	0	0	-			
Peak Hour Factor	90	90	90	90	90	90			
Heavy Vehicles, %	2	2	2	2	2	2			
Mvmt Flow	0	0	0	2089	281	0			
Major/Minor		ı	Major2	N	/linor1				
Conflicting Flow All				-	1045	-			
Stage 1			_	-	0	_			
Stage 2			_	_	1045	-			
Critical Hdwy			-	_	6.84	-			
Critical Hdwy Stg 1			_	_	-	_			
Critical Hdwy Stg 2			_	_	5.84	_			
Follow-up Hdwy			_	_	3.52	_			
Pot Cap-1 Maneuver			0	_	~ 224	0			
Stage 1			0	_		0			
Stage 2			0	_	300	0			
Platoon blocked, %			- 0	_	500				
Mov Cap-1 Maneuver			_	_	~ 224	_			
Mov Cap-2 Maneuver			_		~ 224	_			
Stage 1			_	_	-	_			
Stage 2			<u>-</u>	_	300	-			
Olugo Z					300				
A			\A/D		, in				
Approach			WB		NB				
HCM Control Delay, s			0		189.6				
HCM LOS					F				
Minor Lane/Major Mvmt	t I	NBLn1	WBT						
Capacity (veh/h)		224	_						
HCM Lane V/C Ratio		1.255	-						
HCM Control Delay (s)		189.6	_						
HCM Lane LOS		F	_						
HCM 95th %tile Q(veh)		14.4	_						
Notes	.,	Φ.5		, 64	\ <u>\</u>		((' N () ()	+ AII	
~: Volume exceeds cap	acity	\$: De	lay exc	eeds 30	JUS	+: Com	outation Not Defined	*: All major volume in	platoon

Intersection						
Int Delay, s/veh	3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations				1	7	
Traffic Vol, veh/h	0	0	0	926	188	0
Future Vol, veh/h	0	0	0	926	188	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# -	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	1029	209	0
NA - : /NA:			4-1- 0		Ali A	
Major/Minor		<u> </u>	//ajor2		/linor1	
Conflicting Flow All			-	-	515	-
Stage 1			-	-	0	-
Stage 2			-	-	515	-
Critical Hdwy			-	-	6.84	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	5.84	-
Follow-up Hdwy			-	-	3.52	-
Pot Cap-1 Maneuver			0	-	489	0
Stage 1			0	-	-	0
Stage 2			0	-	565	0
Platoon blocked, %				_		
Mov Cap-1 Maneuver			-	_	489	-
Mov Cap-2 Maneuver			_	_	489	_
Stage 1			_	_	-	_
Stage 2			_	_	565	_
Olage 2					505	
Approach			WB		NB	
HCM Control Delay, s			0		17.7	
HCM LOS					С	
Minor Long/Major Muset		JDI 4	WDT			
Minor Lane/Major Mvmt		VBLn1	WBT			
Capacity (veh/h)		489	-			
HCM Lane V/C Ratio		0.427	-			
HCM Control Delay (s)		17.7	-			
HCM Lane LOS		С	-			
HCM 95th %tile Q(veh)		2.1	-			

	-	•	1	←	4	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	I	LDI	.,,,,,	^	TIDE	, TOIL
Traffic Volume (vph)	0	0	0	1880	253	0
Future Volume (vph)	0	0	0	1880	253	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00
Frt	1.00	1.00	1.00	0.00	1.00	1.00
Flt Protected					0.950	
Satd. Flow (prot)	0	0	0	3539	1770	0
Flt Permitted	0	U	U	3333	0.950	U
Satd. Flow (perm)	0	0	0	3539	1770	0
Right Turn on Red	U	No	U	3333	No	No
Satd. Flow (RTOR)		INU			INU	INU
	55			EE	ΛE	
Link Speed (mph)				55 1076	45	
Link Distance (ft)	520			1076	100	
Travel Time (s)	6.4	0.00	0.00	13.3	1.5	0.00
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	0	2089	281	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	2089	281	0
Turn Type				NA	Prot	
Protected Phases				6	8	
Permitted Phases						
Detector Phase				6	8	
Switch Phase						
Minimum Initial (s)				14.0	7.0	
Minimum Split (s)				21.0	14.0	
Total Split (s)				44.0	16.0	
Total Split (%)				73.3%	26.7%	
Maximum Green (s)				37.0	9.0	
Yellow Time (s)				5.0	5.0	
All-Red Time (s)				2.0	2.0	
Lost Time Adjust (s)				-2.0	-2.0	
Total Lost Time (s)				5.0	5.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)				3.0	3.0	
Recall Mode				None	Min	
Act Effct Green (s)				39.0	11.0	
Actuated g/C Ratio				0.65	0.18	
v/c Ratio				0.03	0.10	
Control Delay				16.9	53.0	
Queue Delay				0.0	0.0	
Total Delay				16.9	53.0	
LOS				10.9 B	55.0 D	
				16.9	53.0	
Approach Delay				16.9 B	53.0 D	
Approach LOS						
Queue Length 50th (ft)				280	100	
Queue Length 95th (ft)	440			#513	#221	
Internal Link Dist (ft)	440			996	20	

2: Eastern U-Turn & US 401 Bypass WB

		-	•	•	•	4	1
Lane Group		EBT	EBR	WBL	WBT	NBL	NBR
Turn Bay Length	r (ft)						
Base Capacity (v					2300	324	
Starvation Cap F					0	0	
Spillback Cap Re					0	0	
Storage Cap Re					0	0	
Reduced v/c Rat	tio				0.91	0.87	
Intersection Sum	nmary						
Area Type:		Other					
Cycle Length: 60							
Actuated Cycle I							
Natural Cycle: 60	0						
Control Type: Ac		coordinated					
Maximum v/c Ra	atio: 0.91						
Intersection Sign					Int	tersection	LOS: C
Intersection Cap	acity Utiliza	tion 74.3%			IC	U Level o	f Service D
Analysis Period							
# 95th percent	ile volume e	exceeds cap	acity, qu	eue may	be longer		
Queue showr	n is maximu	ım after two	cycles.				

Splits and Phases: 2: Eastern U-Turn & US 401 Bypass WB

	-	•	1	←	4	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		LDIT	. TOE	^	T	HOIT
Traffic Volume (vph)	0	0	0	926	188	0
Future Volume (vph)	0	0	0	926	188	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00
Frt	1.00	1.00	1.00	0.33	1.00	1.00
Flt Protected					0.950	
	0	0	0	3539	1770	0
Satd. Flow (prot)	U	U	U	১৩১৬		U
Flt Permitted	0	٥	0	2520	0.950	٥
Satd. Flow (perm)	0	0	0	3539	1770	0
Right Turn on Red		No			No	No
Satd. Flow (RTOR)						
Link Speed (mph)	55			55	45	
Link Distance (ft)	520			1076	100	
Travel Time (s)	6.4			13.3	1.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	0	1029	209	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	1029	209	0
Turn Type				NA	Prot	
Protected Phases				6	8	
Permitted Phases				-		
Detector Phase				6	8	
Switch Phase						
Minimum Initial (s)				14.0	7.0	
Minimum Split (s)				21.0	14.0	
Total Split (s)				38.0	22.0	
Total Split (%)				63.3%	36.7%	
				31.0		
Maximum Green (s)					15.0	
Yellow Time (s)				5.0	5.0	
All-Red Time (s)				2.0	2.0	
Lost Time Adjust (s)				-2.0	-2.0	
Total Lost Time (s)				5.0	5.0	
Lead/Lag						
Lead-Lag Optimize?						
Vehicle Extension (s)				3.0	3.0	
Recall Mode				None	Min	
Act Effct Green (s)				22.7	12.7	
Actuated g/C Ratio				0.50	0.28	
v/c Ratio				0.59	0.42	
Control Delay				9.9	17.9	
Queue Delay				0.0	0.0	
Total Delay				9.9	17.9	
LOS				A	В	
Approach Delay				9.9	17.9	
Approach LOS				Α.	В	
Queue Length 50th (ft)				87	43	
Queue Length 95th (ft)				157	111	
	440					
Internal Link Dist (ft)	440			996	20	

2: Eastern U-Turn & US 401 Bypass WB

	-	•	1	←	4	~
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Turn Bay Length (ft)						
Base Capacity (vph)				2642	680	
Starvation Cap Reductn				0	0	
Spillback Cap Reductn				0	0	
Storage Cap Reductn				0	0	
Reduced v/c Ratio				0.39	0.31	
Intersection Summary						
Area Type:	Other		_	_		_
Cycle Length: 60						
Actuated Cycle Length: 45.7						
Natural Cycle: 40						
Control Type: Actuated-Unco	oordinated					
Maximum v/c Ratio: 0.59						
Intersection Signal Delay: 11	.2			Int	tersection	LOS: B
Intersection Capacity Utilizat	ion 44.3%			IC	U Level o	f Service A
Analysis Period (min) 15						
, ,						
Splits and Phases: 2: East	tern U-Turn	1 & US 4	01 Bypas	s WB		
1.5						
82						

APPENDIX F

CAPACITY ANALYSIS CALCULATIONS MITCHELL MILL ROAD

&

JONESVILLE ROAD / PEEBLES ROAD

HCM 6th AWSC 2022 Existing Timing Plan: AM Peak Hour

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	7	166	2	11	316	41	4	78	11	32	133	16
Future Vol, veh/h	7	166	2	11	316	41	4	78	11	32	133	16
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	184	2	12	351	46	4	87	12	36	148	18
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.8			14.8			10.1			11.4		
HCM LOS	В			В			В			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	4%	3%	18%	
Vol Thru, %	84%	95%	86%	73%	
Vol Right, %	12%	1%	11%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	93	175	368	181	
LT Vol	4	7	11	32	
Through Vol	78	166	316	133	
RT Vol	11	2	41	16	
Lane Flow Rate	103	194	409	201	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.168	0.294	0.576	0.318	
Departure Headway (Hd)	5.843	5.438	5.074	5.691	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	612	659	711	631	
Service Time	3.897	3.483	3.111	3.736	
HCM Lane V/C Ratio	0.168	0.294	0.575	0.319	
HCM Control Delay	10.1	10.8	14.8	11.4	
HCM Lane LOS	В	В	В	В	
HCM 95th-tile Q	0.6	1.2	3.7	1.4	

HCM 6th AWSC 2022 Existing Timing Plan: PM Peak Hour

intersection												
Intersection Delay, s/veh	10.8											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	18	306	13	0	130	21	5	92	10	27	50	11
Future Vol, veh/h	18	306	13	0	130	21	5	92	10	27	50	11
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90

Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	20	340	14	0	144	23	6	102	11	30	56	12
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	12.2				9.4		9.5			9.4		
HCM LOS	В				Α		Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	5%	5%	0%	31%	
Vol Thru, %	86%	91%	86%	57%	
Vol Right, %	9%	4%	14%	12%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	107	337	151	88	
LT Vol	5	18	0	27	
Through Vol	92	306	130	50	
RT Vol	10	13	21	11	
Lane Flow Rate	119	374	168	98	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.175	0.488	0.227	0.146	
Departure Headway (Hd)	5.3	4.694	4.868	5.368	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	669	760	730	660	
Service Time	3.395	2.76	2.948	3.464	
HCM Lane V/C Ratio	0.178	0.492	0.23	0.148	
HCM Control Delay	9.5	12.2	9.4	9.4	
HCM Lane LOS	Α	В	Α	Α	
HCM 95th-tile Q	0.6	2.7	0.9	0.5	

HCM 6th AWSC 2027 No-Build Timing Plan: AM Peak Hour

Intersection												
Intersection Delay, s/veh	95.4											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	To			4	T.		4		7	1-	
Traffic Vol, veh/h	63	253	12	29	607	119	12	86	20	84	149	54
Future Vol, veh/h	63	253	12	29	607	119	12	86	20	84	149	54
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	70	281	13	32	674	132	13	96	22	93	166	60
Number of Lanes	1	1	0	0	1	1	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			2			2		
HCM Control Delay	19.9			170.3			16.1			17.2		
HCM LOS	С			F			С			С		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2				
Vol Left, %		10%	100%	0%	5%	0%	100%	0%				
Vol Thru, %		73%	0%	95%	95%	0%	0%	73%				
Vol Right, %		17%	0%	5%	0%	100%	0%	27%				
Sign Control		Stop										
Traffic Vol by Lane		118	63	265	636	119	84	203				
LT Vol		12	63	0	29	0	84	0				
Through Vol		86	0	253	607	0	0	149				
RT Vol		20	0	12	0	119	0	54				
Lane Flow Rate		131	70	294	707	132	93	226				
Geometry Grp		6	7	7	7	7	7	7				
Degree of Util (X)		0.302	0.152	0.597	1.372	0.229	0.215	0.476				
Departure Headway (Hd)		9.162	8.438	7.887	6.988	6.248	9.036	8.326				
Convergence, Y/N		Yes										
Cap		395	428	462	516	570	399	435				
Service Time		7.162	6.138	5.587	4.777	4.036	6.736	6.026				

