

STORMWATER DRAINAGE REPORT

Prepared By:

American Engineering

4020 Westchase Boulevard, Suite 450 Raleigh, NC 27607 NCBELS #: C-3881

DATE: December 23rd, 2024

Prepared For:

Mitchell Mill Road Investors, LLC

105 Weston Estates Way Cary, NC 27513

TABLE OF CONTENTS

REPORT

- I. SITE HISTORY
- II. PROJECT DESCRIPTION
- **III. RESULTS SUMMARY**
- **IV. METHODOLOGY**
- V. CONCLUSION

APPENDICES

A. PROJECT MAPS AND DATA

- 1. VICINITY MAP
- 2. NRCS SOILS MAP
- 3. USGS MAP
- 4. FEMA FIRMETTE
- 5. PRECIPITATION DATA
- 6. GEOTECHNICAL REPORT

B. DRAINAGE AREA MAPS

1. POST-DEVELOPMENT INLET DRAINAGE AREA MAP

C. STORM CONVEYANCE CALCULATIONS

- 1. INLET C-VALUE CALCULATIONS
- 2. RIPRAP DISSIPATOR PAD CALCULATIONS
- 3. HYDRAFLOW EXPRESS CULVERT REPORT 10-YEAR
- 4. HYDRAFLOW EXPRESS CULVERT REPORT 25-YEAR
- 5. HYDRAFLOW EXPRESS CULVERT REPORT 100-YEAR
- 6. SPREAD CALCULATIONS BY LIMITED AREA (4 in/hr)
- 7. HYDRAFLOW STORM SEWER IDF CURVES
- 8. HYDRAFLOW STORM SEWERS REPORT AND PROFILES 10 YEAR
- 9. HYDRAFLOW STORM SEWERS REPORT AND PROFILES 25 YEAR

REPORT

I. SITE HISTORY

The existing parcel use is vacant. It is located west of Rolesville Road between Fowler Road and Mitchell Mill Road. The property totals 23.45 acres, PIN: 1767-17-5039. The parcel is bordered by a Bonafide Farm to the west, with new subdivisions being built along the eastern property boundary and northwest property corner. The parcel along the southern boundary is currently vacant. An existing pond located on the southeast portion of the property feeds a stream that runs north along the eastern property boundary. There is no FEMA flood plain on this site.

The soil on site predominately consists of Rawlings-Rion, 2 to 6 percent slopes (RgB), Rawlings-Rion 10 to 15 percent slopes (RgD), Helena sandy loam (HeB), and Chewacla and Wehadkee soils (ChA). The site also consists of a small portion of Wedowee-Saw (Wfb), and Altavista fine sandy loam (AaA) according to the US Department of Agriculture (USDA) NRCS soil report. More detailed soil information can be found in the project Geotechnical Report, see Appendix A.

The existing site is relatively hilly, with a high point on the southwest corner directing site drainage towards the northern property boundary. The contours on the site range from 390' to 355' above mean sea level.

II. PROJECT DESCRIPTION

The proposed development is a residential subdivision zoned parcel (R&PUD-CZ) that will consist of 95 townhomes. It is the fifth (5th) phase of a five (5) phase development, Kalas Falls. The northern entrance is connected to Kalas Falls Phase 3 and the southern entrance is connected to Kalas Falls Phase 2. The project will utilize an offsite, regional stormwater control measure (SCM) to the north of the property that is located on Kalas Falls Phase 3. This SCM (SCM #3B) has been designed to handle stormwater discharge from both Kalas Falls Phase 3 and Kalas Falls Phase 5. Kalas Falls Phase 3 is currently under review with the Town of Rolesville and Wake County.

III. RESULTS SUMMARY

Pipe Network

The stormwater conveyance on site is one system that will connect to the pipe system designed and constructed with Phase 3 of Kalas Falls. Stormwater pipe material is proposed to be reinforced concrete pipe (RCP) within the rights-of-way. RCP pipes on site range from 15" to 48" in diameter. Proposed public easements to allow for future access and maintenance of infrastructure can be seen in the Construction Drawings (CD) Plan set.

Modeling was performed in *Autodesk Hydrograph Storm Sewers* for the 10 and 25-year storm events, see Appendix C. The 10-year modeling ensured hydraulic grade lines (HGL) were maintained within the pipe networks, see Appendix C: Attachment 8. The 25-year modeling ensured HGL's were maintained within the structures, see Appendix C: Attachment 9. To accomplish modeling, inlet areas were delineated for each structure that is to accept overland flow, see Appendix B: Attachment 1. A uniform rational C-value of 0.59 was determined by implementing the post-development impervious area being conveyed to SCM's and the post-development total area being conveyed to SCM's, see Appendix C: Attachment 1. A uniform time of concentration of 10 minutes was used during modeling.

Energy Dissipation

Riprap dissipater pads have been sized for pipe outlets following NCDOT charts and methodology (see NCDOT Detail #876.02 in plan set) to reduce sediment erosion in areas where water is discharging to the surface, see Appendix C: Attachment 2. Flared-end sections or headwalls are proposed at the outlets of each system entering/exiting SCM's or proposed ditches. Class "B riprap is proposed at each of these outlets, determined by pipe size and exit velocity.

Inlet Spreads

Spreads were determined on site using a storm intensity of 4 in/hr, see Appendix C: Attachment 8. The method by Limited Area was used to calculate spread sizes and determine the max drainage area per structure based off several variables including road width, longitudinal slope, cross slope, and curb and gutter profile by implementing Manning's Equation. If the max drainage area exceeded the actual drainage area, then a double inlet was implemented in design. Max spreads for this project could not exceed 7.5-feet (5.5-foot half lane + 2-foot gutter).

Culvert Crossings

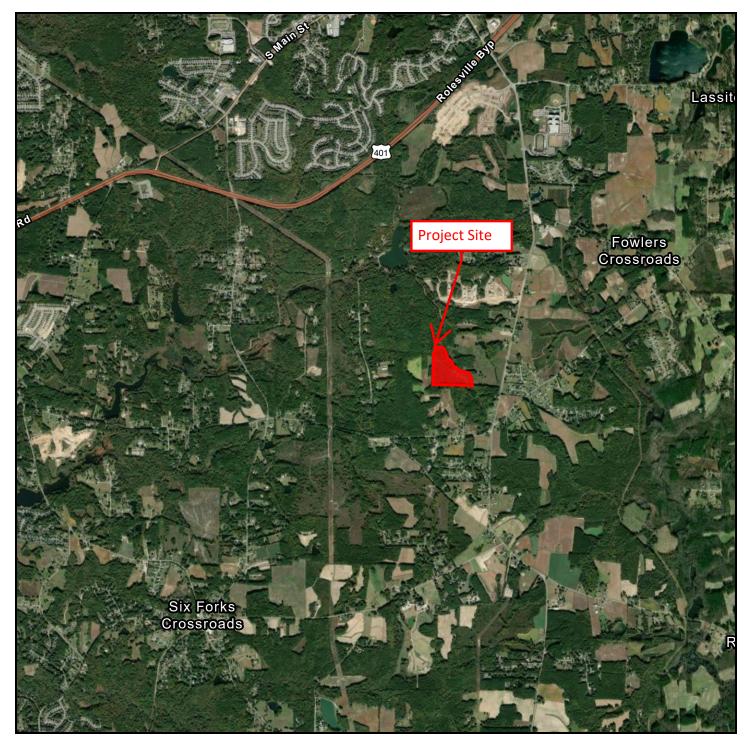
There are one culvert crossing within the Phase 5 project. The culverts are to be a 48" RCP pipe that will convey stormwater runoff underneath Graymont Oaks Dr. These 48" culvert conveys stormwater received from the north existing pond on site and the drainage area upstream.

Autodesk Hydraflow Hydrograph Extension was used to determine the peaks flows for the 10-year, 25-year, and 100-year storm events for each culvert, see Table 2: Culvert Peak Flows. This modeling can be seen in Appendix C. Autodesk Hydraflow Express Extension was used to model each culvert, by implementing peaks flows obtained from Hydrographs, ensuring that the 10-year hydraulic grade line remained in the pipe and the 100-year storm event does not over top the roadway, see Appendix C: Attachments 3-5.

Culvert Label	Q ₁₀ (cfs)	Q ₂₅ (cfs)	Q ₁₀₀ (cfs)	
Graymont Oaks Dr: 48"	90	90-150	150	

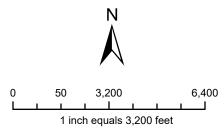
IV. METHODOLOGY

The stormwater design calculations are conducted using the following methods:


- Precipitation intensity and depths for the site were obtained from https://hdsc.nws.noaa.gov/pfds/pfds map cont.html?bkmrk=nc.
- Rational method was used to determined Q-values for inlet areas.
- The composite runoff coefficients (C-Value) were computed using the C-values from NCDEQ Stormwater Design Manual and are included in Appendix C: Attachments 1.
- Autodesk Hydrograph Storm Sewers Extension program was used to model storm pipes.
- Autodesk Hydraflow Express Extension program was used to model culverts.
- Riprap sizing for erosion and sediment control was determined using NCDOT standard detail #876.02 "Guide for Rip Rap at Pipe Outlets".

V. CONCLUSION

It is our professional opinion that the proposed stormwater design on site meets the requirements of the applicable Stormwater Rules and Regulations.



APPENDIX A PROJECT MAPS & DATA

Kalas Falls Phase 5 Vicinity Map

<u>Disclaimer</u> iMaps makes every effort to produce and publish the most current and accurate information possible. However, the maps are produced for information purposes, and are **NOT** surveys. No warranties, expressed or implied , are provided for the data therein, its use, or its interpretation.

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Wake County, North Carolina

Kalas Falls Phase 5

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

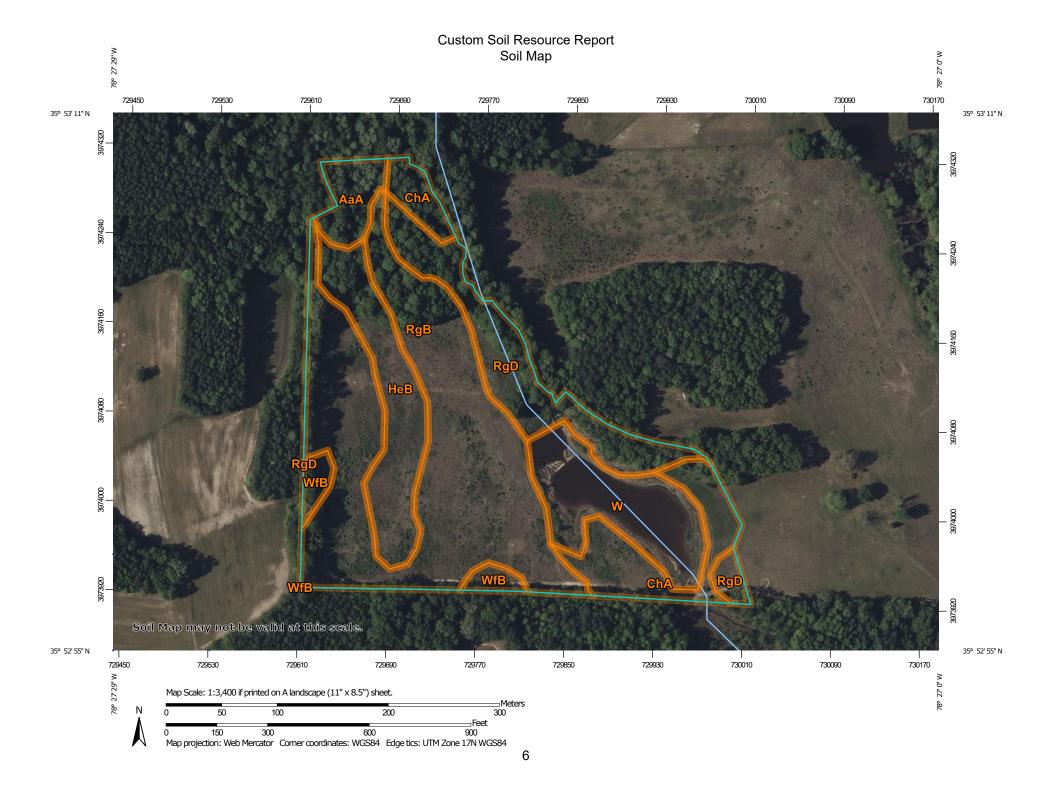
Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require


alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
Soil Map	5
Soil Map	
Legend	
Map Unit Legend	8
Map Unit Descriptions	8
Wake County, North Carolina	10
AaA—Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded ChA—Chewacla and Wehadkee soils, 0 to 2 percent slopes,	10
frequently flooded	11
HeB—Helena sandy loam, 2 to 6 percent slopes	12
RgB—Rawlings-Rion complex, 2 to 6 percent slopes	13
RgD—Rawlings-Rion complex, 10 to 15 percent slopes	15
W—Water	17
WfB—Wedowee-Saw complex, 2 to 6 percent slopes	17
References	20

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout (o)

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot Other

Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Wake County, North Carolina Survey Area Data: Version 25, Oct 2, 2023

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Apr 24, 2022—May 9. 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
AaA	Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded	0.9	3.7%
ChA	Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded	2.5	10.8%
HeB	Helena sandy loam, 2 to 6 percent slopes	2.9	12.2%
RgB	Rawlings-Rion complex, 2 to 6 percent slopes	10.5	44.5%
RgD	Rawlings-Rion complex, 10 to 15 percent slopes	3.3	14.1%
W	Water	2.9	12.5%
WfB	Wedowee-Saw complex, 2 to 6 percent slopes	0.5	2.3%
Totals for Area of Interest		23.5	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit

descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Wake County, North Carolina

AaA—Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded

Map Unit Setting

National map unit symbol: 2xh95

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Altavista, rarely flooded, and similar soils: 95 percent

Minor components: 2 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Altavista, Rarely Flooded

Setting

Landform: Stream terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear

Parent material: Old loamy alluvium derived from igneous and metamorphic rock

Typical profile

Ap - 0 to 8 inches: fine sandy loam
E - 8 to 12 inches: fine sandy loam
BE - 12 to 15 inches: sandy clay loam
Bt - 15 to 35 inches: clay loam
BC - 35 to 42 inches: sandy loam
C - 42 to 80 inches: coarse sandy loam

Properties and qualities

Slope: 0 to 4 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: Rare Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY660NC - High terraces, very rare Inundation

Hydric soil rating: No

Minor Components

Roanoke, occasionally flooded, undrained

Percent of map unit: 2 percent Landform: Stream terraces

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread

Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

ChA—Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded

Map Unit Setting

National map unit symbol: 2qwpj

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches

Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Prime farmland if drained and either protected from flooding

or not frequently flooded during the growing season

Map Unit Composition

Chewacla, frequently flooded, and similar soils: 50 percent Wehadkee, frequently flooded, and similar soils: 45 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Chewacla, Frequently Flooded

Settina

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 4 inches: loam

Bw1 - 4 to 26 inches: silty clay loam

Bw2 - 26 to 38 inches: loam Bw3 - 38 to 60 inches: clay loam C - 60 to 80 inches: loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches Drainage class: Somewhat poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: About 6 to 24 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 10.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 3w

Hydrologic Soil Group: B/D

Ecological site: F136XY610GA - Flood plain forest, wet

Hydric soil rating: No

Description of Wehadkee, Frequently Flooded

Setting

Landform: Flood plains

Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Dip

Down-slope shape: Concave Across-slope shape: Linear

Parent material: Loamy alluvium derived from igneous and metamorphic rock

Typical profile

A - 0 to 7 inches: silt loam
Bg - 7 to 49 inches: clay loam
Cg - 49 to 80 inches: clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Poorly drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.20 to 1.98 in/hr)

Depth to water table: About 0 to 12 inches

Frequency of flooding: Frequent Frequency of ponding: None

Available water supply, 0 to 60 inches: High (about 11.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 6w

Hydrologic Soil Group: B/D

Ecological site: F136XY600NC - Flood plain forest, very wet

Hydric soil rating: Yes

HeB—Helena sandy loam, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2qqgq

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: All areas are prime farmland

Map Unit Composition

Helena and similar soils: 92 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Helena

Setting

Landform: Interfluves

Landform position (two-dimensional): Summit, shoulder Landform position (three-dimensional): Side slope

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 12 inches: sandy loam BE - 12 to 19 inches: sandy clay loam

Bt1 - 19 to 39 inches: clay Bt2 - 39 to 43 inches: clay loam BCg - 43 to 46 inches: clay loam C - 46 to 80 inches: sandy loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Moderately well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: About 18 to 30 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 8.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: D

Ecological site: F136XY810SC - Acidic upland forest, seasonally wet

Hydric soil rating: No

RgB—Rawlings-Rion complex, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xhb9

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches

Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent Rion and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rawlings

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: sandy clay loam

C - 20 to 40 inches: gravelly sandy loam

R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt1 - 8 to 17 inches: sandy clay loam

Bt2 - 17 to 38 inches: sandy loam

C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

RgD—Rawlings-Rion complex, 10 to 15 percent slopes

Map Unit Setting

National map unit symbol: 2xhb8

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Rawlings and similar soils: 55 percent Rion and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Rawlings

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: sandy clay loam

C - 20 to 40 inches: gravelly sandy loam

R - 40 to 80 inches: bedrock

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately

low (0.00 to 0.06 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 4.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: C

Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist

Hydric soil rating: No

Description of Rion

Setting

Landform: Interfluves

Landform position (two-dimensional): Backslope Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite derived from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam
Bt1 - 8 to 17 inches: sandy clay loam
Bt2 - 17 to 38 inches: sandy loam
C - 38 to 80 inches: sandy loam

Properties and qualities

Slope: 10 to 15 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 7.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 4e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

W-Water

Map Unit Setting

National map unit symbol: 2qqjv

Elevation: 70 to 450 feet

Mean annual precipitation: 39 to 51 inches Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Not prime farmland

Map Unit Composition

Water: 100 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8

Hydric soil rating: No

WfB—Wedowee-Saw complex, 2 to 6 percent slopes

Map Unit Setting

National map unit symbol: 2xn42

Elevation: 70 to 560 feet

Mean annual precipitation: 39 to 47 inches
Mean annual air temperature: 55 to 63 degrees F

Frost-free period: 200 to 250 days

Farmland classification: Farmland of statewide importance

Map Unit Composition

Wedowee and similar soils: 60 percent Saw and similar soils: 35 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Wedowee

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Saprolite residuum weathered from granite and gneiss and/or saprolite residuum weathered from schist

Typical profile

Ap - 0 to 4 inches: sandy loam
E - 4 to 7 inches: sandy loam
BC - 23 to 35 inches: clay loam
C - 35 to 80 inches: sandy clay loam

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high

(0.57 to 1.98 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Moderate (about 6.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: B

Ecological site: F136XY820GA - Acidic upland forest, moist

Hydric soil rating: No

Description of Saw

Setting

Landform: Interfluves

Landform position (two-dimensional): Shoulder, summit Landform position (three-dimensional): Interfluve

Down-slope shape: Convex Across-slope shape: Convex

Parent material: Residuum weathered from granite and gneiss

Typical profile

Ap - 0 to 8 inches: sandy loam

Bt - 8 to 20 inches: clay

BC - 20 to 26 inches: sandy clay loam
C - 26 to 29 inches: sandy loam
R - 29 to 80 inches: bedrock

Properties and qualities

Slope: 2 to 6 percent

Depth to restrictive feature: 20 to 40 inches to lithic bedrock

Drainage class: Well drained

Capacity of the most limiting layer to transmit water (Ksat): Very low to low (0.00 to

0.01 in/hr)

Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Available water supply, 0 to 60 inches: Low (about 3.6 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 2e

Hydrologic Soil Group: C Ecological site: F136XY830NC - Acidic upland forest, depth restriction, dry-moist Hydric soil rating: No

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

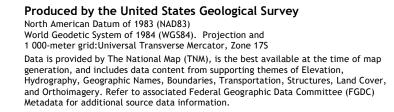
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

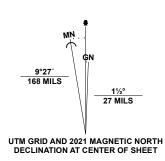
United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374

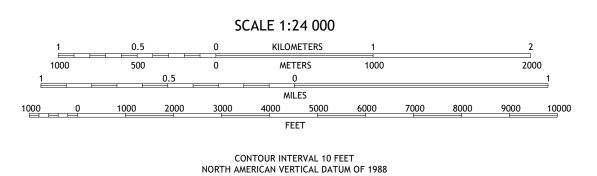
United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242


United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf



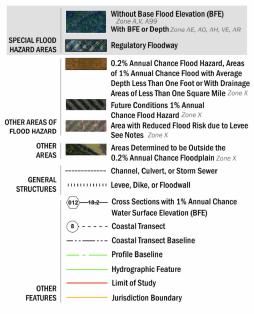

This map is not a legal document. Boundaries may be generalized for this map scale. Private lands within government reservations may not be shown. Obtain permission before entering private lands. Temporal changes may have occurred since these data were collected and some data may no longer represent actual surface conditions. Learn About The National Map: https://nationalmap.gov

U.S. National Grid 100,000 - m Square ID

QV


Grid Zone Designati 17S

CONTOUR SMOOTHNESS = Medium



FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP FOR FIRM PANEL LAYOUT

THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING DOCUMENTATION ARE ALSO AVAILABLE IN DIGITAL FORMAT AT HTTPS://FRIS.NC.GOV/FRIS HTTPS://MSC.FEMA.GOV

NOTES TO USERS

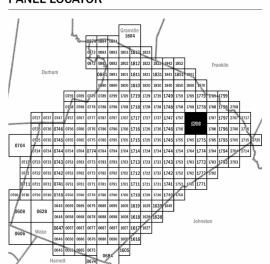
Communities annexing land on adjacent FIRM panels must obtain a current copy of the adjacent panel as well as the current FIRM Index. These may be ordered directly from the Map Service Center at the number listed above.

For community and countywide map dates refer to the Flood Insurance Study report for this jurisdiction

To determine if flood insurance is available in the community, contact your Insurance agent or call the National Flood Insurance Program at 1-800-638-6620.

Flood insurance Study (FIS) means an examination, evaluation, and determination of flood hazards, corresponding water surface elevations, flood hazard risk zones, and other flood data in a commanify issued by the North Carolina Floodpian Mapping Program (NoFMP). The Flood Insurance Study (FIS) is comprised of the following products used together; the Digital Flood Hazard Database, the Water Surface Elevation Rasters, the digitally derived, autogenerated Flood Insurance Survey Report, A Flood insurance Survey is an autogenerated Flood Insurance Survey Report, A Flood insurance Survey is an autogenerated Flood Insurance Survey Report, A Flood insurance Survey is an autogenerated Flood Insurance Survey and Insurance Survey Report, A Flood Insurance Survey is an autogenerated Flood Insurance Survey Report, A Flood Insurance Survey Report R

interested parties should vail the FFMA Wheshie at https://www.fema.gov/national-flood-insurance-program PROVISIONALLY ACCREDITED LEVER NOTES TO USERS if a provisionally Accredited Levere (PA.) prote appears on this panel, check with your local community to obtain more information, such as the estimated level of profection provided (which may exceed the 1-percent-annual-chance level) and Emergency Action Plan, not he levee system(s) shown as providing protection for areas on this panel. To maintain accreditation, the levee owner community is required to submit the data and documentation necessary to comply with Section 65.10 of the NFIP regulations. If the community or owner does not provide the necessary data and documentation or if the data and countered to the community or owner does not provide the necessary data and documentation or if the data and countered to the community or owner does not provide the necessary data and documentation or if the data and countered to the community or owner does not provide the flood instance of the data and floor provided indicate the levee system does not comply with Section 65.10 requirements, FEMA will revise the flood hazard and risk information for this area to reflect de-accreditation of the levee system. To mitigate floor disk in resident are accordance on the data and floor provided indicate the report of which are the floor disk in resident and reaccreditation of the data and floor provided indicate the property owners and residents are encouraged to consider floor disk missance and floor provided indicate the property owners and residents are encouraged to consider floor disk missance and floor provided indicate the property owners and residents are recoveraged to consider floor disk missance and floor provided indicate the provided indicate the


LIMIT OF MODERATE WAVE ACTION NOTES TO USERS: For some coastal flooding zones the AE Zone category has been divided by a Limit of Moderate Wave Action (LiMWA). The LiMWA represents the approximate landward limit of the 1.5-foot breaking wave. The effects of wave hazards between the YE Zone and the LiMWA (or between the shoreline and the LiMWA for areas where VE Zones are not identified) will be similar to, but less severe than those in the VE Zone.

Limit of Moderate Wave Action (LiMWA)

SCALE

North Carolina State Plane Projection Feet (Zone 3200)
Datum: NAD 1983 (Horizontal), NAVD 1988 (Vertical) 1 inch = 1,000 feet 1:12,000 500 1,000 2,000 Feet Meters 600 0 150 300

PANEL LOCATOR

NORTH CAROLINA FLOODPLAIN MAPPIN NATIONAL FLOOD INSURANCE PROGRAI FLOOD INSURANCE RATE MAP

NORTH CAROLINA

PANEL 1766

Panel Contains:

COMMUNITY

ROLESWILLE, TOWN OF WAKE COUNTY

370468
37036E NORTH CAROLINA FLOODPLAIN MAPPING PROGRAM NATIONAL FLOOD INSURANCE PROGRAM FLOOD INSURANCE RATE MAP

CID PANEL SUFFIX 370468 1766 370368 1766

FEMA

VERSION NUMBER 2.3.3.2 MAP NUMBER 3720176600K MAP REVISED July 19, 2022

NOAA Atlas 14, Volume 2, Version 3 Location name: Wake Forest, North Carolina, USA* Latitude: 35.8876°, Longitude: -78.4479° Elevation: 396 ft**

* source: ESRI Maps ** source: USGS

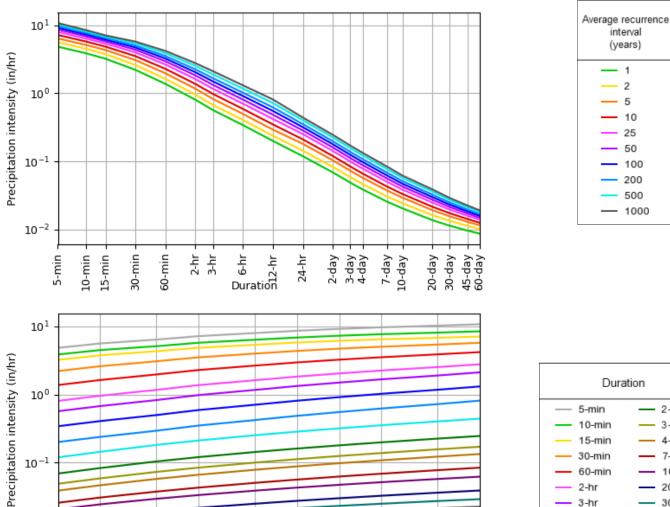
POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	4.85 (4.44-5.30)	5.63 (5.16-6.14)	6.41 (5.87-7.00)	7.20 (6.59-7.86)	7.99 (7.28-8.72)	8.64 (7.82-9.41)	9.20 (8.29-10.0)	9.71 (8.70-10.6)	10.3 (9.12-11.2)	10.8 (9.49-11.8)
10-min	3.87 (3.55-4.24)	4.50 (4.12-4.91)	5.13 (4.70-5.60)	5.76 (5.27-6.28)	6.37 (5.80-6.95)	6.88 (6.23-7.49)	7.31 (6.59-7.97)	7.69 (6.89-8.39)	8.12 (7.22-8.87)	8.48 (7.48-9.29)
15-min	3.22 (2.95-3.53)	3.77 (3.46-4.12)	4.33 (3.96-4.72)	4.86 (4.44-5.30)	5.38 (4.90-5.87)	5.80 (5.26-6.33)	6.16 (5.55-6.71)	6.47 (5.80-7.06)	6.81 (6.06-7.44)	7.10 (6.26-7.77)
30-min	2.21 (2.02-2.42)	2.60 (2.39-2.85)	3.07 (2.82-3.35)	3.52 (3.22-3.84)	3.99 (3.63-4.35)	4.37 (3.96-4.76)	4.72 (4.25-5.14)	5.04 (4.51-5.50)	5.42 (4.82-5.92)	5.75 (5.07-6.29)
60-min	1.38 (1.26-1.51)	1.63 (1.50-1.78)	1.97 (1.80-2.15)	2.29 (2.10-2.50)	2.66 (2.42-2.90)	2.96 (2.68-3.23)	3.25 (2.93-3.54)	3.53 (3.16-3.86)	3.89 (3.46-4.25)	4.20 (3.70-4.59)
2-hr	0.805 (0.732-0.889)	0.958 (0.874-1.05)	1.17 (1.06-1.28)	1.38 (1.25-1.51)	1.62 (1.46-1.77)	1.83 (1.65-2.00)	2.04 (1.82-2.23)	2.25 (2.00-2.46)	2.53 (2.22-2.77)	2.78 (2.41-3.04)
3-hr	0.568 (0.516-0.630)	0.676 (0.617-0.746)	0.828 (0.753-0.913)	0.981 (0.890-1.08)	1.17 (1.05-1.28)	1.33 (1.19-1.46)	1.50 (1.33-1.64)	1.67 (1.47-1.83)	1.90 (1.66-2.09)	2.12 (1.82-2.32)
6-hr	0.341 (0.311-0.377)	0.407 (0.372-0.448)	0.498 (0.454-0.548)	0.591 (0.538-0.649)	0.706 (0.638-0.773)	0.810 (0.727-0.885)	0.914 (0.814-0.998)	1.02 (0.903-1.12)	1.17 (1.02-1.28)	1.31 (1.13-1.43)
12-hr	0.200 (0.183-0.220)	0.238 (0.219-0.261)	0.293 (0.268-0.322)	0.350 (0.319-0.383)	0.420 (0.381-0.459)	0.486 (0.436-0.529)	0.552 (0.491-0.600)	0.623 (0.548-0.677)	0.721 (0.624-0.784)	0.813 (0.693-0.884)
24-hr	0.119 (0.110-0.128)	0.144 (0.134-0.155)	0.181 (0.168-0.195)	0.211 (0.195-0.227)	0.251 (0.232-0.271)	0.284 (0.262-0.306)	0.318 (0.292-0.343)	0.353 (0.323-0.381)	0.402 (0.365-0.434)	0.441 (0.399-0.478)
2-day	0.069 (0.064-0.074)	0.083 (0.077-0.089)	0.103 (0.096-0.111)	0.120 (0.111-0.129)	0.142 (0.132-0.153)	0.160 (0.148-0.173)	0.179 (0.164-0.193)	0.198 (0.181-0.214)	0.225 (0.204-0.243)	0.246 (0.222-0.266)
3-day	0.048 (0.045-0.052)	0.058 (0.054-0.063)	0.073 (0.068-0.078)	0.084 (0.078-0.090)	0.099 (0.092-0.107)	0.112 (0.103-0.120)	0.125 (0.115-0.134)	0.138 (0.126-0.148)	0.156 (0.142-0.168)	0.171 (0.154-0.184)
4-day	0.038 (0.036-0.041)	0.046 (0.043-0.049)	0.057 (0.053-0.061)	0.066 (0.061-0.070)	0.078 (0.072-0.083)	0.087 (0.081-0.094)	0.097 (0.090-0.104)	0.108 (0.099-0.115)	0.122 (0.111-0.131)	0.133 (0.121-0.143)
7-day	0.025 (0.024-0.027)	0.030 (0.028-0.032)	0.037 (0.035-0.040)	0.042 (0.040-0.045)	0.050 (0.046-0.053)	0.056 (0.052-0.060)	0.062 (0.057-0.066)	0.068 (0.063-0.073)	0.077 (0.070-0.083)	0.084 (0.076-0.090)
10-day	0.020 (0.019-0.021)	0.024 (0.022-0.025)	0.029 (0.027-0.031)	0.033 (0.031-0.035)	0.038 (0.036-0.041)	0.042 (0.039-0.045)	0.047 (0.043-0.050)	0.051 (0.047-0.055)	0.057 (0.052-0.061)	0.062 (0.056-0.066)
20-day	0.013 (0.012-0.014)	0.016 (0.015-0.017)	0.019 (0.018-0.020)	0.021 (0.020-0.023)	0.024 (0.023-0.026)	0.027 (0.025-0.029)	0.029 (0.027-0.031)	0.032 (0.030-0.034)	0.036 (0.033-0.038)	0.038 (0.035-0.041)
30-day	0.011 (0.010-0.012)	0.013 (0.012-0.014)	0.015 (0.014-0.016)	0.017 (0.016-0.018)	0.019 (0.018-0.020)	0.021 (0.020-0.022)	0.023 (0.021-0.024)	0.024 (0.023-0.026)	0.027 (0.025-0.029)	0.029 (0.026-0.031)
45-day	0.009 (0.009-0.010)	0.011 (0.010-0.011)	0.012 (0.012-0.013)	0.014 (0.013-0.015)	0.015 (0.015-0.016)	0.017 (0.016-0.018)	0.018 (0.017-0.019)	0.019 (0.018-0.020)	0.021 (0.019-0.022)	0.022 (0.021-0.023)
60-day	0.008 (0.008-0.009)	0.010 (0.009-0.010)	0.011 (0.010-0.012)	0.012 (0.011-0.013)	0.013 (0.013-0.014)	0.014 (0.014-0.015)	0.015 (0.015-0.016)	0.016 (0.015-0.017)	0.018 (0.017-0.019)	0.019 (0.017-0.020)


Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PDS-based intensity-duration-frequency (IDF) curves Latitude: 35.8876°, Longitude: -78.4479°

2-day 3-day 4-day 7-day 10-day 20-day 2-hr 30-day 3-hr 6-hr 45-day 12-hr - 60-day 24-hr

1 2

100 200 500

NOAA Atlas 14, Volume 2, Version 3

2

10

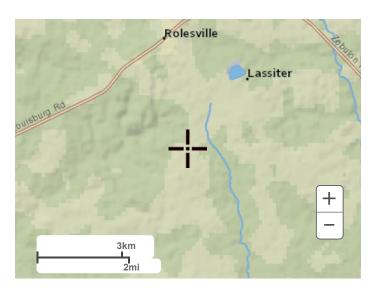
Average recurrence interval (years)

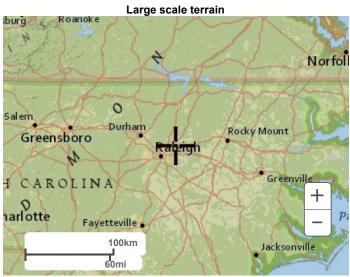
 10^{-2}

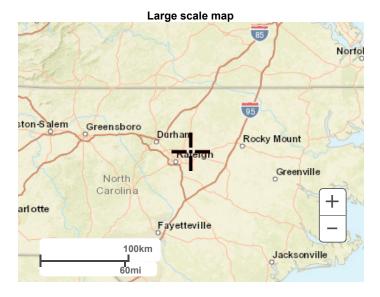
Created (GMT): Tue Nov 12 22:22:08 2024

500

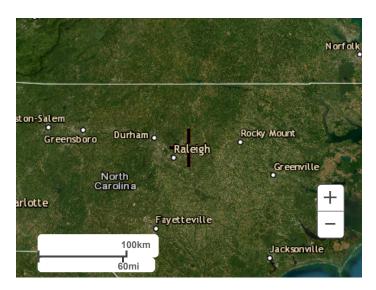
1000


Back to Top


100


200

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

<u>Disclaimer</u>

ECS Southeast, LLP

Preliminary Geotechnical Engineering Report Kalas Falls Residential Development

1832 Rolesville Road Rolesville, North Carolina

ECS Project Number 06:24735

March 11, 2022

Geotechnical • Construction Materials • Environmental • Facilities

March 11, 2022

Ms. Julie Spencer D.R. Horton 2000 Aerial Center Parkway Suite 110-A Morrisville, North Carolina 27560

ECS Project No. 06:24735

Reference:

Preliminary Geotechnical Engineering Report

Kalas Falls Residential Development

1832 Rolesville Road Rolesville, North Carolina

Dear Ms. Spencer:

ECS Southeast, LLP (ECS) has completed the preliminary subsurface exploration, laboratory testing, and geotechnical engineering analyses for the above-referenced project. Our services were performed in general accordance with our agreed to scope of work. This report presents our understanding of the geotechnical aspects of the project, the results of the field exploration conducted, and our preliminary geotechnical design and construction recommendations for the project.