0.332

16.1

С

1.3

0.164

12.6

В

0.5

0.636

21.6

С

3.8

1.37

200.1

31.9

F

0.232

10.9

В

0.9

0.233

14.2

В

0.8

0.52

18.4

С

2.5

HCM Lane V/C Ratio

HCM Control Delay

HCM Lane LOS

HCM 95th-tile Q

HCM 6th AWSC 2027 No-Build Timing Plan: PM Peak Hour

Intersection												
Intersection Delay, s/veh	57.2											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1.			4	7		4		*	1	
Traffic Vol, veh/h	114	459	19	14	387	95	19	106	31	159	65	33
Future Vol, veh/h	114	459	19	14	387	95	19	106	31	159	65	33
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	127	510	21	16	430	106	21	118	34	177	72	37
Number of Lanes	1	1	0	0	1	1	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		_
Opposing Lanes	2			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			2			2		
HCM Control Delay	90.6			50			19.2			17.4		
HOW CONTION DETAY	50.0			• •								
HCM LOS	F			E			С			С		
		NBLn1	EBLn1		WBLn1	WBLn2		SBLn2				
HCM LOS		NBLn1 12%	EBLn1 100%	E	WBLn1	WBLn2	С	SBLn2				
HCM LOS Lane				E EBLn2			C SBLn1					
Lane Vol Left, %		12%	100%	EBLn2	3%	0%	SBLn1 100%	0%				
Lane Vol Left, % Vol Thru, %		12% 68%	100% 0%	EBLn2 0% 96%	3% 97%	0% 0%	SBLn1 100% 0%	0% 66%				
Lane Vol Left, % Vol Thru, % Vol Right, %		12% 68% 20%	100% 0% 0%	EBLn2 0% 96% 4%	3% 97% 0%	0% 0% 100%	SBLn1 100% 0% 0%	0% 66% 34%				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		12% 68% 20% Stop	100% 0% 0% Stop	EBLn2 0% 96% 4% Stop	3% 97% 0% Stop 401 14	0% 0% 100% Stop	SBLn1 100% 0% 0% Stop	0% 66% 34% Stop				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		12% 68% 20% Stop 156 19	100% 0% 0% Stop 114	EBLn2 0% 96% 4% Stop 478	3% 97% 0% Stop 401	0% 0% 100% Stop 95 0	SBLn1 100% 0% 0% Stop 159	0% 66% 34% Stop 98 0 65				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		12% 68% 20% Stop 156 19 106 31	100% 0% 0% Stop 114 114 0	EBLn2 0% 96% 4% Stop 478 0 459	3% 97% 0% Stop 401 14 387	0% 0% 100% Stop 95 0	SBLn1 100% 0% 0% Stop 159 159 0	0% 66% 34% Stop 98 0 65 33				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		12% 68% 20% Stop 156 19 106 31	100% 0% 0% Stop 114 114 0	EBLn2 0% 96% 4% Stop 478 0 459 19 531	3% 97% 0% Stop 401 14 387 0 446	0% 0% 100% Stop 95 0 0 95	SBLn1 100% 0% 0% Stop 159 0 0 177	0% 66% 34% Stop 98 0 65				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		12% 68% 20% Stop 156 19 106 31 173 6	100% 0% 0% Stop 114 114 0 0 127	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7	3% 97% 0% Stop 401 14 387 0 446	0% 0% 100% Stop 95 0 0 95 106	SBLn1 100% 0% 0% Stop 159 0 0 177 7	0% 66% 34% Stop 98 0 65 33 109				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		12% 68% 20% Stop 156 19 106 31 173 6	100% 0% 0% Stop 114 114 0 0 127 7	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13	3% 97% 0% Stop 401 14 387 0 446 7	0% 0% 100% Stop 95 0 0 95 106 7	SBLn1 100% 0% 0% Stop 159 0 0 177 7 0.443	0% 66% 34% Stop 98 0 65 33 109 7				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		12% 68% 20% Stop 156 19 106 31 173 6	100% 0% 0% Stop 114 114 0 0 127	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7	3% 97% 0% Stop 401 14 387 0 446	0% 0% 100% Stop 95 0 0 95 106	SBLn1 100% 0% 0% Stop 159 0 0 177 7	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes	SBLn1 100% 0% 0% Stop 159 0 07 177 7 0.443 9.428 Yes	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes 388	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes 438	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes 473	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes 459	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes 498	SBLn1 100% 0% 0% Stop 159 0 0 177 7 0.443 9.428 Yes 385	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes 417				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes 388 7.353	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes 438 5.959	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes 473 5.414	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes 459 5.694	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes 498 4.951	SBLn1 100% 0% 0% Stop 159 0 07 177 7 0.443 9.428 Yes 385 7.128	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes 417 6.362				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes 388 7.353 0.446	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes 438 5.959 0.29	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes 473 5.414 1.123	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes 459 5.694 0.972	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes 498 4.951 0.213	SBLn1 100% 0% 0% Stop 159 0 0 177 7 0.443 9.428 Yes 385 7.128 0.46	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes 417 6.362 0.261				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes 388 7.353	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes 438 5.959	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes 473 5.414	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes 459 5.694	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes 498 4.951	SBLn1 100% 0% 0% Stop 159 0 07 177 7 0.443 9.428 Yes 385 7.128	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes 417 6.362				

2.1

1.2

18.4

11.3

8.0

2.2

1

HCM 95th-tile Q

HCM 2010 AWSC 2027 Build Timing Plan: AM Peak Hour

Intersection												
Intersection Delay, s/veh	104											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4	7		4		*	1.	
Traffic Vol. veh/h	71	253	12	29	607	121	12	88	20	91	156	76

ranic voi, ven/n	/ 1	203	12	29	007	121	12	00	20	91	100	70
Future Vol, veh/h	71	253	12	29	607	121	12	88	20	91	156	76
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	79	281	13	32	674	134	13	98	22	101	173	84
Number of Lanes	1	1	0	0	1	1	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			2			2		
HCM Control Delay	20.8			191.1			16.7			19		
HCM LOS	С			F			С			С		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	10%	100%	0%	5%	0%	100%	0%	
Vol Thru, %	73%	0%	95%	95%	0%	0%	67%	
Vol Right, %	17%	0%	5%	0%	100%	0%	33%	
Sign Control	Stop							
Traffic Vol by Lane	120	71	265	636	121	91	232	
LT Vol	12	71	0	29	0	91	0	
Through Vol	88	0	253	607	0	0	156	
RT Vol	20	0	12	0	121	0	76	
Lane Flow Rate	133	79	294	707	134	101	258	
Geometry Grp	6	7	7	7	7	7	7	
Degree of Util (X)	0.313	0.176	0.611	1.43	0.244	0.234	0.545	
Departure Headway (Hd)	9.455	8.699	8.147	7.283	6.541	9.17	8.414	
Convergence, Y/N	Yes							
Cap	383	415	448	502	553	394	430	
Service Time	7.455	6.399	5.847	4.983	4.241	6.87	6.114	
HCM Lane V/C Ratio	0.347	0.19	0.656	1.408	0.242	0.256	0.6	
HCM Control Delay	16.7	13.2	22.8	225.3	11.3	14.6	20.7	
HCM Lane LOS	С	В	С	F	В	В	С	
HCM 95th-tile Q	1.3	0.6	4	34.3	1	0.9	3.2	

HCM 2010 AWSC 2027 Build Timing Plan: PM Peak Hour

Intersection												
Intersection Delay, s/veh	60.9											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4	7		4		7	7.	
Traffic Vol, veh/h	138	459	19	14	387	102	19	113	31	163	69	49
Future Vol, veh/h	138	459	19	14	387	102	19	113	31	163	69	49
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	153	510	21	16	430	113	21	126	34	181	77	54
Number of Lanes	1	1	0	0	1	1	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			2			2		
HCM Control Delay	96.6			54.4			20.2			18		
HCM LOS	F			F			С			С		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2				
Vol Left, %		12%	100%	0%	3%	0%	100%	0%				
Vol Thru, %		69%	0%	96%	97%	0%	0%	58%				
Vol Right, %		19%	0%	4%	0%	100%	0%	42%				
Sign Control		Stop										
Traffic Vol by Lane		163	138	478	401	102	163	118				
LT Vol		19	138	0	14	0	163	0				
Through Vol		113	0	459	387	0	0	69				
RT Vol		31	0	19	0	102	0	49				
Lane Flow Rate		181	153	531	446	113	181	131				
Geometry Grp		6	7	7	7	7	7	7				
Degree of Util (X)		0.455	0.358	1.159	0.973	0.225	0.459	0.304				
Departure Headway (Hd)		9.533	8.403	7.857	8.211	7.466	9.559	8.735				
Convergence, Y/N		Yes										
Сар		380	428	462	446	484	379	414				
Service Time		7.533	6.158	5.612	5.911	5.166	7.259	6.435				
HCM Lane V/C Ratio		0.476	0.357	1.149	1	0.233	0.478	0.316				
HCM Control Delay		20.2	15.8	119.9	65.1	12.3	20.1	15.2				
HCM Lane LOS		С	C	F	F	В	C	C				
LICAL OF HE FILE O		0 0	4 (400	440	^ ^	0 0	4 2				

2.3

1.6

19.3

11.9

0.9

2.3

1.3

HCM 95th-tile Q

Lane Configurations		١	→	•	•	•	•	4	Î	~	/	ţ	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	*	T.			4	ř		4		*	T.	
Future Volume (vph)				12	29	607		12		20	91		76
Ideal Flow (rphpin)	· · /	71									91		
Storage Length (fft) 100	` ' '		1900	1900	1900	1900		1900		1900		1900	1900
Storage Lanes					0					0			
Taper Length (ff)					0					0	1		0
Lane Util. Factor		100			100			100			100		
Fith		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Satd Flow (proft) 1770	Frt		0.993				0.850		0.978			0.951	
Satd Flow (proft) 1770	Flt Protected	0.950				0.998					0.950		
Fit Permitted	Satd. Flow (prot)		1850	0	0		1583	0		0		1771	0
Right Turn on Red Satul Flow (RTOR) Satu	\. ,	0.247				0.976			0.946		0.785		
Right Turn on Red Satul. Flow (RTOR) Satul. Flo	Satd. Flow (perm)	460	1850	0	0	1818	1583	0	1723	0	1462	1771	0
Satd. Flow (RTOR) Link Speed (mph)	. ,			No						No			No
Link Speed (mph)													
Link Distance (ft) 1536 1126 1017 1092 Travel Time (s) 23.3 17.1 15.4 16.5 Peak Hour Factor 0.90			45			45			45			45	
Travel Time (s)													
Peak Hour Factor Quantification Qu													
Adj. Flow (vph) 79 281 13 32 674 134 13 98 22 101 173 84 Shared Lane Traffic (%) 2 0 0 776 134 0 133 0 101 257 0 Turn Type Perm NA A A A Detector Phase 2 2 6 6 6 8 8 4 4 </td <td>. ,</td> <td>0.90</td> <td></td> <td>0.90</td> <td>0.90</td> <td></td> <td>0.90</td> <td>0.90</td> <td></td> <td>0.90</td> <td>0.90</td> <td></td> <td>0.90</td>	. ,	0.90		0.90	0.90		0.90	0.90		0.90	0.90		0.90
Shared Lane Traffic (%) Lane Group Flow (vph) 79 294 0 0 706 134 0 133 0 101 257 0 1717 Type Perm NA NA Perm N													
Lane Group Flow (vph) 79 294 0 0 706 134 0 133 0 101 257 0 Turn Type	, , ,												
Turn Type Perm NA Perm NA Perm Perm NA Minada <td< td=""><td></td><td>79</td><td>294</td><td>0</td><td>0</td><td>706</td><td>134</td><td>0</td><td>133</td><td>0</td><td>101</td><td>257</td><td>0</td></td<>		79	294	0	0	706	134	0	133	0	101	257	0
Protected Phases 2	,			-						-			
Permitted Phases 2													
Detector Phase 2 2 6 6 6 8 8 8 4 4		2			6		6	8			4		
Switch Phase Minimum Initial (s) 12.0 12.0 12.0 12.0 12.0 12.0 7.0 7.0 7.0 7.0 Minimum Split (s) 19.0 19.0 19.0 19.0 14.0	Detector Phase		2			6			8			4	
Minimum Initial (s) 12.0 12.0 12.0 12.0 12.0 12.0 7.0 7.0 7.0 7.0 Minimum Split (s) 19.0 19.0 19.0 19.0 19.0 14.0													
Minimum Split (s) 19.0 19.0 19.0 19.0 19.0 14.0 <td></td> <td>12.0</td> <td>12.0</td> <td></td> <td>12.0</td> <td>12.0</td> <td>12.0</td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td>		12.0	12.0		12.0	12.0	12.0	7.0	7.0		7.0	7.0	
Total Split (s) 40.0 40.0 40.0 40.0 20.0 20.0 20.0 20.0 Total Split (%) 66.7% 66.7% 66.7% 66.7% 66.7% 33.3% 33.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <	. ,		19.0									14.0	
Total Split (%) 66.7% 66.7% 66.7% 66.7% 66.7% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.0 33.0			40.0		40.0							20.0	
Maximum Green (s) 33.0 33.0 33.0 33.0 33.0 13.0 13.0 13.0 Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0						66.7%	66.7%						
Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			33.0		33.0	33.0	33.0					13.0	
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Yellow Time (s)		5.0		5.0	5.0	5.0	5.0	5.0		5.0		
Lost Time Adjust (s) -2.0<		2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Total Lost Time (s) 5.0 2.0 5.0 6.0 5.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	()												
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0													
Lead-Lag Optimize? Vehicle Extension (s) 3.0	. ,												
Vehicle Extension (s) 3.0 Min													
Recall Mode None None None None Min Min Min Min Act Effct Green (s) 26.5 26.5 26.5 26.5 13.3 13.3 13.3 Actuated g/C Ratio 0.53 0.53 0.53 0.53 0.26 0.26 0.26 v/c Ratio 0.33 0.30 0.74 0.16 0.29 0.26 0.55 Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B B C Approach Delay 8.2 13.2 19.1 21.9 21.9		3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Act Effct Green (s) 26.5 26.5 26.5 26.5 13.3 13.3 13.3 13.3 Actuated g/C Ratio 0.53 0.53 0.53 0.53 0.26 0.26 0.26 v/c Ratio 0.33 0.30 0.74 0.16 0.29 0.26 0.55 Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B B C Approach Delay 8.2 13.2 19.1 21.9													
Actuated g/C Ratio 0.53 0.53 0.53 0.26 0.26 0.26 v/c Ratio 0.33 0.30 0.74 0.16 0.29 0.26 0.55 Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B B C Approach Delay 8.2 13.2 19.1 21.9													
v/c Ratio 0.33 0.30 0.74 0.16 0.29 0.26 0.55 Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0													
Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 <													
Queue Delay 0.0													
Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B B C Approach Delay 8.2 13.2 19.1 21.9	•												
LOS B A B A B C Approach Delay 8.2 13.2 19.1 21.9													
Approach Delay 8.2 13.2 19.1 21.9													
							, ,						
	Approach LOS		Α			В			В			C	

3: Peebles Road/Jonesville Road & Mitchell Mill Road

	•	-	*	1	•	•	1	Ť	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	12	45			150	19		32		24	67	
Queue Length 95th (ft)	37	81			258	40		80		65	147	
Internal Link Dist (ft)		1456			1046			937			1012	
Turn Bay Length (ft)	100					100				100		
Base Capacity (vph)	333	1342			1319	1148		536		455	552	
Starvation Cap Reductn	0	0			0	0		0		0	0	
Spillback Cap Reductn	0	0			0	0		0		0	0	
Storage Cap Reductn	0	0			0	0		0		0	0	
Reduced v/c Ratio	0.24	0.22			0.54	0.12		0.25		0.22	0.47	

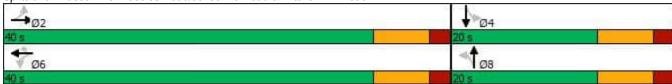
Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 50.2

Natural Cycle: 50


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 14.4 Intersection LOS: B
Intersection Capacity Utilization 76.2% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Peebles Road/Jonesville Road & Mitchell Mill Road

	٠	-	•	•	•	•	4	1	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4	7		4		7	1	
Traffic Volume (vph)	138	459	19	14	387	102	19	113	31	163	69	49
Future Volume (vph)	138	459	19	14	387	102	19	113	31	163	69	49
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	0		100	0		0	100		0
Storage Lanes	1		0	0		1	0		0	1		0
Taper Length (ft)	100		•	100			100		-	100		-
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.994				0.850		0.975			0.938	1100
Flt Protected	0.950	0.00			0.998	0.000		0.994		0.950	0.000	
Satd. Flow (prot)	1770	1852	0	0	1859	1583	0	1805	0	1770	1747	0
Flt Permitted	0.436	1002			0.973	1000		0.951		0.728		
Satd. Flow (perm)	812	1852	0	0	1812	1583	0	1727	0	1356	1747	0
Right Turn on Red	012	1002	No		1012	No			No	.000	., .,	No
Satd. Flow (RTOR)			140			110			140			140
Link Speed (mph)		45			45			45			45	
Link Opeca (mph) Link Distance (ft)		1536			1126			1017			1092	
Travel Time (s)		23.3			17.1			15.4			16.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	153	510	21	16	430	113	21	126	34	181	77	54
Shared Lane Traffic (%)	100	310	۷ ۱	10	400	110	21	120	J -1	101	11	J T
Lane Group Flow (vph)	153	531	0	0	446	113	0	181	0	181	131	0
Turn Type	Perm	NA	U	Perm	NA	Perm	Perm	NA	U	Perm	NA	U
Protected Phases	r C illi	2		r Cilli	6	r C illi	r C illi	8		r C illi	4	
Permitted Phases	2			6	U	6	8	U		4	7	
Detector Phase	2	2		6	6	6	8	8		4	4	
Switch Phase	2			U	U	U	U	U		7	7	
Minimum Initial (s)	12.0	12.0		12.0	12.0	12.0	7.0	7.0		7.0	7.0	
Minimum Split (s)	19.0	19.0		19.0	19.0	19.0	14.0	14.0		14.0	14.0	
Total Split (s)	36.0	36.0		36.0	36.0	36.0	24.0	24.0		24.0	24.0	
Total Split (%)	60.0%	60.0%		60.0%	60.0%	60.0%	40.0%	40.0%		40.0%	40.0%	
Maximum Green (s)	29.0	29.0		29.0	29.0	29.0	17.0	17.0		17.0	17.0	
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
	-2.0	-2.0		2.0	-2.0	-2.0	2.0	-2.0		-2.0	-2.0	
Lost Time Adjust (s) Total Lost Time (s)	-2.0 5.0	-2.0 5.0			5.0	5.0		-2.0 5.0		5.0	-2.0 5.0	
	5.0	5.0			5.0	5.0		5.0		5.0	5.0	
Lead/Lag												
Lead-Lag Optimize?	2.0	2.0		2.0	2.0	2.0	2.0	3.0		2.0	2.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0			3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min		Min	Min	
Act Effet Green (s)	21.1	21.1			21.1	21.1		13.9		13.9	13.9	
Actuated g/C Ratio	0.46	0.46			0.46	0.46		0.31		0.31	0.31	
v/c Ratio	0.41	0.62			0.53	0.15		0.34		0.44	0.25	
Control Delay	12.4	13.1			11.6	8.0		15.8		18.1	14.8	
Queue Delay	0.0	0.0			0.0	0.0		0.0		0.0	0.0	
Total Delay	12.4	13.1			11.6	8.0		15.8		18.1	14.8	
LOS	В	В			В	Α		B		В	В	
Approach Delay		12.9			10.9			15.8			16.7	
Approach LOS		В			В			В			В	

3: Peebles Road/Jonesville Road & Mitchell Mill Road

	٠	-	•	6	←	*	4	Ť	~	1	Ţ	1
0	EDI	EDT	EDD	MOL	MOT	MDD	NDI	NDT	NDD	ODI	ODT	000
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	23	92			73	15		34		35	24	
Queue Length 95th (ft)	68	198			160	41		95		101	71	
Internal Link Dist (ft)		1456			1046			937			1012	
Turn Bay Length (ft)	100					100				100		
Base Capacity (vph)	581	1326			1297	1133		758		595	766	
Starvation Cap Reductn	0	0			0	0		0		0	0	
Spillback Cap Reductn	0	0			0	0		0		0	0	
Storage Cap Reductn	0	0			0	0		0		0	0	
Reduced v/c Ratio	0.26	0.40			0.34	0.10		0.24		0.30	0.17	

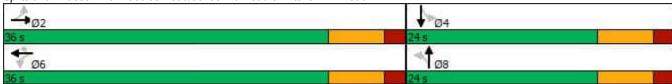
Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 45.5

Natural Cycle: 40


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.62

Intersection Signal Delay: 13.2 Intersection LOS: B
Intersection Capacity Utilization 81.0% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Peebles Road/Jonesville Road & Mitchell Mill Road

APPENDIX G

CAPACITY ANALYSIS CALCULATIONS Jonesville Road

&

Universal Drive

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LUIX	HUL	4	\$ ♣	אופט
Traffic Vol, veh/h	3	3	1	125	178	1
Future Vol, veh/h	3	3	1	125	178	1
Conflicting Peds, #/hr	0	0	0	0	0	0
			Free	Free	Free	Free
Sign Control RT Channelized	Stop -	Stop None				None
			-		-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	3	1	139	198	1
Major/Minor I	Minor2	ı	Major1	N	//ajor2	
Conflicting Flow All	340	199	199	0	-	0
Stage 1	199	-	100	-	_	-
Stage 2	141	_	_		_	_
Critical Hdwy	6.42	6.22	4.12		_	
Critical Hdwy Stg 1	5.42	0.22	4.12	-	_	_
	5.42	_		-		-
Critical Hdwy Stg 2		2 240	0.040	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	656	842	1373	-	-	-
Stage 1	835	-	_	-	-	-
Stage 2	886	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	655	842	1373	-	-	-
Mov Cap-2 Maneuver	655	-	-	-	-	-
Stage 1	834	-	-	-	-	-
Stage 2	886	-	-	-	-	-
Annroach	ED		NID		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	9.9		0.1		0	
HCM LOS	Α					
Minor Lane/Major Mvm	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1373	-		-	
HCM Lane V/C Ratio		0.001		0.009	_	_
HCM Control Delay (s)		7.6	0	9.9	_	_
HCM Lane LOS		Α.	A	3.5 A	_	_
LIVINI LAHE LUU						
HCM 95th %tile Q(veh)	١	0	_	0	_	_

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/	LDIX	NDL	IND I		אומט
Traffic Vol, veh/h		2	1		1	3
•	1	2	4	127	89	
Future Vol, veh/h	1	2	4	127	89	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	2	4	141	99	3
Major/Minor	Minor2	,	Major1		/oicr2	
			Major1		//ajor2	
Conflicting Flow All	250	101	102	0	-	0
Stage 1	101	-	-	-	-	-
Stage 2	149	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver	739	954	1490	-	_	-
Stage 1	923	-	-	-	-	-
Stage 2	879	_	_	-	_	-
Platoon blocked, %	510			_	_	_
Mov Cap-1 Maneuver	737	954	1490	-	-	
Mov Cap-1 Maneuver	737	904	1490	-	_	-
•	920	-			-	
Stage 1		-	-	-	-	-
Stage 2	879	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	9.2		0.2		0	
HCM LOS	9.2 A		0.2		U	
I TOWN LOO	Α					
Minor Lane/Major Mvm	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1490	-	869	-	-
HCM Lane V/C Ratio		0.003	-	0.004	-	-
HCM Control Delay (s)		7.4	0	9.2	-	-
HCM Lane LOS		Α	A	A	-	-
HCM 95th %tile Q(veh))	0	-	0	-	_
				-		

Internaction						
Intersection	0.4					
Int Delay, s/veh	0.1					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	A			4	1	
Traffic Vol, veh/h	3	3	1	339	294	1
Future Vol, veh/h	3	3	1	339	294	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	_	None
Storage Length	0	-	_	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	_	_	0	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	3	3	1	377	327	1
IVIVIIIL I IOW	J	J		311	JZI	
Major/Minor	Minor2	1	Major1	١	/lajor2	
Conflicting Flow All	707	328	328	0	-	0
Stage 1	328	-	-	-	-	-
Stage 2	379	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	_	-
Critical Hdwy Stg 1	5.42	_	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	2 218	_	_	_
Pot Cap-1 Maneuver	402	713	1232	_	_	_
Stage 1	730	- 10	1202	_	_	_
Stage 2	692					
Platoon blocked, %	032	_	_	_	_	
	402	713	1232	-	-	-
Mov Cap-1 Maneuver				-	-	
Mov Cap-2 Maneuver	402	-	-	-	-	-
Stage 1	729	-	-	-	-	-
Stage 2	692	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	12.1		0		0	
HCM LOS	В		Ū			
TIOWI LOO						
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1232	-	• • • •	-	-
HCM Lane V/C Ratio		0.001	-	0.013	-	-
HCM Control Delay (s)		7.9	0	12.1	-	-
HCM Lane LOS		Α	Α	В	-	-
HCM 95th %tile Q(veh)	0	-	0	-	-
354. 70410 4(1011	,	,		•		

Intersection						
Int Delay, s/veh	0.1					
		E55	ND	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	A			4	7.	
Traffic Vol, veh/h	1	2	4	296	336	3
Future Vol, veh/h	1	2	4	296	336	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storag	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	2	4	329	373	3
	•	_	•	0_0	0.0	
Major/Minor	Minor2		Major1	N	//ajor2	
Conflicting Flow All	712	375	376	0	-	0
Stage 1	375	-	-	-	-	-
Stage 2	337	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	_	-
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	2 218	_	_	_
Pot Cap-1 Maneuver	399	671	1182	_	_	_
Stage 1	695			_	_	_
Stage 2	723					_
Platoon blocked, %	123		_		_	
	207	674	1100	-		-
Mov Cap-1 Maneuver		671	1182	-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	692	-	-	-	-	-
Stage 2	723	-	-	-	-	-
Approach	EB		NB		SB	
	11.6		0.1		0	
HCM LOS	11.0 B		0.1		U	
HCM LOS	В					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1182	-		_	
HCM Lane V/C Ratio		0.004		0.006	_	_
HCM Control Delay (s)	8.1	0	11.6	_	_
HCM Lane LOS	1	Α	A	В	_	_
HCM 95th %tile Q(veh	,)	0		0		
HOW SOUL WILL WINE WALE	I)	U	-	U	-	-

Intersection						
Int Delay, s/veh	0.4					
-		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	^	0	4	100	-
Traffic Vol, veh/h	16	6	2	356	300	5
Future Vol, veh/h	16	6	2	356	300	5
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	-	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	7	2	396	333	6
Major/Minor I	Minor2	ı	Major1	N	/lajor2	
Conflicting Flow All	736	336	339	0	- -	0
	336					
Stage 1		-	-	-	-	-
Stage 2	400	-	4.40	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		2.218	-	-	-
Pot Cap-1 Maneuver	386	706	1220	-	-	-
Stage 1	724	-	-	-	-	-
Stage 2	677	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	385	706	1220	-	-	-
Mov Cap-2 Maneuver	385	-	-	-	-	-
Stage 1	723	-	-	-	-	-
Stage 2	677	-	-	-	-	-
Approach	EB		NB		SB	
ADDIOACH						
			0		0	
HCM Control Delay, s	13.7					
	13.7 B					
HCM Control Delay, s						
HCM Control Delay, s HCM LOS	В	NBL	NBT	EBLn1	SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	В	NBL 1220	NBT I	EBLn1 439	SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	В	1220	-	439		SBR - -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	B nt	1220 0.002	-	439 0.056	-	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	B nt	1220 0.002 8	- - 0	439 0.056 13.7	-	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	B nt	1220 0.002	-	439 0.056	- - -	- - -

Intersection						
Int Delay, s/veh	0.4					
		EDD	NDI	NDT	CDT	CDD
Movement Configurations	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	10	1	0	207	254	17
Traffic Vol, veh/h	10	4	8	307	354	17
Future Vol, veh/h	10	4	8	307	354	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	4	9	341	393	19
Major/Minor	Minor2		Major1	N	//ajor2	
Conflicting Flow All	762	403	412	0	-	0
	403					
Stage 1		-	-	-	-	-
Stage 2	359	-	4.40	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	373	647	1147	-	-	-
Stage 1	675	-	-	-	-	-
Stage 2	707	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	369	647	1147	-	-	-
Mov Cap-2 Maneuver	369	-	-	-	-	-
Stage 1	668	_	-	-	-	_
Stage 2	707	-	-	-	-	-
, and the second						
			N.D.		0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	13.9		0.2		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1147	-		-	
HCM Lane V/C Ratio		0.008		0.037		_
		8.2	0	13.9	-	-
HCM Control Delay (s) HCM Lane LOS				13.9 B		-
HCM 95th %tile Q(veh	١	A 0	Α	0.1	-	-
HOW SOUL WILLE CALAGE	1	U	-	U. I	-	-

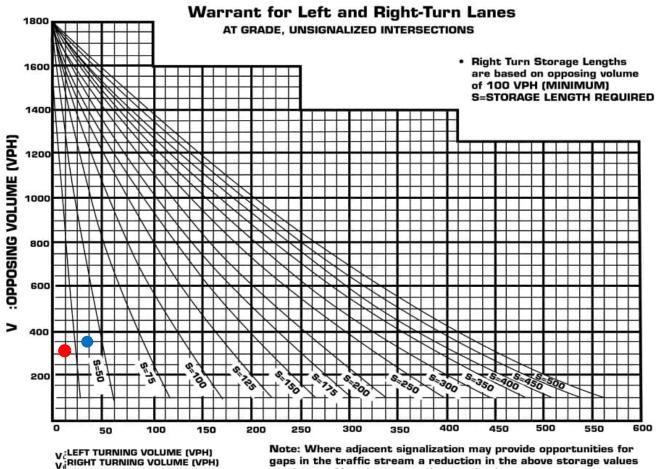
APPENDIX H

CAPACITY ANALYSIS CALCULATIONS Jonesville Road

&

Site Drive

Intersection						
Int Delay, s/veh	1					
	EDI	EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	À	00	7	•	1	•
Traffic Vol, veh/h	17	33	11	335	306	6
Future Vol, veh/h	17	33	11	335	306	6
Conflicting Peds, #/hr	0	0	_ 0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	50	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	19	37	12	372	340	7
Major/Minor	Minor2		Major1	, A	Major2	
Conflicting Flow All	740	344	347	0	-	0
Stage 1	344	-	-	-	-	-
Stage 2	396	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	_	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	384	699	1212	-	-	-
Stage 1	718	-	-	-		-
Stage 2	680	-	-	-	-	-
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	380	699	1212	-	-	-
Mov Cap-2 Maneuver	380	-	-	-	-	-
Stage 1	711	_	-	-	_	_
Stage 2	680	-	_	-	-	-
A						
Approach	EB		NB		SB	
HCM Control Delay, s	12.4		0.3		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	MRT	EBLn1	SBT	SBR
		1212	-		001	ODIC
Capacity (veh/h) HCM Lane V/C Ratio						
		0.01		0.102	-	-
HCM Control Delay (s) HCM Lane LOS		8	-		-	-
		Α	-	В	-	-
HCM 95th %tile Q(veh)	١	0	_	0.3	_	_


Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/r Sign Control		EBR	NBL	NBT	ODT	
Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/r	M	EBR	NBL	NRT	CDT	
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/r	M	LDIX	INDL		SRI	SBR
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h			-		SBT	אמט
Future Vol, veh/h Conflicting Peds, #/r		00	7	200	125	40
Conflicting Peds, #/h	11	22	34	308	335	18
	11	22	34	308	335	18
Sian Control		0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	50	-	-	-
Veh in Median Stora	ige,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	24	38	342	372	20
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	800	382	392	0	-	0
Stage 1	382	-	-	-	-	-
Stage 2	418	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuve		665	1167	-	_	-
Stage 1	690	-	-	_	_	_
Stage 2	664	_	_	_	_	_
Platoon blocked, %	00-1			_	_	_
Mov Cap-1 Maneuve	er 342	665	1167		_	_
		- 003	1107	_		_
Mov Cap-2 Maneuve			-			-
Stage 1	667	-	-	-	-	-
Stage 2	664	-	-			-
Approach	EB		NB		SB	
HCM Control Delay,			0.8		0	
HCM LOS	5 12.7 B		0.0		U	
TIOWI LOG	٥					
Minor Lane/Major M	vmt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1167	-		-	-
HCM Lane V/C Ratio	0	0.032	-	0.072	-	-
HCM Control Delay		8.2	_	12.7	_	_
	(-)	Α	_	В	_	_
HCM Lane LOS HCM 95th %tile Q(v	ah)	0.1	_	0.2	_	_

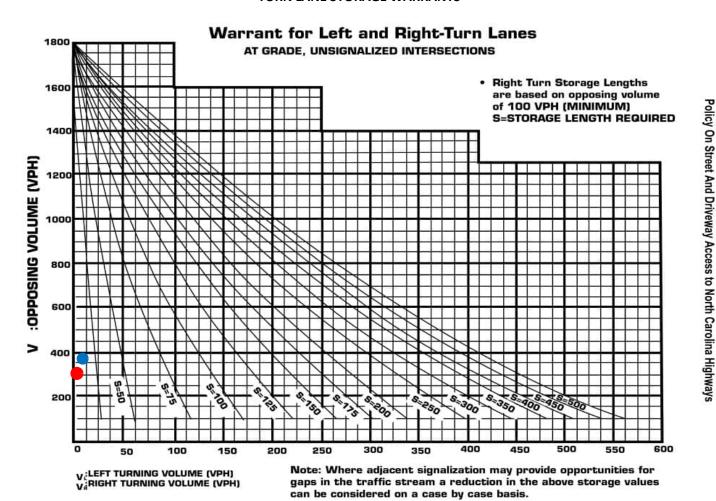
APPENDIX I

TURN LANE WARRANTS

HARRIS CREEK FARM

TURN LANE STORAGE WARRANTS

Note: Where adjacent signalization may provide opportunities for gaps in the traffic stream a reduction in the above storage values can be considered on a case by case basis.