It has been our pleasure to be of service to you during this phase of this project. We would appreciate the opportunity to remain involved during the continuation of the design phase, and we would like to provide our services during construction phase operations as well to verify subsurface conditions assumed for this report. Should you have any questions concerning the information contained in this report, or if we can be of further assistance to you, please contact us.

Respectfully submitted,

ECS Southeast, LLP

Gumnar H. Goslin

Geotechnical Staff Project Manager

ggoslin@ecslimited.com

Matthew B. Olsen, P.E.

Vice President, Principal Engineer

molesen@ecslimited.com

TABLE OF CONTENTS

EXE	CUT	TIVE SU	MMARY	1
1.0		INTRO	DUCTION	3
2.0		PROJE	CT INFORMATION	3
	2.1	SITE	EINFORMATION	4
	2.2	PRO	DPOSED CONSTRUCTION	4
3.0		FIELD	EXPLORATION AND LABORATORY TESTING	5
	3.1	SUE	SSURFACE CHARACTERIZATION	5
	3.2	GRO	OUNDWATER OBSERVATIONS	8
	3.3	LAB	ORATORY TESTING	8
4.0		PRELIF	MINARY RECOMMENDATIONS	9
	4.1	BUI	LDING/STRUCTURE DESIGN	9
	4.2	SUE	BGRADE PREPARATION	9
		4.2.1	Stripping and Grubbing	9
		4.2.2	Proofrolling	9
	4.3	EAF	RTHWORK OPERATIONS	
		4.3.1	Engineered Fill Materials	10
		4.3.2	Existing Fill	
		4.3.3	Expansive Soil	
		4.3.4	Compaction	13
	4.4		/EMENTS	
			Pavement Sections	
5.0		ADDIT	TONAL GEOTECHNICAL SERVICES	14
6.0		CLOSII	NG	14

APPENDICES

Appendix A – Diagrams & Reports

- Site Location Diagram
- Boring Location Diagram

Appendix B – Field Operations

- Reference Notes for Boring Logs
- Subsurface Exploration Procedure: Standard Penetration Testing (SPT)
- Boring Logs

Appendix C – Laboratory Testing

- Laboratory Test Results Summary
- Grain Size Analysis
- Plasticity Chart
- Moisture-Density Relationship Curves
- CBR Test Results

EXECUTIVE SUMMARY

This executive summary is intended as a very brief overview of the primary geotechnical conditions that are expected to affect design and construction. Information gleaned from the executive summary should not be utilized in lieu of reading the entire geotechnical report.

- Elastic SILT (MH) and Fat CLAY (CH) are present at the site in localized areas. These are potentially expansive soils per the current North Carolina Building Code and local practice. Based on laboratory testing and our experience, these soils have a medium to high potential for expansion (i.e., shrink-swell) and are considered to be expansive. We recommend that the mitigation measures given in this report be implemented to reduce the potential for structure or pavement distress (cracking, excessive deformation) as a result of volumetric changes in potentially expansive soils due to variations in its moisture content. Mitigation options include a 1 foot separation distance under footings, floor slabs and pavements and chemical (lime) stabilization. Additional soil sampling and laboratory testing should be performed during the design phase of the project to further evaluate the potentially expansive soils.
- The site is underlain by foliated to massive intrusive granitic rock in a geologic area known for shallow partially weathered rock (WR) and hard competent rock.
- Most of the borings (29 of 53) encountered PWR and/or hard competent rock at depths of 1 to 10 feet below the existing ground surface.
- Based upon the assumed grades, we anticipate that ripping, hammering, and/or blasting of
 partially weathered rock and rock will be required across the majority of the site to achieve
 design site, foundation, and underground utility grades.
- Existing fill was encountered in Boring B-08. The SPT boring N-values indicate that the existing fill was probably not thoroughly and adequately compacted. The existing fill should be evaluated at the time of construction by proofrolling, excavation of test pits, hand auger borings, and/or construction excavations. If the existing fill is very soft to soft and/or contains excessive inert debris or excessive organic materials, it should not be used to support foundations, floor slabs, or pavements, and it should be undercut and replaced with engineered fill consisting of suitable materials.
- Based on 14 of the soil test borings, we anticipate undercutting of very soft to soft or very loose near-surface natural soils could be necessary in numerous areas across the site during mass grading, depending on design grades. If site earthwork is performed during the typically cooler, wetter months of the year, additional undercutting is anticipated due to excessively wet unstable soils.
- We anticipate that most of the soils encountered in the borings within the anticipated excavation depths will be suitable for use as engineered fill. For areas with ripped or blasted rock, these materials can be included in engineered fills in accordance with report recommendations.

- Most of the borings were dry to their termination depths. Some of the borings encountered groundwater at depths between 3 and 16 feet. The Web Soil Survey Report indicates that the seasonal high water table is generally more than 6 feet deep in the upland areas, which make up the majority of the site. The seasonal high water table is as shallow as 1 to 2 feet in the lower areas of the site near the drainage features. Once a preliminary grading plan has been prepared, it should be provided to ECS for review and comment regarding the potential need for temporary and/or permanent dewatering of the groundwater at the site.
- Lightly loaded 1- to 3-story wood-framed residential structures (column loads less than 50 kips and wall loads less than 5 kips per foot) can be supported by shallow foundations and floor slabs bearing on undisturbed natural soils or new engineered fill.
- Additional subsurface explorations consisting of additional seismic refraction testing, soil
 test borings, and/or test pits should be performed to obtain additional data to estimate
 quantities of rip rock, mass blast rock, and trench blast rock for the proposed site grading.
- This is a preliminary report, and it should not be used for final design or for construction.

1.0 INTRODUCTION

The purpose of this study was to provide preliminary geotechnical information for the design and construction of a new subdivision with 455 single-family homes, streets, stormwater control measures, and underground utilities, including an off-site sanitary sewer outfall line for D.R. Horton. The recommendations developed for this report are based on project information supplied by Ms. Julie Spencer with D.R. Horton.

Our services were provided in accordance with our Proposal No. 06:22970, dated November 22, 2021, as authorized by Jonathan Cooper with D.R. Horton on November 30, 2021, which includes our Terms and Conditions of Service.

This report contains the procedures and results of our subsurface exploration and laboratory testing programs, review of existing site conditions, engineering analyses, and preliminary recommendations for development of the project.

2.0 PROJECT INFORMATION

This report is based on the following sources of information:

- Emails between Ms. Julie Spencer and Mr. Jonathan Cooper with D.R. Horton and Mr. Santhosh Mahavadi with ECS between November 5 and November 8, 2021.
- General site plans titled "Development Essentials Brochure" prepared by American Engineering dated April 21, 2020.
- Overall Phase Plan for Kalas Falls, prepared by American Engineering, dated September 19, 2019.
- Kalas Property Traffic Impact Analysis Report, prepared by Stantec, prepare for Mitchel Mill Road Investors, LLC, dated January 16, 2016.
- Report of Subsurface Exploration, Dam @ Rolesville Road ant Mitchel Mill Road, prepared by GeoTechnologies, prepared for Withers & Ravenel, dated April 28, 2016.
- Report titled "Difficult Excavation Potential, Kalas Tract Sewer", prepared by GeoTechnologies, prepared for Mitchell Mill Investors, LLC, dated July 12, 2016.
- Report titled "Difficult Excavation Potential & Dam Embankment Impact, Kalas Tract Sewer MH-1 to MH-3", prepared by GeoTechnologies, prepared for Mitchell Mill Investors, LLC, dated November 8, 2016.
- Drawings titled "Construction Phase 1 for Kalas Falls", prepared by American Engineering, dated June 28, 2021.
- Drawings titled "Construction Phase 2 for Kalas Falls", prepared by American Engineering, dated July 22, 2021.
- Drawings titled "Construction Phase 3 for Kalas Falls", prepared by American Engineering, dated August 17, 2021.
- Preliminary site plan drawings prepared by American Engineering, dated September 19, 2019.
- Google Earth aerial photos dated between December 1985 and March 2021.
- Site and topographic information obtained from the Wake County GIS website.
- United States Geologic Survey Quadrangle Map (Google Earth overlay .kmz file).

2.1 SITE INFORMATION

The site is located at 1832 Rolesville Road in Rolesville, North Carolina, at the approximate location shown in the following figure.

Figure 2.1.1. Site Location

The property is currently undeveloped and mostly wooded, with some open fields. The site generally slopes downward to the north and to the south from the central portion of the site. Four ponds and numerous creeks were observed on site. Numerous rock outcrops and boulders were found in the western portion of the site. A stream was observed in the central portion of the site leading to an approximate 10-foot-tall waterfall northwestern portion of the site.

2.2 PROPOSED CONSTRUCTION

The project involves constructing a new subdivision with 455 single-family homes, streets, stormwater control measures, and underground utilities, included an off-site sanitary sewer outfall line.

We assume that the proposed houses will be 2 to 3-story, wood-framed structures with slab-on-grade ground floors or crawl spaces. Design foundation loads have not been provided to us. We assume maximum unfactored loads will be less than or equal to the following:

- Maximum Wall Load = 3 kips per foot
- Maximum Ground Floor Slab Load = 150 pounds per square foot (psf)

The structural engineer should verify these assumptions and notify ECS if the actual unfactored foundation design loads exceed or are significantly less than this assumed value.

The grading plans provided to us indicates that maximum cuts in the pavement areas will be approximately 10 feet, with maximum cuts of approximately 15 feet in some of the SCM areas. Maximum fill depths will be approximately 10 feet. Water lines will be approximately 4 feet below the finished grades along the streets and sanitary sewer lines will be approximately 10 to 15 feet below the finished grades along the streets.

3.0 FIELD EXPLORATION AND LABORATORY TESTING

Our exploration procedures are explained in greater detail in Appendix B including the insert titled Subsurface Exploration Procedure: Standard Penetration Testing (SPT). Our scope of work included drilling 50 borings. Our borings were located with a handheld GPS unit and their approximate locations are shown on the Boring Location Diagram in Appendix A.

3.1 SUBSURFACE CHARACTERIZATION

The subsurface conditions encountered were generally consistent with published geological mapping. The following sections provide generalized characterizations of the soil and rock strata. Please refer to the boring logs in Appendix B.

The site is located within the Piedmont physiographic province. The Piedmont is characterized by residual overburden soils weathered in place from the underlying igneous and metamorphic rock. The topography and relief of the Piedmont uplands have developed from differential weathering of the bedrock. Because of the continued chemical and physical weathering, the bedrock in the Piedmont is now generally covered with a mantle of soil that has weathered in place from the parent bedrock. These soils have variable thicknesses and are referred to as residuum or residual soils. The residuum is typically finer grained and has higher clay content near the surface because of the advanced weathering. Similarly, the soils typically become coarser grained with increasing depth because of decreased weathering. As the degree of weathering decreases, the residual soils generally retain the overall appearance, texture, gradation and foliations of the parent rock.

The boundary between soil and rock in the Piedmont is not sharply defined. A transitional zone termed "partially weathered rock" is normally found overlying the parent bedrock. Partially weathered rock (WR) is defined for engineering purposes as residual material with Standard Penetration Resistances (N-values) exceeding 100 blows per foot. The transition between hard/dense residual soils and partially weathered rock occurs at irregular depths due to variations in degree of weathering. Also, it is not unusual to find lenses and boulders of hard rock and/or zones of partially weathered rock within the soil mantel well above the general bedrock level.

According to the 1985 Geologic Map of North Carolina the site is underlain by foliated to massive granitic rock of Permian to Pennsylvanian age (PPmg).

It is important to note that the natural geology within portions of the site has been modified in the past that included the placement of fill materials. The quality of man-made fills can vary significantly, and it is often difficult to assess the engineering properties of existing fills.

The following sections provide additional information about the soil and rock strata encountered during our subsurface exploration.

Surficial Material: A surficial layer of topsoil, ranging from approximately 4 to 12 inches in thickness, was encountered at most boring locations.

Existing Fill: Existing fill/possible fill soils consisting of Silty SAND (SM) and Silty Clayey SAND (SC-SM) were encountered below the topsoil and extended to approximate depths of 8 feet below existing grade at Boring B-8.

Residuum: The natural soils encountered below the fill and/or topsoil generally consisted of Silty SAND (SM), Clayey SAND (SC), Silty Clayey SAND (SC-SM), Sandy with SILT (SP-SM), Sandy SILT (ML), Sandy Elastic SILT (MH), Sandy Lean CLAY (CL) and Sandy Fat CLAY (CH). The SPT N-values within the sands ranged from 1 to 79 bpf, indicating a relative density of very loose to very dense. The SPT N-values within the silts and clays ranged from 2 to 50 bpf, indicating a consistency varying from very soft to very hard.

Weathered Rock: Weathered Rock (WR), which is classified as material with SPT blow counts greater than 50 blows per 6 inches of penetration, was encountered in the majority of borings. The depths of the top of weathered rock are given in the following table:

Weathered Rock (WR)

Trouble of Hook (Trit)			
Boring	Depth to WR (ft)		
B-1	3.5		
B-2	0.5		
B-3	3.0		
B-4	0.5		
B-5	3.0		
B-6	3.5		
B-7	5.5*, 17.5		
B-8	12		
B-9	3.0		
B-10	3.0		
B-12	0.6		
B-14	8.0		
B-15	0.5		
B-16	3.0		
B-17	0.5		
B-18	3.0		
B-19	13.0		
B-20	0.3		
B-24	3.0		
B-28	3.0		

Boring	Depth to WR (ft)
B-29	8.0
B-30	5.5
SCM-01	3.0
SCM-04	0.5
SCM-05	12.5
SCM-07	5.5
SCM-09	8.0
SCM-10	0.6
SCM-11	3.0
SCM-12	0.3
SCM-13	3.0
SCM-14	0.5

^{* -} Lens of PWR encountered between depths of about 5.5 feet to 8 feet within location B-7

Competent Rock: Competent Rock, classified as auger refusal material, was encountered in the majority of borings. The depths of the top of weathered rock are given in the following table:

Competent Rock

Boring	Depth to Rock (ft)
B-1	3.5
B-2	1.1
B-3	3.0
B-4	2.0
B-5	3.0
B-6	3.5
B-7	17.5
B-8	13.7
B-9	3.5
B-10	3.0
B-12	3.6
B-14	8.7
B-15	0.5
B-16	3.6
B-17	2.5
B-18	4.2
B-19	13.0
B-20	1.6
B-24	5.5
B-28	5.5

Boring	Depth to Rock (ft)
B-29	12.5
B-30	6.0
SCM-01	5.5
SCM-04	1.0
SCM-05	12.5
SCM-07	6.0
SCM-09	9.5
SCM-10	2.0
SCM-11	3.7
SCM-12	0.5
SCM-13	3.0
SCM-14	1.2

3.2 GROUNDWATER OBSERVATIONS

Water levels were measured and are given on the boring logs in Appendix B. Most borings were observed dry after drilling with cave-in at various depths. Groundwater was observed in some borings at the completion of drilling and were measured at depths ranging from 3.5 to 12.5 feet below the ground surface. As stated in the ECS Seasonal High Water Table Estimation Report dated February 7, 2022 (ECS Project No. 49:16341), the SHWTs were estimated to range from 12 inches below the existing ground surface at location SCM-18 to as much as 122 inches (10 feet) deep at location SCM-15. Variations in the long-term water table may occur as a result of changes in precipitation, evaporation, surface water runoff, construction activities, and other factors.

3.3 LABORATORY TESTING

Each sample was visually classified on the basis of texture and plasticity in accordance with ASTM D2488 Standard Practice for Description and Identification of Soils (Visual-Manual Procedures).

The laboratory testing consisted of selected tests performed on samples obtained during our field exploration operations. Classification and index property tests were performed on representative soil samples in accordance with ASTM D2487 Standard Practice for Classification for Engineering Purposes. Additionally, standard Proctor and California Bearing Ratio (CBR) tests were performed on representative samples.

After identification and classification, the samples were grouped in the major zones noted on the boring logs in Appendix B. The group symbols for each soil type are indicated in parentheses along with the soil descriptions. The stratification lines between strata on the logs are approximate; in situ, the transitions may be gradual.

4.0 PRELIMINARY RECOMMENDATIONS

4.1 BUILDING/STRUCTURE DESIGN

Lightly loaded 1- to 3-story structures (column loads less than 50 kips and wall loads less than 6 kips per foot) can be supported by shallow foundations and ground supported slabs bearing on undisturbed residual soils, new engineered fill, or approved existing fill.

For preliminary design purposes, the footings can be sized using a presumptive allowable bearing pressure of 2,000 psf. A higher bearing pressure could be achieved, depending on the results of the recommended design-phase geotechnical borings and engineering analysis.

4.2 SUBGRADE PREPARATION

4.2.1 Stripping and Grubbing

The subgrade preparation should consist of stripping all vegetation, rootmat, topsoil, and any other soft or unsuitable materials from the proposed construction areas. The borings generally encountered 4 to 12 inches of topsoil. Deeper topsoil or organic laden soils are likely present in wet, low-lying, and poorly drained areas. In the wooded areas, the rootmat may extend as deep as about 1 to 2 feet and will require additional localized stripping and grubbing depth to completely remove the organics. In agricultural fields, organics within the cultivated soil are anticipated primarily to a depth of about 6 inches. The topsoil encountered in the borings was not analyzed for its suitability for reuse in landscaping areas. ECS should be called on to verify that topsoil and unsuitable surficial materials have been completely removed prior to the placement of engineered fill or construction of structures and pavements.

We anticipate average stripping depths of 12 inches to remove the cultivated soil from the existing agricultural fields, 6 inches to remove topsoil and rootmat from areas that are currently grass-, weed- or brush-covered, and 12 inches to remove the topsoil and rootmat from areas that are currently wooded. We recommend that these average stripping depths be used for quantity approximations for earthwork design and construction cost estimating.

4.2.2 Proofrolling

After removing all unsuitable surface materials, cutting to the proposed grade, and prior to the placement of any engineered fill or other construction materials, the exposed subgrade should be examined by the geotechnical engineer or authorized representative. The exposed subgrade should be thoroughly densified in place using a 10-ton, self-propelled, vibratory smooth drum roller due to the very loose to loose sands encountered in the borings at the anticipated subgrade elevations. The exposed subgrade should then be proofrolled with previously approved construction equipment having a minimum axle load of 10 tons (e.g. fully loaded tandem-axle dump truck). The areas subject to proofrolling should be traversed by the equipment in two perpendicular (orthogonal) directions with overlapping passes of the vehicle under the observation of the geotechnical engineer or authorized representative. This procedure is intended to assist in identifying any localized yielding materials.

In the event that unstable or "pumping" subgrade is identified by the proofrolling, those areas should be marked for repair prior to the placement of any subsequent engineered fill or other construction materials. Methods of repair of unstable subgrade, such as undercutting or moisture conditioning or chemical stabilization, should be discussed with the geotechnical engineer to determine the appropriate procedure with regard to the existing conditions causing the instability. Test pits and/or hand auger borings may be excavated to explore the shallow subsurface materials in the area of the instability to help in determining the cause of the observed unstable materials and to assist in the evaluation of the appropriate remedial action to stabilize the subgrade.

Based on the soil test borings, we anticipate undercutting of existing fill and very soft to soft or very loose near-surface natural soils will be necessary in numerous areas across the site. If site earthwork is performed during the typically cooler, wetter months of the year, additional undercutting in other areas of the site is anticipated due to potentially excessively wet unstable soils. Undercut excavations should be backfilled with properly placed and engineered fill. Use of geotextiles and select granular fill may be recommended by ECS during construction to reduce the required undercut depths and/or aid in stabilization of subgrades. We recommend that unsuitable/unstable soil undercut allowance quantities be determined by the design team for inclusion in a classified earthwork contract, and bidders should provide unit prices for the following:

- Excavation of, disposal of (either off-site or on-site, depending on available space and owner's preference), and replacement of unsuitable/unstable soils with engineered fill (per cubic yard).
- Excavation of, disposal of (either off-site or on-site, depending on available space and owner's preference), and replacement of unsuitable/unstable soils with NCDOT Class II, Type 1 Select Material (per cubic yard).
- Installation of woven geotextile, Mirafi HP270 or equivalent (per square yard)

4.3 EARTHWORK OPERATIONS

4.3.1 Engineered Fill Materials

Materials suitable for use as engineered fill should consist of inorganic soils classified as CL, ML, SM, SC, SW, SP, GW, GM and GC, or a combination of these group symbols, per ASTM D 2487. The materials should be free of organic matter and debris. The fill should exhibit a maximum dry density of at least 90 pounds per cubic foot, as determined by a Standard Proctor compaction test (ASTM D 698).

Engineered fill should be placed in maximum 8-inch loose lifts. In confined areas such as utility trenches, portable compaction equipment and thin lifts of 4 inches to 6 inches may be required to achieve specified degrees of compaction. Engineered fill should be moisture conditioned as necessary to within -3 and +3 % of the soil's optimum moisture content. Moisture conditioning options include spraying and mixing in water to excessively dry soils, scarifying and drying of excessively wet soils, and adding lime to excessively wet soils. Engineered fill should be compacted with suitable equipment to a dry density of at least 95% of the Standard Proctor maximum dry density (ASTM D698) more than 12 inches below the finish subgrade elevation and to a least 98% in the upper 12 inches. ECS should be retained to observe and test the placement and compaction of engineered fill.

Product Submittals: At least one week prior to placement of engineered fill, representative bulk samples (about 50 pounds) of on-site and/or off-site borrow should be submitted to ECS for laboratory testing, which will include Atterberg limits, natural moisture content, grain-size distribution, and moisture-density relationships for compaction. Import materials should be tested prior to being hauled to the site to determine if they meet project specifications.

Suitable Engineered Fill Materials: Materials suitable for use as engineered fill should consist of inorganic soils classified as CL, ML, SM, SC, SW, SP, GW, GM and GC, or a combination of these group symbols, per ASTM D 2487. The materials should be free of organic matter and debris. The fill should exhibit a maximum dry density of at least 90 pounds per cubic foot, as determined by a Standard Proctor compaction test (ASTM D 698). On-site Fat CLAY (CH) and Elastic SILT (MH) may be placed as engineered fill for mass grading, provided the previously recommended separation distance is achieved or lime stabilization is implemented. Rock fragments should generally be less than 3 inches in maximum dimension and should be blended with soil.

For sites with ripped or blasted rock, these materials can be included in engineered fills in accordance with the following table:

Loose Lifts and Rock Fragment Sizes

Engineered fill Depth Below Finish Subgrade Elevation	Maximum Loose Lift (in.)	Maximum Particle (Rock Fragment) Size (in.)
0 to 5 ft	8	3
5 to 10 ft	12	6
>10 ft	24	18

If ripped or blast rock is used as engineered fill, and it is not thoroughly blended to avoid the formation of voids within the fill, then the ripped/blast rock fill should be covered with a 2-feet-thick layer of well-graded "choke stone" material to prevent the migration of fines downward from the upper soil fill into the ripped/blast rock fill voids.

Unsuitable Materials: Unsuitable fill materials include materials which do not satisfy the requirements for suitable materials, such as topsoil, organic materials, debris, and debris-laden fill.

On-Site Borrow Suitability: The on-site soils meeting the classifications for recommended suitable engineered fill, plus meeting the restrictions on separation distances, organic content, and debris, may be used as engineered fill. We anticipate that most of the soils encountered in the borings within the anticipated excavation depths will be suitable for use as engineered fill.

The on-site Elastic SILT (MH) and Fat CLAY (CH) may be used as engineered fill for mass grading, as long as the previously recommended foundation bearing depths and vertical separation distance between floor slab subgrade and pavement subgrade elevations are achieved. However, these soils should not be used as retaining wall backfill. Please note that these soils are very moisture sensitive, can be relatively weak and compressible, and may be difficult to properly moisture condition and compact.

On-site soils used as engineered fill will require careful moisture control in order to achieve compaction and stability. Any soils excavated from below the water table will require significant drying to achieve the recommended moisture content and minimum compaction. Soils above the water table may also be relatively dry at the time of construction and require wetting to achieve the recommended moisture content and minimum compaction.

The gradation of partially weathered rock and rock removed by ripping or blasting will probably be quite varied. Crushing of boulder-sized rock fragments may be required to meet the maximum particle sizes given in the previous table if ripped or blasted rock is to be used as engineered fill.

4.3.2 Existing Fill

Based on the relative strength and stiffness of the existing fill/possible fill soils indicated by the SPT N-values from the soil test borings, in addition to the organics and construction debris encountered in Borings B-8, it appears that some of the existing fill was placed in an uncontrolled manner without consistent compaction. As we have not been provided fill placement construction field testing reports, we interpret the existing fill to also be undocumented.

Uncontrolled and/or undocumented fill poses risks associated with under-compacted soil, undetected deleterious inclusions within the fill, and/or deleterious materials at the virgin ground fill interface that are covered by the fill. ECS does not recommend supporting building foundations and pavements on under-compacted existing fill or existing fill with excessive organics or excessive inert debris. Therefore, we recommend that these conditions be addressed by on-site engineering evaluation by ECS during construction, including proofrolling and test pits, if recommended. Under-compacted fill indicated by Boring B-8, and potentially in other localized areas, should be over-excavated and replaced with engineered fill. Undercutting and replacement of existing fill should be anticipated for this project and could be addressed contractually through allowances and unit prices.

4.3.3 Expansive Soil

Elastic SILT (MH) and Fat CLAY (CH) are present at the site. These are potentially expansive soils per the current North Carolina Building Code and local practice. Based on laboratory testing and our experience, these soils have a low to medium potential for expansion (i.e., shrink-swell) and are considered to be expansive. We recommend that the mitigation measures given in this report be implemented to reduce the potential for structure or pavement distress (cracking, excessive deformation) as a result of volumetric changes in potentially expansive soils due to variations in its moisture content. Mitigation options include a 1-foot separation distance or chemical (lime) stabilization.

We recommend that if and where the expansive soils are present at the footing bearing elevations, they should be undercut to a depth of 1 foot below bottom of footing and replaced with engineered fill, compacted ABC, flowable fill, or lean concrete. We also recommend that a minimum separation distance of 1 foot be maintained between slab subgrade and pavement subgrade elevations and expansive soil (CH, MH) to reduce the potential for structure or pavement distress (cracking, excessive deformation) as a result of volumetric changes in the soil due to variations in its moisture content. Based on the borings and anticipated design grades, we anticipate that this separation

distance may be required in the areas represented by Borings B-6, B-11, B-13, B-14, B-18, B-19, B-23, B-28, B-31, and SCM-08, in addition to other localized areas at the site.

The minimum separation distance should be achieved by undercutting the undisturbed natural expansive soil and replacing it with low-plasticity engineered fill. This will require overexavation and replacement of 1 foot of expansive soil where present in the cut-fill transition.

Alternatively, the recommended separation distance could be achieved by treating the expansive soil with lime. With a 1-foot separation distance, the soil could be treated in situ with lime.

It may be possible to reduce the separation distance and the amount of undercutting/replacement or lime stabilization required with additional soil sampling, advanced laboratory testing (Expansion Index and Swell Potential), and detailed structural dead-load analysis. If lime stabilization is selected, additional laboratory testing is recommended to determine the percentage of lime required. ECS can provide a proposal for these additional services/analyses upon request.

Even though the Elastic SILT (MH) and Fat CLAY (CH) can be used as fill below the recommended separation distance elevations, they are very moisture sensitive and can be relatively weak and compressible. The moisture contents will require careful control and must be within +/- 3% of the soil's standard Proctor optimum moisture content to provide stability and to prevent excessive swell heave, shrinkage settlement, or collapse settlement upon wetting.

4.3.4 Compaction

Fill Compaction: Engineered fill should be placed in maximum 8-inch loose lifts. In confined areas such as utility trenches, portable compaction equipment and thin lifts of 4 inches to 6 inches may be required to achieve specified degrees of compaction.

Engineered fill should be moisture conditioned as necessary to within -3 and +3 % of the soil's optimum moisture content. Moisture conditioning options include spraying and mixing in water to excessively dry soils, scarifying and drying of excessively wet soils, and adding lime to excessively wet soils.

Engineered fill should be compacted with suitable equipment to a dry density of at least 95% of the Standard Proctor maximum dry density (ASTM D698) more than 12 inches below the finish subgrade elevation and to a least 98% in the upper 12 inches.

ECS should be retained to observe and test the placement and compaction of engineered fill.

Moisture Conditioning: The on-site soils are moisture sensitive and can be difficult to work. Problems include softening of exposed subgrade soils, excessive rutting or deflection under construction traffic, and the inability to adequately dry and compact wet soil.

Drying and compaction of wet soils is typically difficult during typically cooler, wetter months of the year (typically November through March). During the cooler and wetter periods of the year, delays and additional costs should be anticipated. At these times, reduction of soil moisture may need to be accomplished by a combination of mechanical manipulation and the use of chemical additives,

such as lime or cement, in order to lower moisture contents to levels appropriate for compaction. Alternatively, removal and replacement with drier, off-site materials may be necessary.

4.4 PAVEMENTS

4.4.1 Pavement Sections

Undisturbed low-plasticity soils or newly placed engineered fill can provide adequate support for a pavement structure designed for appropriate subgrade strength and traffic characteristics.

Based on the results of our soil test borings, it appears that the soils that will be exposed as pavement subgrades, exposed in cuts and placed as fill, will consist mainly of Silty Sand (SM), Sandy Lean CLAY (CL), Sandy SILT (ML), and Clayey SAND (SC). A California Bearing Ratio (CBR) of 5 should be used for preliminary pavement section thickness design, until design phase CBR laboratory testing is performed.

Fat CLAY (CH) and Elastic SILT (MH) should not be left in place in cut areas or placed as fill immediately below the pavements. A minimum separation of 1 foot should be maintained between the pavement subgrade elevation and Elastic SILT (MH) or Fat CLAY (CH), or lime stabilization should be implemented. This will require undercutting of Elastic SILT (MH) and Fat CLAY (CH) at cut fill transitions and the placement of low-plasticity soil in the upper 1 foot of engineered fill.

5.0 ADDITIONAL GEOTECHNICAL SERVICES

Once final grades, building locations, and pavement locations measure locations have been determined, we recommend that additional soil test borings and laboratory testing be performed to develop final geotechnical design and construction recommendations. Additional laboratory testing should include Expansion Index and Swell Pressure testing of the highly plastic soil encountered in the preliminary borings.

If site retaining walls 5 feet or more in height are needed to achieve design grades, we recommend that additional soil test borings and laboratory testing be performed to evaluate the foundation bearing conditions along the wall alignments and to test the on-site soils for potential use as retaining wall backfill. ECS would be pleased to provide a proposal for these additional services, including site retaining wall design, upon request.

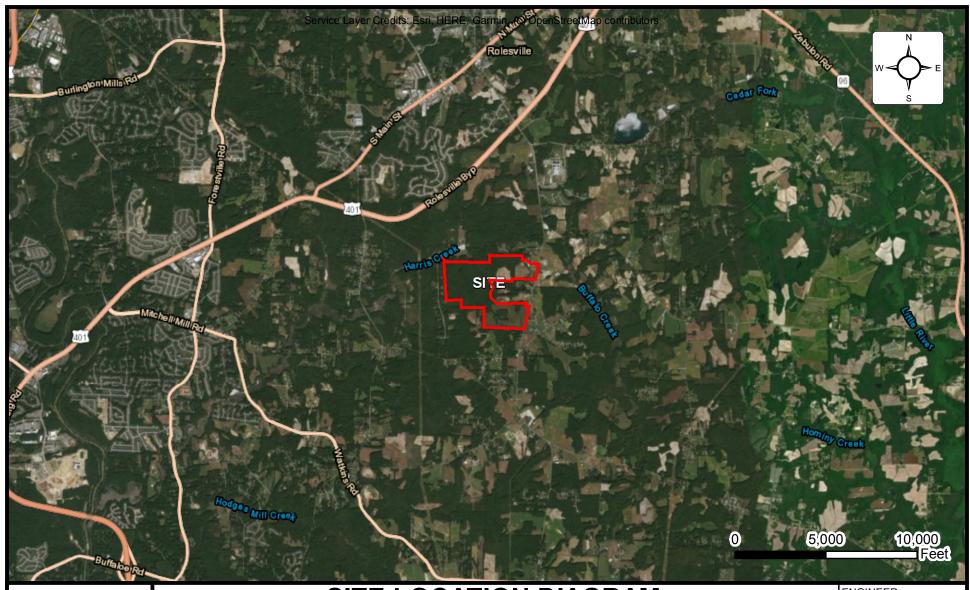
6.0 CLOSING

ECS has prepared this report of findings, evaluations, and preliminary recommendations to guide geotechnical-related aspects of the project. These recommendations are not intended for final design and construction. Additional exploration and/or analysis will be required to develop final commendations.

The description of the proposed project is based on information provided to ECS. If any of this information is inaccurate, either due to our interpretation of the documents provided or site or design changes that may occur later, ECS should be contacted immediately in order that we can

review the report in light of the changes and provide additional or alternate recommendations as may be required to reflect the proposed construction.

We recommend that ECS be retained to develop design and construction recommendations once the project's plans have been developed.


Field observations, monitoring, and quality assurance testing during earthwork and foundation installation are an extension of and integral to the geotechnical design recommendation. We recommend that the owner retain these quality assurance services and that ECS be allowed to continue our involvement throughout these critical phases of construction to provide general consultation as issues arise.

ECS is not responsible for the conclusions, opinions, or recommendations of others based on the data in this report.