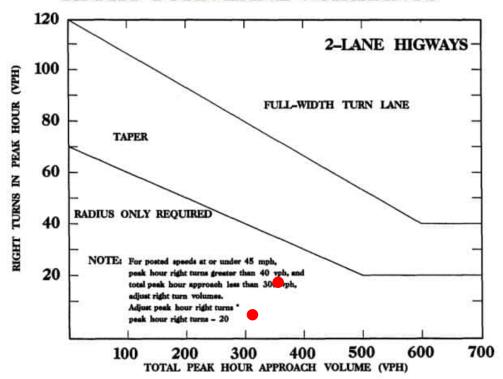

INTERSECTION: Jonesville Road & Site Drive

SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _^ /V ₀)	Symbol
AM Build	NBL	Left	11	312	
PM Build	NBL	Left	34	353	

HARRIS CREEK FARM

TURN LANE STORAGE WARRANTS

INTERSECTION: Jonesville Road & Univeral Drive


SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	NBL	Left	2	305	•
PM Build	NBL	Left	8	371	

Jonesville Road and Site Drive

2027 Build						
Peak Hour	Approach	Right Turn Volume	Approach Volume	Warranted?		
AM	Southbound	6	312	No		
PM	Southbound	18	353	No		

RIGHT TURN LANE WARRANTS

Jonesville Road and Universal Drive

2027 Build						
Peak Hour	Approach	Right Turn Volume	Approach Volume	Warranted?		
AM	Southbound	5	305	No		
PM	Southbound	17	371	No		

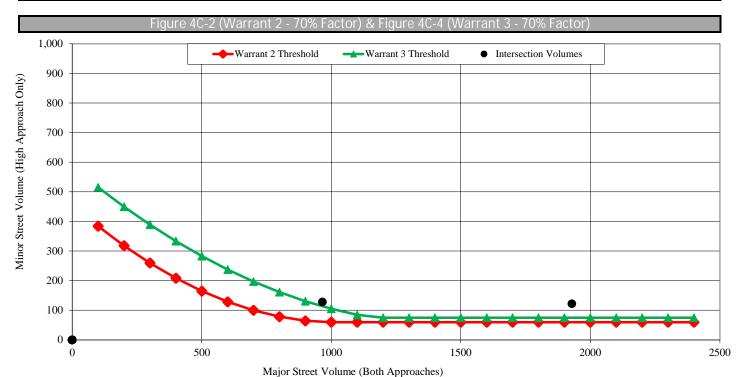
RIGHT TURN LANE WARRANTS

APPENDIX J

MUTCD / ITRE SIGNAL WARRANT ANALYSIS

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm		
Project/File #	20498 - 09		
Scenario	2027 No-Build		


Intersection Information				
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Jonesville Road / WB Left-Over	
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane	
Total Approach Volume	2895 vehicles	Total Approach Volume	894 vehicles	
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings	
Right turn reduction of	0 percent applied	Right turn reduction of	100 percent applied	

Warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied	
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

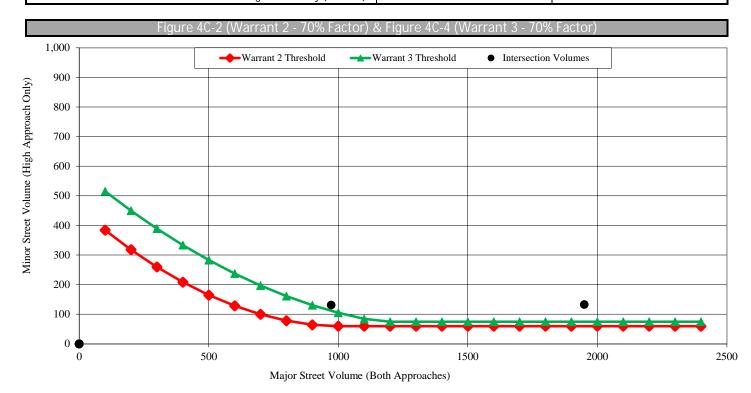
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume				
Condition Satisfied?	Not Satisfied			
Required values reached for	2 hours			
Criteria	See Figure Below			

Warrant 3, Peak Hour Vehicular Volume			
	Condition A	Condition B	
Condition Satisfied?	Not Satisfied	Satisfied	
Required values reached for	2051 total, 122 minor, 0 delay	2 hours	
Criteria - Total Approach Volume (veh in one hour)	800		
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below	
Criteria - Minor Street High Side Delay (veh-hrs)	4		

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm		
Project/File #	20498 - 09		
Scenario	2027 Build		


Intersection Information				
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Jonesville Road / WB Left-Over	
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane	
Total Approach Volume	2923 vehicles	Total Approach Volume	958 vehicles	
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings	
Right turn reduction of	0 percent applied	Right turn reduction of	100 percent applied	

Warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied	
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

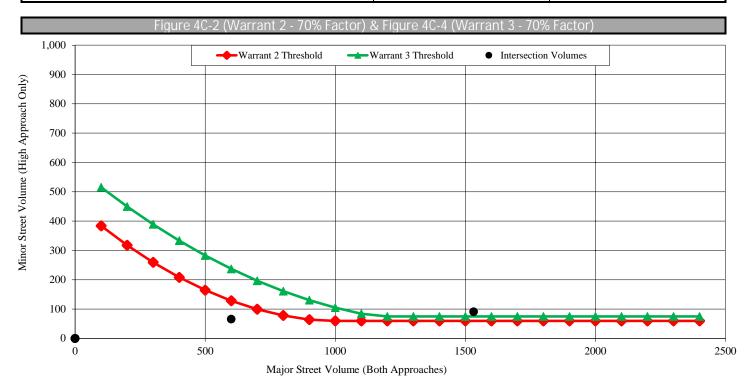
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume			
Condition Satisfied?	Not Satisfied		
Required values reached for	2 hours		
Criteria	See Figure Below		

Warrant 3, Peak Hour Vehicular Volume			
	Condition A	Condition B	
Condition Satisfied?	Not Satisfied	Satisfied	
Required values reached for	2083 total, 133 minor, 0 delay	2 hours	
Criteria - Total Approach Volume (veh in one hour)	800		
Criteria - Minor Street High Side Volume (veh in one hour) 100		See Figure Below	
Criteria - Minor Street High Side Delay (veh-hrs)	4		

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm		
Project/File #	20498 - 09		
Scenario	2022 Existing		


Intersection Information				
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Eastern U-Turn Location	
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane	
Total Approach Volume	2132 vehicles	Total Approach Volume	157 vehicles	
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings	
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied	

Warrant T, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied
Required values reached for	0 hours	1 hour	1 (Cond. A) & 2 (Cond. B)
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

vvarrant 2, Four Hour Venicular volume		
Condition Satisfied?	Not Satisfied	
Required values reached for	1 hour	
Criteria	See Figure Below	

warrant 3, Peak Hour Venicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Satisfied	Satisfied
Required values reached for	1623 total, 91 minor, 0 delay	1 hour
Criteria - Total Approach Volume (veh in one hour)	650	
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	4	

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2027 No-Build


Intersection Information			
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Eastern U-Turn Location
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	2792 vehicles	Total Approach Volume	408 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Warrant 1, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

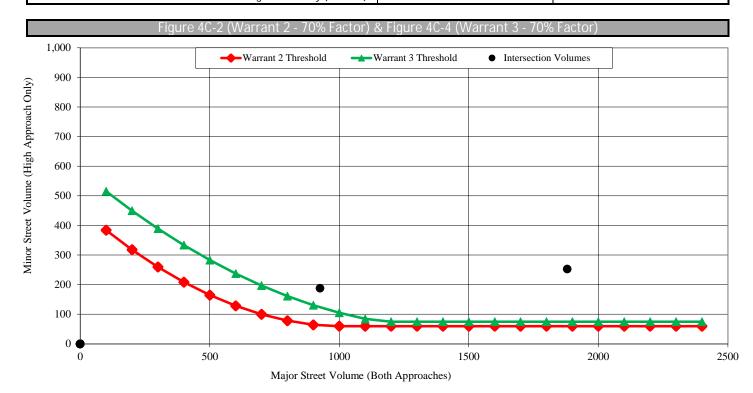
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume		
Condition Satisfied?	Not Satisfied	
Required values reached for	2 hours	
Criteria	See Figure Below	

Warrant 3, Peak Hour Vehicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Satisfied	Satisfied
Required values reached for	2110 total, 233 minor, 0 delay	2 hours
Criteria - Total Approach Volume (veh in one hour)	650	
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	4	

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2027 Build


Intersection Information			
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Eastern U-Turn Location
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	2806 vehicles	Total Approach Volume	441 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Warrant 1, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

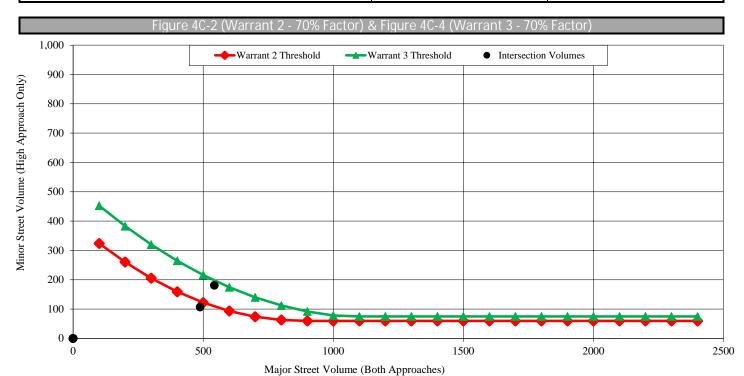
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume		
Condition Satisfied?	Not Satisfied	
Required values reached for	2 hours	
Criteria	See Figure Below	

Warrant 3, Peak Hour Vehicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Satisfied	Satisfied
Required values reached for	2133 total, 253 minor, 0 delay	2 hours
Criteria - Total Approach Volume (veh in one hour)	650	
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	4	ļ

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2022 Existing


Intersection Information			
Major Street (E/W Road)	Mitchell Mill Road	Minor Street (N/S Road)	Jonesville Road
Analyzed with	1 approach lane	Analyzed with	1 Approach Lane
Total Approach Volume	1031 vehicles	Total Approach Volume	469 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Warrant I, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied
Required values reached for	2 hours	1 hour	2 (Cond. A) & 2 (Cond. B)
Criteria - Major Street (veh/hr)	350	525	280 (Cond. A) & 420 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

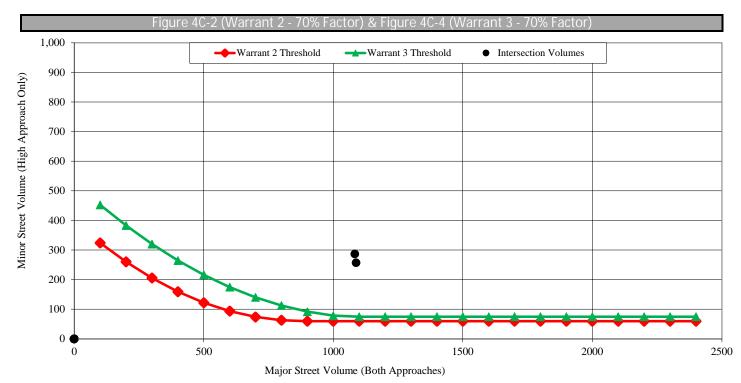
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Venicular Volume		
Condition Satisfied?	Not Satisfied	
Required values reached for	1 hour	
Criteria	See Figure Below	

warrant 3, Peak Hour Venicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Satisfied	Not Satisfied
Required values reached for	817 total, 181 minor, 0 delay	0 hours
Criteria - Total Approach Volume (veh in one hour)	800	
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	4	

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2027 No-Build


Intersection Information			
Major Street (E/W Road)	Mitchell Mill Road	Minor Street (N/S Road)	Jonesville Road
Analyzed with	1 approach lane	Analyzed with	1 Approach Lane
Total Approach Volume	2171 vehicles	Total Approach Volume	818 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Warrant 1, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)
Criteria - Major Street (veh/hr)	350	525	280 (Cond. A) & 420 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

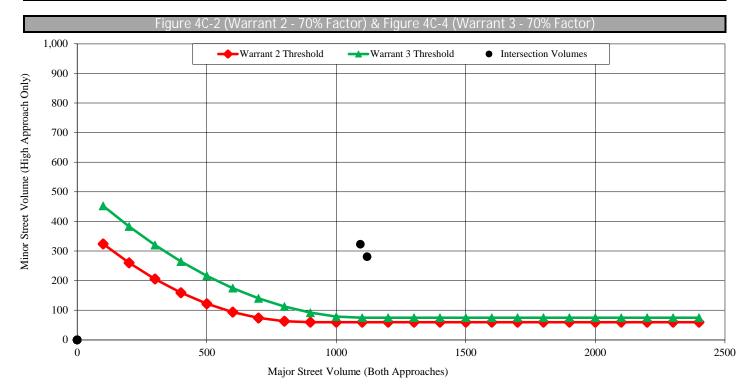
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume		
Condition Satisfied?	Not Satisfied	
Required values reached for	2 hours	
Criteria	See Figure Below	

Warrant 3, Peak Hour Vehicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Satisfied	Satisfied
Required values reached for	1488 total, 287 minor, 0 delay	2 hours
Criteria - Total Approach Volume (veh in one hour)	800	
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	4	

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2027 Build


Intersection Information					
Major Street (E/W Road)	Mitchell Mill Road	Minor Street (N/S Road)	Jonesville Road		
Analyzed with	1 approach lane	Analyzed with	1 Approach Lane		
Total Approach Volume	2212 vehicles	Total Approach Volume	887 vehicles		
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings		
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied		

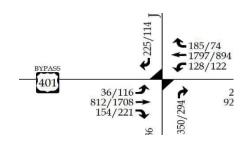
Warrant 1, Eight Hour Vehicular Volume					
Condition A Condition B Condition A+B*					
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied		
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)		
Criteria - Major Street (veh/hr)	350	525	280 (Cond. A) & 420 (Cond. B)		
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)		

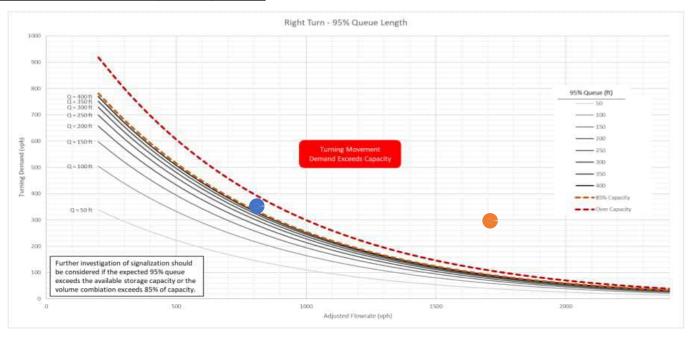
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume			
Condition Satisfied?	Not Satisfied		
Required values reached for	2 hours		
Criteria	See Figure Below		

Warrant 3, Peak Hour Vehicular Volume				
	Condition A	Condition B		
Condition Satisfied?	Not Satisfied	Satisfied		
Required values reached for	1536 total, 323 minor, 0 delay	2 hours		
Criteria - Total Approach Volume (veh in one hour)	800			
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below		
Criteria - Minor Street High Side Delay (veh-hrs)	4			

US 401 Bypass & Jonesville Road [Minor-Street Right-Turn] [No-Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
720	0.7	0.00004	0.0108	0.2587
812	0.7	3.5E-05	0.010033	0.310936
900	0.7	0.00003	0.0093	0.3609