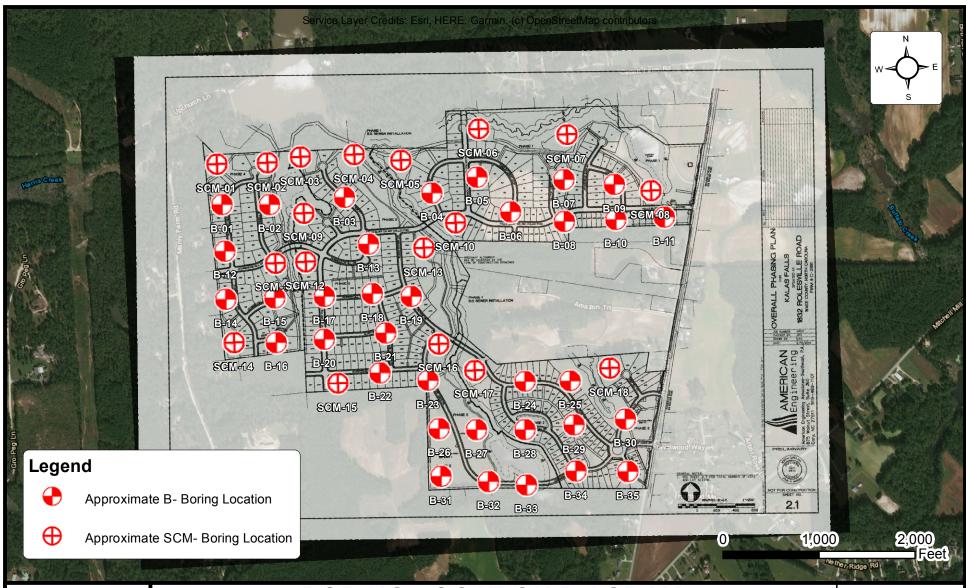
Appendix A - Drawings and Reports

Site Location Diagram

Boring Location Diagram(s)

SITE LOCATION DIAGRAM KALAS FALLS RESIDENTIAL DEVELOPMENT

1832 ROLESVILLE ROAD, ROLESVILLE, NORTH CAROLINA D.R. HORTON


ENG	INE	ER
TM	S4	

SCALE AS NOTED

PROJECT NO. 06:24735

SHEET

DATE 2/17/2022

BORING LOCATION DIAGRAM KALAS FALLS RESIDENTIAL DEVELOPMENT

1832 ROLESVILLE ROAD, ROLESVILLE, NORTH CAROLINA D.R. HORTON

ENGINEER
TMS4
2011

AS NOTED

PROJECT NO. 06:24735

SHEET

DATE 2/17/2022

Appendix B – Field Operations

Reference Notes

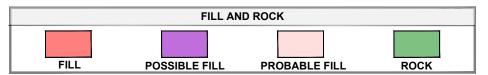
Subsurface Exploration Procedures

Boring Logs

REFERENCE NOTES FOR BORING LOGS

MATERIAL ^{1,2}			
	ASPI	HALT	
	CONCRETE		
0,00	GRA	VEL	
	TOPS	SOIL	
	VOID		
	BRIC	κ	
	AGG	REGATE BASE COURSE	
	GW	WELL-GRADED GRAVEL gravel-sand mixtures, little or no fines	
\$°.0	GP	POORLY-GRADED GRAVEL gravel-sand mixtures, little or no fines	
	GM	SILTY GRAVEL gravel-sand-silt mixtures	
Z Z	GC	CLAYEY GRAVEL gravel-sand-clay mixtures	
Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ Δ	sw	WELL-GRADED SAND gravelly sand, little or no fines	
	SP	POORLY-GRADED SAND gravelly sand, little or no fines	
	SM	SILTY SAND sand-silt mixtures	
///>	sc	CLAYEY SAND sand-clay mixtures	
	ML	SILT non-plastic to medium plasticity	
	МН	ELASTIC SILT high plasticity	
	CL	LEAN CLAY low to medium plasticity	
	СН	FAT CLAY high plasticity	
	OL	ORGANIC SILT or CLAY non-plastic to low plasticity	
\$\$\$	ОН	ORGANIC SILT or CLAY high plasticity	
5 76 7 76 75	PT	PEAT highly organic soils	
9			

DRILLING SAMPLING SYMBOLS & ABBREVIATIONS			
SS	Split Spoon Sampler	PM	Pressuremeter Test
ST	Shelby Tube Sampler	RD	Rock Bit Drilling
ws	Wash Sample	RC	Rock Core, NX, BX, AX
BS	Bulk Sample of Cuttings	REC	Rock Sample Recovery %
PA	Power Auger (no sample)	RQD	Rock Quality Designation %
HSA Hollow Stem Auger			


PARTICLE SIZE IDENTIFICATION			
DESIGNAT	TION	PARTICLE SIZES	
Boulders	5	12 inches (300 mm) or larger	
Cobbles		3 inches to 12 inches (75 mm to 300 mm)	
Gravel:	Coarse	3/4 inch to 3 inches (19 mm to 75 mm)	
	Fine	4.75 mm to 19 mm (No. 4 sieve to 3/4 inch)	
Sand:	Coarse	2.00 mm to 4.75 mm (No. 10 to No. 4 sieve)	
	Medium	0.425 mm to 2.00 mm (No. 40 to No. 10 sieve)	
	Fine	0.074 mm to 0.425 mm (No. 200 to No. 40 sieve)	
Silt & Cla	ay ("Fines")	<0.074 mm (smaller than a No. 200 sieve)	

COHESIVE SILTS & CLAYS			
UNCONFINED COMPRESSIVE STRENGTH, QP ⁴	SPT ⁵ (BPF)	CONSISTENCY ⁷ (COHESIVE)	
<0.25	<2	Very Soft	
0.25 - <0.50	2 - 4	Soft	
0.50 - <1.00	5 - 8	Firm	
1.00 - <2.00	9 - 15	Stiff	
2.00 - <4.00	16 - 30	Very Stiff	
4.00 - 8.00	31 - 50	Hard	
>8.00	>50	Very Hard	

RELATIVE AMOUNT ⁷	COARSE GRAINED (%) ⁸	FINE GRAINED (%) ⁸
Trace	<u><</u> 5	<u><</u> 5
With	10 - 20	10 - 25
Adjective (ex: "Silty")	25 - 45	30 - 45

GRAVELS SANDS A	NON-COHESIVE SILTS
SPT ⁵	
371	DENSITY
<5	Very Loose
5 - 10	Loose
11 - 30	Medium Dense
31 - 50	Dense
>50	Very Dense

WATER LEVELS ⁶	
WL (First Encountered)	
WL (Completion)	
WL (Seasonal High Water)	
WL (Stabilized)	
	WL (First Encountered) WL (Completion) WL (Seasonal High Water)

¹Classifications and symbols per ASTM D 2488-17 (Visual-Manual Procedure) unless noted otherwise.

²To be consistent with general practice, "POORLY GRADED" has been removed from GP, GP-GM, GP-GC, SP, SP-SM, SP-SC soil types on the boring logs.

³Non-ASTM designations are included in soil descriptions and symbols along with ASTM symbol [Ex: (SM-FILL)].

⁴Typically estimated via pocket penetrometer or Torvane shear test and expressed in tons per square foot (tsf).

⁵Standard Penetration Test (SPT) refers to the number of hammer blows (blow count) of a 140 lb. hammer falling 30 inches on a 2 inch OD split spoon sampler required to drive the sampler 12 inches (ASTM D 1586). "N-value" is another term for "blow count" and is expressed in blows per foot (bpf). SPT correlations per 7.4.2 Method B and need to be corrected if using an auto hammer.

⁶The water levels are those levels actually measured in the borehole at the times indicated by the symbol. The measurements are relatively reliable when augering, without adding fluids, in granular soils. In clay and cohesive silts, the determination of water levels may require several days for the water level to stabilize. In such cases, additional methods of measurement are generally employed.

⁷Minor deviation from ASTM D 2488-17 Note 14.

 $^{^8\}mbox{Percentages}$ are estimated to the nearest 5% per ASTM D 2488-17.

SUBSURFACE EXPLORATION PROCEDURE: STANDARD PENETRATION TESTING (SPT) ASTM D 1586

Split-Barrel Sampling

Standard Penetration Testing, or **SPT**, is the most frequently used subsurface exploration test performed worldwide. This test provides samples for identification purposes, as well as a measure of penetration resistance, or N-value. The N-Value, or blow counts, when corrected and correlated, can approximate engineering properties of soils used for geotechnical design and engineering purposes.

SPT Procedure:

- Involves driving a hollow tube (split-spoon) into the ground by dropping a 140-lb hammer a height of 30-inches at desired depth
- Recording the number of hammer blows required to drive split-spoon a distance of 12 inches (in 3 or 4 Increments of 6 inches each)
- Auger is advanced* and an additional SPT is performed
- One SPT typically performed for every two to five feet
- Obtain 1.5-inch diameter soil sample

*Drilling Methods May Vary— The predominant drilling methods used for SPT are open hole fluid rotary drilling and hollow-stem auger drilling.

ECS provides Boring Location Diagrams and Boring Logs for each project!

CLIENT							PROJECT			BORING N	NO.:	SHEET:		
D.R. Ho		ΛΕ·					06:24735 DRILLER/			3-01 R·		1 of 1		EC?
Kalas Fa			Devel	opmen	t		Bridger D			11.				
SITE LO	OITAC	N:			orth Carolina 27587			-				LOSS OF CIRC	ULATION	<u> </u>
NORTH					ASTING:	STATION:			SU	JRFACE E	LEVATION:	воттом оғ	CASING	
	IBER	ЬE	(IN)	2					ST:	FT)	_	Plastic Limit Wate	er Content I	iquid Limit ∆
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PI ROCK QUALITY DE RQD REC		
	SA		SA					N ///89///		Ш		CALIBRATED P		ER TON/SF
_					Topsoil Thickness[7.00		CAND							
- - -	S-1	SS	18	18	(SM) Residuum, SILTY pink and tan, moist, m					-	2-5-11 (16)	⊗ ₁₆		
-					AUGER REFUS	AL AT 2 E E	-			-				
5-					AUGER REFUS	AL AI 3.5 F	- 1			-5				
										-5				
-										-				
10 –										-10				
-										-				
_														
-										-				
15										-15				
_														
-														
20 -										-20				
_										-				
-										-				
-														
25 –										-25				
-														
30										-30				
												: :	:	
\ \tag{\tau} \\			ATIFICAT ountere		NES REPRESENT THE APPROXI								RADUAL	
		mpleti			Dry	BOR	ING STARTE ING			2022	CAVE IN			
▼ W				Vater)		COM	1PLETED:			2022 ED BY:	HAMMEI	R TYPE: Auto		
▼ W	/L (Sta	bilized)			ATV	IPMENT:	G	HG		DRILLING	6 METHOD: 2-1/4"	H.S.A.	
					GEO	OTECHNI	CAL BOF	REHOL	.E L(OG				

CLIENT							PROJECT I	NO.:		BORING N	IO.:	SHEET:	
D.R. Ho		45					06:24735	CALTRA		B-02		1 of 1	LCC
PROJEC Kalas Fa			l Devel	onmer	n t		DRILLER/O Bridger Dr			r:			-0 5
SITE LO			Deven	оринен	ıı,		Bridger Di	ming mc	•				
			Rolesv	ille, No	orth Carolina 27587							LOSS OF CIRCULATION	ON \(\)
NORTH	ING:			EA	ASTING:	STATION:			SU	JRFACE EI	_EVATION:	BOTTOM OF CASIN	G
(IBER	PE	(NI)	(Z					STE	FT)	_	Plastic Limit Water Con	tent Liquid Limit ————∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C				WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENETRA	
)EPTI	IPLE	MPL	IPLE	COVE	DESCRIPTION C	OF IVIALENIAL			ATER	:VATI	3LOV	RQD	ION & RECOVERY
	SAN	Ş	SAN	RE					Š			— REC CALIBRATED PENETR	OMETER TON/SE
					T! Thi-l[7.00	211						[FINES CONTENT] %	: :
_	S-1	SS	_1	1	Topsoil Thickness[7.00 (WR) PARTIALLY WEAT		nck			1 1	50/1"		⊗ _{50/1"}
_					SAMPLED AS, No reco			/			(50/1")		557.
_					ROCK]								
_					AUGER REFUS	AL AT 1.1 I	FT						
5 -										-5			
_													
_													
_										F			
40										107			
10 –										-10			
-													
_													
_										=			
_													
15 –										-15			
-										-			
-										-			
-										-			
_										4			
20 -										-20			
_													
_													
_													
_													
25 –										-25			
										-25			
										7			
-										7			
7										7			
30 –										-30			
					INES REPRESENT THE APPROXI	MATE BOUNI	DARY LINES B	ETWEEN	SOIL	TYPES. IN	-SITU THE TR	RANSITION MAY BE GRAD	UAL
∇ W	/L (Firs	t Enco	untere	ed)		BOR	ING STARTE	D: Fe	b 0 9	2022	CAVE IN	DEPTH:	
Y W					Dry	BOR		Fe	b 09	2022	HAMMEI	R TYPE: Auto	
▼ W				Vater)			IPLETED:	10	OGG	ED BY:			
▼ W	/L (Sta	bilized)			ATV		GI	HG		DRILLING	6 METHOD: 2-1/4" H.S .	Α.
					GEC	OTECHNI	CAL BOR	EHOL	E LO	og		·	

CLIENT							PROJECT	NO.:		BORING N	10.:	SHEET:		
D.R. Ho		ΛΕ·					06:24735 DRILLER/0	ONTRA		8-03 R·		1 of 1		EC?
Kalas Fa			l Devel	opmen	t		Bridger Di			11.				
SITE LOG			Rolesv	ille, No	orth Carolina 27587							1	LOSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	STING:	STATION:			SL	JRFACE EI	_EVATION:		BOTTOM OF CASING	-
(1BER	PE	(NI)	<u> </u>					STE	FT)	=	Plast	ic Limit Water Content	t Liquid Limit ∆
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	RO) STANDARD PENETRATION CK QUALITY DESIGNATION RQD REC	
	<i>/</i> S		/S					N///89///8					CALIBRATED PENETROM	ETER TON/SF
-					Topsoil Thickness[6.00 (SM) Residuum, SILTY		brown							
- - -	S-1	SS	18	18	moist, very loose	TINE SAIND	, brown,			-	1-1-1 (2)	\otimes_2		
					AUGER REFU	SAL AT 3 FT								
5-										-5				
_														
-														
-														
10 –										-10				
-														
]]				
-														
15										-15				
-														
_]				
_														
-										-				
20 –										-20				
]				
_]				
- -														
25 -										-25				
-														
30										30		:		
30 –										-30				
	Τι	HF STR/	ATIFICAT	TION ! !	NES REPRESENT THE APPROXI	MATE BOLIND	ARY LINES R	FTWFFN	 SOII	TYPES IN	-SITU THE TR	ANSITION	MAY BE GRADII/	ΔΙ
□ V			unter		THE THE MEDICAL THE AFFINON		NG STARTE			2022	CAVE IN		2.00	1 L
		mpleti			Dry	BORII				2022	HAMMEI		Auto	
▼ M	/L (Sea	sonal	High V	Vater)			PLETED: PMENT:			ED BY:	ITAIVIIVIEI	NITPE:	Auto	
▼ W	/L (Sta	bilized)			ATV		G	HG		DRILLING	METHO	D: 2-1/4" H.S.A.	
					GEC	TECHNIC	CAL BOR	EHOL	E LO	og				

CLIENT:								DJECT NO).:	В	ORING N	IO.:	SHEET:		
D.R. Ho								24735			-04		1 of 1		LCc
PROJEC								LLER/CO			R:				_03
Kalas Fa			Develo	pmen	t		Bric	dger Drilli	ing Inc.				1		N
			Rolesvi	lle, No	orth Carolina 27587								L	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	ASTING:	STATION	l:			SU	RFACE EI	EVATION:		BOTTOM OF CASING	-
	IBER	PE	(SII)	Î						:LS	E	_		c Limit Water Conten	t Liquid Limit ∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	NE MATERIA	٨١			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	I	STANDARD PENETRATION	
DEPT	1PLE	MMPI	1PLE	000	DESCRIPTION C	, IVIAI EIII	~L			ATER	EVAT	BLO√	_	RQD	
	SAN	S	SAN	R						>	E			- REC CALIBRATED PENETROM	ETER TON/SF
					Topsoil Thickness[6.00	ו"ו		8					[FIN	NES CONTENT] %	
-	S-1	SS	6	6	(WR) PARTIALLY WEAT		ROCK	-1			-	50/6			⊗ _{50/6"}
-					SAMPLED AS SILTY FIN						-	(50/6")			
					SAND, pink, tan and g	ray, mois	st	1			4				
					[Weathered ROCK] Refusal encounte	rad at 2	O foot				1				
5-					END OF DRILLI						-5				
_															
_											_				
-											+				
40											40				
10 –											-10				
											=				
-											4				
-															
											-				
15-											-15				
_											-				
-											-				
											-				
											4				
20											-20				
_															
_											_				
											7				
7											7-				
25 –											-25				
											7				
-											4				
-											-				
-											-				
30													:		<u>: : : : : : : : : : : : : : : : : : : </u>
	Th	HE STRA	ATIFICAT	ION LI	L NES REPRESENT THE APPROXI	MATE BOU	INDARY L	INES BET	WEEN :	SOIL	TYPES. IN	-SITU THE TR	ANSITION	MAY BE GRADU	AL
▽ w	/L (Firs	st Enco	untere	d)		ВС	ORING S	TARTED:	Fe	b 08	2022	CAVE IN	DEPTH:	1.00	
Y W					Dry		DRING DMPLET	ED.	Fe	b 08	2022	HAMMEI	R TYPE:	Auto	
			High W	ater)			QUIPMEI		LO	GGE	ED BY:	DDILLING	METUO	D. 2 1/4" ! C *	
▼ W	/L (Sta	bilized)			AT	v		GH	IG		DKILLING	IVIETHOI	D: 2-1/4" H.S.A .	
					GEO	TECHN	<u>vica</u> L	<u>BORE</u>	<u>HOLE</u>	<u>: L</u> C)G				

CLIENT							PROJECT N	10.:		BORING N	10.:	SHEET:		
D.R. Ho							06:24735			B-05		1 of 1		LC C
PROJEC							DRILLER/C			PR:				_03
Kalas Fa			Develo	opmen	t		Bridger Dri	lling Inc	: .			1		~
			Rolesvi	ille, No	orth Carolina 27587							L	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	ASTING:	STATION:			- 1	JRFACE EI 57.00	_EVATION:		BOTTOM OF CASING	
(1BER	PE	(NI)	<u> </u>					STE	(H)	=		ic Limit Water Content	Liquid Limit ∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	F MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	1	STANDARD PENETRATION	
DEP	MPL	SAMI	MPL	ECO					VATE	LEVA	BLC	_	RQD REC	
	SA	0,	SA	Œ.					>	ш		0	CALIBRATED PENETROME	TER TON/SF
_					Topsoil Thickness[6.00)"]						[FIN	NES CONTENT] %	
-	S-1	SS	18	18	(SC) Residuum, CLAYE	Y MEDIUM	SAND,				3-3-4	\otimes_7		
	J 1	33	10		brown and orange, mo						(7)			
_					AUGER REFUS	SAL AT 3 FT]				
5 -										-5				
_														
-														
]]				
_														
10 –										-10				
]				
_														
-														
15 -										-15				
-														
-														
20 –										-20				
-														
-														
25										-25				
-										-				
-														
30										-30				
										33				
		HE STR	ATIFICAT	FION I I	 NES REPRESENT THE APPROXII	MATE BOUND	ARY LINES BE	TWEFN	SOII	TYPES. IN	-SITU THF TR	ANSITION	MAY BE GRADUA	.L
∇ W							NG STARTE			3 2022	CAVE IN		2.00	
▼ W	/L (Cor	mpletio	on)		DRY	BORII			ah ne	3 2022	HAMMEI		Auto	
▼ W	/L (Sea	sonal	High V	Vater)			PLETED: PMENT:			ED BY:				
▼ W	/L (Sta	bilized)			ATV C	ME550	C/	AR3		DRILLING	METHO	D: 2.25 HSA	
					GEC	TECHNIC	CAL BOR	EHOL	E L	OG				

CLIENT:							PROJECT	NO.:		BORING N	10.:	SHEET			
D.R. Hor PROJEC		ΛF·					06:24735 DRILLER/0	^ONTR4		8-06 R·		1 of 1			EC9
Kalas Fa			l Devel	opmen	t		Bridger Di			11.					
SITE LOC 1832 Ro			Rolesv	ille, No	orth Carolina 27587								LOSS OF CI	RCULATION	<u> </u>
NORTH	ING:			EA	STING:	STATION:			SL	JRFACE EI	LEVATION:		BOTTOM	OF CASING	
	BER	ЭE	(IN)	î					LS.	E		Р	lastic Limit W X	ater Content	Liquid Limit ∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD ROCK QUALITY RQD		
	SAN	Ŋ	SAN	R				- N	>	H			CALIBRATE [FINES CONTEN		TER TON/SF
					Topsoil Thickness[8.00										
	S-1	SS	18	18	(SM) Residuum, SILTY SAND, dark yellowish					-	1-3-8 (11)	⊗ ₁₁	13.7	[19.69	6]
					medium dense	AL AT 0.5 F									
5-					AUGER REFUS	AL AI 3.5 F	1			-5					
]]					
10 -										-10					
_ 15 –										-15					
15 -										-15					
										1					
20 -										-20					
_															
25										25					
25 –										-25 <u> </u>					
30 -										-30					
														-	· · · · · · · · · · · · · · · · · · ·
□ □ W					NES REPRESENT THE APPROXI		ARY LINES B			TYPES. IN 2022	-SITU THE TR CAVE IN I			GRADUA	L
▼ W				*	Dry	BORII	NG			2022	HAMMER			<u> </u>	
X W				Vater)			PLETED: PMENT:			ED BY:	DRILLING				
▼ W	/L (Sta	DIIIZEd)		GFC	ATV DTECHNIC	`ΔI RΩR		HG F I (og	DIVILLING	, IVI∟ I F	100. 2-1/	. 11.J.A.	

DR. Herton GR. 2473 B. 07 DR. F. C. CATON CASTS TAIL RESIDENCE TO MARKET PROPERLY AND THE CAST TAIL RESIDENCE TO MARKET PROPERLY AND THE CAST TAIL RESIDENCE TO MARKET PROPERLY AND THE CAST TAIL RESIDENCE TO MARKET PROPERLY AND THE CASTS TAIL RESIDENCE TO MARKE	CLIENT	:						PROJE	CT NO.		BORIN	G NO.:	SHEET:	
Mail Colon Colon													1 of 1	- LCc
STATION: STATION:								l l			OR:			_03
1832 Record Robert No. No. No. Cordinal 27887 STATION STATIO				Devel	opmei	nt		Bridge	r Drillin	g Inc.			1	
Proceedings of the process of the				Rolesv	ille, N	orth Carolina 27587							LOSS OF CIRCUL	ATION NOITA
Part	NORTH	IING:			E	ASTING:	STATION	:			SURFAC	E ELEVATION:	BOTTOM OF CA	ASING
S-1 SS 18 18	(L-	MBER	YPE	T. (IN)	(NI)					0 12	(FT)	-9	Х	Δ
S-1 SS 18 18	ОЕРТН (І	AMPLE NU	SAMPLET	ample dis	RECOVERY	DESCRIPTION O	f Materia	L		0 - 0	ELEVATION	BLOWS/	ROCK QUALITY DESI	
S-1 S5 18 18		S		S					8//					NETROMETER TON/SF
S-1 SS 18 18 18 moist, firm (SM) Residuum, SILTY MEDIUM TO COARS SAND, gray and white, moist, medium dense SS SS 18 18 (WR) PARTIALLY WEATHERED ROCK SAMPLED AS SILTY FINE SAND, orange, moist [Weathered ROCK] (SM) Residuum, SILTY FINE SAND, orange, moist [Weathered ROCK] (SM) Residuum, SILTY FINE SAND, orange, moist, medium dense to loose 10 10 10 10 10 10 10 1	_							ange,	-1			1-2-3		
S-2 SS 18 18 COARSE SAND, gray and white, moist, medium dense COAPSE SAND, gray and gra		S-1	SS	18	18		ŕ						⊗ ₅	
10 S-3 S-5 G G G SAMPLED AS SILTY FINE SAND, orange, moist, medium dense to loose So/6 So/6*1 So/6*2 So/6*30/6*1 So/6*	- - 5-	S-2	SS	18	18	COARSE SAND, gray an					-5	(24)	⊗ ₂₄	
Solution Solution	_	S-3	SS	6	6	(WR) PARTIALLY WEAT				334	\dashv	-		Ø _{EO/CI}
S-4 S-5 S-5	- -	3 3	33				-	orange,				(50/6")		50/6
10	-	S-/I	SS	12	18							1	8	
S-5 SS 18 18 18	10	34		10	10						-10		713	
S-5 SS 18 18 18	- -													
S-5 SS 18 18 18						-						3-4-5		
END OF DRILLING AT 17.5 FT 25 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	15-	S-5	SS	18	18	_					-15	(9)	⊗ ₉	
END OF DRILLING AT 17.5 FT 25 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	_ _ _											_		
25	- - -									1111		-		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: WL (Seasonal High Water) WL (Seasonal High Water) WU (Seasonal High Water) WU (Stabilized) Dry BORING COMPLETED: EQUIPMENT: ATV BORING Feb 03 2022 CAVE IN DEPTH: Auto DRILLING METHOD: 2-1/4" H.S.A.	20-										-20	- - -		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: WL (Seasonal High Water) WL (Seasonal High Water) WU (Seasonal High Water) WU (Stabilized) Dry BORING COMPLETED: EQUIPMENT: ATV BORING Feb 03 2022 CAVE IN DEPTH: Auto DRILLING METHOD: 2-1/4" H.S.A.	_ 													
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: WL (Seasonal High Water) WL (Seasonal High Water) WU (Seasonal High Water) WU (Stabilized) Dry BORING COMPLETED: EQUIPMENT: ATV BORING Feb 03 2022 CAVE IN DEPTH: Auto DRILLING METHOD: 2-1/4" H.S.A.	-													
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: WL (Seasonal High Water) WL (Seasonal High Water) WU (Seasonal High Water) WU (Stabilized) Dry BORING COMPLETED: EQUIPMENT: ATV BORING Feb 03 2022 CAVE IN DEPTH: Auto DRILLING METHOD: 2-1/4" H.S.A.	<u> </u>											-		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: CAVE IN DEPTH: Auto COMPLETED: EQUIPMENT: ATV COMPLETED: DRILLING METHOD: 2-1/4" H.S.A.	25 -										-25	; –		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: CAVE IN DEPTH: Auto COMPLETED: EQUIPMENT: ATV COMPLETED: DRILLING METHOD: 2-1/4" H.S.A.	-											_		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: CAVE IN DEPTH: Auto COMPLETED: EQUIPMENT: ATV COMPLETED: DRILLING METHOD: 2-1/4" H.S.A.	- -											_		
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: CAVE IN DEPTH: Auto COMPLETED: EQUIPMENT: ATV COMPLETED: DRILLING METHOD: 2-1/4" H.S.A.	_											_		
✓ WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: ✓ WL (Completion) Dry BORING STARTED: Feb 03 2022 HAMMER TYPE: Auto ✓ WL (Seasonal High Water) EQUIPMENT: ATV LOGGED BY: GHG DRILLING METHOD: 2-1/4" H.S.A.	30												<u> </u>	
✓ WL (First Encountered) BORING STARTED: Feb 03 2022 CAVE IN DEPTH: ✓ WL (Completion) Dry BORING STARTED: Feb 03 2022 HAMMER TYPE: Auto ✓ WL (Seasonal High Water) EQUIPMENT: ATV LOGGED BY: GHG DRILLING METHOD: 2-1/4" H.S.A.		LTI	HE STRA	L ATIFICA	L TION L	I INES REPRESENT THE APPROXIN	MATE BOU	NDARY LINI	ES BETW	EEN SO	l DIL TYPES	. IN-SITU THE T	_I RANSITION MAY BE GR	ADUAL
▼ WL (Seasonal High Water) Feb 03 2022 HAMMER TYPE: Auto ▼ WL (Stabilized) EQUIPMENT: ATV LOGGED BY: GHG DRILLING METHOD: 2-1/4" H.S.A.	∇ V													
▼ WL (Seasonal High Water) COMPLETED: EQUIPMENT: LOGGED BY: GHG DRILLING METHOD: 2-1/4" H.S.A.						-				Feb	03 2022	HAMME	R TYPE: Auto	
AIV GHG					Vater))				LOG	GED BY:			I.S.A.
	_ <u>*</u>	v L (Sta	niiized)		GEO			OBEL			DIVILLIAN		

CLIENT:							PROJECT	NO.:	- 1	BORING	NO.:	SHEET:			
D.R. Ho		45.					06:24735	CONTRA		B-08		1 of 1		L C	6
PROJEC Kalas Fa			l Devel	onmen	ıt		DRILLER/O			rk:					<u> </u>
SITE LO	OITAC	N:					Diluger Di	8	•			LOSS	OF CIRCULATION		\(\)
NORTH		Road,	Rolesv		orth Carolina 27587 ASTING:	STATION:			SL	JRFACE E	ELEVATION:	ВОТ	TOM OF CASING		
	R		2										nit Water Content		it
(FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)					WATER LEVELS	ELEVATION (FT)	9/9	X— ⊗ sta	NDARD PENETRATIO	N BLOWS/FT	
ОЕРТН (FT)	PLE N	MPLE	PLE D	COVE	DESCRIPTION OF	MATERIAL			YTER L	VATIC	BLOWS/6"	ROCK Q	uality designation QD	& RECOVERY	
	SAN	\S	SAIV	RE					Š	33	_	— RE	EC IBRATED PENETROMI	TER TON/SF	
-					Topsoil Thickness[12.00)"]				-		[FINES C	ONTENT] %		
-	S-1	SS	18	18	(SM FILL) FILL, SILTY ME and brown, moist	DIUM S	AND, gray			- - - -	2-3-2 (5)	\otimes_5			
-					(SC-SM FILL) FILL, SILTY	CLAYEY	MEDIUM			-	2.2.5				
5	S-2	SS	18	18	SAND, orange, moist					-5	2-3-5 (8)	⊗ ₈			
	S-3	SS	18	18						-	2-4-5 (9)	⊗9			
					(SM) Residuum, SILTY F	INE TO N	ЛЕDIUM			-	6.0.0				
10	S-4	SS	18	18	SAND, orange, moist, m	edium d	lense			-10	6-8-9 (17)	⊗ _{tZ}			
										-10					
					(WR) PARTIALLY WEATH	IERED RO	JCK			-					
	S-5	- 55	,	,	SAMPLED AS SILTY MED					_	50/2"			6	⊗ _{50/2"}
	3 3	33		_	SAND, pink and white, r	noist [W	eathered]	(50/2")				>50/2"
15					AUGER REFUSAL	AT 13.7	FT	/		-15					
-										-					
										-					
										-					
20 –										-20					
-										-					
										-					
25										-25					
-										-					
										-					
30										-30					
					NES REPRESENT THE APPROXIM	ATE BOUN	DARY LINES B	ETWEEN	SOIL	TYPES. IN	N-SITU THE TE	RANSITION MA	NY BE GRADUA	\L	
□ V				ed)			ING STARTE	D: Fe	eb 03	3 2022	CAVE IN	DEPTH:			
⊼ №				Mata=1	Dry		ING APLETED:	Fe	eb 03	3 2022	НАММЕ	R TYPE:	Auto		
▼ W				ivater)		EQL	JIPMENT:			ED BY:	DRILLING	6 METHOD: 3	2-1/4" H.S.A.		
	(Jia	~ZCU	• /		GEO1	ATV ΓΕCHNI	CAL BOR		HG E LO	OG					

CLIENT								ROJECT N	O.:	E	BORING	NO.:	SHEET:			
D.R. Ho								06:24735			B-09		1 of 1		En	0
PROJEC								RILLER/CO			R:					2
Kalas Fa			l Devel	opmen	t		В	Bridger Dril	ling In	с.						~
1832 Ro	lesville		Rolesv		orth Carolina 27587								LOSS OF (CIRCULATION		<u> </u>
NORTH	ING:			EA	ASTING:	STATION	N:			SL	JRFACE E	LEVATION:	воттом	1 OF CASING		
	SAMPLE NUMBER	JE JE	(Z	2						SIIS	ET)	_	Plastic Limit V	Water Content	Liquid Lim ——∆	it
H (FT	ΣΩ	E TY	JIST.	KY (D.F.O.DUDTION O					LEVE	N C	19/8/		RD PENETRATION		
ОЕРТН (FT)	PLE	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	JE MATEKI	IAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROCK QUALIT	TY DESIGNATION	& RECOVERY	
	SAM	S,	SAM	REC						×	EE	ш	— REC			
	- '		·						×///×////				[FINES CONTE	red Penetrome Ent] %	TER TON/SF	
					Topsoil Thickness[2.00			/								
-	S-1	SS	18	18	(SM) Residuum, SILTY orange, moist, loose	MEDIUI	IVI SAI	ND,				WOH-1-6 (7)	⊗ ₇			
					(14/D) DA DTIALINA 14/5 AT		DO CI	,								
-	S-2	SS	0	0	(WR) PARTIALLY WEAT SAMPLED AS, No reco						1 1	50/0" (50/0")			6	⊗ _{50/0"}
5-					ROCK]	very [vv	eatne	ereu			-5	,				
					AUGER REFUS	AL AT 3.	.5 FT									
_																
-											-					
10											10					
10-											-10					
-																
-											-					
_																
15-											-15					
-											-					
-																
-																
20-											-20					
-											_					
]]					
-]					
25 –											-25					
-											-					
-											-					
30 –											-30					
\vdash											 					
	TI	HE STRA	ATIFICA	TION LI	I NES REPRESENT THE APPROXI	MATE BOL	JNDAR	Y LINES BE	TWEEN	I SOIL	TYPES. IN	N-SITU THE TR	ANSITION MAY B	E GRADUA	L	
		st Enco		ed)		ВС	ORING	STARTED): F	eb 02	2022	CAVE IN	DEPTH: 3.00	0		
		mpleti		Water)	Dry		ORING OMPLI		F	eb 02	2022	HAMMEI	R TYPE: Aut	0		
				ivalei)			QUIPN		L	OGG	ED BY:	DRILLING	6 METHOD: 2-1,	/д" н с л		
<u> </u>	/L (Sta	bilized	1)		<u> </u>	AT CLU		1 000		HG	00	DIVILLING	, WILTHOU, 2-1	, -t 11.J.M.		
1					GEC	JI ECHÎ	NICA	L BORE	:HUL	.E L(UG					

CLIENT							PROJECT N	10.:		BORING N	NO.:	SHEET:	
D.R. Ho							06:24735			B-10		1 of 1	LCc
PROJEC							DRILLER/C			R:			-03
Kalas Fa			Develo	opmen	it		Bridger Dri	lling Inc	с.				~
SITE LO: 1832 Ro			Rolesvi	ille, No	orth Carolina 27587							LOSS OF CIRCULATION	√ <u>∑100%</u>
NORTH	ING:			EA	ASTING:	STATION:			SU	JRFACE E	LEVATION:	BOTTOM OF CASING	-
(BER	ЭE	(NE)	î					STI	FT)		Plastic Limit Water Conte	nt Liquid Limit ────△
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C				WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENETRAT	
EPTI	PLE	MPL	PLE	00 VE	DESCRIPTION C	JE IVIAI ENIAL			YTER	.WATI	3LOV	ROCK QUALITY DESIGNATION RQD	JN & RECOVERY
	SAM	Sδ	SAM	Ŗ					*		ш	— REC CALIBRATED PENETRO	AFTER TON/CF
					T 11 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T	NII T		N////////				[FINES CONTENT] %	WETER TON/3F
_					Topsoil Thickness[6.00 (SM) Residuum, SILTY					1 1			
_	S-1	SS	18	18	COARSE SAND, gray a						5-5-17 (22)	\otimes_{22}	
_					medium dense	10 (01), 1110				1 1			
_					AUGER REFU	SAL AT 3 F	Т						
_										-5			
5-										-5 			
-													
-													
_													
_													
10 –										-10			
_													
_										-			
_										-			
_													
15 –										-15			
_										"			
-													
-										-			
_]			
-													
20 –										-20			
_										=			
_										-			
_										-			
] -										-			
25 –										-25			
-										-			
_													
_													
_													
30 –										-30			
										30			
										7.65	0.7.	A NOTE OF THE OFFI	
			ATIFICAT ountere		NES REPRESENT THE APPROXI								JAL
▼ v				-~,	Dry	BOR	ING STARTEI ING			3 2022	CAVE IN		
▼ v	/L (Sea	sonal	High V	Vater)		COM	1PLETED:			3 2022	HAMMEI	R TYPE: Auto	
		bilized					IPMENT:	i i		ED BY:	DRILLING	6 METHOD: 2-1/4" H.S. A	
	ı L (Jia	omzeu	,		GFC	OTECHNI	CAL BOR		HG F L	ng		-	
					JL	UI II VI	OUF DOU	<u> </u>	<u></u>				

CLIENT							PROJEC			BORING I	NO.:	SHEET:			
D.R. Ho		45.					06:2473			B-11		1 of 1		LCC	
PROJEC Kalas Fa			l Devel	onmer	n t			R/CONTRA Drilling Inc		JK:				_03	
SITE LO	CATIOI	N:		-	orth Carolina 27587		Bridger	Dinning in	··				LOSS OF CIRCULATION	\(\)	
NORTH		KOAU,	Kolesv		ASTING:	STATION:			SU	JRFACE E	LEVATION:	BOTTOM OF CASING			
	ER		2						S			Plast	ic Limit Water Content		
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION (of Material	=		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X			
	SAM	SA	SAM	REC					W	ELE	ш	— REC CALIBRATED PENETROMETER TON/SF [FINES CONTENT] %			
_					Topsoil Thickness[4.00					1			NES CONTENT) 70		
- - -	S-1	SS	18	18	(CH) Residuum, SAND brownish yellow, mois		Υ,				1-2-4 (6)	\otimes_6	29 29.3	[61.7%]	
_					(SM) Residuum, SILTY	FINE TO N	MEDIUM			1 1					
5-	S-2	SS	18	18	SAND, tan and pink, n loose	noist, very	loose to			-5	1-1-3 (4)	⊗4			
- - - -	S-3	SS	18	18							2-2-4 (6)	\otimes_6			
-					_						1-1-4				
10-	S-4	SS	18	18						-10	(5)	\otimes_5			
- - - - -										- - - - -					
_	S-5	SS	18	18							2-3-5 (8)	⊗ ₈			
15 -					_					-15	`,				
- - -					(SM) Residuum, SILTY		D, pink								
_			10	10	and tan, moist, mediu	ım dense					3-4-7				
20 -	S-6	SS	18	18	END OF BORI	NG AT 20 F	- T			-20	(11)	⊗ ₁₁			
- - -															
_															
- -															
25 –										-25					
-															
_ 															
30-										-30					
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			ATIFICA ounter		INES REPRESENT THE APPROXI dry		IDARY LINES						MAY BE GRADUA	AL .	
	VL (Coi						RING STAR			1 2022 1 2022	HAMME	N DEPTH:			
▼ v	VL (Sea	asonal	High V	Vater)			MPLETED: JIPMENT:			ED BY:			Auto		
▼ V	VL (Sta	bilized	1)		6-4	Truc F35(OTECHN	JIPMENT: ck 55 Traile:	ر/2013 ح	ΔR3		DRILLING	METHO	D: 2.25 HSA		
					GEO	<u>JIECHN</u>	ICAL BO	KEHUL	<u>.t L(</u>	UG					

CLIENT:							PROJECT I	VO.:		BORING	NO.:	SHEET:		
D.R. Horto							06:24735	CAUTRA		B-12		1 of 1		LCC
PROJECT Kalas Falls			Devel	nmar	nt		DRILLER/O			PK:				_0
SITE LOCA			Devel	pillei	ıı		Bridger Di	ming mic	•					
			Rolesvi	lle, No	orth Carolina 27587							L	OSS OF CIRCULATION	<u> </u>
NORTHIN	lG:			E	ASTING:	STATION:			SL	JRFACE E	LEVATION:		BOTTOM OF CASING	
	SAMPLE NUMBER	PE	(NI)	2					STI	FT)	_		c Limit Water Content	Liquid Limit ∆
ОЕРТН (FT)	Σ	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	1	STANDARD PENETRATION BLOWS/FT		
EPTI	PLE	MPL	PLE	SOVE	DESCRIPTION C	JF IVIAI ERIAL			TER	NATI	3LOV		CK QUALITY DESIGNATION RQD	& RECOVERY
	SAM	SA	SAM	REC					W		ш		- REC	TER TON (CE
			·					N///88///8					CALIBRATED PENETROME NES CONTENT] %	TER TON/SF
					Topsoil Thickness[8.00		NG14			1 1				
	S-1	SS	16	16	(WR) PARTIALLY WEAT SAMPLED AS SILTY ME					-	4-5-50/4" (55/10")			Ø _{55/10"}
1 7					SAND, orange, brown]	(33) 10)			
 	S-2	SS	1		[Weathered ROCK]	ana gray, i	110130]]	50/1"			⊗ _{50/1"}
					AUGER REFUS	AL AT 3.6 I	T			=	(50/1")			
5-										-5				
-										-				
10 –										-10				
										-				
										-				
										-				
15 –										-15				
13										-13				
]]				
										-				
										-				
20										-20				
										_				
-										-				
-										-				
-														
25										-25				
										-				
30										20				
30 –										-30				
													· · · · · · · · · · · · · · · · · · ·	
					INES REPRESENT THE APPROXI	MATE BOUNI	DARY LINES B	ETWEEN	SOIL	TYPES. IN	N-SITU THE TE	RANSITION	MAY BE GRADUA	ıL
▽ WL	(Firs	t Enco	untere	ed)		BOR	ING STARTE	D: F e	eb 11	1 2022	CAVE IN	DEPTH:	2.00	
▼ WL	(Con	npletio	on)	_	Dry	BOR	ING	-	ob 44	2022		D TVDF:	Au+-	
▼ WL	(Sea	sonal	High V	/ater)		COM	1PLETED:			L 2022	HAMME	K IYPE:	Auto	
▼ WL							IPMENT:			ED BY:	DRILLING	METHO	D: 2-1/4" H.S.A.	
	, , , , , , ,		,		GFC	OTECHNI	CAL BOR		HG E LO	OG				

CLIENT							PROJECT NO.:		- 1	BORING B-13	NO.:	SHEET:		
D.R. Ho								06:24735				1 of 1		LCc
PROJECT NAME: DRILLER/CONTRACT Kalas Falls Residential Development Bridger Drilling Inc.														_03
			l Devel	opmer	ıt		Bridger	Drilling In	c.					
SITE LOCATION: 1832 Rolesville Road, Rolesville, North Carolina 27587											LOSS OF	CIRCULATION	<u> </u>	
NORTH	IING:			EA	ASTING:	STATION:			Sl	URFACE E	LEVATION:	BOTTON	и of casing	
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O	PF MATERIA	L		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X—————————————————————————————————————	Water Content RD PENETRATION ITY DESIGNATION ATED PENETROME FINTI %	N BLOWS/FT & RECOVERY
- - - -	S-1	SS	18	18	Topsoil Thickness[6.00 (SC) Residuum, CLAYE' SAND, brown, moist to	Y FINE TO		1 ////			WOH-1-1 (2)	23 16.7		6.0%]
- - - -	S-2	SS	18	18	(CL) Residuum, SANDY silt, red and brown, m			<u> </u>		- - - -	4-6-7 (13)	⊗ ₁₃		
5 — - - - -	S-3	SS	18	18	(SM) Residuum, SILTY SAND, pink and gray, r medium dense					-5- - - - -	5-5-3 (8)	⊗ ₈		
- - -	S-4	SS	18	18						- - - - -	4-4-5 (9)	⊗ ₉		
10										-10 - - - - - -				
15 — 	S-5	SS	18	18						-15 - -15 -	6-7-10 (17)	⊗ ₁₇		
20 -	S-6	SS	18	18	END OF BORI	NG AT 20	FT			-20 -	9-12-16 (28)	⊗ ₂₈		
25 —										-25 -				
30-										-30				
	TI	HE STRA	atifica	LLL TION L	I INES REPRESENT THE APPROXII	MATE BOUN	NDARY LINES	BETWEEN	I SOII	L TYPES. IN	I-SITU THE TR	RANSITION MAY I	BE GRADUA	۸L
▽ v			ounter				RING STAR			9 2022	CAVE IN			
▼ V	VL (Coi	mpleti	on)		Dry	ВО	RING			9 2022				
			High V	Vater)			MPLETED: JIPMENT:			SED BY:		ER TYPE: Auto		
▼ V	VL (Sta	bilized	l)			ΑTV	,	G	HG		DRILLING	6 METHOD: 2-1	/4" H.S.A.	
					GEC	TECHN	ICAL BO	REHOL	E L	OG				

CLIENT								PROJECT N	O.:	E	BORING	NO.:	SHEET:			
D.R. Ho							06:24735			B-14		1 of 1		En	0	
PROJEC							DRILLER/CONTRACTOR: Bridger Drilling Inc.									2
Kalas Fa			i Devel	opmen	it .			Bridger Drii	ling in	C			1			~
1832 Ro	lesville		Rolesv		orth Carolina 27587	T				1			L	OSS OF CIRCULATION		<u> </u>
NORTHING: EASTING: STATIC										SL	JRFACE E	LEVATION:		BOTTOM OF CASING		
(SAMPLE NUMBER	Æ	SAMPLE DIST. (IN)	<u> </u>						STE	ET)	=		x	: Liquid Lim ∆	it
ОЕРТН (FT)	NUN	SAMPLE TYPE	DIST.	RECOVERY (IN)	DESCRIPTION C		DIAI			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATIO		
)EPTI	IPLE	MPL	IPLE	00	DESCRIPTION	JF IVIAI EI	NIAL			YTE R	VATI	3LOV	RO	RQD	a RECOVERT	
	SAM	S	SAM	Æ						×	ELE	ш	<u> </u>	- REC CALIBRATED PENETROM	TED TON/SE	
									X//2X///2					NES CONTENT] %	TER TON/SF	
-					Topsoil Thickness[6.00		lil. a	/			1 1					
_	S-1	SS	18	18	(ML) Residuum, SAND yellowish brown, moi		_	ff]	2-3-3 (6)	\otimes_6			
-					yellowish brown, mor	St, 111111	10 511	11			-	. (0)				
_												4-6-7	\			
	S-2	SS	18	18							-	(13)	⊗ ₁₃	20.1	[59.9	%]
5-					(0.0)				. :1-1 + 1		-5					
_			10	10	(SM) Residuum, SILTY		AND,	gray			-	9-17-29				
_	S-3	SS	18	18	and tan, moist, dense						-	(46)		⊗ ₄₆		
_	<u> </u>	SS	2	2	(WR) PARTIALLY WEAT	THERED	ROCI	K			1 -	50/2"			4	\$ \$\tag{2}
_	3-4	-33			SAMPLED AS FINE SAI] -	(50/2")			Y	⊗ _{50/2"}
10 –					and tan, moist [Weath	nered R	ROCK]				-10					
-					AUGER REFUS	SAL AT 8	8.7 FT				-					
_																
_																
_]					
45											45					
15-											-15					
_											-					
-																
_											-					
_											-					
20 –											-20					
_											-					
-																
_											-					
_																
25 –											-25					
25-											-25					
_																
_											-					
-											-					
-											-					
30-											-30					
\vdash				-												
	TI	L HE STRA	L ATIFICA	TION LI	 NES REPRESENT THE APPROXI	MATE BC	DUNDAF	RY LINES BE	TWEEN	L I SOIL	TYPES. IN	N-SITU THE TR	L RANSITION	MAY BE GRADUA	AL.	
∇ W		st Enco						G STARTED			L 2022	CAVE IN		8.00		
		mpleti			Dry		BORING		F	eb 11	L 2022	HAMMEI				
▼ ∧	VL (Sea	asonal	High \	Nater)		-	EQUIPN	LETED: MENT:	1	0GG	ED BY:					
<u>▼</u> ∨	VL (Sta	bilized	l)			Į.	ATV		G	HG		DRILLING	METHOI	D: 2-1/4" H.S.A.		
				_	GEO	DTECH	INICA	AL BORE	HOL	E LO	OG					

CLIENT							PROJECT NO.:			BORING N	IO.:	SHEET:		
D.R. Ho							06:24735B-15DRILLER/CONTRACTOR:					1 of 1	LCc	
PROJEC							1			PR:			-03	
Kalas Fa			Develo	opmen	t		Bridger Dr	illing Inc	:.				~	
SITE LO: 1832 Ro			Rolesvi	ille, No	orth Carolina 27587							LOSS OF CIRCULATION	√ <u>∑100%</u>	
NORTH	ING:			EA	ASTING:	STATION:			SU	JRFACE EL	EVATION:	BOTTOM OF CASING	-	
	BER	Эc	(NE)	2					LS	E		Plastic Limit Water Content Liquid Limit X————————————————————————————————————		
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	WAI EK LEVELS	BLOWS/6"	STANDARD PENETRATI		
EPTI	PLE	MPL	PLE	00 VI	DESCRIPTION C	JF IVIAI ENIAL			YTE R	MATI	3LOV	RQD	JN & RECOVERY	
	SAM	SA	SAM	Ä					≶		ш	— REC CALIBRATED PENETROI	AFTER TON (SE	
					_			N/////////			= 0 /O!!	[FINES CONTENT] %		
	S-1	SS	0	0	Topsoil Thickness[5.00					1 1	50/0" (50/0")		⊗ _{50/0"}	
-					(WR) PARTIALLY WEAT SAMPLED AS, No reco									
-					ROCK]	very [wea	tnered			1 7				
-					AUGER REFUS	AL AT 0.5 F	-T							
-														
5-										-5				
_														
-														
-														
-														
10 –										-10				
-										-				
-														
_														
15 -										-15				
13									-13	-13				
_														
-														
_														
-														
20 –										-20				
_														
-										-				
-														
25 –										-25				
-														
										7				
30 –										-30				
					NES REPRESENT THE APPROXI	MATE BOUND	DARY LINES BI	ETWEEN	SOIL	TYPES. IN-	-SITU THE TR	RANSITION MAY BE GRADU	JAL	
			untere	ed)			ING STARTE	D: Ja	ın 19	2022	CAVE IN	DEPTH:		
		mpletio	on) ——— High V	/ater\	Dry	BORI COM	ING IPLETED:	Ja	ın 25	2022	HAMMEI	ER TYPE: Auto		
				valCI)		EQU	IPMENT:	ı		ED BY:	DRILLING	6 METHOD: 2-1/4" H.S.A		
	ı L (Sta	bilized)		050	ATV	CALDOD		HG	00	DATELING			
					GEC	<u>OTECHNI</u>	CAL BUK	<u>CHUL</u>	<u>C L(</u>	<u>UU</u>				

CLIENT								ROJECT N	О.:		BORING I	VO.:	SHEET:			
D.R. Ho		45						6:24735	ONTO		3-16		1 of 1		Ef	9
PROJEC			l Dovol	onmon				RILLER/C			R:					
Kalas Fa			Devei	opmen	τ		В	ridger Dri	lling in	С.						~
1832 Ro	lesville		Rolesv		orth Carolina 27587								LOSS (OF CIRCULATION		<u>}1007</u> >
NORTH	ING:			EA	ASTING:	STATION	1:			SU	JRFACE E	LEVATION:	вотт	OM OF CASING		
	SAMPLE NUMBER	ЭE	(NI)	Î						STI	E E		Plastic Lim X	it Water Content	Liquid Limi	it
ОЕРТН (FT)	NUM	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DECCRIPTION	NE MATERIA	A.I.			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		DARD PENETRATIO		
EPT	PLE	MPL	PLE	SOVE	DESCRIPTION C	JE IVIAI EKIA	AL			TER	VAT	3LOV	RQI	ALITY DESIGNATION D	& RECOVERY	
	SAM	SA	SAM	REC						×	EFE	ш	— REC	C BRATED PENETROME	TER TON /SE	
					_				N/////////////////////////////////////					NTENT] %	TER TON/SF	:
					Topsoil Thickness[8.00		4.644									
-	S-1	SS	18	18	(SM) Residuum, SILTY brown, moist, loose	MEDIUN	VI SAN	ND,			-	2-3-5 (8)	⊗ ₈ 17.0	²⁹ × [25.2	41 2%]	
	6.2		4	_	(WR) PARTIALLY WEAT	HERED F	RUCK					FO/1"				: >>
-	S-2	55	_1	1	SAMPLED AS SILTY FIN] -	50/1" (50/1")			. 7	⊗ _{50/1"}
5-					SAND, tan and gray, m						-5					
-					ROCK]						1					
					AUGER REFUS	SAL AT 3.0	6 FT									
-																
10-											-10					
_																
_]					
-											-					
											7					
-																
15-											-15					
-											-					
-											-					
-											-					
-											-					
20-											-20					
-											-					
-																
25											-25					
25																
											7					
7											7					
											=					
30 –											-30					
														· · · · · · · · · · · · · · · · · · ·		
					NES REPRESENT THE APPROXI	MATE BOU	JNDAR	Y LINES BE	TWEEN	I SOIL	TYPES. IN	I-SITU THE TR	RANSITION MA	Y BE GRADUA	.L	
		npleti		ed)	Dry			STARTED): F	eb 11	2022	CAVE IN	DEPTH:			
				Water)		CC	ORING OMPLE	ETED:			2022	HAMMEI	R TYPE: A	uto		
		bilized		,		EC AT	QUIPM	IENT:		OGG i HG	ED BY:	DRILLING	6 METHOD: 2	-1/4" H.S.A.		
	, -		•		GEC	OTECHN		L BORE			OG	1				

CLIENT							PROJECT NO	D.:		ING N	O.:	SHEET:		
D.R. Ho		4 F .					06:24735	NITDAC	B-17			1 of 1		LCC
Kalas Fa			l Devel	onmer	nt		DRILLER/CC Bridger Drill		IUK:					
SITE LO			Deven	opinici			Driuger Driii	ing inc.						\
		Road,	Rolesv		orth Carolina 27587							L	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			E/	ASTING:	STATION:			SURFA	ACE EL	EVATION:		BOTTOM OF CASING	
(SAMPLE NUMBER	PE	(NI)	Î					일 E	(I	_		c Limit Water Content	Liquid Limit Δ
DЕРТН (FT)	NUM	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C			1	WAIEK LEVELS	ELEVALION (F.I.)	BLOWS/6"	1	STANDARD PENETRATION	
)EPT!	PLE	MPL	PLE	SOVE	DESCRIPTION C	JF IVIAI ERIAL		1	X F F	₹	3LOV	RO	RQD	& RECOVERY
	SAN	S	SAN	8) [- REC CALIBRATED PENETROMI	TER TON/SE
					T	NII1	<u> </u>						NES CONTENT] %	: :
_					Topsoil Thickness[6.00 (WR) PARTIALLY WEAT			X((()X())		4	2.4.50/4!!			
_	S-1	SS	16	16	SAMPLED AS SILTY ME					4	3-4-50/4" (54/10")			⊗ _{54/10"}
					brown, moist [Weathe	ered ROCK] /							
_					AUGER REFUS	AL AT 2.5 I	FT							
5-										-5				
_														
_														
_										7				
40										-				
10 –									-	10 –				
-										7				
_										7				
_										1				
_										-				
15 –									-	15				
-										+				
-										7				
-										1				
_										4				
20 -									-2	20				
_										1				
_										1				
_										4				
										4				
25 –										25				
									-4	23				
										-				
-										7				
7										7				
										7				
30 –									-	30 –				
													· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
					INES REPRESENT THE APPROXI	MATE BOUNI	DARY LINES BET	WEEN S	OIL TYP	ES. IN-	SITU THE TR	ANSITION	MAY BE GRADUA	AL .
∇ W	/L (Firs	st Enco	unter	ed)		BOR	ING STARTED:	Jan	19 202	2	CAVE IN I	DEPTH:	2.50	
V W					Dry	BOR	ING IPLETED:	Jan	25 202	2	HAMMER	R TYPE:	Auto	
▼ W				Vater)			IPMENT:	LOC	GGED E	BY:	DE			
▼ W	/L (Sta	bilized)			ATV		GH	3		DRILLING	METHO	D: 2-1/4" H.S.A.	
					GEC	<u> TECHNI</u>	CAL BORE	<u>HOLE</u>	LOG					

CLIENT							PROJECT N	IO.:	- 1	BORING N	NO.:	SHEET:		
D.R. Ho		4 F .					06:24735	ONTDA		3-18		1 of 1		-ECC
Kalas Fa			l Devel	onmer	nt		DRILLER/C Bridger Dri			K:				<u> </u>
SITE LO			Deven	opinici			Diluger Dil		•					
			Rolesv	ille, No	orth Carolina 27587							L	LOSS OF CIRCULATION	v <u>>100x</u>
NORTH	ING:			E	ASTING:	STATION:			SL	JRFACE E	LEVATION:		BOTTOM OF CASING	
(SAMPLE NUMBER	ЬE	(NI)	Î					:IS	FT)	_		ic Limit Water Conte	nt Liquid Limit ∆
DЕРТН (FT)	NUM	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRAT	
EPT	PLE	MPL	PLE	SOVE	DESCRIPTION C	JF IVIATERIAL			TER	VATI	MOJ	RO	CK QUALITY DESIGNATION RQD	ON & RECOVERY
	SAM	SA	SAM	REC					\rangle		ш		- REC	AFTER TON (CF
	- '							N//88///8					CALIBRATED PENETRO NES CONTENT] %	WETER TON/SF
-					Topsoil Thickness[6.00		,	<i> </i>		1 1				
_	S-1	SS	18	18	(CH) Residuum, SAND		<i>(</i> ,	<i>///</i> //		-	2-3-3 (6)	⊗ ₆ 1	29 25.1	[59.5%]
_					yellowish brown, moi	St, IIIIII		<i>///</i> //]	(0)		23.1	[39.370]
_	S-2	SS	8	8	(WR) PARTIALLY WEAT						6-50/2"			⊗ _{50/2"}
5 -					SAMPLED AS SILTY MI orange and brown, m					-5	(50/2")			00,2
J -					ROCK]	oist [vveat	illereu			-3				
_					AUGER REFUS	SAL AT 4.2	FT			-				
_										1				
-														
-														
10 –										-10				
_														
_														
_														
_										-				
15-										-15				
_														
_														
-														
_														
20 –										-20				
_]				
_]				
-														
_														
25 –										-25				
_										-				
_										-				
_										-				
_										-				
30										-30				
	TI	HE STRA	L ATIFICA	L TION L	 INES REPRESENT THE APPROXI	MATE BOUN	DARY LINES BE	TWEEN	SOIL	. TYPES. IN	-SITU THE TR	L ANSITION	MAY BE GRADU	JAL
▽ v			unter				ING STARTE			2022	CAVE IN		4.00	
▼ ∨	/L (Coi	mpleti	on)		Dry	BOR	ING		b 10	2022	HAMMEI		Auto	
▼ v	/L (Sea	asonal	High V	Vater)			APLETED:	1			III/ (IVIIVILI	, I I I L.		
▼ v	/L (Sta	bilized)			EQU ATV	IIPMENT:)GG HG	ED BY:	DRILLING	METHO	D: 2-1/4" H.S.A	١.
					GEC		CAL BOR			OG				

CLIENT							PROJECT	NO.:	- 1	BORING	NO.:	SHEET:		
D.R. Ho		1E.					06:24735 DRILLER/0	CONTRA		B-19		1 of 1		-ECC
Kalas Fa			l Devel	opmer	nt		Bridger Di			JN.				
SITE LO	CATIOI	N:			orth Carolina 27587		Bridge: Br	8	•			L	OSS OF CIRCULATIO	N <u>>100</u> x
NORTH		: Noau,	Noiesv		ASTING:	STATION:			SI	URFACE E	LEVATION:		BOTTOM OF CASING	5 3
	BER	ш	<u> </u>	2					S	(F.			c Limit Water Conto	ent Liquid Limit
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION CK QUALITY DESIGNATION RQD	
	SAN	<i>t</i> s	SAN	RE					×	ELI		0	- REC CALIBRATED PENETRO NES CONTENT] %	METER TON/SF
- - -	S-1	SS	18	18	Topsoil Thickness[4.00 (MH) Residuum, SANI brown, moist, stiff		SILT,			-	3-4-5 (9)	⊗9	27.7	40 × 69 69
_ _ _	6.3		10	10	(SM) Residuum, SILTY and gray, moist, loose						3-4-6			
5-	S-2	SS	18	18	and gray, moist, loose	tomediai	ii delise			-5	(10)	\$10		
- - -	S-3	SS	18	18						- - -	3-4-4 (8)	⊗ ₈		
- - -	S-4	SS	18	18						-	4-5-6 (11)	⊗ ₁₁		
10 –										-10				
- - -					AUGER REFUS	SAL AT 13 F	T							
15-										-15				
- - -														
- - -										-				
20-										-20				
- - -										-				
- - -										- -				
25 <u> </u>										-25				
- - -														
30-										-30				
▽ w			ATIFICA ounter		INES REPRESENT THE APPROXI									JAL
	VL (Co			- ~ /	Dry	BOR				0 2022 0 2022	CAVE IN		12.10 Auto	
			High V	Vater)			1PLETED: IPMENT:			SED BY:			D: 2-1/4" H.S. /	.
<u> </u>	VL (Sta	bilized	1)		CEC	ATV DTECHNI	CAL ROD		HG F I	ne	DIVILLING	, IVIL I ∏Ul	<i>□.</i> 2-1/4	1.
					GEC	7 I LUTINI	CAL DOL	LITUL	<u>. L L</u>	Ju				

CLIENT:							PROJECT NO	D.:	BORING	NO.:	SHEET:	
D.R. Ho		ΛF·					06:24735 DRILLER/CC	NTRACT	B-20		1 of 1	
Kalas Fa			Devel	opmen	t		Bridger Drill		011.			
SITE LOG 1832 Ro			Rolesv	ille, No	orth Carolina 27587						LOSS OF CIRCULATION	NC XIOUX
NORTH					ASTING:	STATION:		9	SURFACE E	LEVATION:	BOTTOM OF CASIN	G
	IBER	PE	(NI)	<u> </u>				5	E E	_	Plastic Limit Water Conf	tent Liquid Limit ∆
DEPTH (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL		WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENETRA ROCK QUALITY DESIGNAT RQD REC	
	SA	01	SA	- W			K	>	·		CALIBRATED PENETR	OMETER TON/SF
-				_	Topsoil Thickness[3.00			///884//8	1 1	5-50/1"		
	S-1	SS	7	7	(WR) PARTIALLY WEAT SAMPLED AS SILTY ME		_			(50/1")		⊗ _{50/1"}
					and gray, moist [Weat		/ /		1 1			
_					AUGER REFUS	AL AT 1.6 F	T		_			
5-									-5			
5 -									-5-			
-] -			
-									=			
10 –									-10			
_									-			
_									-			
-									-			
-									1 1			
15									-15			
									-			
_									1 1			
_												
-												
20-									-20			
-												
									-			
_									1 -			
_									_			
25 –									-25			
]									-			
-									1 -			
									1 1			
30-									-30			
									-			
	Τι	HE CTD/	TIEIC ^	TION ! !	NES REPRESENT THE APPROXI	MATE ROLING	DARY LINIES DET	WEEN SO	III TVDEC IN	J_SITI I THE TE	RANSITION MAY BE GRAD	ΠΔΙ
∇ W					INLO NEPNESEINT THE APPROXI		NG STARTED:		11 2022	CAVE IN		UAL
Y W	/L (Coi	mpleti	on)		Dry	BORI	NG		11 2022	HAMME		
▼ N	/L (Sea	asonal	High V	Vater)			PLETED: PMENT:		GED BY:			
▼ W	/L (Sta	bilized)			ATV	ı IVI∟INI.	GHG		DRILLING	6 METHOD: 2-1/4" H.S.	A.
					GEC		CAL BORE					

CLIENT							PF	ROJECT N	10.:	E	BORING I	NO.:	SHEET:		
D.R. Ho								6:24735			B-21		1 of 1		LCc
PROJEC							- 1	RILLER/C			R:				
Kalas Fa			Develo	opmen	t		В	ridger Dri	lling Inc	: .					~
			Rolesv	ille, No	orth Carolina 27587								LO	SS OF CIRCULATION	<u> </u>
NORTH					STING:	STATION	l:			SL	JRFACE E	LEVATION:	В	OTTOM OF CASING	-
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION O		AL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	× S ROCK	Limit Water Content TANDARD PENETRATIO C QUALITY DESIGNATION RQD REC AUBRATED PENETROMI S CONTENT] %	N BLOWS/FT I & RECOVERY
- - -	S-1	SS	18	18	Topsoil Thickness[7.00 (CL) Residuum, SANDY and pink, moist, firm t	LEAN C	LAY, t	an			 - - - -	2-2-4 (6)	⊗ ₆		
5-	S-2	SS	18	18							-5-	4-6-6 (12)	⊗ ₁₂		
-	S-3	SS	18	18	(SC-SM) Residuum, SII MEDIUM SAND, pink a loose to medium dens	and gray,					-	4-5-5 (10)	⊗ ₁₀		
- - 10 -	S-4	SS	18	18					/		-10	3-4-6 (10)	⊗ ₁₀		
- - - -									//		-	4.6.6			
15 – 	S-5	SS	18	18					//		-15	4-6-6 (12)	⊗ ₁₂		
20-	S-6	SS	18	18	END OF BORIN	NC AT 20	CT				-20	6-7-9 (16)	⊗ ₁₆		
25 -					END OF BORII	VG A1 20	•				-25 -				
30											-30				
	TH	HE STRA	ATIFICA	ΓΙΟΝ LI	 NES REPRESENT THE APPROXII	MATE BOU	NDAR	Y LINES BE	TWEEN	SOIL	TYPES. IN	I-SITU THE TR	L ANSITION N	MAY BE GRADUA	AL
▽ v			unter					STARTE			2022	CAVE IN		12.30	
	/L (Cor				Dry		RING								
▼ v	/L (Sea	isonal	High V	Vater)			MPLE) 2022 :ED BV:	HAMMEI	NITPE:	Auto	
▼ V	/L (Sta	bilized)			AT	uipm v	ICINT:	i i	H G	ED BY:	DRILLING	METHOD	: 2-1/4" H.S.A.	
					GEC	TECHN	IICA	L BOR	EHOL	E LO	OG	•			

CLIENT							ı	JECT NO).:	- 1	BORING I	VO.:	SHEET:		
D.R. Ho		45						4735	NITOA		B-22		1 of 1		LCc
PROJEC			l Daval				l l	LER/CO			r:				_0
Kalas Fa			Devel	opmer	nt		Brid	ger Drilli	ng Inc	•					
			Rolesv	ille, No	orth Carolina 27587								LOS	S OF CIRCULATION	<u> </u>
NORTH	ING:			E	ASTING:	STATION	:			SL	JRFACE E	LEVATION:	ВО	ITOM OF CASING	
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIA	AL.			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X— R	LIBRATED PENETROMI	N BLOWS/FT & RECOVERY
					Topsoil Thickness[6.00 (CL) Residuum, SAND)		I AY trad	ce			 	112	[FINES	CONTENT] %	
- - -	S-1	SS	18	18	silt, orange, moist, sof		LAI, tra	/			-	1-1-2 (3)	⊗3		
- -	S-2	SS	18	18	(SC) Residuum, CLAYE SAND, orange, moist,) MEDI	UM /				3-5-5 (10)	⊗ 10		
5- -					(SM) Residuum, SILTY	FINE TO	MEDIU	M .			-5- -				
_	S-3	SS	18	18	SAND, pink and gray, r medium dense	moist, loc	ose to					4-6-7 (13)	⊗ ₁₃		
_ _ _	S-4	SS	18	18							-	4-5-5 (10)	⊗ ₁₀		
10 -											-10 - - - - -				
15-	S-5	SS	18	18							-15	3-5-7 (12)	⊗ ₁₂		
- - - -											-				
20-	S-6	SS	18	18							-20	7-10-12 (22)	⊗ ₂₂		
					END OF BORI	NG AT 20	FT				-20				
- - -															
25 –											-25				
- - -															
- -															
30											-30				
													1		
					INES REPRESENT THE APPROXI	MATE BOUI	NDARY LI	NES BET	WEEN	SOIL	TYPES. IN	I-SITU THE TR	ANSITION M	AY BE GRADUA	AL
			untere	ed)			RING ST	TARTED:	Fe	b 10	2022	CAVE IN	DEPTH:	12.90	
		mpleti asonal	on) ——— High V	Vater)	Dry	со	RING MPLETE				2022	HAMMEI	R TYPE:	Auto	
		bilized		<u> </u>		EQ.	UIPMEN	NT:	ı)GG +G	ED BY:	DRILLING	METHOD:	2-1/4" H.S.A.	
	,		•		GEC	OTECHN		BORE			OG	1			

CLIENT							PROJECT			BORING I	NO.:	SHEET:		
D.R. Ho		4 - .					06:2473	5 /contr <i>a</i>		B-23		1 of 1		LCC
Kalas Fa			l Devel	onmer	nt			CONTRA Drilling Inc		JK:				
SITE LO			Deven	opinici			Diluger	Drining in	•					\
1832 Ro	lesville	Road,	Rolesv	ille, No	orth Carolina 27587								LOSS OF CIRCULATION	<u>>100%</u>
NORTH	ING:			EA	ASTING:	STATION:			SU	JRFACE E	LEVATION:		BOTTOM OF CASING	
(SAMPLE NUMBER	PE	(NI)	Î					STIS	FT)	_	Plas	tic Limit Water Content	t Liquid Limit ∆
DЕРТН (FT)	NUN	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	1	STANDARD PENETRATIO	
)EPTI	IPLE	MPL	IPLE	COVE	DESCRIPTION C	JE IVIAI ENIAL			4TER	ITW:	3100		RQD	a RECOVERY
	SAN	\S	SAN	8					×				REC CALIBRATED PENETROM	FTER TON/SE
					Tanasil Thislus and C OC	211		N/////				_	INES CONTENT] %	: :
-					Topsoil Thickness[6.00 (SC) Alluvium, CLAYEY		MEDILIM	-1777		1 -	111			
_	S-1	SS	18	18	SAND, grayish brown,						1-1-1 (2)	\bigotimes_2	27,23.9	48 [45.2%]
_					loose, no recovery at 3									
_	· · ·		10	10	obstruction						2-2-3			
5-	S-2	SS	18	18	_				•	-5	(5)	⊗ ₅		
					(SM) Residuum, SILTY	FINE TO N	/FDIUM							
_	S-3	SS	18	18	SAND, gray and brown]	1-1-2 (3)	\otimes_3		
-					loose		•			-	(3)			
_					_					1 7	1-1-2			
40	S-4	SS	18	18						107	(3)	\otimes_3		
10 –					-					-10				
-														
-														
										-				
-	S-5	SS	18	18						_	1-2-1 (3)	⊗₃ :		
15-					_					-15	(3)			
-										-				
-					(SM) Residuum, SILTY	FINIT TO N	4EDILINA			1 1				
_					SAND, orange and bro					1 -		\		
-	S-6	SS	18	18	medium dense	, sacar	acca,				5-7-9	⊗ ₁₆		
20-	3-0	33	10	10	END OF BORI	INC AT 20 I	- -			-20	(16)	16		
_					END OF BORI	ING AT 20 I	- 1							
-										1 1				
_										1 =				
_]				
25 –										-25				
25-										-23				
7										7				
-										-				
_										=				
-														
30 –										-30				
													<u> </u>	<u> </u>
	TH	HE STRA	ATIFICA	TION L	INES REPRESENT THE APPROXI	MATE BOUN	DARY LINES	BETWEEN	SOIL	L TYPES. IN	I-SITU THE TR	ANSITION	I MAY BE GRADUA	AL .
∇ W	/L (Firs	st Enco	unter	ed)		BOR	ING START	ED: F	eb 12	2 2022	CAVE IN	DEPTH:	13.00	
▼ W	/L (Cor	npleti	on)		5.00	BOR	ING					D TVD=		
▼ N	/L (Sea	sonal	High V	Vater)		CON	ЛРLETED:	1		2 2022	HAMME	K TYPE:	Auto	
▼ W				,			JIPMENT:			SED BY:	DRILLING	METHO	D: 2-1/4" H.S.A.	
	_ ,0:0	254	,		GEC	ATV OTECHNI	CAL BO		HG E L	OG				

CLIENT							PROJECT			BORING	NO.:	SHEET:		
D.R. Ho							06:24735			B-24		1 of 1		LCc
PROJEC							DRILLER/			R:				_03
Kalas Fa			Devel	opmer	nt		Bridger D	rilling In	с.					N
1832 Ro	lesville		Rolesv		orth Carolina 27587							1	LOSS OF CIRCULATION	<u> </u>
NORTH	ING:			E/	ASTING:	STATION:			SU	JRFACE E	ELEVATION:		BOTTOM OF CASING	
(SAMPLE NUMBER	PE	(NI)	Î					STE	FT)	_	Plast	ic Limit Water Content	t Liquid Limit ∆
DЕРТН (FT)	NUM	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	NE MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION	
DEPT	IPLE	MPI	IPLE	00	DESCRIPTION C	71 WATERIAL	-		ATER	WAT	310		RQD	A A RECOVERT
	SAN	<i>\S</i>	SAN	RE					Š	ELE	_		- REC CALIBRATED PENETROM	FTER TON/SE
					T 11T1 1 10 00	NU1		\(\lambda\)\(\lambda\)\(\lambda\)					NES CONTENT] %	
-					Topsoil Thickness[6.00 (CL) Residuum, SAND		۸V	4777		1 =				
_	S-1	SS	18	18	brown, moist, stiff	I LEAN CL	Α1,	¥///	1	_	3-4-7 (11)	⊗ ₁₁		
_								1///		-				
_	S-2	SS	13	13	(WR) PARTIALLY WEAT					_	10-20-50/1"			
5 -	3-2	33	13	13	SAMPLED AS SILTY FIN					-5-	(70/7")			⊗ _{70/7"}
					and gray, moist [Weat					-5				
-										-				
_										_				
-										-				
-										-				
10 –										-10				
_										_				
_										_				
_										_				
-										-				
15										-15				
_										-				
_										_				
-										-				
_										_				
20 -										-20				
										-20				
-										-				
-										-				
_										-				
_										_				
25 –										-25				
										-				
-										-				
										-				
-										-				
30										-30				
										-				
	Th	HE STRA	ATIFICA	L TION L	 INES REPRESENT THE APPROXI	MATE BOUN	DARY LINES E	L SETWEEN	L I SOIL	TYPES. IN	N-SITU THE TR	L RANSITION	MAY BE GRADUA	AL
▽ w		st Enco					RING STARTE			2022	CAVE IN		4.00	
▼ W	/L (Cor	mpletio	on)		Dry	BOR	RING		an 25	2022	HAMME		Auto	
▼ M	/L (Sea	sonal	High V	Vater)			MPLETED:				, , , , , , , , , , , , , , , , , , ,			
▼ W	/L (Sta	bilized)			EQU ATV	JIPMENT:		OGG i HG	ED BY:	DRILLING	METHO	D: 2-1/4" H.S.A.	
					GEO		CAL BOF			OG				