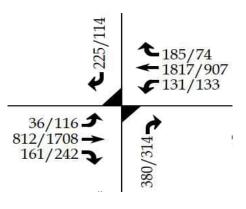

PM Pea	ak Hour			
vph	g/c	а	b	С
1620	0.7	0.00004	0.0108	0.2587
1708	0.7	3.5E-05	0.010067	0.308664
1800	0.7	0.00003	0.0093	0.3609

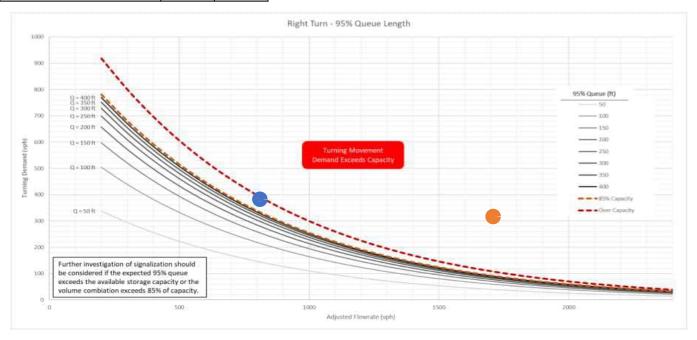
Distance to Upstream Signal	8800	ft
Posted Speed Limit	55	mph
Travel Time	109.09	S

CVAF	1
Conflicting Volume (vph)	812
Adjusted Conflicting (vph)	812
Turning Volume (vph)	350

CVAF	1
Conflicting Volume (vph)	1708
Adjusted Conflicting (vph)	1708
Turning Volume (vph)	294

US 401 Bypass & Jonesville Road [Minor-Street Right-Turn] [Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
720	0.7	0.00004	0.0108	0.2587
812	0.7	3.5E-05	0.010033	0.310936
900	0.7	0.00003	0.0093	0.3609

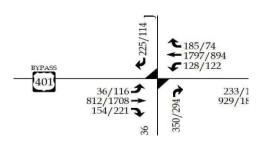

PM Pea	ak Hour			
vph	g/c	а	b	С
1620	0.7	0.00004	0.0108	0.2587
1708	0.7	3.5E-05	0.010067	0.308664
1800	0.7	0.00003	0.0093	0.3609

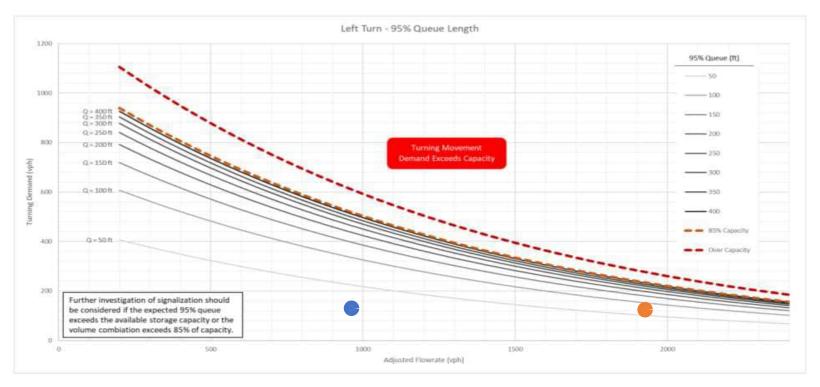
Distance to Upstream Signal	8800	ft
Posted Speed Limit	55	mph
Travel Time	109.09	S

CVAF	1
Conflicting Volume (vph)	812
Adjusted Conflicting (vph)	812
Turning Volume (vph)	380

CVAF	1
Conflicting Volume (vph)	1708
Adjusted Conflicting (vph)	1708
Turning Volume (vph)	314
	•

US 401 Bypass & Jonesville Road [Major-Street Left-Turn] [No-Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
900	0.7	0.00004	0.0097	0.4284
966	0.7	4.0E-05	0.00915	0.46261
1080	0.7	0.00004	0.0082	0.5217

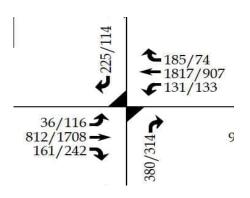

PM Pea	ak Hour			
vph	g/c	a	b	С
1800	0.7	0.00004	0.0097	0.4284
1929	0.7	4.0E-05	0.008625	0.495265
1980	0.7	0.00004	0.0082	0.5217

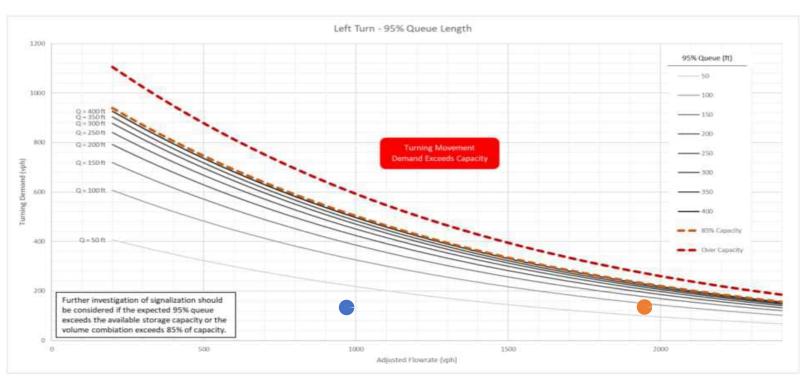
Distance to Upstream Signal	8800	ft
Posted Speed Limit	55	mph
Travel Time	109.09	S

CVAF	1
Conflicting Volume (vph)	966
Adjusted Conflicting (vph)	966
Turning Volume (vph)	128

CVAF	1
Conflicting Volume (vph)	1929
Adjusted Conflicting (vph)	1929
Turning Volume (vph)	122

US 401 Bypass & Jonesville Road [Major-Street Left-Turn] [Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
900	0.7	0.00004	0.0097	0.4284
973	0.7	4.0E-05	0.009092	0.466238
1080	0.7	0.00004	0.0082	0.5217

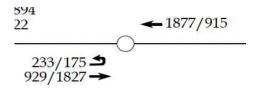

PM Pea	ak Hour			
vph	g/c	a	b	С
1800	0.7	0.00004	0.0097	0.4284
1950	0.7	4.0E-05	0.00845	0.50615
1980	0.7	0.00004	0.0082	0.5217

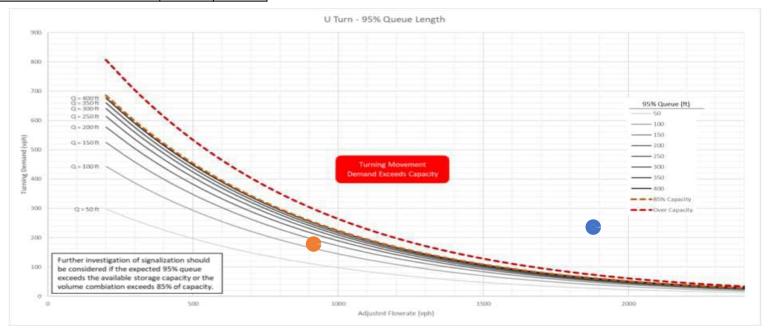
Distance to Upstream Signal	8800	ft
Posted Speed Limit	55	mph
Travel Time	109.09	S

CVAF	1
Conflicting Volume (vph)	973
Adjusted Conflicting (vph)	973
Turning Volume (vph)	131

CVAF	1
Conflicting Volume (vph)	1950
Adjusted Conflicting (vph)	1950
Turning Volume (vph)	133

US 401 Bypass & Eastern U-Turn Location [Major-Street U-Turn] [No-Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
1800	0.7	0.00003	0.0072	0.5106
1877	0.7	3.0E-05	0.007114	0.522064
1980	0.7	0.00003	0.007	0.5374

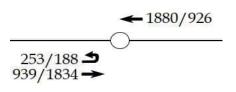

PM Pea	ak Hour			
vph	g/c	а	b	С
900	0.7	0.00003	0.0072	0.5106
915	0.7	3.0E-05	0.007183	0.512833
1080	0.7	0.00003	0.007	0.5374

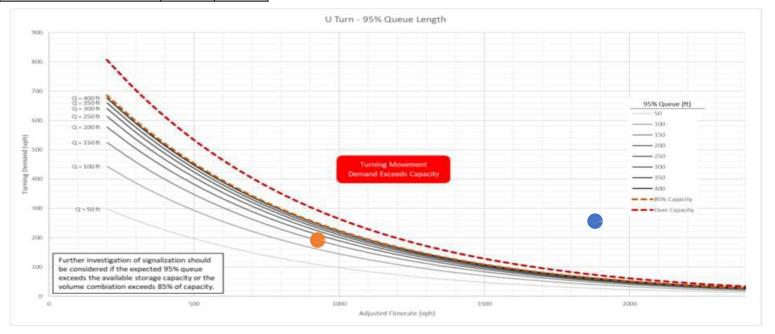
Distance to Upstream Signal	10000	ft
Posted Speed Limit	55	mph
Travel Time	123.97	S

CVAF	1
Conflicting Volume (vph)	1877
Adjusted Conflicting (vph)	1877
Turning Volume (vph)	233

CVAF	1
Conflicting Volume (vph)	915
Adjusted Conflicting (vph)	915
Turning Volume (vph)	175

US 401 Bypass & Eastern U-Turn Location [Major-Street U-Turn] [Build]


AM Pea	ak Hour			
vph	g/c	а	b	С
1800	0.7	0.00003	0.0072	0.5106
1880	0.7	3.0E-05	0.007111	0.522511
1980	0.7	0.00003	0.007	0.5374


PM Pea	ak Hour			
vph	g/c	a	b	С
900	0.7	0.00003	0.0072	0.5106
926	0.7	3.0E-05	0.007171	0.514471
1080	0.7	0.00003	0.007	0.5374

Distance to Upstream Signal	10000	ft
Posted Speed Limit	55	mph
Travel Time	123.97	S

CVAF	1
Conflicting Volume (vph)	1880
Adjusted Conflicting (vph)	1880
Turning Volume (vph)	253

CVAF	1
Conflicting Volume (vph)	926
Adjusted Conflicting (vph)	926
Turning Volume (vph)	188

Roy Cooper Governor J. Eric Boyette
Secretary

June 5, 2023

Harris Creek Farm Development

Traffic Impact Analysis Review Report Congestion Management Section

TIA Project: SC-2023-115

Division: 5

County: Wake

Nicholas C. Lineberger, P.E. Regional Engineer Charles V. Sorrell, Project Engineer Daniel W. Collins, Project Design Engineer

Harris Creek Farm Development					
SC-2023-115 Rolesville Wake County					

Per your request, the Congestion Management Section (CMS) of the Transportation Mobility and Safety Division has completed a review of the subject site. The comments and recommendations contained in this review are based on data for background conditions presented in the Traffic Impact Analysis (TIA) and are subject to the approval of the local District Engineer's Office and appropriate local authorities.

Date Initially Received by CMS	05/08/23	Date of Site Plan	09/30/22
Date of Complete Information	05/08/23	Date of Sealed TIA	05/08/23

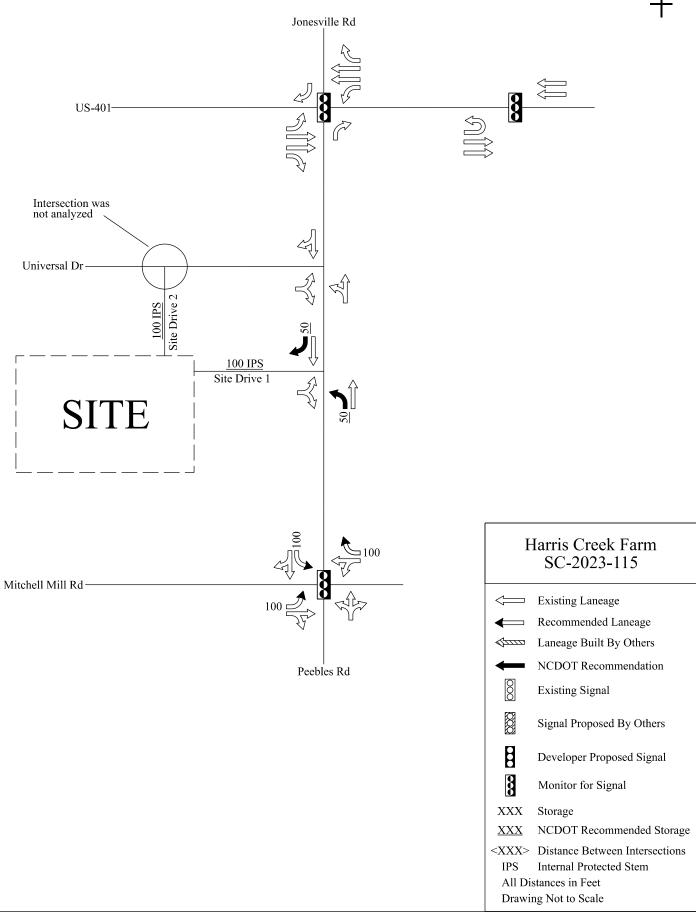
Proposed Development

The TIA assumes the development is completed by 2027 and consists of the following:

Land Use	Land Use Code	Size
Single-Family Detached Housing	210	68 d.u.
Single-Family Attached Housing	215	81 d.u.

Trip Generation - Unadjusted Volumes During a Typical Weekday						
	IN OUT TOTAL					
AM Peak Hour	22	66	88			
PM Peak Hour	70	44	114			
Daily Trips			1,276			

General Reference


For reference to various documents applicable to this review please reference the following link: https://connect.ncdot.gov/resources/safety/Pages/Congestion-Management.aspx

Once the driveway permit has been approved and issued, a copy of the final driveway permit requirements should be forwarded to this office. If we can provide further assistance, please contact the Congestion Management Section.

Signalization

We defer to the District Engineer, the Division Traffic Engineer, and the Regional Traffic Engineer for final decisions regarding signalization.

ATTACHMENT 12

DRMP, Inc. 8210 University Executive Park Drive, Suite 220 Charlotte, North Carolina 28262

March 27, 2024

Meredith Gruber, PLA, AICP Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

P: 919-554-6517

E: Meredith.gruber@rolesville.nc.gov

Reference: Harris Creek Farm - Rolesville, NC

Subject: Trip Generation

Dear Ms. Gruber:

The contents of this letter document the change in land use type and density of the proposed Harris Creek Farm development. A traffic impact analysis (TIA) for this development was sealed on May 8, 2023 and subsequently approved by the North Carolina Department of Transportation (NCDOT). The TIA assumed the development would consist of 68 single-family detached homes, and 81 townhomes. The site plan has changed, and now proposes 120 single-family detached homes. This letter compares the trip generation used in the TIA with new calculations based on the latest site plan.

Site Location and Development Plan

The site is located on the west side of Jonesville Road near Universal Drive. Two driveways are proposed: one on Jonesville Road, and one on Universal Drive. Both are full access intersections with stop control on the driveway. The development proposes 120 single-family detached homes. The latest site plan is attached.

Trip Generation Comparison

The trip generation used in the approved TIA was compared with new calculations based on the latest site plan. The approved TIA assumed the development would consist of 68 single-family detached homes, and 81 townhomes. The site plan has changed, and now proposes 120 single-family detached homes.

Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11.1 Edition. Table 1 provides a trip generation comparison between the approved TIA site plan and the latest site plan.

Table 1: Trip Generation Comparison

Land Use (ITE Code)	Intensity	Daily Traffic (vpd)	Weekday AM Peak Hour Trips (vph)		Weekday PM Peak Hour Trips (vph)		
			Enter	Exit	Enter	Exit	
Approved TIA Site Plan							
Single-Family Detached Housing (210)	68 DU	708	13	39	44	25	
Single-Family Attached Housing (215)	81 DU	568	9	27	26	19	
TOTAL		1,276	22	66	70	44	
Latest Site Plan							
Single-Family Detached Housing (210)	120 DU	1,193	22	66	74	44	
Difference	-83	0	0	4	0		

The trip generation based on the latest site plan is nearly the same as that used in the approved TIA. Daily trips are 83 vehicles lower. The number of trips entering during the PM peak hour are 4 vehicles higher. This increase is not enough to change the recommendations of the approved TIA. All other values are the same.