CLIENT							PROJECT			BORING	NO.:	SHEET		
D.R. Ho		ΛE.					06:2473	5 /CONTR/		3-25		1 of 1		EC9
Kalas Fa			l Devel	opmen	t			Orilling Inc						
SITE LO 1832 R d			Rolesv	ille, No	orth Carolina 27587								LOSS OF CIRCULATION	<u>>100%</u>
NORTH	IING:			EA	ASTING:	STATION:			SL	JRFACE E	LEVATION:		BOTTOM OF CASING	-
	BER	Эс	(NII)	2					STI	ET)		Р	rlastic Limit Water Conter	nt Liquid Limit ∆
БЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION ROCK QUALITY DESIGNATION RQD	
	SAI	0)	SAI	~				N//8\///8	>	Ш			CALIBRATED PENETRON [FINES CONTENT] %	NETER TON/SF
-					Topsoil Thickness[6.00			-/1111		-				
- - -	S-1	SS	18	18	(SM) Residuum, SILTY reddish yellow, moist,		IJ,			- - -	2-3-5 (8)	⊗8	25.4 ³⁶ ×	. 44 [38.7%]
- - -	S-2	SS	18	18						-	1-4-5 (9)	⊗ ₉		
5-										-5	(3)			
- - -	S-3	SS	18	18						- - -	3-3-4 (7)	∅ ₇		
-					•					-	2.2.4			
10-	S-4	SS	18	18						-10	2-2-4 (6)	⊗ ₆		
<u> </u>										-				
- -					(SC) Residuum, CLAYE brown, moist, loose	Y FINE SAN	ND, gray,	///	abla	- - -				
- - 15-	S-5	SS	18	18						-15	2-2-3 (5)	⊗ ₅		
- - -										-10				
- - -					(SM) Residuum, SILTY SAND, gray, moist, me					- - -				
20 –	S-6	SS	18	18						-20	10-14-16 (30)		⊗ ₃₀	
- -					END OF BORII	NG AT 20 F	Т			-20				
- - -										-				
- - -										- -				
25 –										-25				
- 										-				
_ -										-				
30 -										-30				
													<u> </u>	
_					NES REPRESENT THE APPROXI	MATE BOUNI	DARY LINES	BETWEEN	I SOIL	TYPES. IN	I-SITU THE TR	RANSITIO	ON MAY BE GRADU	AL
			onl	ed)	12.50		ING START	ED: Ja	an 20	2022	CAVE IN	DEPTH	: 14.00	
	VL (Coi		on) ——— High V	Vater)		BOR COM	ING IPLETED:	Ja	an 20	2022	HAMMEI	R TYPE	: Auto	
	VL (Sta			,			IPMENT: k 55 Trailer,	/2013 c	VB3	ED BY:	DRILLING	METH	HOD: 2.25 HSA	
					GEC	OTECHNI	CAL BO	REHOL	. <u>E</u> L(OG				

CLIENT							PROJEC			BORING I	NO.:	SHEET:		
D.R. Ho		ΛF·					06:2473	R/CONTRA		B-26 IR·		1 of 1		EC 9
Kalas Fa			l Devel	opmen	nt		1	Drilling In		,,,,				
SITE LO			Rolesv	ille, No	orth Carolina 27587							L	OSS OF CIRCULATION	\(\)\(\)\(\)
NORTH	IING:			EA	ASTING:	STATION:			SU	JRFACE E	LEVATION:		BOTTOM OF CASING	-
(IBER	J.	(NI)	<u> </u>					SIIS	FT)	_		c Limit Water Conten	t Liquid Limit ∆
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	RO	STANDARD PENETRATION CK QUALITY DESIGNATION RQD REC	
	/S		/S										CALIBRATED PENETROM NES CONTENT] %	ETER TON/SF
-					Topsoil Thickness[6.00 (ML) Residuum, SILT, t		3W/D	-////////		1 1				
- - -	S-1	SS	18	18	moist, stiff	tan and bro	Jvv11,			-	2-4-5 (9)	⊗9		
	S-2	SS	18	18							1-6-9 (15)	Ø ₁₅		
5-					(SM) Residuum, SILTY	EINIE CANI) tan	1914	:	-5	(=5)			
	S-3	SS	18	18	and gray, moist to we		J, tali				3-2-4 (6)	⊗ ₆		
_										-				
10-	S-4	SS	18	18						-10	2-2-3 (5)	⊗ ₅		
- - -										-				
- -														
_ 15-	S-5	SS	18	18						-15	2-2-3 (5)	\otimes_5		
- - -										-				
-										-				
20-	S-6	SS	18	18						-20	3-3-6 (9)	⊗ ₉		
					END OF BORII	NG AT 20 F	т							
_ - -										-				
_ _ _										-				
25 – –										-25 <u> </u>				
- -														
_ _ _														
30 -										-30				
		IE CTE	A-TIE! 0:-		NIEG DEDDECENT THE ASSESSMEN	NAATE DOLLER	D 4 DV : : 1 = 1	DETILIES	1.60	TVD50 ::		ANGE	MANUE 02.5	
□ ∇ V			ATIFICA ounter		INES REPRESENT THE APPROXI		DARY LINES			_ TYPES. IN 2022	CAVE IN		MAY BE GRADUA	AL .
	VL (Coi					BOR	ING			2022	HAMMEI		Auto	
			High V	Vater)			1PLETED: IPMENT: k 55 Trailer			ED BY:				
▼ v	VL (Sta	bilized	l)		6 54	Trucl F350 DTECHNI		·/2013	VB3		DRILLING	METHO	D: 2.25 HSA	
					GEC	7 I ECHINI	CAL BU	'KEHUL	LC L	UU				

CLIENT								ROJECT N	O.:	- 1	BORING I	NO.:	SHEET:		
D.R. Ho								06:24735			B-27		1 of 1		LCc
PROJEC								RILLER/C			PR:				_03
Kalas Fa			I Devel	opmei	nt		E	Bridger Dril	ling Inc	: .					^
SITE LO: 1832 Ro			Rolesv	ille, N	orth Carolina 27587								L	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			E	ASTING:	STATION	۷:			SU	JRFACE E	LEVATION:		BOTTOM OF CASING	
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIA	AL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	⊗ RO	C Limit Water Content X STANDARD PENETRATIO CK QUALITY DESIGNATION RQD RQD REC CAUBRATED PENETROMI	N BLOWS/FT & RECOVERY
					T 11T1 1 [6.00	2113			X//XX//X					NES CONTENT] %	· ·
- - - -	S-1	SS	18	18	Topsoil Thickness[6.00 (SC) Residuum, CLAYE brown, moist, loose to	Y SAND,					 - - - -	1-3-5 (8)	⊗ ₈		
- - -	S-2	SS	18	18	-							2-5-7	⊗ ₁₂		
5-	3-2	33	10	10	(CAA) Decidence CHTV	CAND -		ام ما			-5	(12)	912		
- - -	S-3	SS	18	18	- (SM) Residuum, SILTY brown, moist, loose to						-	3-4-4 (8)	⊗ ₈		
_											-	3-3-4			
10-	S-4	SS	18	18	_						-10	(7)	⊗ ₇		
- - - -										abla	-				
_ 15-	S-5	SS	18	18							-15	2-5-3 (8)	⊗ ₈		
13 <u>-</u> - -											-13				
- - -											-	4.6.10			
20 –	S-6	SS	18	18	END OF BORII	NG AT 20	FT				-20	4-6-10 (16)	⊗ ₁₆		
_					END OF BORN	110 Al 20	,								
- - -											-				
25 –											-25				
- - -															
_ -															
30-											-30				
		IE CTC	A-TIE: 0:-	TION	INICO DEDDECENT THE ASSESSMENT	NAATE DO:	INID A =	N/	T) A / E = 1		TVD50 ::	L CITIL THE TO	ANGE	AAAV DE COAS:::	
□ ∇ V			ATIFICA ounter		INES REPRESENT THE APPROXI 11.00			STARTED			L TYPES. IN 2022	CAVE IN		12.00	AL .
	VL (Cor			•		BC	ORING	<u> </u>			2022	HAMME		Auto	
			High V	(Vater				ETED: //ENT: 5 Trailer/20			ED BY:				
<u>▼</u> ∨	VL (Sta	bilized	l)		054	Tru DTECHN			ر 13	ΔR3		DKILLING	IVIE I HOI	D: 2.25 HSA	
					GEC	<u> </u>	<u>viCA</u>	IL DUKE	.nul	<u>.c L(</u>	UU				

CLIENT							PROJECT	NO.:	- 1	BORING	NO.:	SHEET:			
D.R. Ho		45					06:24735	CONTRA		B-28		1 of 1			9
PROJEC			l Dovol	anman			DRILLER/			PK:					
Kalas Fa			Devei	opmen	τ		Bridger D	rilling ind	Ç. <u> </u>						~
1832 Ro	lesville		Rolesv		orth Carolina 27587							LOSS (OF CIRCULATION		<u>}1007</u> >
NORTH	ING:			EA	ASTING:	STATION:			SU	JRFACE E	LEVATION:	вотт	OM OF CASING		
	SAMPLE NUMBER	JE	(NI)	2					STI	Œ		Plastic Lim X	it Water Content	Liquid Lim	it
БЕРТН (FT)	ΣΩ	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	D.F.O.DUDTION O				WATER LEVELS	ELEVATION (FT)	BLOWS/6"		DARD PENETRATION		
EPTH	PLE	MPL	PLE	OVE	DESCRIPTION C)F MATERIA	L		TER	VATIO	MOJ	ROCK QU	ality designation D	& RECOVERY	
	SAM	SA	SAM	REC					×		an an	— REC			
	• ,							- 					RATED PENETROME INTENT] %	TER TON/SF	
					Topsoil Thickness[6.00		LCUT L L	/ M		1 1					
-	S-1	SS	18	18	(SP-SM) Residuum, SA	ND WITH	l SILT, dark			-	1-2-3 (5)	⊗ ₅ 10.0_	[11.6%]		
-					brown, moist, loose]	(5)	0 16.0	[11.0%]		
	S-2	SS	4	4	(WR) PARTIALLY WEAT	HERED R	OCK			1 7	50/4"			-	⊗ _{50/4"}
-	-				SAMPLED AS SILTY SA		e and gray,			=	(50/4")				50/4
5-					moist [Weathered RO AUGER REFUS		FT			-5					
-					AUGER REFUS	AL AI 5.5	ГІ								
-															
-															
10-										-10					
]										-					
-										-					
=															
15-										-15					
										-10					
-										_					
										7					
-										-					
-										=					
20 –										-20					
-															
-] -					
25										-25					
										-					
										-					
30										20					
30 –										-30					
					NES REPRESENT THE APPROXI	MATE BOUN	NDARY LINES E	BETWEEN	I SOIL	TYPES. IN	I-SITU THE TE	ANSITION MA	Y BE GRADUA	.L	
		st Enco		ea)	dry		RING STARTE	ED: Ja	an 20	2022	CAVE IN	DEPTH: 5	.50		
		asonal		Water)		COI	RING MPLETED:			2022	HAMME	R TYPE: A	uto		
▼ W	/L (Sta	bilized)				JIPMENT: c k 55 Trailer/ :		ΔR3	ED BY:	DRILLING	6 METHOD: 2	.25 HSA		
					GEO	OTECHN	ÎCAL BOF	REHOL	.E L(OG					

CLIENT							- 1	DJECT N	O.:	- 1	BORING	NO.:	SHEET:			
D.R. Ho		45						24735	DAITE A		B-29		1 of 1		En	2
PROJEC			l Daval				- 1	ILLER/CO			r:					2
Kalas Fa			i Devei	opmen	τ		Bri	dger Dril	iing ind	Ç. <u> </u>						
1832 Ro	lesville		Rolesv		orth Carolina 27587									LOSS OF CIRCULATION		<u>}100%</u>
NORTH	ING:		T	EA	ASTING:	STATION	l:			SU	JRFACE I	ELEVATION:		BOTTOM OF CASING		
	SAMPLE NUMBER	ЬE	(Z	Î Z						SIIS	ET)	_	Plast	tic Limit Water Conter	nt Liquid Lim ∆	nit
ОЕРТН (FT)	NUM	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DECCRIPTION	NE NAMEDIA	A I			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION		
EPT	PLE	MPL	PLE	SOVE	DESCRIPTION C	JF IVIAI EKIA	AL			TER	VATI	SLOV		RQD	N & RECOVER	r
	SAM	SA	SAM	REC						≯	EFE	ш	_	- REC		
					_				/					CALIBRATED PENETRON INES CONTENT] %	TETER TON/SF	-
-					Topsoil Thickness[5.00		! .				-					
_	S-1	SS	18	18	(SM) Residuum, SILTY brown, moist, loose	SAND, ta	annısn				_	1-2-4 (6)	⊗ ₆			
_											_	, ,				
-					(ML) Residuum, SILT, t	race san	ıd, tanı	nish			-	4-5-7				
- 5-	S-2	SS	18	18	brown, moist, stiff						-5-	(12)	⊗ ₁₂			
_											-5					
-	S-3	SS	18	18							-	3-5-6 (11)	⊗ _{rt}			
-											-	(11)				
-	_				(WR) PARTIALLY WEAT						-	2-7-50/3"				
10	S-4	SS	15	15	SAMPLED AS SILTY FIN						10	(57/9")			7	⊗ _{57/9"}
10-					SAND, gray and tan, n	ioist [vve	eathere	ea			-10-					
-					NOCK]						-					
_					AUGER REFUS	AL AT 12	5 FT				-					
_					AUGER REI US	AL AI 12.	.511				_					
_											_					
15 -											-15					
-											-					
-											-					
-											-					
_											_					
20 –											-20 -					
_											_					
_											_					
_											_					
_											_					
25 –											-25 –					
-											-					
_											_					
-											-					
20											20					
30-											-30 -					
	_	IE 0==	ATIFIC	TIGN	NEC DEDDECENT THE COLUMN	NAATE E E	INICAS	LINES	E.A./E.E.		T/055		A NICIT: =:	1.8.4.6.7.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5	A.I.	
\ \tag{\tau} \	TI VL (Firs				NES REPRESENT THE APPROXI dry										AL	
	VL (Coi			/	u.,		ORING S ———— ORING	STARTED			2022	CAVE IN		12.50		
				Nater)			MPLET	ED:	Ja	an 19	2022	HAMME	R TYPE:	Auto		
	VL (Sta					EO Tru	UIPME	NT: ailer/201	12		ED BY:	DRILLING	METHO	D: 2.25 HSA		
- V	₍ 5ta		• 1		GFC	OTECHN				AR3 .E L(OG					

CLIENT							PROJECT			BORING	NO.:	SHEET:		
D.R. Ho							06:24735			B-30		1 of 1		LCc
PROJEC							DRILLER/			DR:				_0
Kalas Fa			Develo	opmei	<u>1t</u>		Bridger D	rilling In	с.					~
			Rolesv	ille, N	orth Carolina 27587								LOSS OF CIRCULATION	<u> </u>
NORTH	ING:			E	ASTING:	STATION:			SI	URFACE E	LEVATION:		BOTTOM OF CASING	
(IBER	PE	(IN)	2					STI	FT)	_	Plast	tic Limit Water Content	Liquid Limit ∆
БЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C)			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION	
)EPTI	IPLE	MPL	IPLE	COVE	DESCRIPTION C	JF IVIAI ENIAL			YTE R	.VATI	3LOV		RQD	& RECOVERY
	SAN	Ş	SAN	R					Š		_		REC CALIBRATED PENETROME	TER TON/SE
					T 11T1 1 142 (2011							INES CONTENT] %	TER TON/3F
_					Topsoil Thickness[12.0		***				4.2.2			
- -	S-1	SS	18	18	(CL) Residuum, SAND\ and tan, moist, firm	LEAN CLA	AY, gray			-	1-2-3 (5)	⊗ ₅		
_					(SM) Residuum, SILTY	FINE TO N	/IEDIUM			1 1	44.2.2			
5-	S-2	SS	18	18	SAND, gray, moist to v	vet, loose			•	-5	11-3-2 (5)	Ø ₅		
_	S-3	SS	0	0	(WR) PARTIALLY WEAT	HERED RO	OCK			1 1	50/0"			⊗ _{50/0"}
_					SAMPLED AS, No reco	very [Wea	thered	1			(50/0")			
_					AUGER REFUS	SAL AT 6 F	т	J						
_					AGGERRE	OALA: 01	•							
10 –										-10				
_														
_														
_														
_														
15 -										-15				
15										-13				
_										7				
-										-				
_]				
-														
20 –										-20				
_														
-														
-										-				
_														
25 –										-25				
_														
_														
_										-				
_										-				
30 -										-30				
										+ -				
	TH	HE STRA	ATIFICA	TION L	I INES REPRESENT THE APPROXI	MATE BOUN	DARY LINES I	BETWEEN	l SOII	L TYPES. IN	N-SITU THE TR	RANSITION	I MAY BE GRADUA	ıL.
			untere	ed)		BOR	ING STARTI	ED: F	eb 12	2 2022	CAVE IN	DEPTH:	6.00	
		mpletio	on) ——— High V	/ator	5.00	BOR CON	ING //PLETED:	F	eb 12	2 2022	HAMME	R TYPE:	Auto	
				valei		EQU	IIPMENT:	i i		GED BY:	DRILLING	MFTHO	D: 2-1/4" H.S.A.	
	L (Sta	bilized	J		C F(ATV DTECHNI	CAL DO		HG	06	J. W. LLING		,	
					GEC	7 I LUTINI	CAL DU	<u>'FUOF</u>	L L	<u>UU</u>				

CLIENT							PROJECT		- 1	BORING	NO.:	SHEET:		
D.R. Ho		15.					06:24735 DRILLER/			B-31		1 of 1		ECC
Kalas Fa			l Devel	onmer	n t		Bridger D			JK:				_03
SITE LO	CATIOI	N:		-			Bridger D	rilling inc				LC	SS OF CIRCULATION	\(\)\(\)\(\)
NORTH		Road,	Rolesv		ASTING:	STATION:			Sl	JRFACE E	LEVATION:	В	OTTOM OF CASING	
	3ER	ш	<u> </u>	9					S	(F			Limit Water Content	Liquid Limit
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	ROCI	TANDARD PENETRATION QUALITY DESIGNATION RQD REC	•
	SA	- 7	AS S	<u></u>						ш		0.0	ALIBRATED PENETROMI S CONTENT] %	TER TON/SF
- - -	S-1	SS	18	18	Topsoil Thickness[6.00 (CH) Residuum, SAND brownish yellow, mois	Y FAT CLAY	<u>'</u> ,			- - - -	2-2-2 (4)	⊗ ₄	30 28.4	79 [60.0%]
- - -					(SM) Residuum, SILTY	FINE SAND	-			- - -	1-3-4			
5- 5-	S-2	SS	18	18	orangish brown and g loose to medium den		to wet,			-5	(7)	⊗ ₇		
- - - -	S-3	SS	18	18							1-2-4 (6)	\otimes_6		
-	S-4	SS	18	18						10	1-3-5 (8)	⊗ ₈		
10										-10 -				
- - 15-	S-5	SS	18	18						-15	7-9-14 (23)	23		
- - -					(SM) Residuum, SILTY	EINIE SANI	<u> </u>		abla	- - -				
- - -	S-6	SS	18	18	orangish brown and g		•				15-21-41 (62)		⊗ ₆₂	
20 -					END OF BORI	NG AT 20 F	Т			-20	(02)		02	
- - -														
25 –										-25				
- - -										-				
30 -										-30				
		HE STRA	ATIFICA	TION I	 INES REPRESENT THE APPROXI	MATE BOLINI	DARY I INFS F	BETWEEN	SOII	TYPES IN	I-SITU THE TE	RANSITION M	AAY BE GRADIIA	Al
□ ∇ V			ounter		16.00		ING STARTE			2022	CAVE IN		17.50	<u> </u>
	VL (Co		on) High V	Nater\		BOR COM	ING 1PLETED:	Ja	an 19	2022	HAMME	R TYPE:	Auto	
	VL (Sea			valei)		EQU Truck	IPMENT: c 55Trailer/2	ر 2013	ΔR3	ED BY:	DRILLING	6 METHOD	: 2.25 HSA	
	-				GEO	OTECHNI	CAL BOF	REHOL	E L	OG				

CLIENT D.R. Ho							ROJECT N 6:24735	O.:		BORING B-32	NO.:	SHEET: 1 of 1		LO
PROJEC		лЕ:					RILLER/C	ONTRA				1011		EL'C
Kalas Fa			l Devel	opmen	t		ridger Dri							
SITE LO			Rolesv	ille, No	rth Carolina 27587							LOSS OF	CIRCULATION	<u> </u>
NORTH		-			STATION STATION	:			SU	JRFACE E	LEVATION:	BOTTON	1 of Casing	-
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIA	ΑL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	X—————————————————————————————————————	Water Content TY DESIGNATION	BLOWS/FT
DE	SAMPI	SAM	SAMPI	RECC					WATE	ELEW	918	RQD REC CALIBRA	TED PENETROME	TER TON/SF
-					Topsoil Thickness[6.00"]							[FINES CONTI		
- -	S-1	SS	18	18	(SM) Residuum, SILTY FINE SAN contains mica, tannish brown a	and				-	2-5-7 (12)	⊗ ₁₂		
_ 					orange, moist, medium dense	to lo	ose				2-4-5			
5- -	S-2	SS	18	18						-5	(9)	⊗9		
- - -	S-3	SS	18	18						-	2-3-3 (6)	\otimes_6		
- -										-	2-3-4			
10-	S-4	SS	18	18						-10	(7)	⊗ ₇		
_ _ _														
- - -					(ML) Residuum, SANDY SILT, ta moist to wet, firm	ın anı	d gray,			- - -				
15 –	S-5	SS	18	18					∇	-15	2-3-4 (7)	₩7		
- - -					(ML) Residuum, SANDY SILT, ta wet, very stiff	ın and	d gray,			- - -				
20 –	S-6	SS	18	18	END OF BORING AT 20	FT				-20	5-10-11 (21)	⊗ ₂₁		
_ _ _														
- - -										-				
25 -										-25				
- - -										-				
- - -										-				
30 -										-30				
	TI	HF STR	ATIFICA.	TION ! !	NES REPRESENT THE APPROXIMATE BOUI	NDAR	Y I INFS RF	TWFFN	SOII	TYPES IN	1-SITU THE TE	RANSITION MAY F	BF GRADIIA	· · · · · · · · · · · · · · · · · · ·
▽ v			ounter		14.50		STARTE			2022	CAVE IN			<u>-</u>
		mpleti	on) High V	N/ator\		ORING OMPLE		Ja	n 19	2022	НАММЕ	R TYPE: Aut	:0	
		bilized		vater)	EQ Tru	UIPM ick 55	IENT: Trailer/20	13 c	ΔR3	ED BY:	DRILLING	6 METHOD: 2.2	5 HSA	
					GEOTECHN	IICA	L BORI	HOL	E L	OG				

CLIENT							PROJECT I	NO.:		BORING	NO.:	SHEET:		
D.R. Ho		4 - .					06:24735 DRILLER/0	CONTRA		B-33		1 of 1		LCc
PROJEC Kalas Fa			l Devel	onmer	nt .		Bridger Dr			JK:				<u>-03</u>
SITE LO			Deven	opinici			Diluger Di	8						
1832 Ro	lesville	Road,	Rolesv	ille, No	orth Carolina 27587							L	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	ASTING:	STATION:			SI	URFACE E	LEVATION:		BOTTOM OF CASING	
(L.	SAMPLE NUMBER	YPE	SAMPLE DIST. (IN)	(NI)					/ELS	(FT)	=0		c Limit Water Content	Δ
DЕРТН (FT)	INO!	SAMPLE TYPE	DIS	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	1	STANDARD PENETRATION CK QUALITY DESIGNATION	
DEP ⁻	MPLE	AMP	MPLE	ECO					ATE	-EVA	BLO	_	RQD	
	SAI	01	SAI	∞					>			_	- REC CALIBRATED PENETROMI	TER TON/SF
_					Topsoil Thickness[6.00)"1						[FIN	NES CONTENT] %	: :
-					(SM) Residuum, SILTY), tan,			-	3-5-6			
-	S-1	SS	18	18	gray and brown, moist					-	(11)	Ø ₁₁		
					dense to loose					-				
_	S-2	SS	18	18							1-3-3			
5-	3-2	33	10	10	-					-5	(6)	6		
					(ML) Residuum, SILT, v	white, oran	ge and			1 1				
	S-3	SS	18	18	gray, wet, very soft	,	J				2-1-1 (2)	\bigotimes_2		
_											. ,			
_					(ML) Residuum, SILT, v	white, oran	ge and				2-3-3			
10 -	S-4	SS	18	18	gray, moist, firm					-10	(6)	∞6 1		
10										-10				
-										-				
-										-				
_					_									
_	S-5	SS	18	18						-	1-2-4 (6)	⊗ ₆		
15										-15	(-)			
-										-				
_					(ML) Residuum, SILT, v	white oran	and			1 -				
-					gray, moist, hard	wille, Oran	ige ariu			-				
_	S-6	SS	18	18	g. a,,e.e.,a. a						7-12-38		⊗ ₅₀	
20	3.0		10	10	END OF BORI	NC AT 20 ET	<u> </u>			-20	(50)		50	
_					END OF BOKII	NG AT 20 FT	•							
_														
_														
_														
25 –										-25				
25-										-23				
										-				
7										7				
_														
-														
30 –										-30				
												:	<u> </u>	
	TH	HE STRA	ATIFICA	TION L	INES REPRESENT THE APPROXI	MATE BOUND	ARY LINES B	ETWEEN	I SOII	L TYPES. IN	I-SITU THE TR	ANSITION	MAY BE GRADUA	ıL.
▽ w	/L (Firs	st Encc	unter	ed)	3.50	BORI	ng starte	D: J a	an 20	2022	CAVE IN	DEPTH:	10.00	
	/L (Cor					BORI		J:	an 20	2022	HAMMEI	R TYPE:	Auto	
▼ M	/L (Sea	sonal	High V	Vater)		——	PLETED: PMENT:	ı	066	GED BY:				
<u></u> ▼ w	/L (Sta	bilized)				PMENT: 55Trailer/20	م 213	ΔR3		DRILLING	METHOI	D: 2.25 HSA	
					GEC	OTECHNIC	CAL BOR	EHOL	E L	OG				

CLIENT								ECT NO.:		BORING I	NO.:	SHEET:		
D.R. Ho		ΛE.					06:24	. 735 .er/contr <i>i</i>		B-34 IR:		1 of 1		EC?
Kalas Fa			l Devel	opmen	nt			er Drilling Inc						
SITE LO			Rolesv	ille, No	orth Carolina 27587		•						LOSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	ASTING:	STATION:			SU	JRFACE E	LEVATION:		BOTTOM OF CASING	-
(1BER	PE	(NI)	<u> </u>					STE	FT)	=	Plas	tic Limit Water Content	t Liquid Limit ∆
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	RO	STANDARD PENETRATION CK QUALITY DESIGNATION RQD REC	I & RECOVERY
			- 7		Topsoil Thickness[6.00	וייו) CALIBRATED PENETROM INES CONTENT] %	ETER TON/SF
_ - -	S-1	SS	18	18	(SM) Residuum, SILTY and orange, moist, ve	FINE SAND), gray			-	1-1-1 (2)	⊗ ₂		
					(SM) Residuum, SILTY	FINE SAND					2-5-6			
5- -	S-2	SS	18	18	and orange, moist, me loose	edium dens	se to			-5	(11)	⊗ ₁₁		
- - -	S-3	SS	18	18							4-5-6 (11)	⊗ ₁₁		
_											4-3-3			
10 -	S-4	SS	18	18						-10	(6)	∞6		
- - - -										- - - -				
15-	S-5	SS	18	18						-15	4-4-5 (9)	⊗9		
- -										-				
_ - -	S-6	SS	18	18						- -	1-3-3	\bigotimes_{6}		
20-	3 0		10	10	END OF BORII	NG AT 20 FT	Γ			-20	(6)	6		
_ _ -										- -				
- - -										-				
25 – –										-25 <u> </u>				
- - -														
30-										-30				
□ □ V			ATIFICA ounter		INES REPRESENT THE APPROXI dry		NG STA			TYPES. IN 2022	CAVE IN		I MAY BE GRADUA	AL .
		mpleti			<u> </u>	BORI								
∡ ∧	VL (Sea	sonal	High V	Vater)			PLETED): 		2022 ED BY:	HAMMEI		Auto	
▼ V	VL (Sta	bilized	l)					ler/2013	AR3		DRILLING	METHO	D: 2.25 HSA	
					GEO	OTECHNIC	CAL B	OREHOL	.E L(UG				

CLIENT							PROJECT			BORING	NO.:	SHEET	•	
D.R. Ho		ЛE:					06:24735 DRILLER/			3-35 R:		1 of 1		EC9
Kalas Fa			l Devel	opmen	nt		Bridger D							
SITE LO 1832 R o			Rolesv	ille, No	orth Carolina 27587								LOSS OF CIRCULATION	<u>>100</u> x
NORTH	IING:	ı		EA	ASTING:	STATION:			SL	JRFACE E	LEVATION:		BOTTOM OF CASING	
	IBER		(Z)	2					STIS	ET)	_	Pl	astic Limit Water Conten	t Liquid Limit ∆
БЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION (OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION RQD	
	SAI	0)	SAI	~					>	iii			CALIBRATED PENETROM [FINES CONTENT] %	ETER TON/SF
- - - -	S-1	SS	18	18	(SM) Residuum, SILTY gray and dark brown, loose to loose		_			- - - -	1-1-1 (2)	\otimes_2		
- - -	6.3		10	10						-	1-1-2		34 ~	62
5-	S-2	SS	18	18						-5	(3)	3	30.8	[41.5%]
- - -	S-3	SS	18	18						- - - -	1-1-1 (2)	\bigotimes_2		
- - -	S-4	SS	18	18						-	2-3-5 (8)	⊗ ₈		
10 –										-10				
- - -										_ _ _				
15 <u>-</u>	S-5	SS	18	18						-15	4-4-3 (7)	⊗ ₇		
- - -					(SM) Residuum, SILTY	FINE SAND	, grav			-				
- - -	S-6	SS	18	18	and white and orange					=	14-18-16		⊗ ₃₄	
20 -	30	33	10	10	END OF BORI	NG AT 20 FT	•			-20	(34)		34	
- - -										_ _ -				
- - - -										-				
25 – - -										-25 <u> </u>				
- - -														
30-										-30				
														<u>:</u>
					INES REPRESENT THE APPROXI									AL
	VL (Fir: VL (Co		on)	ea)	6.00		NG STARTE	ED: Ja	an 19	2022	CAVE IN	DEPTH:	11.50	
			High \	Vater)			PLETED:			2022	HAMME	R TYPE:	Auto	
▼ V	VL (Sta	bilized	d)				PMENT: 55 Trailer/ 2	2013	VB3	ED BY:	DRILLING	6 METH	OD: 2.25 HSA	
					GEO	OTECHNIC	CAL BOF	REHOL	<u>.E L</u> (OG				

CLIENT							PROJECT N	NO.:	- 1	BORING I	NO.:	SHEET:		
D.R. Ho							06:24735			CM-01		1 of 1		LCc
PROJEC							DRILLER/C			R:				_03
Kalas Fa			Devel	opmer	ıt		Bridger Dr	illing Inc				I		
SITE LO: 1832 Ro			Rolesv	ille, No	orth Carolina 27587							LC	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	ASTING:	STATION:			SL	JRFACE E	LEVATION:	В	OTTOM OF CASING	
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	× s	Limit Water Content STANDARD PENETRATION K QUALITY DESIGNATION RQD REC CAUBRATED PENETROME ES CONTENT] %	N BLOWS/FT & RECOVERY
_					Topsoil Thickness[10.0	00"]						FINE	S CONTENT) %	
- - -	S-1	SS	18	18	(SM) Residuum, SILTY tan, moist, very loose		SAND,				WOH-1-2 (3)	⊗3		
			10		(WR) PARTIALLY WEAT						5-8-50			
5-	S-2	SS	18	18	SAMPLED AS SILTY ME SAND, orange, moist [-5 -	(58)		⊗ ₅₈	
10					AUGER REFUS					-5- -10- -15- -20-				
25 –										-25				
30 -										-30				
]					\perp						
✓ \n		HE STRA			NES REPRESENT THE APPROXI									.L
		npletio		-u _j	Dry	BOR BOR	ING STARTE			2022	CAVE IN		4.00	
∡ v				Vater)		CON	//PLETED:			2022	HAMMEI	R TYPE:	Auto	
▼ v	/L (Sta	bilized)			EQU ATV	IIPMENT:		JGG H G	ED BY:	DRILLING	METHOD	: 2-1/4" H.S.A.	
					GEC		CAL BOR			OG				

CLIENT D.R. Ho						PROJECT N 06:24735	IO.:		BORING 1	NO.:	SHEET: 1 of 1	
PROJEC		лЕ:				DRILLER/C	ONTRA				1011	
Kalas Fa			Devel	opmen	t	Bridger Dri						
SITE LO			Rolesv	ille. No	rth Carolina 27587						LOSS OF CIRCULA	TION NOIT
NORTH				_	STATION:			SU	JRFACE E	LEVATION:	BOTTOM OF CA	SING
()	1BER	PE	(NI)	<u> </u>				ELS	(FT)	=	Plastic Limit Water C	ontent Liquid Limit ∆
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENE ROCK QUALITY DESIG RQD REC CALIBRATED PENI	NATION & RECOVERY
					Topsoil Thickness[6.00"]						[FINES CONTENT] %	
-	S-1	SS	18	18	(SC) Residuum, CLAYEY FINE SAN yellowish brown, moist, loose	ID,				2-3-4 (7)	⊗ ₇ 18.0 ×	5 <u>0</u> [39.6%]
_					(SM) Residuum, SILTY MEDIUM S	SAND,	(1]			
5 -	S-2	SS	18	18	tan, moist, medium dense to loc				-5	4-5-6 (11)	⊗ ₁₁	
_ - -	S-3	SS	18	18						3-4-6 (10)	⊗ ₁₀	
_												
10-	S-4	SS	18	18					-10	5-4-5 (9)	⊗ ₉	
-												
_												
_	S-5	SS	18	18						3-4-4 (8)	⊗ ₈	
15 -					END OF BORING AT 15 F	Т	1111111		-15	(-/		
-												
_												
_ 20 –									-20 -			
									-20			
_												
-												
25 -									-25			
-												
30-									-30			
									- 1			
					NES REPRESENT THE APPROXIMATE BOUND I	ARY LINES BE	TWEEN	SOIL	TYPES. IN	-SITU THE TR	RANSITION MAY BE GRA	ADUAL
		st Enco		ed)		NG STARTED): F e	eb 09	9 2022	CAVE IN	DEPTH: 12.00	
		mpletio		\/a+a :-\	Dry BORI	NG PLETED:	Fe	eb 09	9 2022	HAMMEI	R TYPE: Auto	
		isonal bilized		vater)	EQU	PMENT:			ED BY:	DRILLING	6 METHOD: 2-1/4" H	S.A.
_ <u>~ v</u>	ı L (əta	MIIZEU	1		ATV GEOTECHNIC	CAL BORI		HG E L	OG		<u> </u>	