Conclusion

A TIA for this development was sealed on May 8, 2023 and subsequently approved by NCDOT. The TIA assumed the development would consist of 68 single-family detached homes, and 81 townhomes. The site plan has changed, and now proposes 120 single-family detached homes. The trip generation used in the approved TIA was compared with new calculations based on the latest site plan. The latest site plan is expected to generate 83 fewer daily trips. The number of trips entering during the PM peak hour are expected to be 4 vehicles higher. This increase is not enough to change the recommendations of the approved TIA. All other trip generation values are equal.

If you should have any questions regarding this analysis, please contact me at (704) 549-4260.

Sincerely,

J. Andrew Eagle, PE, PTOE


Senior Traffic Engineering Project Manager

DRMP, Inc.

License #F-1489

Attachments

• Latest Site Plan

TOWN OF ROLESVILLE PETITION FOR ANNEXATION

The items below are required in order to complete your application and shall be submitted when the application if filed.

- 1. A complete copy of the last deed of record for proof of ownership
- 2. An annexation boundary plat/map for recordation at the Wake County Register of Deeds Office (mylar plat) prepared by a professional land surveyor showing the boundaries of the area or property for annexation into the Town of Rolesville.
- 3. A complete copy of the written metes and bounds description based on the annexation boundary plat/map.

œ	E	~	П	a	N	1	_
-	-	•		v	14	-	

Is the area contiguous with the existing primary corporate limits? Satellite corporate limits is not primary. \square Yes or \bowtie No Note: If the land is contiguous to any existing corporate limits, the proposed annexation boundary will include all intervening right-of-ways for streets, easements, and other areas as stated in North Carolina General Statute §160-131(1).

SECTION 2 - VESTED

NC General Statues require petitioners of both contiguous and non-contiguous annexations to file a signed statement declaring whether vested rights have been established in accordance with G.S. 160A-385.1 or 153A-344.1 for properties subject to the petition. Do you declare vested rights for the property subject to this petition? \square Yes or \bowtie No

SECTION 3 - PROPERTY

PIN Number	Real Estate ID Number	Deed Book Number	Page Number	Acreage To Be Annexed	Wake County Assessed Value
1757277811	0057413	DB 018953	PG 00623	71.52	\$1,061,940
1757375276	0057448	DB 018953	PG 00623	0.44	\$8,000
1757375365	0057447	DB 018953	PG 00623	0.41	\$8,000
1757375464	0057446	DB 018953	PG 00623	0.48	\$8,000
1757375575	0057445	DB 018953	PG 00623	0.45	\$19,200
1757375665	0057444	DB 018953	PG 00623	0.46	\$19,200
1757375765	0057443	DB 018953	PG 00623	0.46	\$19,200
1757375865	0057442	DB 018953	PG 00623	0.46	\$19,200
1757375975	0057441	DB 018953	PG 00623	0.46	\$19,200
1757385064	0057440	DB 018953	PG 00623	0.45	\$19,200
1757384572	0057429	DB 018953	PG 00623	0.49	\$19,200
1757383572	0057430	DB 018953	PG 00623	0.48	\$19,200
1757368816	0057438	DB 018953	PG 00623	0.69	\$8,000
1757378013	0057437	DB 018953	PG 00623	0.54	\$8,000
1757378109	0057436	DB 018953	PG 00623	0.53	\$8,000
1757378303	0057435	DB 018953	PG 00623	0.53	\$8,000
1757377990	0057431	DB 018953	PG 00623	0.35	\$19,200
1757471559	0345866	DB 018963	PG 00592	14.90	\$187,099
1757385349	0057439	DB 018953	PG 00623	0.28	\$19,200

SECTION 4 - SIGNATURES AND VERIFICATION

We, the undersigned owners of the real properties contained in the metes and bounds description and plat/map attached hereto, respectfully request that the area described above be annexed and made part of the Town of Rolesville, North Carolina. By signing below, we acknowledge that all information is correct.

 If property owned 	by INDIVIDUALS (NOTE: All	legal owners must sig	n including both husband and v	viie)
10.	ner			6/8/2022
Signature of Owner #	CHEN, PING			Date Signed
l		TEVEL CHIII	OCH DD CTE 902	
Signature of Owner #			RCH RD STE 802	Date Signed
Signature of Owner A	^{‡2} CARY NC 275	19-8195		Date organi
If property owned	by a COMPANY OR CORPOR	RATION (NOTE: Th	e company or corporation mus	t be legally registered with the
	na – Office of the Secretary of State		e company or corporation	8/ 8
	,			
N			ettan territoria	
Name of Corporation				
Printed Name of Regi	istered Agent	Signature of	Registered Agent	
Address, State, Zip of	f Pagistared Office.		VA.V.A. 401	
1				
orth Carolina, Wake	County			
Roda Allchatch 1	Jalsah Notary Public for said County and	d State do harabu cartify that t	he above cioned individual(c) appeared before	ra ma this day and signed the foregoing instru
itness my hand and official seal, th	is day of June	, 20 _22 .	ne above signea inaiviauai(s) appearea bejoi	e the this day and signed the foregoing institu
	5 7. 5 4.2	-	Rouly 11	blatih untras
			Notary Public	www.
Abian)	Dougle All-bellh Webser		My commission expires:	22/2024
	Roule Alkhatib Watson NOTARY PUBLIC			,
	Waka County NC			

My Commission Expires October 22, 2024

MORRIS & RITCHIE ASSOCIATES OF NC, PC

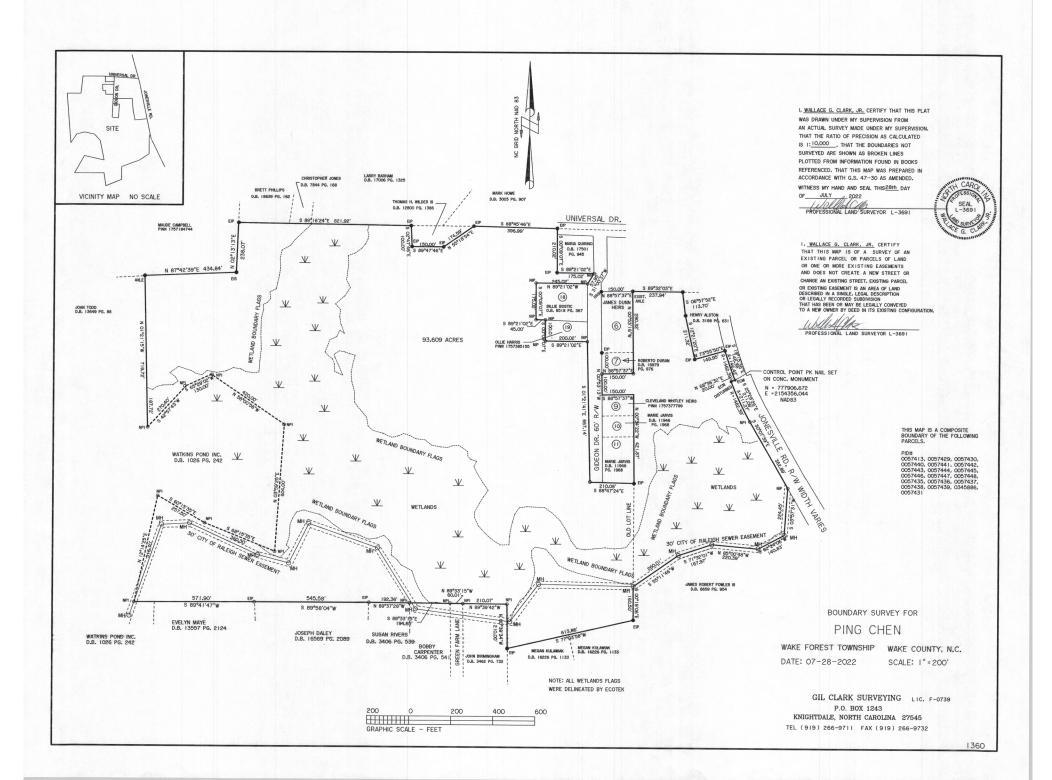
AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS

<u>Legal Description - New Parcel</u> 93.609 Acres Portion of Lands of Ping Chen Wake Forest Township – Wake County, North Carolina

All that certain parcel of land lying generally easterly of Jonesville Road, being located in Wake Forest Township, Wake County, North Carolina and being a portion of those lands described in deed dated March 11, 2022 from Jerri Jo Miller, Tammy Gower Batts, Clifton Edward Blackley and spouse Joetta May Blackley, Grantor to Ping Chen and recorded in the Land Records of Wake County, North Carolina in Deed Book 18953, page 592 and page 623, being more particularly described as follows, to wit:

Beginning at a PK nail set in an existing concrete monument on the Southwestern right-of-way of Jonesville Road, having North Carolina state plane coordinates N: 777,906.672 E: 2,154,356.044. Thence, with said right-of way, South 68°36'32" West 20 feet to a concrete monument on the Southwestern right-of-way line of Jonesville Road; thence, with said right-ofway and along a curve with a cord bearing distance South 25°28'26" East 211.09 feet and a radius of 1,482.39 feet to an iron pipe; thence along said right-of-way, South 30°07'39" East 362.89 feet to an iron pipe; thence leaving said right-of-way, South 03°57'31" West 224.45 feet to a point; thence, South 62°24'06" West 140.83 feet to a point; thence, North 85°00'48" West 220.39 feet to a point; thence, South 71°32'01" West 167.97 feet to a point; thence, South 55°11'46" West 260.01 feet to a point; thence South 00°19'06" East to an iron pipe; thence, South 77°03'58" West 613.86 feet to an iron pipe; thence, North 00°39'34" West 210.00 feet to an iron pipe; thence, North 89°39'42" West 210.07 feet to an iron pipe; thence, North 89°33'15" West 60.01 feet to an iron pipe; thence, North 89°33'15" West 194.65 feet to an iron pipe; thence, North 89°37'28" West 192.36 feet to an iron pipe; thence, South 89°58'04" West 545.58 feet to an iron pipe; thence, South 89°41'47" West 571.90 feet to an iron pipe; thence, North 12°14'25" East 513.70 feet to an iron pipe; thence, South 60°15'35" East 257.50 feet to an iron pipe; thence, South 68°15'35" East 360.30 feet to an iron pipe; thence, North 03°35'25" East 604.00 feet to an iron pipe; thence, North 56°00'58" West 420.00 feet to an iron pipe; thence, South 65°29'02" West 130.00 feet to an iron pipe; thence, South 42°57'43" West 270.40 feet to an iron pipe; thence, North 01°21'15" West 719.72 feet to an axle; thence, North 87°42'39" East 434.84 feet to an iron pipe; thence, North 02°13'13" East 238.07 feet to an iron pipe; thence, South 89°16'24" East 821.92 feet to an iron pipe; thence, South 02°47'46" East 100.00 feet to an iron pipe; thence, South 89°47'46" East 150.00 feet to an iron pipe; thence, North 55°18'54" East 174.59 feet to an iron pipe; thence, South 88°45'46" East 396.99 feet to an iron pipe; thence, South 00°09'07" East 210.02 feet to an iron pipe; thence, South 89°21'02" East 175.02 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence with said right-of-way, South 31°00'37" West 57.95 feet to an iron pipe; thence leaving said right of way, North 89°21'02" West 245.02 feet to an iron pipe; thence, South 00°09'07" East 175.02 feet to an iron pipe; thence, South 89°21'02" East 45.00 feet to an iron pipe; thence, South 00°09'07" East 100.01 feet to an iron pipe; thence, South 89°21'02" East 200.02 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence with said right-of-way, South 01°21'41" East

MORRIS & RITCHIE ASSOCIATES OF NC, PC


AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH PROVIDES ENGINEERING, ARCHITECTURE, PLANNING. SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS

667.14 feet to a point; thence crossing and leaving said right of way, South 88°47'24" East 210.08 feet to an iron pipe; thence North 00°34'22" West 421.87 feet to a point; thence, South 88°57'37" West 150.00 feet to a point on the Eastern right-of-way of Gideon Drive; thence with said right-of-way, North 00°53'13" West 100.00 feet to a point; thence leaving said right-of-way, North 88°57'37" East 150.00 feet to a point; thence, North 00°53'16" West 390.32 feet to an axle; thence, South 89°32'03" East 237.94 feet to a point; thence, South 06°57'52" East 113.70 feet to a point; thence, South 12°21'20" East 211.32 feet to an iron pipe; thence, North 73°55'50" East 149.95 feet to an iron pipe on the Southwestern right-of-way of Jonesville Road; thence, with said right-of-way and along a curve with a bearing and distance of South 19°15'36" East 146.36 feet and a radius of 1,462.39 feet to the point of beginning. Containing 93.609 AC.±.

The total area of the New Parcel 1 herein described being a portion of Tract 1 as described in deed dated March 11, 2022 from Jerri Jo Miller, Tammy Gower Batts, Clifton Edward Blackley and spouse Joetta May Blackley, Grantor to Ping Chen and recorded in the Land Records of Wake County, North Carolina in Deed Book 18953, page 592 and page 623, and containing a total area of 93.609 AC.± and being subject to any and all matters of which a current title package would disclose.

WAKE COUNTY, NC TAMMY L. BRUNNER REGISTER OF DEEDS PRESENTED & RECORDED ON 01-26-2023 AT 10:04:04

BOOK: 019248 PAGE: 01884 - 01887

NORTH CAROLINA

GENERAL WARRANTY DEED

Excise Tax: \$ 0.00 Recording Time, Book and Page

Account No. Parcel Identifier No. 0057413, 0057429, 0057430, 0057431, 0057435, 0057436, 0057437, 0057438, 0057439, 0057440, 057441, 0057442, 057443, 0057444, 0057445, 0057446, 0057447, 0057448, 0345866 and 0122598

Mail after recording to: GRANTEES @ 10030 Green Level Church Road Suite 802, #149, Cary, NC 27519

This instrument was prepared by: Ewing Law Center, P.C. (Carey L. Ewing, Esq.) without benefit of a title examination.

THIS DEED made this 24th day of January, 2023 by and between

GRANTOR

Ping Chen and Fanxing Li, a Married Couple 10030 Green Level Church Road Suite 802, #149, Cary, NC 27519

GRANTEE

Kenneth Investment, LLC, a North Carolina Limited Liability Company 10030 Green Level Church Road Suite 802, #149, Cary, NC 27519

The designation Grantor and Grantee as used herein shall include said parties, their heirs, successors, and assigns, and include singular, plural, masculine, feminine or neuter as required by context.

WITNESSETH, that the Grantors, for a valuable consideration paid by the Grantee, the receipt of which is hereby acknowledged, has and by these presents does grant, bargain, sell and convey unto the Grantee in fee simple, all that certain lot or parcel of land and more particularly described as follows:

SEE ATTACHED EXHIBIT A

The described property is more commonly known as:

TRACT 1: All or a portion of the property hereinabove described was acquired by Grantors by instrument recorded in Book 18953, Page 623, Wake County Registry. A map showing the above described property is recorded in Book of Maps 1971, Volume II, Page 127, Wake County Registry.

TRACT 2: All or a portion of the property hereinabove described was acquired by Grantors by instrument recorded in Book 18953, Page 592, Wake County Registry. A map showing the above described property is recorded in Book of Maps 2007, Page 1224, Wake County Registry.