CLIENT D.R. Ho							OJECT N :24735	O.:		BORING I	NO.:	SHEET: 1 of 1	
PROJEC		лЕ:				_	ILLER/C	ONTRA				1011	FL'C
Kalas Fa	lls Resi	idential	Devel	opmen	t		idger Dri						
SITE LO			Rolesv	ille, No	rth Carolina 27587	•						LOSS OF CIRCULATION	1 2100%
NORTH					STING: STATION:				Sl	JRFACE E	LEVATION:	BOTTOM OF CASING	-
(L	1BER	′PE	. (IN)	(N I)					ELS	(FT)	Ē.	Plastic Limit Water Conte	Δ
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIAL	-			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	STANDARD PENETRATI ROCK QUALITY DESIGNATIO RQD REC CALIBRATED PENETROI	ON & RECOVERY
					Topsoil Thickness[7.00"]							[FINES CONTENT] %	: :
_ - -	S-1	SS	18	18	(SC-SM) Residuum, SILTY CLAYE MEDIUM SAND, gray and tan, m			/			1-1-2 (3)	⊗ ₃	
	.	SS	10	10	loose (SM) Residuum, SILTY MEDIUM		/				3-5-7		
5-	S-2	33	18	18	COARSE SAND, orange and gray medium dense	, moi	st,			-5	(12)	⊗ ₁₂	
- - -	S-3	SS	18	18							6-9-13 (22)	⊗ ₂₂	
- -	S-4	SS	18	18							7-10-9 (19)	⊗ ₁₉	
10 –										-10	(13)		
-	S-5	SS	18	18						45	9-12-16 (28)	⊗ ₂₈	
15 <u> </u>					END OF BORING AT 15 I	FT				-15 -			
-										_			
_ _ _										-			
20 -										-20			
- - -										- -			
25 –										-25			
_ _													
30-										-30			
_					NES REPRESENT THE APPROXIMATE BOUN	IDARY	LINES BE	TWEEN	I SOIL	TYPES. IN	N-SITU THE TR	RANSITION MAY BE GRADU	IAL
		st Enco		ed)		RING S	STARTED): F	eb 09	9 2022	CAVE IN	DEPTH: 12.40	
		mpletions asonal		Vater)	-	RING MPLET	ΓED:	F	eb 09	9 2022	НАММЕ	R TYPE: Auto	
		bilized			EQU ATV	JIPME	NT:		OGG G HG	ED BY:	DRILLING	6 METHOD: 2-1/4" H.S.A	
	1200		,		GEOTECHNI		BORE			OG			

CLIENT							PROJECT N	10.:	- 1	BORING N	VO.:	SHEET:		
D.R. Ho		4 E.					06:24735	ONITO		SCM-04		1 of 1		LCc
Kalas Fa			l Devel	onmer	nt		DRILLER/C Bridger Dri			K:				
SITE LO			Deven	opinici			Diluger Dil	mig me	•					
		Road,	Rolesv		orth Carolina 27587	1						L	OSS OF CIRCULATION	<u>>100%</u>
NORTH	ING:			E/	ASTING:	STATION:			SL	JRFACE E	LEVATION:		BOTTOM OF CASING	
(SAMPLE NUMBER	PE	(NI)	<u> </u>					STE	ET)	_		c Limit Water Content	: Liquid Limit ∆
DЕРТН (FT)	NUN	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	NE MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION	
)EPT	IPLE	MPL	IPLE	COVI	DESCRIPTION C	/ WATENIAL			YTER	.VAT	3100	- RO	RQD	I & RECOVERT
	SAM	SA	SAM	RE					*		ш		CALIBRATED PENETROM	TER TON/SE
					T 11T1 1 15 05	NII 1							IES CONTENT] %	TER TON/3F
	S-1	SS	0	0	Topsoil Thickness[6.00 (WR) PARTIALLY WEAT						50/0"			⊗ _{50/0"}
_	-				SAMPLED AS, No reco						(50/0")			50/0
_					ROCK]	very [vvea	liicica							
_					AUGER REFU	SAL AT 1 F	T			Ŀ				
_										-5-				
5-										-5-				
-										1 7				
_										7				
-														
_														
10 –										-10				
_										-				
_										-				
_										-				
15-										-15				
-														
_														
_														
_														
20 -										-20				
-]				
-										7				
25 –										-25				
=										-				
										-				
-										-				
-										-				
30 –										-30				
	TH	HE STRA	ATIFICA	TION L	I INES REPRESENT THE APPROXI	MATE BOUNE	DARY LINES BE	TWEEN	SOIL	TYPES. IN	-SITU THE TR	ANSITION	MAY BE GRADUA	\L
▽ w	/L (Firs	st Enco	untere	ed)		BORI	ING STARTEI		b 09	2022	CAVE IN	DEPTH:	1.00	
		mpleti			Dry	BORI	ING 1PLETED:	Fe	b 09	2022	HAMMEI	R TYPE:	Auto	
			High V	Vater)			IPLETED: IPMENT:	LC	OGG	ED BY:	D 2 11 1 11			
▼ W	/L (Sta	bilized)			ATV		GI	HG		DRILLING	METHO): 2-1/4" H.S.A.	
					GEC	<u> TECHNI</u>	CAL BOR	<u>EHOLI</u>	E L(OG				

CLIENT								CT NO.:		BORING	NO.:	SHEET:		
D.R. Ho		4 E.					06:247			SCM-05		1 of 1		LCc
Kalas Fa			l Devel	onmer	nt			ER/CONTRA er Drilling In		JK:				
SITE LO			Deven	opinici			Dilugo	Dinning in						
		Road,	Rolesv		orth Carolina 27587							LOSS	OF CIRCULATION	<u> </u>
NORTH	ING:			E/	ASTING:	STATION:			SI	JRFACE E	LEVATION:	ВОТ	TOM OF CASING	
(SAMPLE NUMBER	PE	(NI)	<u> </u>					STE	ET)	=	Plastic Lir X—	mit Water Content	Liquid Limit ∆
DЕРТН (FT)	NON	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C)F MATERIAI			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		NDARD PENETRATION	
DEPT	APLE	٩Mp	APLE	000	<i>32361</i> 77677		•		ATER	EVAT	BLO	RO	QD	
	SAN	S	SAN	2					>			— RE	EC IBRATED PENETROME	TER TON/SF
					Topsoil Thickness[9.00	า"1						[FINES C	CONTENT] %	
_					(SM) Residuum, SILTY		SAND,			1 -	2-7-11			
_	S-1	SS	18	18	light greenish brown,					-	(18)	₩ <u>8</u> 6	[21.8	%]
_					dense									
_	S-2	SS	18	18						-	4-6-7 (13)	♦ 13		
5-					<u> </u> -					-5	(13)			
_					_					-	6-9-12	\		
_	S-3	SS	18	18							(21)	Ø ₂₁		
_					-					-				
_	S-4	SS	18	18	-						6-7-9	Ø ₁₆		
10 -	J 4		10	10	_					-10	(16)	16		
_														
_														
_					AUGER REFUS	AL AT 12.5	FT	-1:1-1-1		1 4				
_														
15-										-15				
_														
_														
_										-				
_										-				
20 -										-20				
_														
_														
_														
_														
25 -										-25				
-														
-														
										=				
_														
30 -										-30				
-														
	ΤI	HF STR/	ATIFIC V.	TION I	 INES REPRESENT THE APPROXI	MATE ROLIN	DARYLINI	FS BETW/FFN	 SOII	TYPES IN	J-SITU THE TR	ANSITION M	AY BE GRADIIA	.1
□ v		st Enco			THE AFFINON					8 2022				
		mpleti		,	Dry		RING STAI	NIEU: Ι	ະນ ປີໃ	2022	CAVE IN	DEFIN:	11.50	
		asonal		Vator)			RING MPLETED	. F	eb 08	8 2022	HAMMEI	R TYPE:	Auto	
				valer)	·		JIPMENT		.OGG	ED BY:	DRILLING	6 METHOD: 2	2-1/4" H S ∆	
_ <u>*</u>	ı L (Sta	bilized)		CF(ATV OTECHNI			HG E I	ne -	DIVICENT		,	
					GEU	<u> </u>	CAL D	<u>ONEHUI</u>	<u>.L L</u>	<u> </u>				

CLIENT							PROJECT	NO.:	- 1	BORING I	NO.:	SHEET:		
D.R. Ho		45					06:24735	CONTRA		SCM-06		1 of 1		LCc
PROJEC Kalas Fa			l Devel	nnmei	nt		DRILLER/O			JK:				<u>-03</u>
SITE LO			Deven	орине	ı.		Diluger Di	iiiiig iiii	٠.					
1832 Ro	lesville	Road,	Rolesv	ille, N	orth Carolina 27587							LC	SS OF CIRCULATION	<u> </u>
NORTH	IING:			E.	ASTING:	STATION:			SI	URFACE E	LEVATION:	В	OTTOM OF CASING	
l (FT)	JUMBER	: TYPE	IST. (IN)	RY (IN)					-EVELS	ON (FT)	9/s.	× × × × × × × × × × × × × × × × × × ×	TANDARD PENETRATION	N BLOWS/FT
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF	MATERIAL			WATER LEVELS	ELEVATION (FT)	"6/SWOJ8		QUALITY DESIGNATION RQD REC CALIBRATED PENETROME	
					Topsoil Thickness[8.00"	1						[FINE	S CONTENT] %	
- - - -	S-1	SS	18	18	(SM) Residuum, SILTY M brown, moist, loose		SAND,				2-3-6 (9)	⊗ 9		
_					(ML) Residuum, SANDY	SILT, trac	e clay,	 		1 1				
5- 5-	S-2	SS	18	18	gray, moist to wet, very	stiff to st	tiff			-5	7-10-10 (20)	⊗ ₂₀		
- - - -	S-3	SS	18	18						- - - - -	6-8-7 (15)	⊗ ₁₅		
_					(SM) Residuum, SILTY FI	INE TO M	EDIUM			1 7	2.4.4			
-	S-4	SS	18	18	SAND, gray and orange,	, moist to	wet,			-	3-4-4 (8)	\$8 €		
10 –					loose					-10				
_														
_									•					
_														
_	S-5	SS	18	18						1 -	2-3-4 (7)	⊗ ₇		
15 –					END OF BORIN	G AT 15 F	т			-15	(//			
_										-				
_										1 7				
_														
_										1 1				
20 -										-20				
										-20				
_										1 7				
-										7				
_														
_														
25 –										-25				
_										-				
-										1 -				
_										1 -				
_														
30 -										-30				
		JE CTD	ATILIC AT	TION:	INIC DEDDECENT THE ADDROVE A	ATE DOLLARS	ADVIINEC D	ET\A/EFA		I TYPEC IN	I CITILITUE ZO	A NICITION A	AAV DE CDADUA	1
\ \tag{\tau} \			ounter		INES REPRESENT THE APPROXIMA									NL .
	VL (Firs			-41	12.00	BORI BORI	NG STARTE NG			8 2022	CAVE IN		12.30	
▼ v	VL (Sea	sonal	High V	Vater'		СОМ	PLETED:			8 2022	HAMMEI	K TYPE:	Auto	
	VL (Sta						PMENT:	l l		GED BY:	DRILLING	METHOD	: 2-1/4" H.S.A.	
'	,5.0		1		GF01	ATV TECHNIO	CAL BOR		HG E L	OG				

D.R. Horton PROJECT NAME: Kalas Falls Residential Development SITE LOCATION: 1832 Rolesville Road, Rolesville, North Carolina 27587 NORTHING: EASTING: STATION: DRILLER/CONTRACTOR: Bridger Drilling Inc. LOSS OF CIRCULATION SURFACE ELEVATION: 336.00 Plastic Limit Water Content Liquid Limit X STANDARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY RQD RQD RQD REC CALIBRATED PENETRATION & RECOVERY FINES CONTENT] %	5
Ralas Falls Residential Development Bridger Drilling Inc.	<u>_</u>
SITE LOCATION: 1832 Rolesville Road, Rolesville, North Carolina 27587 NORTHING: EASTING: STATION: SURFACE ELEVATION: 336.00 Plastic Limit Water Content Liquid Limit X STANDARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY	~
1832 Rolesville Road, Rolesville, North Carolina 27587 NORTHING: EASTING: STATION: SURFACE ELEVATION: 336.00 Plastic Limit Water Content Liquid Limit X STADARD PENETRATION BLOWS/FT ROCK QUALITY DESIGNATION & RECOVERY	
336.00 SOUTH CALIBRATE PRINT SCONTENT %	10%
DESCRIPTION OF MATERIAL SAMPLE TYPE SAMPL	
[FINES CONTENT] %	
Toncoil Thicknoss[10 00"]	
(AAL) Parishawa CANDY CHT tax availt	
S-1 SS 18 18 (ML) Residuum, SANDY SILT, tan, moist, soft	
(SM) Residuum, SILTY MEDIUM SAND,	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
SAMPLED AS, No recovery [Weathered 50/0" 50/)/0"
-	
AUGER REFUSAL AT 6 FT	
15- -15-	
25	
30-	
THE STRATIFICATION LINES REPRESENT THE APPROXIMATE BOUNDARY LINES BETWEEN SOIL TYPES. IN-SITU THE TRANSITION MAY BE GRADUAL	
✓ WL (First Encountered) BORING STARTED: Feb 08 2022 CAVE IN DEPTH: 4.70	
▼ WL (Completion) DRY BORING COMPLETED: Feb 08 2022 HAMMER TYPE: Auto	
EQUIPMENT: LOGGED BY: DRILLING METHOD: 2.25 HSA	
ATV CME550 CAR3 GEOTECHNICAL BOREHOLE LOG	

CLIENT							PROJECT N	NO.:	- 1	BORING I	NO.:	SHEET:		
D.R. Ho		4 F .					06:24735	ONITO		SCM-08		1 of 1		FL'C
Kalas Fa			l Devel	onmer	nt		DRILLER/C Bridger Dr			JK:				
SITE LO	CATIOI	N:					Bridger Di	illing illi					LOSS OF CIRCULATION	\(\sigma\)
NORTH		Road,	Rolesv		ASTING:	STATION:			- 1		LEVATION:		BOTTOM OF CASING	
	R		2							78.00		Plast	ic Limit Water Content	Liquid Limit ——△
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	DF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	RO	STANDARD PENETRATION CK QUALITY DESIGNATION RQD REC CALIBRATED PENETROMI	N BLOWS/FT & RECOVERY
_					Topsoil Thickness[12.0	no"1							NES CONTENT] %	: :
- - -	S-1	SS	18	18	(CH) Residuum, FAT Control brownish yellow, mois	LAY WITH S	SAND,			- - - - -	2-2-3 (5)	\otimes_5	30 <u>*</u> 30 1	72 [73.0%]
- - - -	S-2	SS	18	18	(SM) Residuum, SILTY pink and brown, mois					- - - -	2-2-4 (6)	⊗ ₆		
5- - - -	S-3	SS	18	18	medium dense				∇	-5- - -	2-3-5 (8)	⊗ ₈		
-											. ,			
10-	S-4	SS	18	18						-10	2-4-7 (11)	⊗ ₁₁		
- - -										-				
- - -	S-5	SS	18	18							3-3-6 (9)	⊗ ₉		
15					END OF BOR	ING AT 15 F	Т			-15	(9)			
- -														
- - -										-				
20 -										-20				
- - -										- - -				
- - -														
25 – –										-25 <u> </u>				
_ _ _														
30-										-30				
□ ∇ V	TI VL (Firs				INES REPRESENT THE APPROXI 7.00		NG STARTE			L TYPES. IN 8 2022	CAVE IN		MAY BE GRADUA	.L
▼ V	VL (Co	mpleti	on)			BORI	NG			8 2022	HAMME		Auto	
	VL (Sea			Vater)			PLETED: PMENT:	1		GED BY:		METHO		
<u>*</u> V	VL (Sta	DIIIZEO	1)		CEC	ATV OTECHNIC	^ΔI R∩P		AR3		DIVICEIING	- IVIL IIIO		
					GEC		CAL DOU	LIIUL	<u>. L L</u>	J				

CLIENT:								PROJECT N	IO.:		BORING	NO.:	SHEET:			
D.R. Ho		45						06:24735	ONITOA		SCM-09		1 of 1			9
PROJEC Kalas Fa			l Daval	onmen	. t			ORILLER/C Bridger Dri			PK:					2
SITE LO			Devel	оринен				bridger bri	iiiig iiic	•						\
		Road,	Rolesv		orth Carolina 27587								LOSS	OF CIRCULATION		<u>}100%</u>
NORTH	ING:			E.A	ASTING:	STATIC	ON:			SU	JRFACE E	ELEVATION:	ВОТ	TOM OF CASING		
	BER	Эc	(NI)	2						ST:	FT)		Plastic Lin	nit Water Content	Liquid Lim ——∆	it
ОЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION	>	DIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		NDARD PENETRATIO		
)EPT!	IPLE	MPL	IPLE	COVE	DESCRIPTION C	JF IVIAI EI	KIAL			YTE R	VATI	3LOV	ROCK Q	UALITY DESIGNATION QD	& RECOVERY	
	SAM	SA	SAM	RE						×	ELE	ш	— RE	EC IBRATED PENETROME	TER TON/SE	
					Tamasil Thisler ass[0,00	וויו			N//////					ONTENT] %	:	:
					Topsoil Thickness[8.00 (SM) Residuum, SILTY		O MFI	DILIM			-	2.2.4				
	S-1	SS	18	18	SAND, gray and brown						-	2-3-4 (7)	⊗ ₇			
					medium dense						-					
	S-2	SS	18	18							_	5-10-24	8	,		
5	3-2	33	10	10							-5	(34)		34		
					(SM) Residuum, SILTY	FINE T	O MEI	DIUM			1 -					
	S-3	SS	18	18	SAND, gray and brown	n, mois	t, very	/ dense			_	17-29-50 (79)			® 79	
											-					
	S-4	SS	8	8	WR) PARTIALLY WEAT SAMPLED AS SILTY FIN						_	35-50/2" (50/2")			K	S _{50/2"}
10-					SAND, orange and gra					_	-10	(30/2)				
					[Weathered ROCK]						_					
					AUGER REFUS	AL AT	9.5 FT				-					
											_					
-											-					
15-											-15-					
'0											-10 -					
											_					
_																
]											-					
20											20					
207											-20					
											-					
											_					
-											-					
-																
25											-25					
											-					
											_					
											-					
-											_					
30 –											-30					
														· · · · · · · · · · · · · · · · · · ·	•	
					NES REPRESENT THE APPROXI	MATE BO	DUNDAF	RY LINES BE	TWEEN	SOIL	TYPES. II	N-SITU THE TE	RANSITION MA	AY BE GRADUA	ıL	
✓ W				ed)				G STARTE): Ja	ın 19	2022	CAVE IN	DEPTH: 9	9.50		
⊼ №				Nator)	9.40		BORING COMPL		Ja	ın 25	2022	НАММЕ	R TYPE:	Auto		
-				valet)			EQUIPN				ED BY:	DRILLING	METHOD: 2	2-1/4" H.S.A		
× W	ır (əta	bilized)		GE/		ANIC A	AL BORI		HG F I (ne	STREETING		_,		
1					GEC	ノIELM	TIVICA	AL DUKI	LITUL	C L	UG					

CLIENT:							PROJECT N	10.:		BORING N	NO.:	SHEET:		
D.R. Ho		4 - .					06:24735	ONTDA		SCM-10		1 of 1		LCC
Kalas Fa			l Develo	nmen	ıt.		DRILLER/C Bridger Dri			rK:				
SITE LO			Develo	pinci			Diluger Di		•					
		Road,	Rolesvi		orth Carolina 27587							L	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	ASTING:	STATION:			SL	JRFACE E	LEVATION:		BOTTOM OF CASING	
(SAMPLE NUMBER	PE	SAMPLE DIST. (IN)	<u> </u>					STE	ET)	_		c Limit Water Content	t Liquid Limit ∆
DЕРТН (FT)	NUN	SAMPLE TYPE	DIST.	RECOVERY (IN)	DESCRIPTION C	OF MANTERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION	
ЕРТ	IPLE	MPL	IPLE	00	DESCRIPTION	JI WATENIAL			ATE R	:VAT	3100		RQD	A RECOVERT
	SAN	Ş	SAN	RE					Š	EFE			- REC CALIBRATED PENETROM	FTER TON/SE
					T 11T1 1 10 00	211							NES CONTENT] %	ETER TON/SI
	S-1	SS	3	3	Topsoil Thickness[8.00 (WR) PARTIALLY WEAT		nck				50/3"			⊗ _{50/3"}
	J 1			J	SAMPLED AS SILTY ME						(50/3")			50/3"
-					moist [Weathered RO	CK]	1	1						
					AUGER REFU	SAL AT 2 F	Т							
5-										-5				
3										-3				
-]				
-]				
10 –										-10				
-														
_										-				
_										-				
15										-15				
-										-				
20 -										-20				
_														
-]				
-]				
25 –										-25				
-														
-										-				
										-				
-										-				
30 –										-30				
												:		<u> </u>
	TH	HE STRA	ATIFICAT	ION L	NES REPRESENT THE APPROXI	MATE BOUN	DARY LINES BE	TWEEN	SOIL	TYPES. IN	-SITU THE TR	RANSITION	MAY BE GRADUA	AL.
			untere	ed)		BOR	ING STARTEI	D: Ja	n 19	2022	CAVE IN	DEPTH:	1.00	
V V				/o+- ··\	Dry	BOR CON	ING IPLETED:	Ja	n 25	2022	HAMME	R TYPE:	Auto	
			High W	vater)			IPMENT:	LC	OGG	ED BY:	DOLLTING	METHO	D: 2-1/4" H.S.A.	
▼ W	/L (Sta	bilized)			ATV	041 555		HG		DKILLING	ıvıE I HUl	∪. ∠-1/4 H.3.A.	
					GEC	<u> JIECHNI</u>	CAL BOR	<u>LHOL</u>	<u> </u>	UG				

CLIENT							l l	CT NO.:			RING N	10.:	SHEET:		
D.R. Ho		45					06:24		TD 4 67	SCM	-11		1 of 1	En	2
PROJEC			Dovol	anman			l l	ER/CON		OR:					2
Kalas Fa			Devei	opmen	τ		Bridge	er Drilling	g inc.						~
1832 Ro	lesville		Rolesv		orth Carolina 27587	1							LOSS OF CIRCULATION	1	<u> </u>
NORTH	ING:			L EA	ASTING:	STATION	:			SURFA	ACE EI	LEVATION:	BOTTOM OF CASING		
	SAMPLE NUMBER	ЭE	(Z	2					<u> </u>	3 1			Plastic Limit Water Conte	nt Liquid Lim ∆	iit
БЕРТН (FT)	MON	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	D.F.O.DUDTION O				S 13/V3 I G3TV/W		ELEVATION (FT)	BLOWS/6"	STANDARD PENETRATI		
EPTH	PLE 1	MPL	PLE [OVE	DESCRIPTION C)F MATERIA	AL.		1 2		MATI	MOJ	ROCK QUALITY DESIGNATION RQD	N & RECOVERY	ſ
	SAM	SA	SAM	REC					\$	}		ш	— REC		
	07		•					N//2					CALIBRATED PENETRON [FINES CONTENT] %	METER TON/SF	-
					Topsoil Thickness[12.0										
	S-1	SS	18	18	(SM) Residuum, SILTY moist, very loose	FINE SAI	ND, brow	n,			-	1-1-WOH (1)	8 1		
	S-2	- cc	_1	1	(WR) PARTIALLY WEAT	HERED E	ROCK		4 3 4		-	50/1"			\$0
_	3-2	33		1	SAMPLED AS, No reco						-	(50/1")			⊗ _{50/1"}
5-					ROCK]						-5				
-					AUGER REFUS	AL AT 3.7	7 FT				-				
-															
-											-				
-															
10 –										-	10-				
-											-				
-											7				
-											4				
-											4				
15-										_	15				
-											4				
-											4				
=											4				
											_				
20 -										_	20				
											_				
_															
_															
25 –											25				
25										-	257				
											7				
7											7				
											7				
-											7				
30 –										-	30 –				
														· ·	
L					NES REPRESENT THE APPROXI									AL	
		npleti		ea)	Dry		RING STA	RTED:	Feb	11 202	22	CAVE IN	DEPTH:		
		sonal		Water)		cc	RING MPLETED			11 202		HAMME	R TYPE: Auto		
▼ W	VL (Sta	bilized)			EC.	UIPMENT v	:	LOG GHG	GED I	BY:	DRILLING	6 METHOD: 2-1/4" H.S.A		
	-				GEO	OTECHN		OREH			i				

CLIENT							PROJECT NO	Э.:		ING NO	D.:	SHEET:		
D.R. Ho		лЕ:					06:24735 DRILLER/CC	ONTRAC	SCM TOR:	-12		1 of 1		EC9
Kalas Fa			l Develo	pmen	t		Bridger Drill							N
SITE LO: 1832 Ro			Rolesvi	ille, No	orth Carolina 27587							Ŀ	OSS OF CIRCULATION	<u>>100</u>
NORTH	ING:			EA	ASTING:	STATION:			SURFA	ACE ELE	EVATION:		BOTTOM OF CASING	
	IBER	JE .	(NI)	(N					S	E	_		c Limit Water Content	Liquid Limit ∆
БЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	F MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATIO	
DEF	SAMPL	SAM	SAMPL	RECC					WATE	ELEW	BLC		RQD REC CALIBRATED PENETROMI	TER TON/SE
_	S-1	SS	0		Tansail Thiskness (4.00	ייי	<u> </u>	(//8////8			50/0"		NES CONTENT] %	
-	-2-I	->>	0	0	Topsoil Thickness[4.00 (WR) PARTIALLY WEAT		CK			4	(50/0")			⊗ _{50/0"}
-					SAMPLED AS, No reco		- 11			-				
-					ROCK]		1			4				
_					AUGER REFUS	AL AT 0.5 F	Т			4				
5-										-5				
_														
_														
_										_				
-										-				
10 -										10-				
10-									-					
-										7				
-										7				
-										1				
_										-				
15 –									-	15				
_										-				
-										-				
-										-				
-										4				
20-									-:	20 –				
-										4				
-										4				
_										4				
25 -										25				
									-					
-										_				
-										7				
										7				
										F				
30 –									-	30 –				
													· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
\ \triangle \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			ATIFICAT ountere		NES REPRESENT THE APPROXI									AL
		mpletio		/	Dry	BORII	NG STARTED: NG		11 202		CAVE IN [0.50	
▼ W	/L (Sea	sonal	High V	Vater)		СОМ	PLETED:		11 202		HAMMEF	R TYPE:	Auto	
▼ W	/L (Sta	bilized)			EQUII ATV	PMENT:	LO GH	GGED I G	BY:	DRILLING	METHO	D: 2-1/4" H.S.A.	
	-				GEC		CAL BORE			<u> </u>	1			

CLIENT							PROJECT N	10.:		BORING N	NO.:	SHEET:		
D.R. Ho		4 - .					06:24735	ONTRA		SCM-13		1 of 1		LCc
PROJEC Kalas Fa			Devel	nmer	ıt.		DRILLER/C Bridger Dri			r:				
SITE LO			Deven	эрттег			Diluger Dil							
		Road,	Rolesv		orth Carolina 27587							LC	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	ASTING:	STATION:			SL	JRFACE E	LEVATION:	E	BOTTOM OF CASING	
	BER	Э. Е	(NI)	Î						E (E			Limit Water Content	Liquid Limit ∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C				WATER LEVELS	ELEVATION (FT)	BLOWS/6"		STANDARD PENETRATION	
)EPT!	PLE	MPL	PLE	COVE	DESCRIPTION C	F WAI ERIAL			\TER	WATI	3LOV		K QUALITY DESIGNATION	& RECOVERY
	SAN	Ş	SAN	R					Š				REC CALIBRATED PENETROME	TER TON/SE
					T! This 7.00	NII1		N//////					ES CONTENT] %	: :
-					Topsoil Thickness[7.00 (SM) Residuum, SILTY		SAND			1 1	1.7.10			
-	S-1	SS	18	18	tan, moist, medium de		37 (1 12),				1-7-10 (17)	⊗ ₁₇		
-					AUGER REFUS	SVI VI 3 E.	т							
-					AUGLICITE OF	JAL AI JI	•							
5-										-5				
_														
_														
_														
_														
10-										-10				
_														
-														
-														
15										-15				
-														
_														
-														
_														
20 -										-20				
										-				
_														
_														
25 –										-25				
-										-				
-														
30 -										-30				
- 55										33				
		JE CTD	ATIFIC A	LION I I	NEC DEDDECENT THE ADDROVE	NAATE DOLUNIS	DARVIINIEC DE	T\A/E-E-	COL	TVDEC IN	CITILITUE TO	ANCITION	MAN DE CDADUA	1
\\ \textstyle \textst			unter		NES REPRESENT THE APPROXI		ING STARTEI			2022	CAVE IN		3.00	AL.
Y W	/L (Cor	mpletio	on)		Dry	BOR	ING			2022	HAMMEI		Auto	
▼ M	/L (Sea	sonal	High V	Vater)			IPLETED:			ED BY:	TAMINIL			
▼ W	/L (Sta	bilized)			EQU ATV	IPMENT:		JGG H G	ונט אז:	DRILLING	METHOD): 2-1/4" H.S.A.	
					GEC		CAL BOR			OG				

CLIENT:							PROJECT N	O.:		ORING N	IO.:	SHEET:		
D.R. Ho		4 - .					06:24735		_	CM-14		1 of 1		LCC
Kalas Fa			l Devel	nnmen	nt		DRILLER/CO Bridger Dril			۲:				
SITE LO			Deven	оринст			Dridger Drii							
1832 Ro	lesville		Rolesv		orth Carolina 27587							L	OSS OF CIRCULATION	<u> </u>
NORTH	ING:			EA	ASTING:	STATION:			SU	RFACE EI	EVATION:		BOTTOM OF CASING	
_	IBER	PE	(NI)	(Z					:LS	E	_		c Limit Water Content	t Liquid Limit ∆
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION C	OF MATERIAL			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	1	STANDARD PENETRATIO	
DEPT	1PLE	MPI	1PLE	COV	DESCRIPTION C) WATERIAL			ATER	EVAT	BLOV		RQD	A RECOVERT
	SAN	<i>\f</i> S	SAN	RE					≶				- REC CALIBRATED PENETROM	ETER TON/SF
					Toncoil Thicknoss[6.00	וייר							NES CONTENT] %	
	S-1	SS	2	2	Topsoil Thickness[6.00 (WR) PARTIALLY WEAT		nck			-	50/2"			⊗ _{50/2"}
					SAMPLED AS SILTY ME		-			4	(50/2")			33,2
					SAND, brown, moist [4				
					AUGER REFUS	SAL AT 1.2 F	-T			4				
5-										-5				
										4				
_														
10-										-10				
-										-10				
]										7				
]										7				
										7				
15										-15				
-										=				
-										=				
										1				
-										4				
20 –										-20				
_										-				
-										-				
-										7				
25										-25				
-										4				
-										7				
-										4				
-										1				
30										-30				
	TI	HF STR4	ATIFICAT	TION I	 INES REPRESENT THE APPROXI	MATE BOLING	DARY LINES BE	TWFFN	SOIL	TYPES IN	-SITU THE TR	RANSITION	MAY BE GRADIIA	AI
□ V					THE AFFINDAL		ING STARTED			2022	CAVE IN		1.20	. .
Y W	/L (Cor	mpletio	on)		Dry	BOR	ING			2022	HAMMEI		Auto	
▼ M	/L (Sea	sonal	High V	Vater)			IPLETED: IPMENT:			ED BY:				
▼ W	/L (Sta	bilized)			ATV	II IVILINI:	GH		וט ט.	DRILLING	METHOI	D: 2-1/4" H.S.A.	
					GEC		CAL BORE			OG				

CLIENT D.R. Ho							ROJECT N 6:24735	IO.:	- 1	BORING I	NO.:	SHEET: 1 of 1		
PROJEC		лЕ:					RILLER/C	ONTRA				1011		EL'S
Kalas Fa			Devel	opmen	t		ridger Dri							
SITE LO			Rolesv	ille, No	rth Carolina 27587	•						LO	SS OF CIRCULATION	<u> </u>
NORTH					STATION:	:			Sl	JRFACE E	LEVATION:	BO	OTTOM OF CASING	
DЕРТН (FT)	SAMPLE NUMBER	SAMPLE TYPE	SAMPLE DIST. (IN)	RECOVERY (IN)	DESCRIPTION OF MATERIA	۸L			WATER LEVELS	ELEVATION (FT)	BLOWS/6"	× ⊗ s	TANDARD PENETRATION QUALITY DESIGNATION	N BLOWS/FT
DE	SAMF	SAN	SAME	REC					WA	ELEY	B		REC CALIBRATED PENETROME	TER TON/SF
_					Topsoil Thickness[4.00"]			777				[FINE	S CONTENT] %	
_ _ _ _	S-1	SS	18	18	(CL) Residuum, SANDY LEAN CL brown, moist, soft	LAY,					1-1-2 (3)	⊗ ₃		
_ - -	S-2	SS	18	18	(ML) Residuum, SANDY SILT, tra trace gravel, orange and brown						3-6-6	⊗ ₁₂		
5-	32	33	10	10	wet, stiff	, , , , ,	7136 60			-5	(12)	Ψ12		
- - -	S-3	SS	18	18						- - -	4-4-5 (9)	⊗9		
- -	S-4	SS	18	18							3-4-6	⊗ 10		
10 -										-10	(10)	10		
- - -									•	-				
- - -	S-5	SS	18	18						-	3-6-4 (10)	⊗ ₁₀		
15-					END OF BORING AT 15	FT				-15				
-										_				
-										-				
20 -										-20				
- -														
25 –										-25				
<u>-</u>														
30										-30				
													: :	<u> </u>
		HE STRA			NES REPRESENT THE APPROXIMATE BOUN									L
		mpleti		1	10.10	RING	STARTED			2022	CAVE IN		13.00	
▼ ∧	VL (Sea	sonal	High V	Vater)	СО	MPLE	ETED: 1ENT:	1		D 2022 SED BY:	HAMME		Auto	
▼ V	VL (Sta	bilized)		ATV	/		G	HG		DRILLING	METHOD	: 2-1/4" H.S.A.	
					GEOTECHN	IICA	L BORI	HOL	EL	OG				

Appendix C – Laboratory Testing

Laboratory Testing Summary

Plasticity Chart(s)

Moisture-Density Relationship Curve(s)

CBR Test Results

Laboratory Testing Summary

Page 1 of 1

								_	3			F	1 480	1011
							Atte	berg Li	mits	Percent	Moisture - De	ensity (Corr.) ³		
Sample Source	Sample Number	Start Depth (feet)	End Depth (feet)	Sample Distance (feet)	MC ¹ (%)	Soil Type ²	LL	PL	PI	Passing No. 200 Sieve ⁴	Maximum Density (pcf)	Optimum Moisture (%)	CBR Value ⁶	Organic Content
B-06	S-1	1.0	2.5	1.5	13.7	SM		NP		19.6	111.7	11.5	20	
B-11	S-1	1.0	2.5	1.5	29.3	СН	62	29	33	61.7				
B-13	S-1	1.0	2.5	1.5	16.7	SC	38	23	15	36.0	100.7	14.2	10	
B-14	S-2	3.5	5.0	1.5	20.1	ML		NP		59.9				
B-16	S-1	1.0	2.5	1.5	17.0	SM	41	29	12	25.2				
B-18	S-1	1.0	2.5	1.5	25.1	СН	64	29	35	59.5				
B-19	S-1	1.0	2.5	1.5	27.7	МН	69	40	29	60.9				
B-23	S-1	1.0	2.5	1.5	23.9	SC	48	27	21	45.2				
B-25	S-1	1.0	2.5	1.5	25.4	SM	44	36	8	38.7				
B-28	S-1	1.0	2.5	1.5	10.0	SP-SM		NP		11.6	118.4	11.2	17	
B-31	S-1	1.0	2.5	1.5	28.4	СН	79	30	49	60.0				
B-35	S-2	3.5	5.0	1.5	30.8	SM	62	34	28	41.5				
SCM-02	S-1	1.0	2.5	1.5	18.0	SC	50	23	27	39.6				
SCM-05	S-1	1.0	2.5	1.5	12.6	SM		NP		21.8				
SCM-08	S-1	1.0	2.5	1.5	30.1	CH	72	30	42	73.0				
	<u> </u>							l						