TRACT 3: All or a portion of the property hereinabove described was acquired by Grantors by instrument recorded in Book 18943, Page 2656, Wake County Registry. A map showing the above described property is recorded in Book of Maps 1982, Page 473, Wake County Registry.

The above described property \(\subseteq \) does \(\subseteq \) does not include the primary residence of the Grantors.

TO HAVE AND TO HOLD the aforesaid lot or parcel of land and all privileges and appurtenances thereto belonging to the Grantee in fee simple.

And the Grantors covenants with the Grantee, that Grantors are seized of the premises in fee simple, has the right to convey the same in fee simple, that title is marketable and free and clear of all encumbrances, and that Grantors will warrant and defend the title against the lawful claims of all persons whomsoever except for the exceptions hereinafter stated.

Title to the property hereinabove described is subject to the following exceptions: NONE KNOWN.

IN WITNESS WHEREOF, the Grantors has hereunto set his hand and seal, or if corporate, has caused this instrument to be signed in its corporate name by its duly authorized officer(s), the day and year first above written.

Ping Chen

Fapxing Li

STATE OF NORTH CAROLINA COUNTY OF DURHAM

I, CAREY L. EWING, a Notary Public for DURHAM County, State of NORTH CAROLINA, certify that Ping Chen and Fanxing Li, personally appeared before me this day, acknowledging to me that he/she/they signed the foregoing document: NORTH CAROLINA GENERAL WARRANTY DEED. Witness my hand and official stamp or seal, this the

24 day of January, 2023.

My Commission Expires: 06/13/2027

NOTARY PUBLIC: CAREY L. EWING

Carey L. Ewing NOTARY PUBLIC Durham County, N.C.

Exhibit "A"

TRACT 1:

BEGINNING at a new iron pipe located in a gravel private road known as "Universal Road", which iron pipe is located South 85° 36' 09" East 766.15 feet from the intersection of the center lines of Jonesville Road and Universal Road; thence South 4° 41' 55" West 210.02 feet to a new iron pipe; thence South 84° 30' 00" East 175.02 feet to a new iron pipe; then South 35° 51' 39" West 57.95 feet to a new iron pipe; thence 84° 30' 00" East 175.02 feet to a new iron pipe; thence North 84° 30′ 00" West 245.02 feet to a new iron pipe; thence South 04° 41′ 55" West 175.03 feet to a new iron pipe; thence South 84° 30′ 00″ East 45.00 feet to a new iron pipe; thence South 04° 41′ 55" West 100.01 feet to a new iron pipe; thence South 84° 30′ 00" East 200.02 feet to a new iron pipe; thence 04° 41′ 55" West 669.02 feet to a new iron pipe; thence South 84° 30′ 00" East 200.00 feet to a new iron pipe; thence South 04° 41′ 55" West 649.26 feet to an existing iron pipe; thence South 80° 50′ 51" West 613.86 feet to an existing iron pipe; thence North 04° 00′ 42″ East 221.14 feet to a new iron pipe; thence North 84° 47′ 09" West 656.86 feet to an existing iron pipe; thence North 85° 13' 27" West 545.51 feet to an existing iron pipe; thence North 85° 27' 18" West 571.35 feet to an existing iron pipe; thence North 16° 54' 52" East 516.50 feet to a new iron pipe; thence South 55° 35′ 08" East 257.50 feet to a new iron pipe; then South 63° 35′ 08" East 360.30 feet to a new iron pipe; thence North 08° 39' 52" East 604.00 feet to appoint; thence North 51° 35' 08" West 420.00 to a point; thence South 69° 54' 52" West 130.00 feet to a point; thence South 47° 24' 52" West 270.50 feet to a point; thence North 03° 24' 52" East 719.72 to an existing iron bar; thence South 87° 31' 14" East 434.72 to an existing iron pipe; thence North 06° 54′ 46" East 238.00 feet to a new iron pipe; thence South 84° 30′ 00" East 850.00 feet to a new iron pipe; thence South 02° 30′ 00" West 100.00 feet to a new iron pipe; thence South 84° 30' 00" East 150.00 feet to a new iron pipe; thence North 02° 30' 00" East 100.00 feet to a new iron pipe; thence South 84° 30′ 00" East 542.15 feet to a new iron pipe, the point and place of beginning, and being that tract of 78.289 acres in size, more or less, as shown on that map entitled "Survey for June M. Privette Heirs", prepared by W. Graham Cawthorne, Jr., R.L.S., and dated April 28, 1993.

In addition, being all of that real property described as Lot 8 according to that map entitled "Plot of farm belonging to June M. and Mary C. Privette", prepared by Pittman Estelle on February 6, 1947, and revised by T.M. Arrington, Jr., R.L.S., on March 18, 1964, and March 26, 1969, a copy of which is recorded in Wake County Book of Maps 1971, Volume II, Page 127.

Parcel ID #: 0057413, 0057429, 0057430, 0057431, 0057435, 0057436, 0057437, 0057438, 0057439, 0057440, 057441, 0057442, 057443, 0057444, 0057445, 0057446, 0057447, 0057448.

TRACT 2:

BEING all of that certain tract of land containing 14.90 acres and being designated as Lot No. 1, according to map recorded in Book of Maps 2007, Page 1224, Wake County Registry.

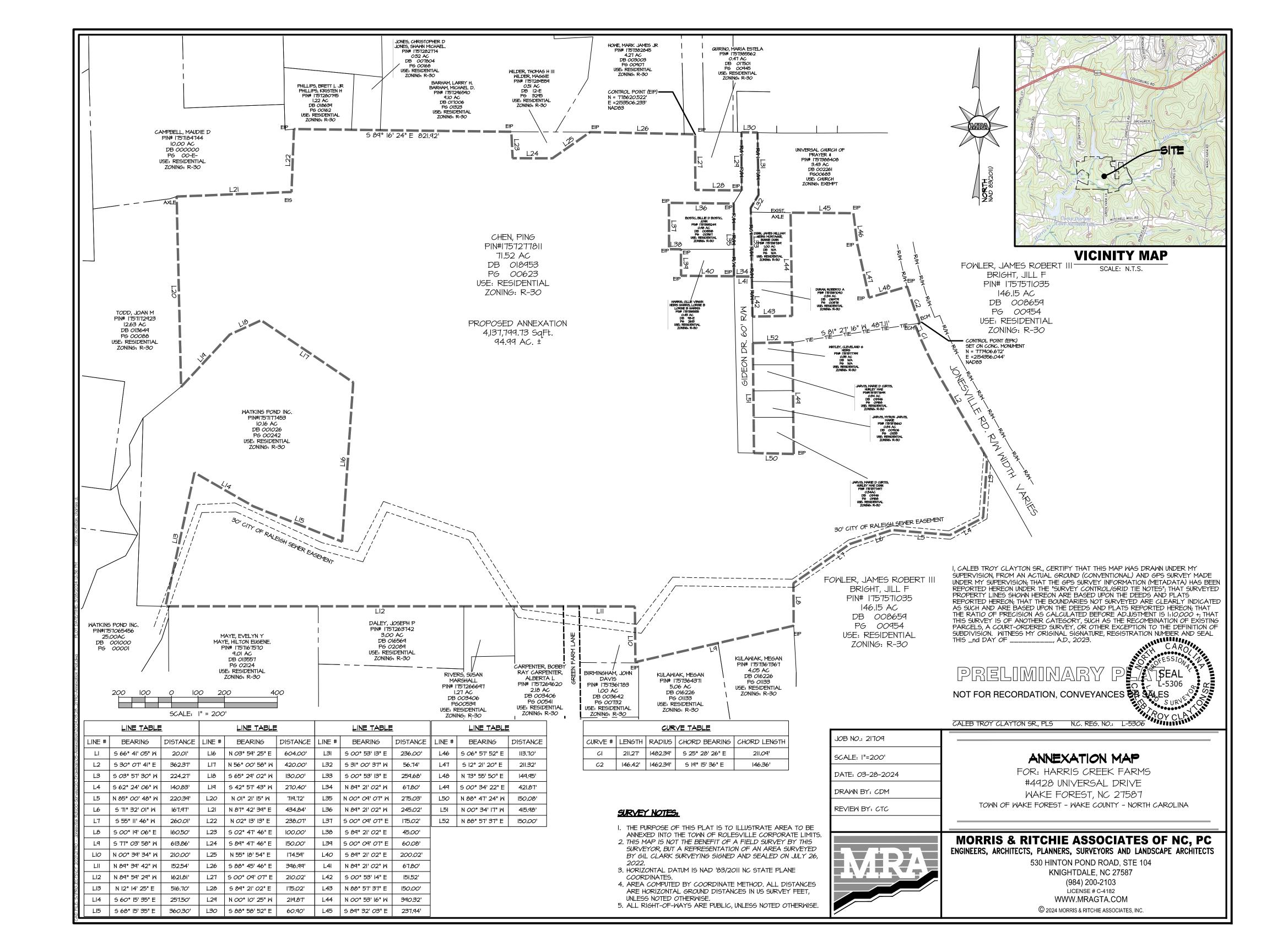
Parcel ID #: 0345866

TRACT 3:

BEING all of Tract 4, as depicted on a map entitled "Property Surveyed for Leonard Dean Estate", dated February 16, 1982, prepared by Mullen, Williamss, & Pearce, P.A., Registered Land Surveyors, and recorded in Book of Maps 1982, Page 473, Wake County Registry.

Parcel # 0122598

CERTIFICATE OF SUFFICIENCY ANX22-05 - Harris Creek Farm


To the Board of Commissioners of the Town of Rolesville, North Carolina:

- I, <u>Robin E. Peyton</u>, Town Clerk, do hereby certify that I have investigated the attached petition and hereby make the following findings:
 - a. The petition contains an adequate property description of the area(s) proposed for annexation.
 - b. The area described in the petition is contiguous to the Town of Rolesville primary corporate limits as required by G.S. 160A-31.
 - c. The petition is signed by all owners of real property lying in the area described therein.

In witness whereof, I have hereunto set my hand and affixed the seal of the Town of Rolesville, this 7th day of December, 2022

OF ROVE OF ROVE 1941 BIM

Robin E. Peyton Town Clerk

MORRIS & RITCHIE ASSOCIATES OF NC, PC

AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS

<u>Legal Description – Annexation Map</u> 94.99 Acres Portion of Lands of Ping Chen Wake Forest Township – Wake County, North Carolina

All that certain parcel of land lying generally easterly of Jonesville Road, being located in Wake Forest Township, Wake County, North Carolina and being a portion of those lands described in deed dated January 24, 2023 from Ping Chen and Fanxing Li, Grantor to Kenneth Investment, LLC. and recorded in the Land Records of Wake County, North Carolina in Deed Book 19248, page 1884, being more particularly described as follows, to wit:

Beginning at a PK nail set in an existing concrete monument on the Southwestern right-of-way of Jonesville Road, having North Carolina state plane coordinates N: 777,906.672 E: 2,154,356.044. Thence, with said right-of way, South 66°41'05" West 20.01 feet to a concrete monument on the Southwestern right-of-way line of Jonesville Road; thence, with said right-ofway and along a curve with a cord bearing distance South 25°28'26" East 211.09 feet and a radius of 1,482.39 feet to an iron pipe; thence along said right-of-way, South 30°07'41" East 362.37 feet to an iron pipe; thence leaving said right-of-way, South 03°57'30" West 224.27 feet to a point; thence, South 62°24'06" West 140.83 feet to a point; thence, North 85°00'48" West 220.39 feet to a point; thence, South 71°32'01" West 167.97 feet to a point; thence, South 55°11'46" West 260.01 feet to a point; thence South 00°19'06" East 160.50 feet to an iron pipe; thence, South 77°03'58" West 613.86 feet to an iron pipe; thence, North 00°39'34" West 210.00 feet to an iron pipe; thence, North 89°39'42" West 152.54 feet to a point; thence, North 89°59'29" West 1,621.81 feet to an iron pipe; thence, North 12°14'25" East 516.70 feet to an iron pipe; thence, South 60°15'35" East 257.50 feet to an iron pipe; thence, South 68°15'35" East 360.30 feet to an iron pipe; thence, North 03°59'25" East 604.00 feet to an iron pipe; thence, North 56°00'58" West 420.00 feet to an iron pipe; thence, South 65°29'02" West 130.00 feet to an iron pipe; thence, South 42°57'43" West 270.40 feet to an iron pipe; thence, North 01°21'15" West 719.72 feet to an axle; thence, North 87°42'39" East 434.84 feet to an iron pipe; thence, North 02°13'13" East 238.07 feet to an iron pipe; thence, South 89°16'24" East 821.92 feet to an iron pipe; thence, South 02°47'46" East 100.00 feet to an iron pipe; thence, South 89°47'46" East 150.00 feet to an iron pipe; thence, North 55°18'54" East 174.59 feet to an iron pipe; thence, South 88°45'46" East 396.99 feet to an iron pipe; thence, South 00°09'07" East 210.02 feet to an iron pipe; thence, South 89°21'02" East 175.02 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence with said right-of-way, North 00°10'25" West 219.87 feet to a point; thence leaving said right of way, South 88°58'52" East 60.90 feet to a point on the Eastern right-of-way of Gideon Drive; thence, with said right-of-way South 00°53'13" East 236.00 feet to a point; thence, South 31°00'37" West 56.74 feet to a point; thence, South 00°53'13" East 259.68 feet to a point; thence, crossing said right-of-way, South 89°21'02" East 67.80 feet to an iron pipe; thence, with said right-of-way North 00°09'07" West 275.03 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence, leaving said right-of-way, North 89°21'02" West 245.02 feet to an iron pipe; thence, South 00°09'07 East 175.02 feet to an iron pipe; thence, South 89°21'02" East 45.00 feet to an iron pipe; thence,

MORRIS & RITCHIE ASSOCIATES OF NC, PC

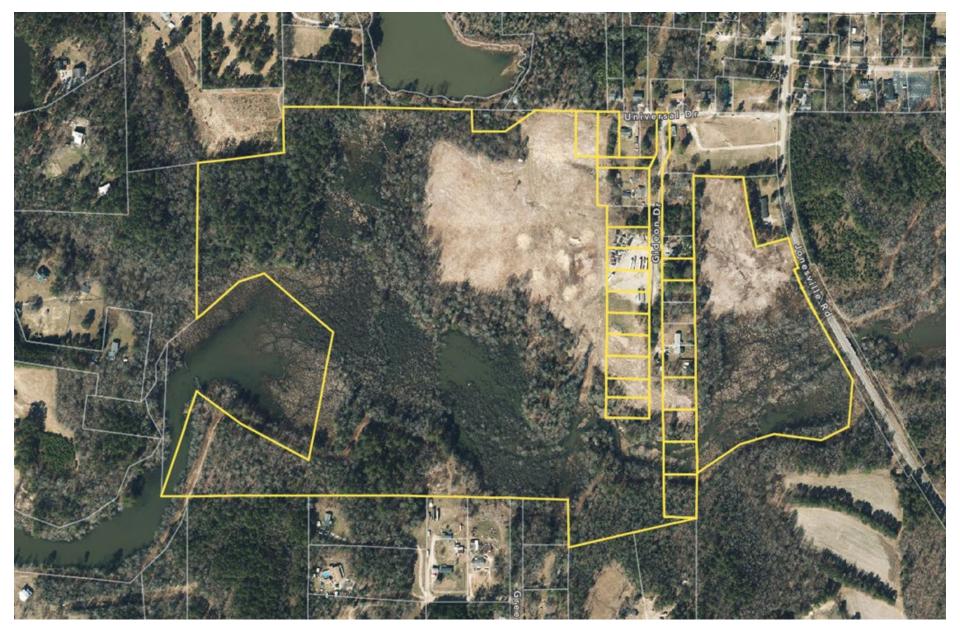
AN AFFILIATE OF MORRIS & RITCHIE ASSOCIATES, INC. WHICH PROVIDES ENGINEERING, ARCHITECTURE, PLANNING, SURVEYING & LANDSCAPE ARCHITECTURE THROUGHOUT THE MID-ATLANTIC REGION AND LANDSCAPE ARCHITECTS

South 00°09'07" East 60.08 feet to an iron pipe; thence, South 89°21'02" East 200.02 feet to an iron pipe on the Western right-of-way of Gideon Drive; thence, leaving said right-of-way, South 89°21'02" East 67.80 feet to a point on the Eastern right-of-way of Gideon Drive; thence, with said right-of-way, South 00°53'14" East 151.52 feet to a point; thence leaving said right of way, North 88°57'37" East 150.00 feet to a point; thence, North 00°53'16" West 390.32 feet to an axle; thence, South 89°32'03" East 237.94 feet to an iron pipe; thence, South 06°57'52" East 113.70 feet to a point; thence, South 12°21'20" East 211.32 feet to an iron pipe; thence, North 73°55'50" East 149.95 feet to an iron pipe on the Southwestern right-of-way of Jonesville Road; thence, with said right-of-way and along a curve with a bearing and distance of South 19°15'36" East 146.36 feet and a radius of 1,462.39 feet to the point of beginning. Containing 94.99 AC.±.