Notes: 1. ASTM D 2216, 2. ASTM D 2487, 3. ASTM D 4318, 4. ASTM D 1140, 5. See test reports for test method, 6. See test reports for test method

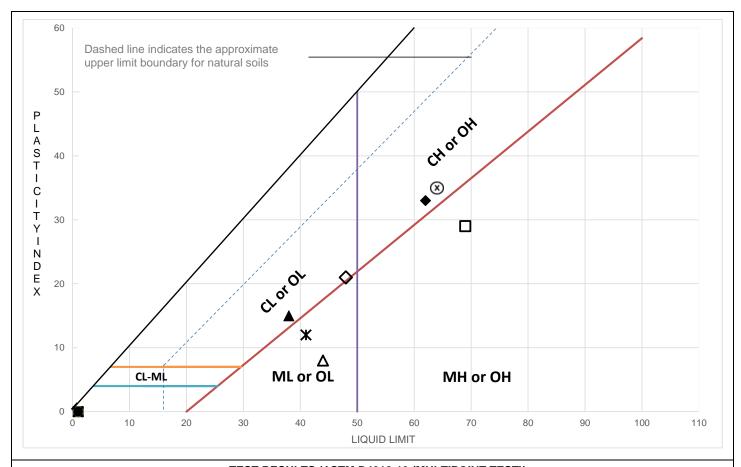
Definitions: MC: Moisture Content, Soil Type: USCS (Unified Soil Classification System), LL: Liquid Limit, PL: Plastic Limit, PI: Plasticity Index, CBR: California Bearing Ration, OC: Organic Content (ASTM D 2974)

Project No. 06:24735

Project Name: Kalas Falls Residential Development

PM: Gunnar Goslin
PE: Thomas Schipporeit

Printed On: March 7, 2022



ECS Southeast, LLP - Raleigh

9001 Glenwood Avenue Raleigh, NC 27617-7505

Phone: 919-861-9910 Fax: 919-861-9911

LIQUID AND PLASTIC LIMITS TEST REPORT

TEST RESULTS (ASTM D4318-10 (MULTIPOINT TEST))

	Sample Location	Sample Number	Sample Depth (ft)	LL	PL	PI	%<#40	%<#200	AASHTO	USCS	Material Description
	B-06	S-1	1-2.5	NP	NP	NP		19.6			(SM) SILTY SAND, Dark Yellowish- Brown
•	B-11	S-1	1-2.5	62	29	33		61.7			(CH) SANDY FAT CLAY, Brownish- Yellow
A	B-13	S-1	1-2.5	38	23	15		36.0			(SC) CLAYEY SAND, Strong Brown
•	B-14	S-2	3.5-5	NP	NP	NP		59.9			(ML) SANDY SILT, Light Yellowish- Brown
*	B-16	S-1	1-2.5	41	29	12		25.2			(SM) SILTY SAND, Brown
8	B-18	S-1	1-2.5	64	29	35		59.5			(CH) SANDY FAT CLAY, Yellowish- Brown
	B-19	S-1	1-2.5	69	40	29		60.9			(MH) SANDY ELASTIC SILT, Strong Brown
\Diamond	B-23	S-1	1-2.5	48	27	21		45.2			(SC) CLAYEY SAND, Grayish-Brown
Δ	B-25	S-1	1-2.5	44	36	8		38.7			(SM) SILTY SAND, Reddish-Yellow
×	B-28	S-1	1-2.5	NP	NP	NP		11.6			(SP-SM) POORLY GRADED SAND w/ SILT, Dark Brown

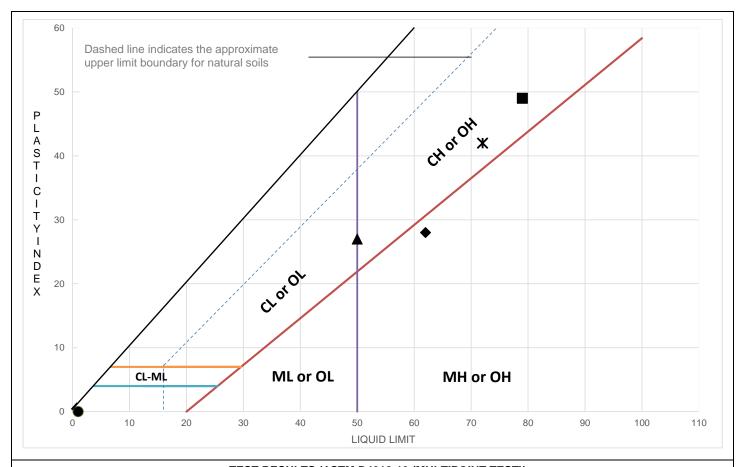
Project: Kalas Falls Residential Development

Client: D.R. Horton

Project No.: 06:24735 Date Reported: 3/2/2022

Office / Lab

ECS Southeast LLP - Raleigh


Address

5260 Greens Dairy Road Raleigh, NC 27616 Office Number / Fax

(919)861-9910 (919)861-9911

Tested by	Checked by	Approved by	Date Received
acreech	ssisell2	ssisell2	2/22/2022

LIQUID AND PLASTIC LIMITS TEST REPORT

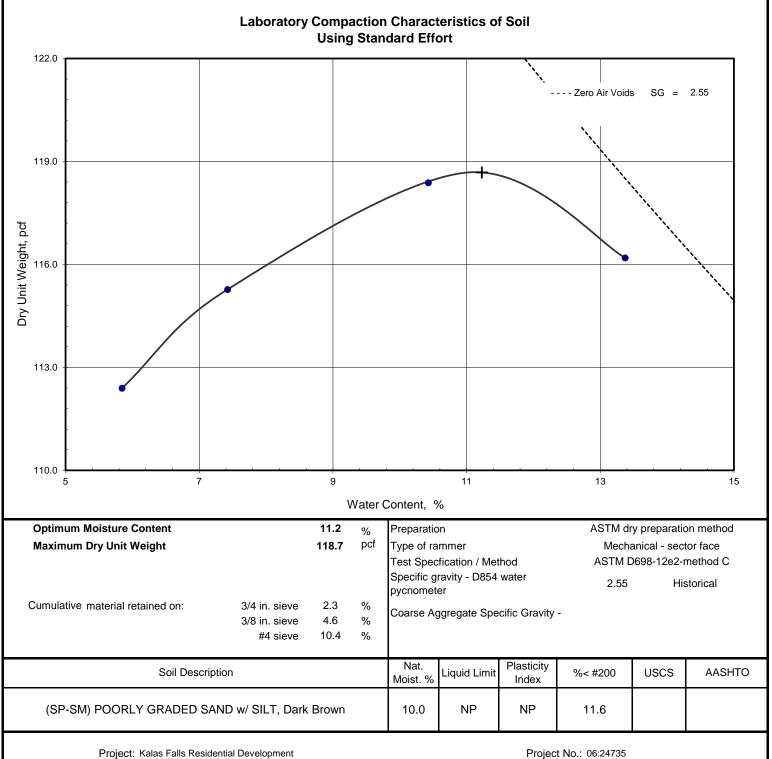
TEST RESULTS (ASTM D4318-10 (MULTIPOINT TEST))

			• • • • • • • • • • • • • • • • • • • •			. 0 (0	· · · · · · · · · · · · · · · · · · ·	0 10 (1110		_0.,,	
	Sample Location	Sample Number	Sample Depth (ft)	LL	PL	PI	%<#40	%<#200	AASHTO	USCS	Material Description
	B-31	S-1	1-2.5	79	30	49		60.0			(CH) SANDY FAT CLAY, Brownish- Yellow
•	B-35	S-2	3.5-5	62	34	28		41.5			(SM) SILTY SAND, Light Gray
A	SCM-02	S-1	1-2.5	50	23	27		39.6			(SC) CLAYEY SAND, Yellowish-Brown
•	SCM-05	S-1	1-2.5	NP	NP	NP		21.8			(SM) SILTY SAND, Light Olive Brown
*	SCM-08	S-1	1-2.5	72	30	42		73.0			(CH) FAT CLAY w/ SAND, Brownish- Yellow

Project: Kalas Falls Residential Development

Client: D.R. Horton

Project No.: 06:24735 Date Reported: 3/2/2022


ECS Southeast LLP - Raleigh

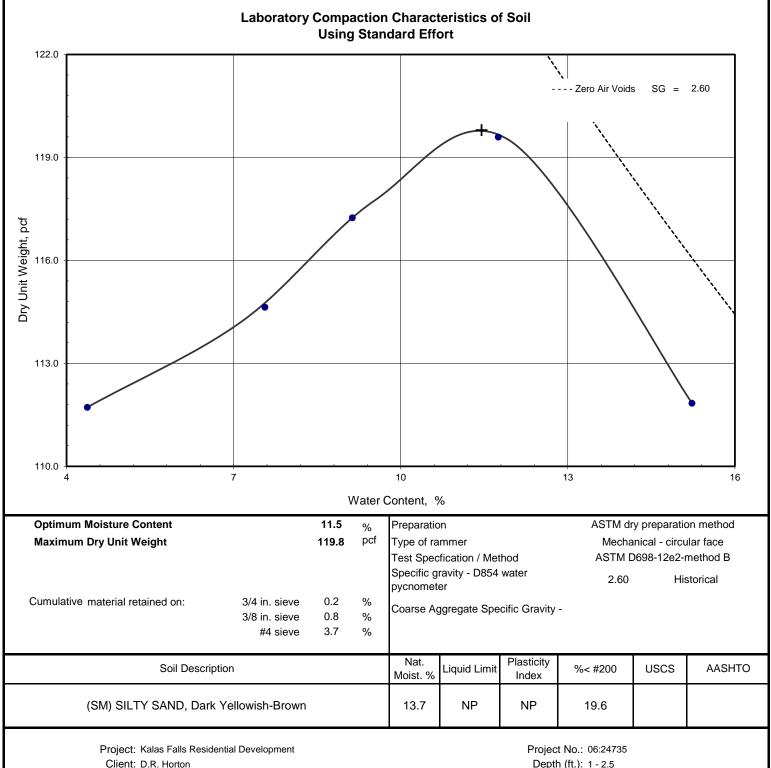
Address

5260 Greens Dairy Road Raleigh, NC 27616 Office Number / Fax

(919)861-9910 (919)861-9911

Tested by	Checked by	Approved by	Date Received
acreech	ssisell2	ssisell2	2/22/2022

Client: D.R. Horton Sample / Source B-28 Test Reference/No.: Project No.: 06:24735 Depth (ft.): 1 - 2.5 Sample No.: S-1 Date Reported: 3/4/2022


Office / Lab Address Office Number / Fax

ECS Southeast LLP - Raleigh

5260 Greens Dairy Road Raleigh, NC 27616 (919)861-9910 (919)861-9911

n, NC 27616 (919)861-9911

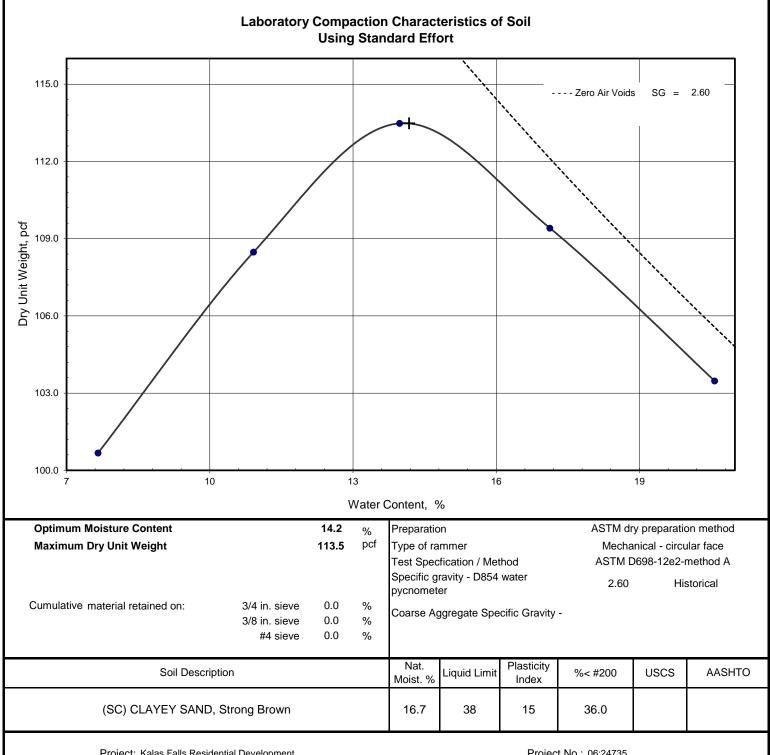
Tested by	Checked by	Approved by	Date Received	Remarks
acreech	ssisell2	ssisell2	2/22/2022	

Client: D.R. Horto Sample / Source B-06 Test Reference/No.: Project No.: 06:24735

Depth (ft.): 1 - 2.5

Sample No.: S-1

Date Reported: 3/4/2022


Office / Lab Address Office Number / Fax

ECS Southeast LLP - Raleigh

5260 Greens Dairy Road Raleigh, NC 27616 (919)861-9910 (919)861-9911

eigh, NC 27616 (919)861-9911

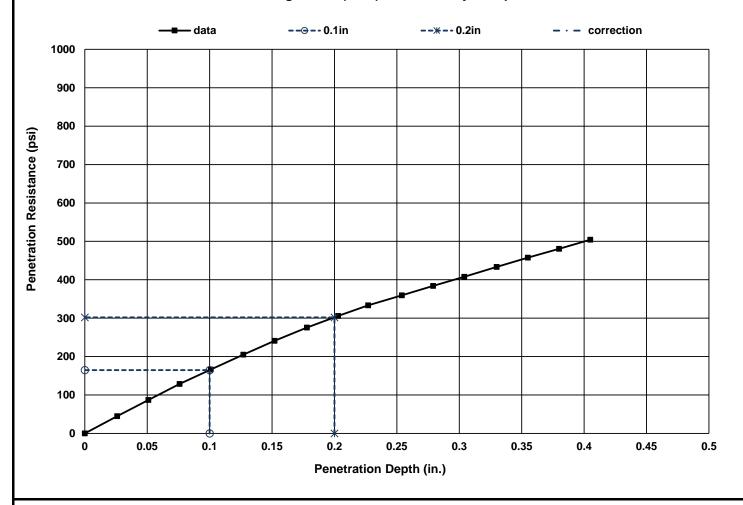
Tested by	Checked by	Approved by	Date Received	Remarks
acreech	ssisell2	ssisell2	2/22/2022	

Project: Kalas Falls Residential Development

Client: D.R. Horton Sample / Source B-13 Test Reference/No.:

Project No.: 06:24735 Depth (ft.): 1 - 2.5 Sample No.: S-1 Date Reported: 3/4/2022

Office / Lab Address Office Number / Fax


ECS Southeast LLP - Raleigh

5260 Greens Dairy Road Raleigh, NC 27616

(919)861-9910 (919)861-9911

Tested by	Checked by	Approved by	Date Received	Remarks
	ssisell2	ssisell2	2/22/2022	

California Bearing Ratios (CBR) of Laboratory-Compacted Soils

TEST RESULTS (ASTM D1883-16)

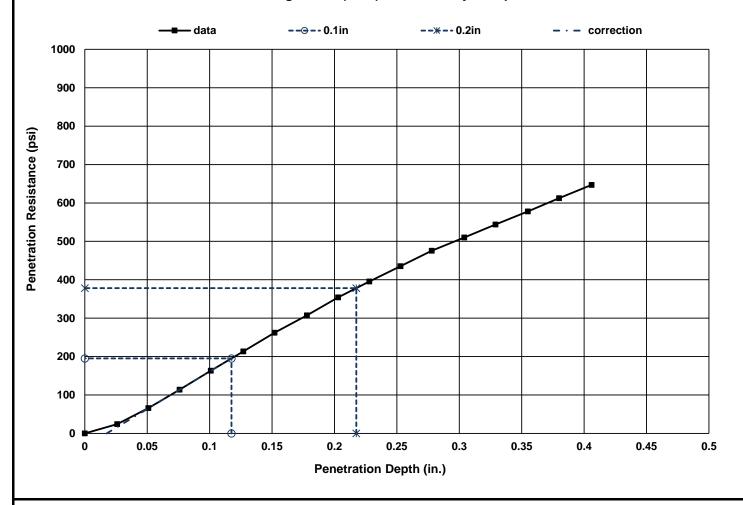
	Molded			Soaked		CBF	R (%)					
Density (pcf)	Percent of Max. Dens.	Moisture (%)	Density (pcf)	Percent of Max. Dens.	Moisture (%)	0.1 in.	0.2 in.	Linearty Correction (in.)		Surcharge (lbs.)		well (%)
114.4	96.4	10.1	110.4	93.0	14.1	16.5	20.1	0.00	1	0	0	.02
	M	aterial Description	on		AASHTO	USCS	MAX. Dens. (pcf)	Optimum Moisture (%)	LL	ΡI	% Fines	% Gravel
(SP-SM)	POORLY G	RADED SAND	w/ SILT, D	ark Brown			118.7	11.2	NP	NP		

Project: Kalas Falls Residential Development

Client: D.R. Horton Sample / Source B-28 Test Reference/No.: 1 Project No.: 06:24735 Depth (ft.): 1 - 2.5 Sample No.: S-1

Date Reported: 3/4/2022

Office / Lab Address Office Number / Fax


ECS Southeast LLP - Raleigh

5260 Greens Dairy Road Raleigh, NC 27616 (919)861-9910

(919)861-9911

Tested by	Checked by	Approved by	Date Received	Remarks
acreech	ssisell2	ssisell2	2/22/2022	

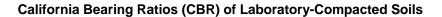
California Bearing Ratios (CBR) of Laboratory-Compacted Soils

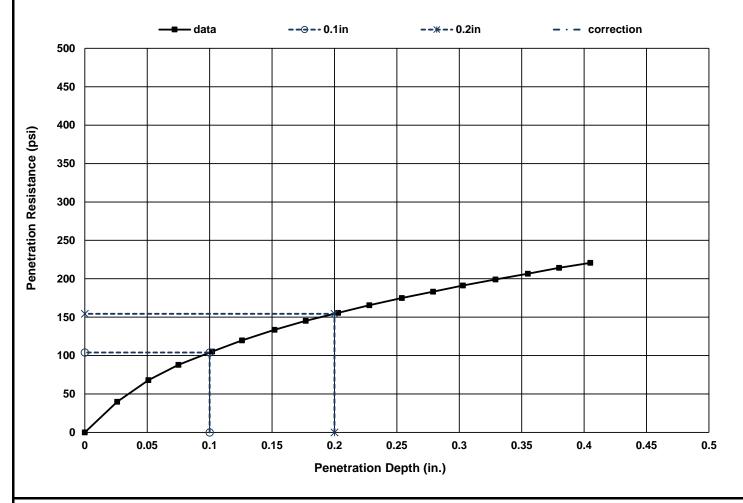
TEST RESULTS (ASTM D1883-16)

	Molded			Soaked		СВЕ	R (%)					_
Density (pcf)	Percent of Max. Dens.	Moisture (%)	Density (pcf)	Percent of Max. Dens.	Moisture (%)	0.1 in.	0.2 in.	Linearty Correction (in.)		Surcharge (lbs.)		well (%)
116.2	97.0	11.3	114.7	95.7	12.7	19.5	25.2	0.02	1	0	0	.00
	M	aterial Description	on		AASHTO	USCS	MAX. Dens. (pcf)	Optimum Moisture (%)	LL	ΡI	% Fines	% Gravel
(SM) SILTY S	SAND, Dark Ye	llowish-Bro	wn			119.8	11.5	NP	NP		

Project: Kalas Falls Residential Development

Client: D.R. Horton Sample / Source B-06 Test Reference/No.: 1 Project No.: 06:24735
Depth (ft.): 1 - 2.5
Sample No.: S-1
Date Reported: 3/4/2022


Office / Lab Address Office Number / Fax


ECS Southeast LLP - Raleigh

5260 Greens Dairy Road Raleigh, NC 27616 (919)861-9910

(919)861-9911

Test	ted by	Checked by	Approved by	Date Received	Remarks
acre	eech	ssisell2	ssisell2	2/22/2022	

TEST RESULTS (ASTM D1883-16)

	Molded				СВЕ	R (%)				Swell		
Density (pcf)	Percent of Max. Dens.	Moisture (%)	Density (pcf) Percent of Max. Dens		Moisture (%)	0.1 in.	0.2 in.	Linearty Correction (in.)	Surci (lb	narge s.)	_	well (%)
106.8	94.1	14.3	101.3	89.3	19.8	10.4	10.3	0.00	10		0.52	
	Material Description					USCS	MAX. Dens. (pcf)	Optimum Moisture (%)	LL	PI	% Fines	% Gravel
	(SC) CLAYEY SAND, Strong B						113.5	14.2	38	15		

Project: Kalas Falls Residential Development

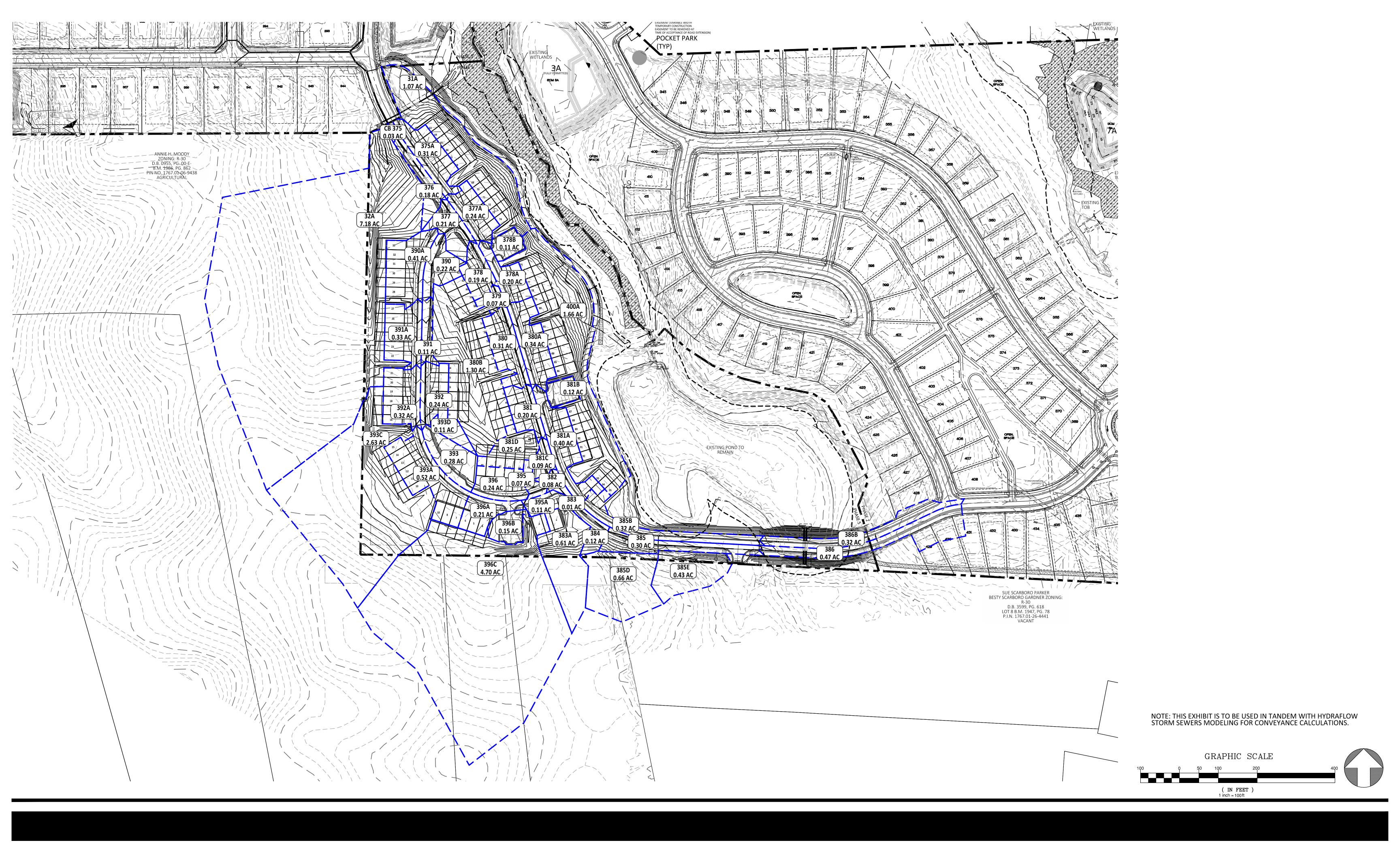
Client: D.R. Horton Sample / Source B-13 Test Reference/No.: 1 Project No.: 06:24735

Depth (ft.): 1 - 2.5

Sample No.: S-1

Date Reported: 3/4/2022

Office / Lab Address Office Number / Fax


ECS Southeast LLP - Raleigh

5260 Greens Dairy Road Raleigh, NC 27616 (919)861-9910

(919)861-9911

Tested by	Checked by	Approved by	Date Received	Remarks
	ssisell2	ssisell2	2/22/2022	

APPENDIX B DRAINAGE AREA MAPS

KALAS FALLS PHASE 5

APPENDIX C STORM CONVEYANCE CALCULATIONS

Project Name: Kalas Falls PH5

Project Number: R180115

Date: 12/20/2024

Calculated By: SM

Checked By: JK

Input data in blue boxes

	Rational C-Value Calculations for Inlet Areas														
Area ID	Drainage Area (ac)	Roof (ac)	Roadway (ac)	Driveway (ac)	Sidewalk (ac)	Open Space (ac)	Pasture (ac)	Wooded (ac)	Offsite Impervious	Impervious C	Open Space C	Pasture C	Wooded C	Composite C Value	
Onsite	12.85	2.52	2.32	1.31	0.71	5.77	0.00	0.00	0.20	0.9	0.22	0.38	0.3	0.59	
Offsite	5.64	0.00	0.00	0.00	0.00	0.00	1.54	4.10	0.00	0.9	0.22	0.38	0.3	0.32	

Project Name: Kalas Falls Phase 5

Project Number: 180115

Date: 12/23/2024

Calculated By: SM

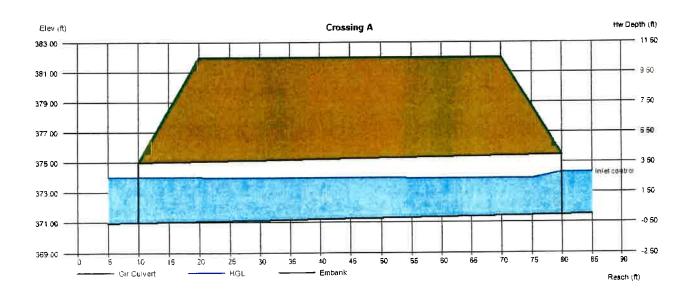
Checked By: JK

	Rip Rap Dissipater Calculations 10-Year Storm														
Outlet ID	Pipe Diameter (in)	Pipe Velocity (fps)	Stone Class	Stone Depth (in)	Stone Material (tons)	Geo- Textile (SY)	Start Width (ft)	End Width (ft)	Length (ft)						
FES 10 (TEMP)	12	0.25	В	12	1	4	2	6	4						
FES 11 (TEMP)	12	0.17	В	12	1	4	2	6	4						
FES 20 (TEMP)	36	3.71	В	12	7	22	6	18	12						
FES 30B	36	4.17	В	12	7	22	6	18	12						
FES 400A	18	3.25	В	12	2	7	3	9	6						

Calculations were determined from NCDOT Detail 876.02 Guide for Rip Rap at Pipe Outlets

Values shown in table above are minimum quantities and dimensions

Culvert Report


10 Yr. 1= WW

Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc.

Thursday, May 18 2017

Crossing A

))/2
l
2
3
Control

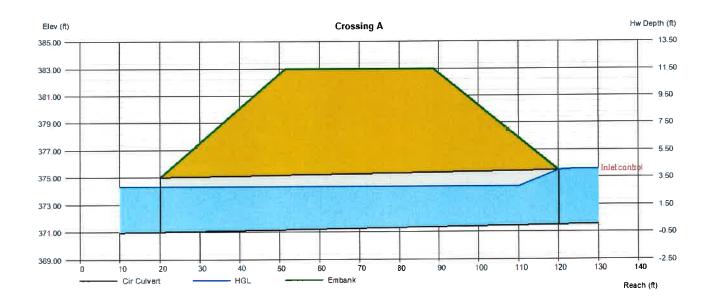

Culvert Report

Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc.

Tuesday, Apr 18 2017

Crossing A

Invert Elev Dn (ft)	= 371.00	Calculations	
Pipe Length (ft)	= 100.00	Qmin (cfs)	= 95.00
Slope (%)	= 0.50	Qmax (cfs)	= 150.00
Invert Èlev Up (ft)	= 371.50	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Cir	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 95.00
No. Barrels	= 2	Qpipe (cfs)	= 95.00
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Inlet Edge	= Sq Edge	Veloc Dn (ft/s)	= 4.64
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	Veloc Up (ft/s)	= 5.72
		HGL Dn (ft)	= 374.04
Embankment		HGL Up (ft)	= 374.01
Top Elevation (ft)	= 383.00	Hw Elev (ft)	= 374.52
Top Width (ft)	= 37.00	Hw/D (ft)	= 0.76
Crest Width (ft)	= 100.00	Flow Regime	= Inlet Control


Culvert Report

Hydraflow Express Extension for AutoCAD® Civil 3D® 2012 by Autodesk, Inc.

Tuesday, Apr 18 2017

Crossing A

= 371.00	Calculations	
= 100.00	Qmin (cfs)	= 150.00
= 0.50	Qmax (cfs)	= 150.00
= 371.50	Tailwater Elev (ft)	= (dc+D)/2
= 48.0		
= Cir	Highlighted	
= 48.0	Qtotal (cfs)	= 150.00
= 2	Qpipe (cfs)	= 150.00
= 0.012	Qovertop (cfs)	= 0.00
= Sq Edge	Veloc Dn (ft/s)	= 6.74
= 0.0098, 2, 0.0398, 0.67, 0.5	Veloc Up (ft/s)	= 7.91
	HGL Dn (ft)	= 374.31
	HGL Up (ft)	= 374.32
= 383.00	Hw Elev (ft)	= 375.62
= 37.00	Hw/D (ft)	= 1.03
= 100.00	Flow Regime	= Inlet Control
	= 100.00 = 0.50 = 371.50 = 48.0 = Cir = 48.0 = 2 = 0.012 = Sq Edge = 0.0098, 2, 0.0398, 0.67, 0.5 = 383.00 = 37.00	= 100.00 Qmin (cfs) = 0.50 Qmax (cfs) = 371.50 Tailwater Elev (ft) = 48.0 = Cir Highlighted = 48.0 Qtotal (cfs) = 2 Qpipe (cfs) = 0.012 Qovertop (cfs) = Sq Edge Veloc Dn (ft/s) = 0.0098, 2, 0.0398, 0.67, 0.5 Veloc Up (ft/s) HGL Dn (ft) HGL Up (ft) = 383.00 Hw/D (ft)

Gutter Spread by Limited Area

Armfield Creek Place (27' B-B)

0.015

Determine maximum area to on-grade inlet using input factors as shown below.

2.00 ft.

7.50 ft.

Inlet No. 1 Allowable Spread=Pvm't + Gutter Width: 7.5 ft

Compute "C" Factor: One Half R/W Width: One Half B/B Width: 25

Paved Area "C": 0.95

Road:

0.70

Manning's n =

13.5 S/W Width Grass Area

0.2

Date:

12/20/24

PONDING RISE ON CURB -

0.04

0.19

GUTTER LENGTH

Standard Curb and Gutter Profile (see diagram above)

Gutter Length (ft)

Gutter Slope (ft/ft)

Ponding Rise on Curb (ft)

0.05

3.33

NCDOT Std. 840.03 Inlet Type 1 **Inlet Types**

Weir C =

Composite Rational C = 0.76 I (2yr.) = 4.00 iph

0.02 Varies Manual Input Roadway X-slope =

Kalas Falls PH5

								Max	Flow for Li	mited Spre	ead							1
C.B.	Long.	ROAD	E. O. P.	Weir	C&G Flow	C&G Flow	C&G	Road	Road	Total	Total	MAX Q FOR	On-Grade	Max Drainage	Actual Draina	ige Area	Check	1
NUMBER	Slope	X-SLOPE	Depth	Depth	Area 1	Area 2	WP	Flow Area	WP	Flow A	WP	SPREAD, CFS	Spread	Area (S.F.)	Area (S.F.)	Area (ACRE)		1
390A-CB	0.019	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.54	7.50	20455	18052	0.41	GOOD	
390-CB	0.019	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.54	7.50	20455	9666	0.22	GOOD	
391A-CB	0.019	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.54	7.50	20455	14478	0.33	GOOD	
391-CB	0.019	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.54	7.50	20455	4809	0.11	GOOD	
392A-CB	0.019	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.54	7.50	20455	13982	0.32	GOOD	
392-CB	0.019	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.54	7.50	20455	10647	0.24	GOOD	
393A/393B-CB	0.019	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.54	7.50	40909	22658	0.52	GOOD	*
393-CB	0.019	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.54	7.50	20455	12130	0.28	GOOD	
395A-CB	0.008	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.01	7.50	13460	4586	0.11	GOOD	
395-CB	0.008	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.01	7.50	13460	3179	0.07	GOOD	
396A-CB	0.008	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.01	7.50	13460	9273	0.21	GOOD	
396B-CB	0.008	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.01	7.50	13460	6744	0.15	GOOD	
396-CB	0.008	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.01	7.50	13460	10609	0.24	GOOD	

E. O. P. - Edge of Pavement

A - Area (s. f.)

Note: Program uses Manning's formula for open channel flow.

C&G - Curb and gutter

Project:

Gutter Width=

Total Allow. Spread =

V - Velocity (fps)

WP - Wetted Perimeter (ft.)

Z:\Jobs\9900\Watkins Property\Documents\Schedules\Gutter Spread Calcs

Gutter Spread by Limited Area

Determine maximum area to on-grade inlet using input factors as shown below.