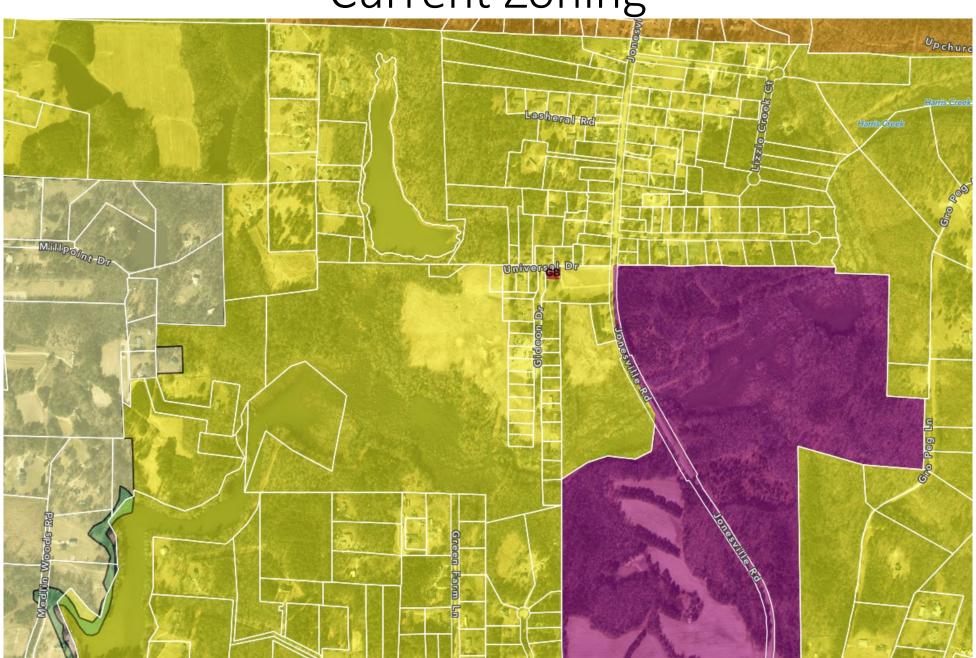
Less than and except the following four (4) parcels; 1757-37-7799, 1757-37-7699, 1757-37-8610, and 1757-37-7497, being more particularly described as follows, to wit:

Commencing at a PK nail set in an existing concrete monument on the Southwestern right-ofway of Jonesville Road, having North Carolina state plane coordinates N: 777,906.672 E: 2,154,356.044. Thence, South 81°27'16" West 487.11 feet to the point of beginning; thence, South 00°34'22" East 421.87 feet to a point; thence, North 88°47'24" West 150.08 feet to a point; thence, North 00°34'17" West 415.98 feet to a point; thence North 88°57'37" East 150.00 feet to the point of beginning.

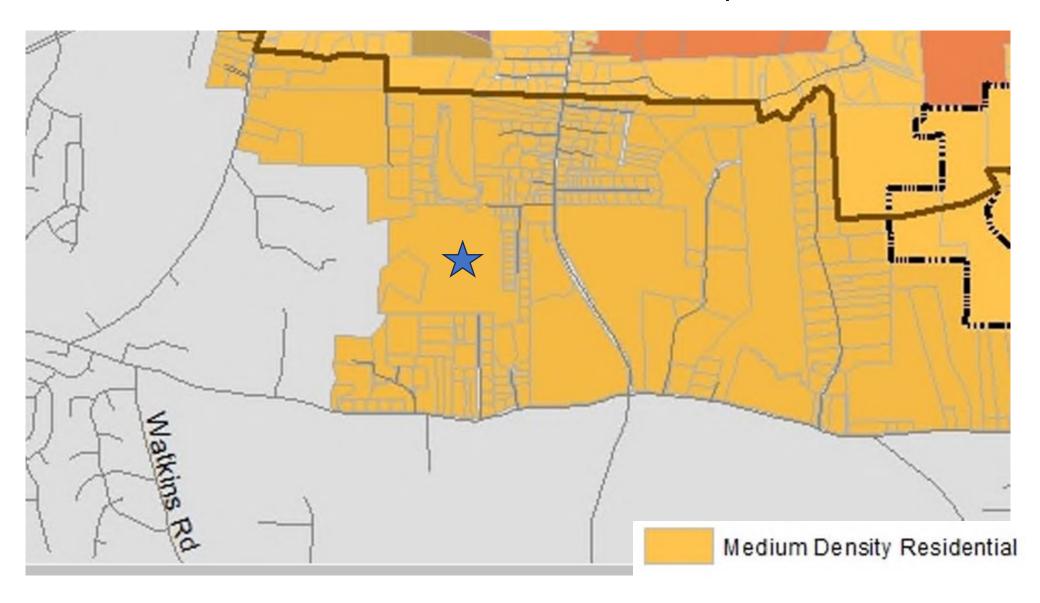
The total area of the Exhibit "B" herein described being a portion of Tract 1 as described in deed dated January 24, 2023 from Ping Chen and Fanxing Li, Grantor to Kenneth Investment, LLC. and recorded in the Land Records of Wake County, North Carolina in Deed Book 18953, page 592 and page 623, and containing a total area of 94.99 AC.± and being subject to any and all matters of which a current title package would disclose.

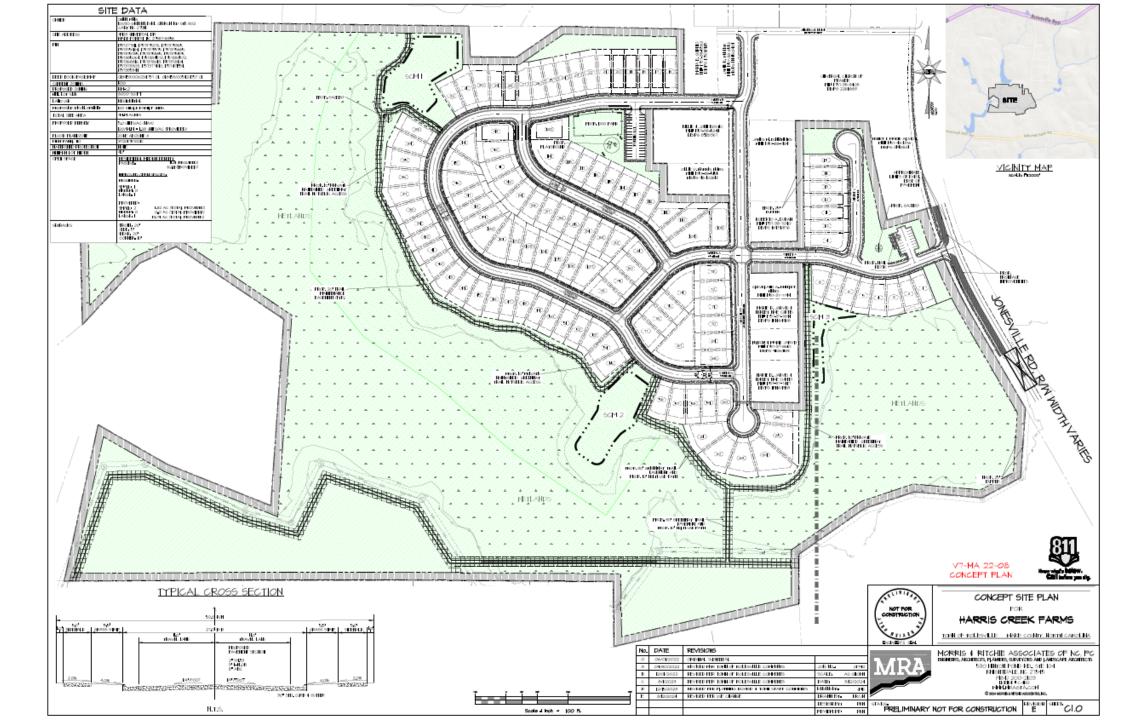

Harris Creek Farm ANX 22-05 & MA 22-08

Town of Rolesville Board of Commissioners
April 2, 2024


Overview

- Property Size: Approximately 94.19 acres
- Street Frontage: Jonesville Road
- Current Zoning: R-30 (Wake County)
- Future Land Use: Moderate Scale Residential
- Proposed Zoning: Residential Medium Density Conditional Zoning (RM-CZ)
- Request is <u>consistent</u> with Rolesville Comprehensive Plan


Existing Conditions

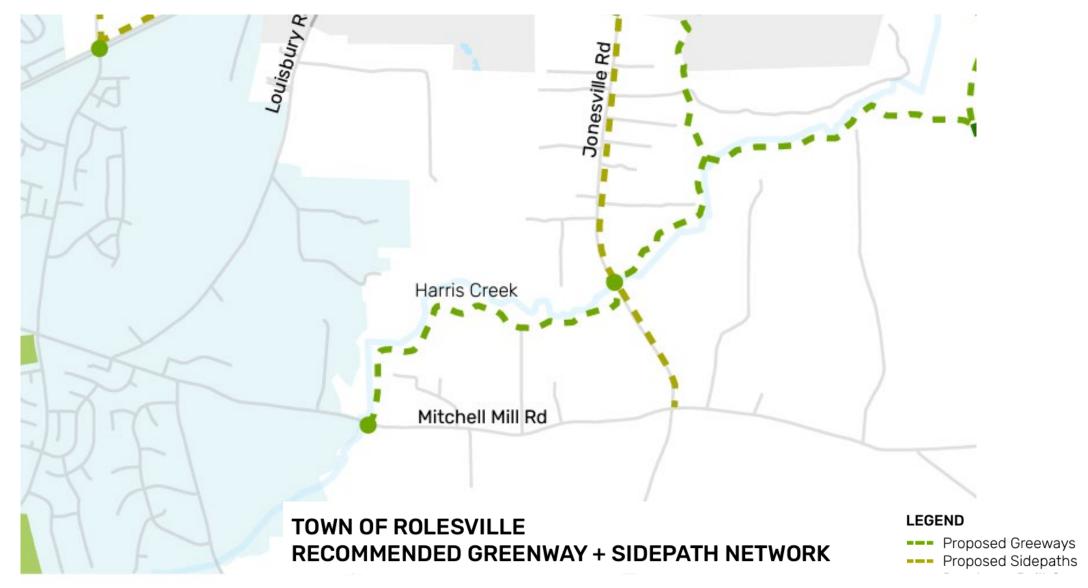


Current Zoning

Future Land Use Map

Reserve at Mitchell Mill

(Approved Jan. 2023)


141 Acres

379 Residential Units

- 119 Townhomes
- 260 Single Family Homes

Greenway Map

HARRIS CREEK FARMS

VOLUNTARY REZONING CONDITIONS

- 1.The subject property shall be developed in general compliance with the map amendment (conditional rezoning) concept plan, dated 3/1/2024.
- 2.The development shall consist of maximum of 120 single-family detached dwelling units/lots as detailed in the map amendment (conditional rezoning) concept plan, dated 3/1/2024.
- 3.Single family detached dwelling unit facade anti-monotony: in order to promote variation in home appearance, no single-family front façade shall be duplicated for three (3) lots in a row, or directly across the street. For corner lots, this shall apply to the lots diagonally across the intersection.
- 4.All garage doors shall either contain windows or carriage style adornments.

5. Single-family detached dwelling units shall:

- A. Be a minimum of 1,500 heated square feet.
- B. Have cementitious siding that shall vary in type and color with brick, shakes, board and batten, or stone accents provided as decorative features
- C. Have at least two types of finishes on the front: lap siding, masonry, shakes, and board and batten.
- 7.A homeowners' association (HOA) shall be created, and all open spaces observed in map amendment (conditional rezoning) concept plan, dated 3/1/2024, shall be owned and maintained by the HOA.
- 8. Foundations: All foundations are to be monolithic poured slab foundations. Top of slabs shall be elevated a minimum of 18 inches above finished grade for all dwelling units. All foundations shall be treated with masonry on the front and street-facing sides for a minimum of 10".
- 9.Recreational amenities: the following recreational amenities shall be constructed as observed in map amendment (conditional rezoning) concept plan, dated 3/1/2024. Public greenway (approximately 5,600 linear feet), private multi-use paths (approximately 410 linear feet), gazebos, playgrounds, and a dog park. Amenities shall be built prior to the issuance of the building permit for the 70th lot.
- 10. <u>Landscaping</u>. At least twenty percent (20%) of all landscaping required by the LDO, that does not already qualify under LDO Section 6.2, shall utilize plant materials that are listed as native pollinator plants by the North Carolina Wildlife Federation. Where evergreen plantings or street trees are required by the LDO, native pollinator plantings shall not be required. Such plantings shall be clearly shown in construction drawings and installed as part of subdivision infrastructure. Nothing herein shall be constructed to limit the plant materials permitted on individual residential lots.

- 11. <u>Sidewalk Easement</u>. The development shall attempt to procure an easement from the owners of those properties with PINs 1757-48-1376 (Deed Book 19407, Page 984, Wake County Registry) and 1757-38-8408 (Deed Book 2261, Page 683, Wake County Registry), in order to provide a 5'-wide sidewalk running from the development's proposed access to Jonesville Road to the intersection with Universal Drive. If the development procures easements from both property owners, the sidewalk shall be located within said easements and constructed consistent with the Town of Rolesville Transportation Plan, and shall be completed prior to the issuance of the one hundredth (100th) building permit. If the development is unable to procure an easement from either property owner prior to the issuance of the first (1st) building permit, then the development shall pay a fee-in-lieu for the sidewalk construction to the Town of Rolesville. The fee-in-lieu shall be paid prior to the issuance of the one hundredth (100th) building permit.
- 12. <u>Universal Drive</u>. The development shall attempt to procure a minimum 20'-wide access easement (the "<u>Easement</u>") from the owner of that property with PIN 1757-38-8408 (Deed Book 2261, Page 683, Wake County Registry) for vehicular ingress and egress to and from Gideon Drive and Jonesville Road (the "<u>Easement Area</u>"). This Easement shall be recorded with the Wake County Registry. If the Easement is obtained and recorded, the development shall pave the Easement Area with a 20'-wide asphalt surface coat over top of the existing private gravel access drive. The paving shall be completed prior to the issuance of the development's one hundredth (100th) building permits. Following completion of the paving, the development shall be responsible for maintenance of the Easement Area; this maintenance responsibility shall expire if Universal Drive is dedicated as public right-of-way. If the development can not obtain and record the Easement before the issuance of the first (1st) building permit, then the development shall have no obligation to perform any work described in this Condition.
- Prior to issuance of the first building permit for a dwelling unit, the development shall donate thirty-five thousand dollars and no cents (\$35,000.00) to Homes for Heroes.