Kalas Falls PH5 Graymont Oaks Dr. (27' B-B) Project: Road: Date:

Allowable Spread=Pvm't + Gutter Width: 7.5 ft Inlet No. 1

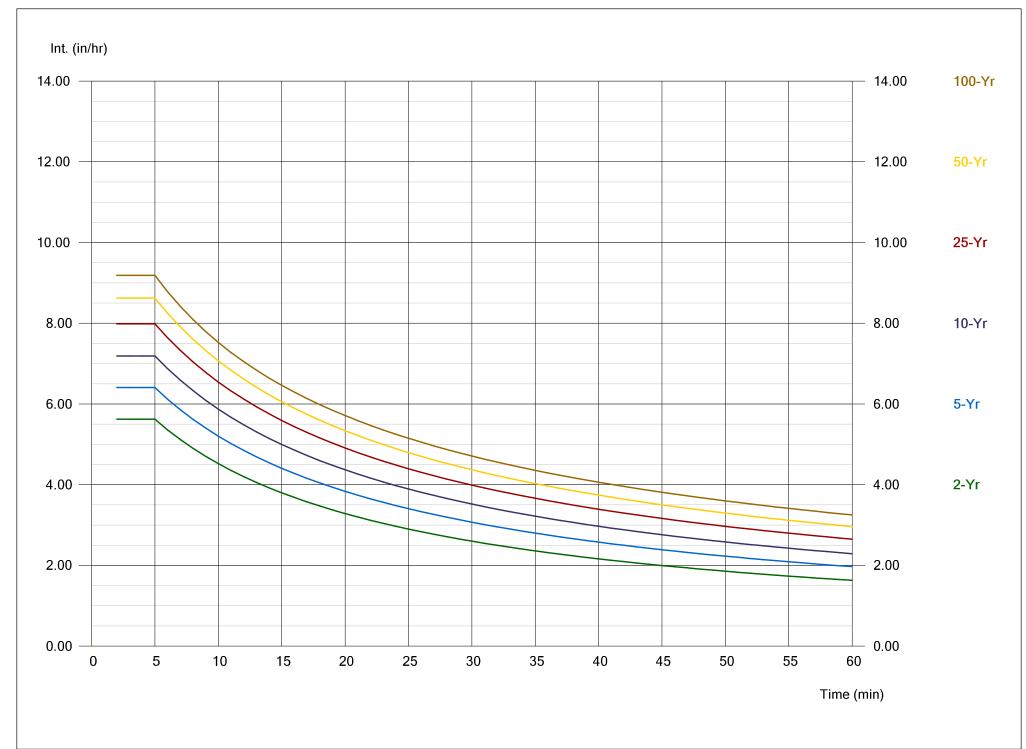
One Half R/W Width: Compute "C" Factor: 25 One Half B/B Width: 13.5 S/W Width Paved Area "C": 0.95 Grass Area 0.2

0.70 0.05 Gutter Width= 2.00 ft. 7.50 ft. Total Allow. Spread = Manning's n = 0.015 Weir C = 3.33

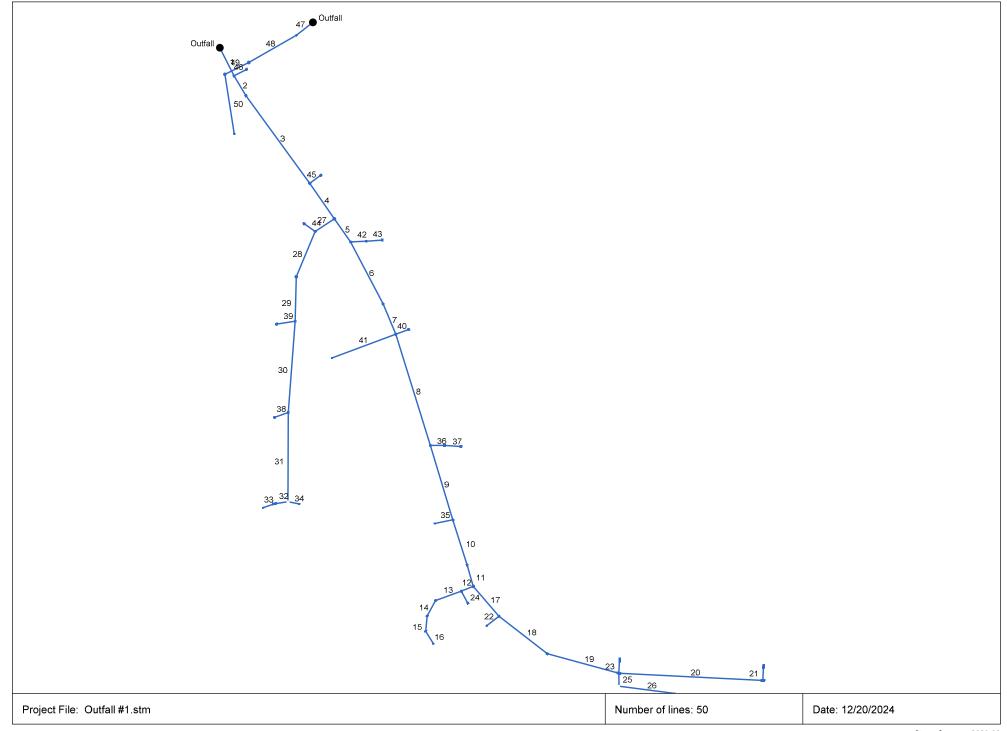
> Inlet Type 1 Inlet Types NCDOT Std. 840.03

Composite Rational C = 0.76 I (2yr.) = 4.00 iph

Roadway X-slope = 0.02 Varies Manual Input


12/20/24	ROASTIOWAREA CAG ART	Z-/-/C86 AREA
	Standard Curb and Gutter Pro	file (see diagram above)
	Gutter Length (ft)	2
	Gutter Slope (ft/ft)	0.04
	Ponding Rise on Curb (ft)	0.19

								Max Flow	for Limit	ed Spread							
C.B.	Long.	ROAD	E. O. P.	Weir	C&G Flow	C&G Flow	C&G	Road	Road	Total	Total	MAX Q FOR	On-Grade	Max Drainage	tual Drainage A	al Drainage	Check
NUMBER	Slope	X-SLOPE	Depth	Depth	Area 1	Area 2	WP	Flow Area	WP	Flow A	WP	SPREAD, CFS	Spread	Area (S.F.)	Area (S.F.)	Area (ACRE)	•
375A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	13291	0.31	GOOD
376-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	7896	0.18	GOOD
377A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	10439	0.24	GOOD
377-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	9361	0.21	GOOD
378A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	8896	0.20	GOOD
378B-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	4939	0.11	GOOD
378-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	8137	0.19	GOOD
379-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	3059	0.07	GOOD
380A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	15026	0.34	GOOD
380-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	13389	0.31	GOOD
381A-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	17358	0.40	GOOD
381B-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	5036	0.12	GOOD
381-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	8877	0.20	GOOD
381C-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	3965	0.09	GOOD
382-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	3553	0.08	GOOD
383-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	10384	281	0.01	GOOD
384-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	10384	5116	0.12	GOOD
385/385A-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	13125	0.30	GOOD
385B/385C-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	13958	0.32	GOOD
386/386A-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	20662	0.47	GOOD
386B/386C-CB	0.005	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	0.78	7.50	20769	14052	0.32	GOOD
EX. 375-CB	0.017	0.020	0.11	0.11	0.08	0.22	2.19	0.30	5.50	0.61	7.69	1.43	7.50	19091	1103	0.03	GOOD


E. O. P. - Edge of Pavement C&G - Curb and gutter

A - Area (s. f.) V - Velocity (fps) Note: Program uses Manning's formula for open channel flow.

WP - Wetted Perimeter (ft.)

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 10-Year Report

ine	Alignment Flow Data											Line ID					
No.	Dnstr Line No.		Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	57.000	63.252	Comb	0.00	0.01	0.59	10.0	357.90	0.68	358.29	36	Cir	0.013	1.50	364.82	Ex. 375 Out
2	1	41.866	-4.047	Comb	0.00	0.18	0.59	10.0	358.40	1.07	358.85	36	Cir	0.013	0.50	365.27	Pipe - (20)
3	2	196.394	-5.160	Comb	0.00	0.21	0.59	10.0	358.95	1.64	362.17	36	Cir	0.013	1.50	368.56	Pipe - (19)
4	3	78.359	1.332	МН	0.00	0.01	0.59	10.0	362.27	1.57	363.50	36	Cir	0.013	1.00	370.06	Pipe - (18)
5	4	51.020	-0.352	Comb	0.00	0.19	0.59	10.0	364.00	1.90	364.97	30	Cir	0.013	1.30	370.73	Pipe - (16)
6	5	126.897	7.290	Comb	0.00	0.07	0.59	10.0	365.07	1.42	366.87	30	Cir	0.013	0.50	372.89	Pipe - (15)
7	6	59.532	5.165	Comb	0.00	0.31	0.59	10.0	366.97	1.73	368.00	30	Cir	0.013	1.50	373.89	Pipe - (14)
8	7	210.964	5.328	Comb	0.00	0.20	0.59	10.0	368.10	1.73	371.75	30	Cir	0.013	1.44	377.52	Pipe - (13)
9	8	140.875	0.547	Comb	0.00	0.09	0.59	10.0	371.86	0.65	372.77	30	Cir	0.013	1.50	379.89	Pipe - (12) (1)
10	9	86.180	-0.829	Comb	0.00	0.08	0.59	10.0	373.07	0.61	373.60	30	Cir	0.013	0.50	381.39	Pipe - (12)
11	10	40.124	1.547	мн	0.00	0.01	0.59	10.0	373.70	0.75	374.00	24	Cir	0.013	1.00	381.95	Pipe - (51)
12	11	23.025	83.735	Comb	0.00	0.07	0.59	10.0	375.70	0.52	375.82	24	Cir	0.013	1.50	382.14	Pipe - (50) (1)
13	12	49.905	2.092	Comb	0.00	0.24	0.59	10.0	376.02	0.56	376.30	24	Cir	0.013	1.07	382.55	Pipe - (50)
14	13	31.516	-41.901	Comb	0.00	0.21	0.59	10.0	376.40	0.98	376.71	24	Cir	0.013	0.65	382.87	Pipe - (49)
15	14	27.860	-22.271	Comb	0.00	0.15	0.59	10.0	376.81	0.57	376.97	24	Cir	0.013	0.99	382.23	Pipe - (48)
16	15	25.968	-37.432	DrGrt	0.00	4.70	0.32	10.0	377.47	0.89	377.70	18	Cir	0.013	1.00	380.79	Pipe - (58)
17	11	71.389	-24.767	Comb	0.00	0.01	0.59	10.0	374.10	0.53	374.48	24	Cir	0.013	1.50	382.72	Pipe - (11)
18	17	110.816	-11.425	Comb	0.00	0.12	0.59	10.0	374.58	0.50	375.13	24	Cir	0.013	0.66	382.29	Pipe - (10)
19	18	133.897	-22.601	Comb	0.00	0.30	0.59	10.0	375.23	0.50	375.90	24	Cir	0.013	2.18	381.56	Pipe - (9)
20	19	260.141	-12.381	Comb	0.00	0.47	0.59	10.0	377.00	0.50	378.30	18	Cir	0.013	1.50	382.86	Pipe - (8)
21	20	25.751	-90.000	Comb	0.00	0.32	0.59	10.0	378.55	0.66	378.72	15	Cir	0.013	1.00	382.92	Pipe - (7)
22	17	28.157	93.178	DrGrt	0.00	0.61	0.59	10.0	376.03	2.24	376.66	15	Cir	0.013	1.00	380.41	Pipe - (59)
23	19	24.491	-102.38	2 Comb	0.00	0.32	0.59	10.0	377.45	0.53	377.58	15	Cir	0.013	1.00	381.56	Pipe - (55)
⊃roject	t File: Out	fall #1.stm										Number	of lines: 50			Date: 1	2/20/2024

Line	Alignment Flow Data											Line ID					
No.	Dnstr Line No.	Line Length (ft)	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
24	12	24.507	-95.925	Comb	0.00	0.11	0.59	10.0	376.87	0.73	377.05	15	Cir	0.013	1.00	382.14	Pipe - (70)
25	19	23.549	74.368	DrGrt	0.00	0.66	0.32	10.0	376.05	0.72	376.22	15	Cir	0.013	1.49	381.51	Pipe - (60)
26	25	100.850	-82.180	DrGrt	0.00	0.43	0.32	10.0	376.32	0.53	376.85	15	Cir	0.013	1.00	377.88	Pipe - (71)
27	4	41.676	91.283	Comb	0.00	0.22	0.59	10.0	364.00	0.84	364.35	24	Cir	0.013	1.42	370.22	Pipe - (57)
28	27	88.898	-34.214	МН	0.00	0.01	0.59	10.0	364.75	2.25	366.75	24	Cir	0.013	0.41	372.10	Pipe - (56)
29	28	80.422	-21.032	Comb	0.00	0.11	0.59	10.0	366.95	2.00	368.56	24	Cir	0.013	1.48	373.82	Pipe - (39)
30	29	166.115	2.964	Comb	0.00	0.24	0.59	10.0	369.06	1.57	371.67	18	Cir	0.013	1.39	376.92	Pipe - (37)
31	30	161.824	-4.236	Comb	0.00	0.28	0.59	10.0	371.77	1.93	374.90	18	Cir	0.013	2.22	380.04	Pipe - (36)
32	31	24.500	81.321	Comb	0.00	0.52	0.59	10.0	375.00	0.69	375.17	18	Cir	0.013	0.50	380.20	Pipe - (42)
33	32	22.252	-10.400	DrGrt	0.00	2.63	0.32	10.0	375.42	0.99	375.64	15	Cir	0.013	1.00	378.27	Pipe - (61)
34	31	20.817	-78.889	DrGrt	0.00	0.11	0.59	10.0	375.15	0.72	375.30	15	Cir	0.013	1.00	379.93	Pipe - (62)
35	9	32.881	95.114	DrGrt	0.00	0.25	0.59	10.0	374.07	1.09	374.43	18	Cir	0.013	1.00	377.38	Pipe - (69)
36	8	25.642	-72.321	Comb	0.00	0.40	0.59	10.0	372.50	0.70	372.68	15	Cir	0.013	0.50	377.65	Pipe - (54)
37	36	29.330	3.216	Comb	0.00	0.12	0.59	10.0	372.80	3.00	373.68	15	Cir	0.013	1.00	378.77	Pipe - (22)
38	30	26.271	65.734	Comb	0.00	0.32	0.59	10.0	371.92	1.45	372.30	15	Cir	0.013	1.00	377.11	Pipe - (41)
39	29	34.056	79.521	Comb	0.00	0.33	0.59	10.0	368.91	0.65	369.13	15	Cir	0.013	1.00	373.82	Pipe - (40)
40	7	24.427	-88.012	Comb	0.00	0.34	0.59	10.0	368.75	1.06	369.01	15	Cir	0.013	1.00	374.05	Pipe - (43)
41	7	123.325	91.973	DrGrt	0.00	1.30	0.59	10.0	368.30	0.54	368.97	18	Cir	0.013	1.00	372.49	Pipe - (63)
42	5	28.012	-57.519	Comb	0.00	0.20	0.59	10.0	365.72	1.36	366.10	15	Cir	0.013	0.50	371.06	Pipe - (24)
43	42	29.509	-1.479	Comb	0.00	0.11	0.59	10.0	366.20	0.51	366.35	15	Cir	0.013	1.00	371.27	Pipe - (53)
44	27	24.451	69.302	Comb	0.00	0.41	0.59	10.0	364.85	1.02	365.10	18	Cir	0.013	1.00	370.23	Pipe - (17)
45	3	24.503	-90.507	Comb	0.00	0.24	0.59	10.0	363.42	0.94	363.65	15	Cir	0.013	1.00	368.56	Pipe - (28)
46	1	25.748	-90.230	Comb	0.00	0.31	0.59	10.0	359.79	0.66	359.96	18	Cir	0.013	1.00	364.57	Pipe - (26)
Project	File: Out	fall #1.stm										Number	of lines: 50			Date: 1	2/20/2024

Storm Sewer Inventory Report

ine		Aligni	ment			Flow	/ Data					Physica	l Data				Line ID
No.	Dnstr Line No.	Length		Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
47	End	38.074	141.899	DrGrt	0.00	1.07	0.32	10.0	353.31	0.50	353.50	36	Cir	0.013	0.50	359.06	Pipe - (67)
48	47	98.975	8.202	МН	0.00	0.01	0.59	10.0	353.61	0.50	354.10	30	Cir	0.013	0.15	364.91	Pipe - (66)
49	48	48.268	3.525	мн	0.00	0.01	0.59	10.0	354.21	0.99	354.69	30	Cir	0.013	0.96	364.48	Pipe - (65)
50	49	109.030	-72.571	DrGrt	0.00	7.18	0.32	10.0	355.19	2.35	357.75	24	Cir	0.013	1.00	360.04	Pipe - (29)
Project	t File: Out	fall #1.stm	l			1		1				Number	of lines: 50			Date: 1	2/20/2024

Structure Report

Project File: Outfall #1.stm

Struct	Structure ID	Junction	Rim		Structure			Line Out			Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	EX. CB 375	Combination	364.82	Rect	4.00	4.00	36	Cir	358.29	36 18	Cir Cir	358.40 359.79
2	376	Combination	365.27	Rect	4.00	4.00	36	Cir	358.85	36	Cir	358.95
3	377	Combination	368.56	Rect	4.00	4.00	36	Cir	362.17	36 15	Cir Cir	362.27 363.42
4	377B	Manhole	370.06	Cir	4.00	4.00	36	Cir	363.50	30 24	Cir Cir	364.00 364.00
5	378	Combination	370.73	Rect	4.00	4.00	30	Cir	364.97	30 15	Cir Cir	365.07 365.72
6	379	Combination	372.89	Rect	4.00	4.00	30	Cir	366.87	30	Cir	366.97
7	380	Combination	373.89	Rect	4.00	4.00	30	Cir	368.00	30 15 18	Cir Cir Cir	368.10 368.75 368.30
8	381	Combination	377.52	Rect	4.00	4.00	30	Cir	371.75	30 15	Cir Cir	371.86 372.50
9	381C	Combination	379.89	Rect	4.00	4.00	30	Cir	372.77	30 18	Cir Cir	373.07 374.07
10	382	Combination	381.39	Rect	4.00	4.00	30	Cir	373.60	24	Cir	373.70
11	382A	Manhole	381.95	Cir	4.00	4.00	24	Cir	374.00	24 24	Cir Cir	375.70 374.10
12	395	Combination	382.14	Rect	4.00	4.00	24	Cir	375.82	24 15	Cir Cir	376.02 376.87
13	396	Combination	382.55	Rect	4.00	4.00	24	Cir	376.30	24	Cir	376.40
14	396A	Combination	382.87	Rect	4.00	4.00	24	Cir	376.71	24	Cir	376.81
15	396B	Combination	382.23	Rect	4.00	4.00	24	Cir	376.97	18	Cir	377.47
16	396C	DropGrate	380.79	Rect	3.00	3.00	18	Cir	377.70			
17	383	Combination	382.72	Rect	4.00	4.00	24	Cir	374.48	24 15	Cir Cir	374.58 376.03

Number of Structures: 50

Run Date: 12/20/2024

Structure Report

Project File: Outfall #1.stm

Struct	Structure ID	Junction	Rim		Structure			Line Out	:		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
18	384	Combination	382.29	Rect	4.00	4.00	24	Cir	375.13	24	Cir	375.23
19	385	Combination	381.56	Rect	8.00	4.00	24	Cir	375.90	18 15 15	Cir Cir Cir	377.00 377.45 376.05
20	386	Combination	382.86	Rect	8.00	4.00	18	Cir	378.30	15	Cir	378.55
21	386A	Combination	382.92	Rect	8.00	4.00	15	Cir	378.72			
22	383A	DropGrate	380.41	Rect	3.00	3.00	15	Cir	376.66			
23	385A	Combination	381.56	Rect	8.00	4.00	15	Cir	377.58			
24	395A	Combination	382.14	Rect	4.00	4.00	15	Cir	377.05			
25	385B	DropGrate	381.51	Rect	3.00	3.00	15	Cir	376.22	15	Cir	376.32
26	385C	DropGrate	377.88	Rect	3.00	3.00	15	Cir	376.85			
27	390	Combination	370.22	Rect	4.00	4.00	24	Cir	364.35	24 18	Cir Cir	364.75 364.85
28	390B	Manhole	372.10	Cir	4.00	4.00	24	Cir	366.75	24	Cir	366.95
29	391	Combination	373.82	Rect	4.00	4.00	24	Cir	368.56	18 15	Cir Cir	369.06 368.91
30	392	Combination	376.92	Rect	4.00	4.00	18	Cir	371.67	18 15	Cir Cir	371.77 371.92
31	393	Combination	380.04	Rect	4.00	4.00	18	Cir	374.90	18 15	Cir Cir	375.00 375.15
32	393A	Combination	380.20	Rect	8.00	4.00	18	Cir	375.17	15	Cir	375.42
33	393B	DropGrate	378.27	Rect	3.00	3.00	15	Cir	375.64			
34	393C	DropGrate	379.93	Rect	3.00	3.00	15	Cir	375.30			
35	381D	DropGrate	377.38	Rect	3.00	3.00	18	Cir	374.43			
36	381A	Combination	377.65	Rect	4.00	4.00	15	Cir	372.68	15	Cir	372.80
37	381B	Combination	378.77	Rect	4.00	4.00	15	Cir	373.68			

Number of Structures: 50

Storm Sewers v2023.00

Run Date: 12/20/2024

Structure Report

Project File: Outfall #1.stm

	Junction	Rim	Shape Length Width S				Line Ou	t		Line In	
	Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
392A	Combination	377.11	Rect	4.00	4.00	15	Cir	372.30			
391A	Combination	373.82	Rect	4.00	4.00	15	Cir	369.13			
380A	Combination	374.05	Rect	4.00	4.00	15	Cir	369.01			
380B	DropGrate	372.49	Rect	3.00	3.00	18	Cir	368.97			
378A	Combination	371.06	Rect	4.00	4.00	15	Cir	366.10	15	Cir	366.20
378B	Combination	371.27	Rect	4.00	4.00	15	Cir	366.35			
390A	Combination	370.23	Rect	4.00	4.00	18	Cir	365.10			
377A	Combination	368.56	Rect	4.00	4.00	15	Cir	363.65			
375A	Combination	364.57	Rect	4.00	4.00	18	Cir	359.96			
31A	DropGrate	359.06	Rect	3.00	3.00	36	Cir	353.50	30	Cir	353.61
EX. 31	Manhole	364.91	Cir	4.00	4.00	30	Cir	354.10	30	Cir	354.21
EX. 32	Manhole	364.48	Cir	4.00	4.00	30	Cir	354.69	24	Cir	355.19
32A	DropGrate	360.04	Rect	3.00	3.00	24	Cir	357.75			
	391A 380A 380B 378A 378B 390A 377A 375A 31A EX. 31	391A Combination 380A Combination 380B DropGrate 378A Combination 378B Combination 390A Combination 377A Combination 375A Combination 31A DropGrate EX. 31 Manhole EX. 32 Manhole	392A Combination 377.11 391A Combination 373.82 380A Combination 374.05 380B DropGrate 372.49 378A Combination 371.06 378B Combination 371.27 390A Combination 370.23 377A Combination 368.56 375A Combination 364.57 31A DropGrate 359.06 EX. 31 Manhole 364.91 EX. 32 Manhole 364.48	392A Combination 377.11 Rect 391A Combination 373.82 Rect 380A Combination 374.05 Rect 380B DropGrate 372.49 Rect 378A Combination 371.06 Rect 378B Combination 371.27 Rect 390A Combination 370.23 Rect 377A Combination 368.56 Rect 375A Combination 364.57 Rect 31A DropGrate 359.06 Rect EX. 31 Manhole 364.91 Cir EX. 32 Manhole 364.48 Cir	392A Combination 377.11 Rect 4.00 391A Combination 373.82 Rect 4.00 380A Combination 374.05 Rect 4.00 380B DropGrate 372.49 Rect 3.00 378A Combination 371.06 Rect 4.00 378B Combination 371.27 Rect 4.00 390A Combination 370.23 Rect 4.00 377A Combination 368.56 Rect 4.00 375A Combination 364.57 Rect 4.00 31A DropGrate 359.06 Rect 3.00 EX. 31 Manhole 364.91 Cir 4.00 EX. 32 Manhole 364.48 Cir 4.00	392A Combination 377.11 Rect 4.00 4.00 391A Combination 373.82 Rect 4.00 4.00 380A Combination 374.05 Rect 4.00 4.00 380B DropGrate 372.49 Rect 3.00 3.00 378A Combination 371.06 Rect 4.00 4.00 378B Combination 371.27 Rect 4.00 4.00 390A Combination 370.23 Rect 4.00 4.00 377A Combination 368.56 Rect 4.00 4.00 375A Combination 364.57 Rect 4.00 4.00 31A DropGrate 359.06 Rect 3.00 3.00 EX. 31 Manhole 364.48 Cir 4.00 4.00 EX. 32 Manhole 364.48 Cir 4.00 4.00	392A Combination 377.11 Rect 4.00 4.00 15 391A Combination 373.82 Rect 4.00 4.00 15 380A Combination 374.05 Rect 4.00 4.00 15 380B DropGrate 372.49 Rect 3.00 3.00 18 378A Combination 371.06 Rect 4.00 4.00 15 378B Combination 371.27 Rect 4.00 4.00 15 390A Combination 370.23 Rect 4.00 4.00 18 377A Combination 368.56 Rect 4.00 4.00 15 375A Combination 364.57 Rect 4.00 4.00 18 31A DropGrate 359.06 Rect 3.00 3.00 36 EX. 31 Manhole 364.48 Cir 4.00 4.00 30	392A Combination 377.11 Rect 4.00 4.00 15 Cir 391A Combination 373.82 Rect 4.00 4.00 15 Cir 380A Combination 374.05 Rect 4.00 4.00 15 Cir 380B DropGrate 372.49 Rect 3.00 3.00 18 Cir 378A Combination 371.06 Rect 4.00 4.00 15 Cir 378B Combination 371.27 Rect 4.00 4.00 15 Cir 390A Combination 370.23 Rect 4.00 4.00 18 Cir 377A Combination 368.56 Rect 4.00 4.00 15 Cir 375A Combination 364.57 Rect 4.00 4.00 18 Cir 31A DropGrate 359.06 Rect 3.00 3.00 36 Cir EX. 31	392A Combination 377.11 Rect 4.00 4.00 15 Cir 372.30 391A Combination 373.82 Rect 4.00 4.00 15 Cir 369.13 380A Combination 374.05 Rect 4.00 4.00 15 Cir 369.01 380B DropGrate 372.49 Rect 3.00 3.00 18 Cir 368.97 378A Combination 371.27 Rect 4.00 4.00 15 Cir 366.30 390A Combination 370.23 Rect 4.00 4.00 15 Cir 365.10 377A Combination 368.56 Rect 4.00 4.00 15 Cir 363.65 375A Combination 364.57 Rect 4.00 4.00 18 Cir 359.96 31A DropGrate 359.06 Rect 3.00 3.00 36 Cir 353.50 EX.	392A Combination 377.11 Rect 4.00 4.00 15 Cir 372.30 391A Combination 373.82 Rect 4.00 4.00 15 Cir 369.13 380A Combination 374.05 Rect 4.00 4.00 15 Cir 369.01 380B DropGrate 372.49 Rect 3.00 3.00 18 Cir 368.97 378A Combination 371.06 Rect 4.00 4.00 15 Cir 366.10 15 378B Combination 370.23 Rect 4.00 4.00 15 Cir 366.35 390A Combination 370.23 Rect 4.00 4.00 18 Cir 365.10 377A Combination 368.56 Rect 4.00 4.00 18 Cir 359.96 31A DropGrate 359.06 Rect 3.00 3.00 36 Cir 354.10 30	Sect Sect

Number of Structures: 50 Run Date: 12/20/2024

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Ex. 375 Out	38.57	36	Cir	57.000	357.90	358.29	0.684	360.59	360.31	1.35	360.31	End	Combination
2	Pipe - (20)	37.85	36	Cir	41.866	358.40	358.85	1.075	360.31	360.85	0.44	360.85	1	Combination
3	Pipe - (19)	37.96	36	Cir	196.394	358.95	362.17	1.640	360.85	364.17	n/a	364.17	2	Combination
4	Pipe - (18)	36.99	36	Cir	78.359	362.27	363.50	1.570	364.17	365.48	0.87	365.48	3	Manhole
5	Pipe - (16)	26.35	30	Cir	51.020	364.00	364.97	1.901	365.48	366.72	1.04	366.72	4	Combination
6	Pipe - (15)	25.26	30	Cir	126.897	365.07	366.87	1.418	366.72	368.58	0.39	368.58	5	Combination
7	Pipe - (14)	25.19	30	Cir	59.532	366.97	368.00	1.730	368.58	369.71	n/a	369.71	6	Combination
8	Pipe - (13)	20.28	30	Cir	210.964	368.10	371.75	1.730	369.71	373.28	n/a	373.28 j	7	Combination
9	Pipe - (12) (1)	18.55	30	Cir	140.875	371.86	372.77	0.646	373.28	374.23	0.91	374.23	8	Combination
10	Pipe - (12)	17.77	30	Cir	86.180	373.07	373.60	0.615	374.40	375.03	n/a	375.03	9	Combination
11	Pipe - (51)	17.60	24	Cir	40.124	373.70	374.00	0.747	375.18	375.51	0.74	375.51	10	Manhole
12	Pipe - (50) (1)	11.02	24	Cir	23.025	375.70	375.82	0.521	376.90	377.02	0.73	377.75	11	Combination
13	Pipe - (50)	10.76	24	Cir	49.905	376.02	376.30	0.561	377.75	377.47	0.52	377.47	12	Combination
14	Pipe - (49)	9.99	24	Cir	31.516	376.40	376.71	0.984	377.47	377.84	0.30	377.84	13	Combination
15	Pipe - (48)	9.32	24	Cir	27.860	376.81	376.97	0.574	377.86	378.06	0.44	378.06	14	Combination
16	Pipe - (58)	8.83	18	Cir	25.968	377.47	377.70	0.886	378.58	378.85	0.57	378.85	15	DropGrate
17	Pipe - (11)	8.03	24	Cir	71.389	374.10	374.48	0.532	375.51	375.49	n/a	375.49	11	Combination
18	Pipe - (10)	6.37	24	Cir	110.816	374.58	375.13	0.496	375.49	376.02	n/a	376.02 j	17	Combination
19	Pipe - (9)	6.21	24	Cir	133.897	375.23	375.90	0.500	376.10	376.78	0.73	376.78	18	Combination
20	Pipe - (8)	2.69	18	Cir	260.141	377.00	378.30	0.500	377.62	378.93	0.35	379.27	19	Combination
21	Pipe - (7)	1.11	15	Cir	25.751	378.55	378.72	0.660	379.27	379.13	0.15	379.13	20	Combination
22	Pipe - (59)	2.11	15	Cir	28.157	376.03	376.66	2.237	376.43	377.24	n/a	377.24	17	DropGrate
23	Pipe - (55)	1.11	15	Cir	24.491	377.45	377.58	0.531	377.86	377.99	0.15	377.99	19	Combination
24	Pipe - (70)	0.38	15	Cir	24.507	376.87	377.05	0.734	377.75	377.29	n/a	377.29	12	Combination

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/20/2024

NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	Pipe - (60)	1.88	15	Cir	23.549	376.05	376.22	0.722	376.78	376.76	n/a	376.76 j	19	DropGrate
26	Pipe - (71)	0.81	15	Cir	100.850	376.32	376.85	0.525	376.76	377.20	n/a	377.20 j	25	DropGrate
27	Pipe - (57)	12.44	24	Cir	41.676	364.00	364.35	0.840	365.48	365.62	n/a	365.62 j	4	Combination
28	Pipe - (56)	10.62	24	Cir	88.898	364.75	366.75	2.250	365.62	367.92	n/a	367.92	27	Manhole
29	Pipe - (39)	10.72	24	Cir	80.422	366.95	368.56	2.002	367.92	369.73	n/a	369.73	28	Combination
30	Pipe - (37)	9.46	18	Cir	166.115	369.06	371.67	1.571	370.00	372.86	n/a	372.86	29	Combination
31	Pipe - (36)	7.79	18	Cir	161.824	371.77	374.90	1.934	372.86	375.98	n/a	375.98 j	30	Combination
32	Pipe - (42)	6.72	18	Cir	24.500	375.00	375.17	0.694	375.99	376.17	0.22	376.17	31	Combination
33	Pipe - (61)	4.94	15	Cir	22.252	375.42	375.64	0.989	376.24	376.54	n/a	376.54	32	DropGrate
34	Pipe - (62)	0.38	15	Cir	20.817	375.15	375.30	0.721	375.98	375.54	n/a	375.54	31	DropGrate
35	Pipe - (69)	0.87	18	Cir	32.881	374.07	374.43	1.095	374.36	374.78	0.12	374.78	9	DropGrate
36	Pipe - (54)	1.71	15	Cir	25.642	372.50	372.68	0.702	373.28	373.20	n/a	373.20	8	Combination
37	Pipe - (22)	0.42	15	Cir	29.330	372.80	373.68	3.000	373.20	373.93	n/a	373.93 j	36	Combination
38	Pipe - (41)	1.11	15	Cir	26.271	371.92	372.30	1.446	372.86	372.71	0.15	372.71	30	Combination
39	Pipe - (40)	1.14	15	Cir	34.056	368.91	369.13	0.646	369.73	369.55	n/a	369.55	29	Combination
40	Pipe - (43)	1.18	15	Cir	24.427	368.75	369.01	1.064	369.71	369.44	0.16	369.44	7	Combination
41	Pipe - (63)	4.50	18	Cir	123.325	368.30	368.97	0.543	369.71	369.90	0.24	370.14	7	DropGrate
42	Pipe - (24)	1.02	15	Cir	28.012	365.72	366.10	1.357	366.72	366.50	0.07	366.50	5	Combination
43	Pipe - (53)	0.38	15	Cir	29.509	366.20	366.35	0.508	366.50	366.59	n/a	366.67 j	42	Combination
44	Pipe - (17)	1.42	18	Cir	24.451	364.85	365.10	1.022	365.62	365.55	0.16	365.55	27	Combination
45	Pipe - (28)	0.83	15	Cir	24.503	363.42	363.65	0.939	364.17	364.01	n/a	364.01	3	Combination
46	Pipe - (26)	1.07	18	Cir	25.748	359.79	359.96	0.661	360.31	360.35	n/a	360.35 j	1	Combination
47	Pipe - (67)	14.87	36	Cir	38.074	353.31	353.50	0.499	355.42	354.73	0.23	354.73	End	DropGrate
48	Pipe - (66)	13.22	30	Cir	98.975	353.61	354.10	0.495	354.80	355.32	n/a	355.32	47	Manhole

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/20/2024

NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
49	Pipe - (65)	13.33	30	Cir	48.268	354.21	354.69	0.994	355.32	355.92	n/a	355.92	48	Manhole
49 50	Pipe - (65) Pipe - (29)	13.49	30 24	Cir	48.268		354.69 357.75	0.994	355.32 356.06	355.92 359.07	n/a n/a	355.92 359.07	48	Manhole DropGrate

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/20/2024

NOTES: Return period = 10 Yrs.; j - Line contains hyd. jump.

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Type	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	EX. CB 375	0.03	0.00	0.03	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.07	1.08	0.00	0.00	0.0	Off
2	376	0.62	0.00	0.56	0.06	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.18	5.21	0.08	1.35	0.0	Off
3	377	0.73	0.00	0.64	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.66	0.09	1.55	0.0	Off
4	377B	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
5	378	0.66	0.00	0.59	0.07	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.37	0.09	1.42	0.0	Off
6	379	0.24	0.00	0.24	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.13	2.73	0.02	0.28	0.0	Off
7	380	1.07	0.00	0.87	0.20	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.88	0.13	2.32	0.0	Off
8	381	0.69	0.00	0.61	0.08	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.52	0.09	1.49	0.0	Off
9	381C	0.31	0.00	0.31	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.15	3.35	0.03	0.55	0.0	Off
10	382	0.28	0.00	0.27	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.14	3.06	0.03	0.43	0.0	Off
11	382A	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
12	395	0.24	0.00	0.24	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.13	2.73	0.02	0.28	0.0	Off
13	396	0.83	0.00	0.71	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	6.07	0.10	1.74	0.0	Off
14	396A	0.73	0.00	0.64	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.66	0.09	1.55	0.0	Off
15	396B	0.52	0.00	0.48	0.04	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.17	4.70	0.07	1.13	0.0	Off
16	396C	8.83	0.00	8.83	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.51	104.68	0.51	104.68	0.0	Off
17	383	0.03	0.00	0.03	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.07	1.08	0.00	0.00	0.0	Off
18	384	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.09	0.05	0.87	0.0	Off
19	385	1.04	0.00	0.96	0.08	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.78	0.09	1.50	0.0	Off
20	386	1.63	0.00	1.43	0.20	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.25	8.34	0.12	2.22	0.0	Off
21	386A	1.11	0.00	1.01	0.09	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.99	0.09	1.58	0.0	Off
22	383A	2.11	0.00	2.11	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.20	41.56	0.20	41.56	0.0	Off
23	385A	1.11	0.00	1.01	0.09	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.99	0.09	1.58	0.0	Off

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/20/2024

NOTES: Inlet N-Values = 0.016; Intensity = 72.00 / (Inlet time + 12.50) ^ 0.80; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

Inlet Report 10-Year Report

Line	Inlet ID	Q = CIA	Q	Q	Q	Junc	Curb I	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		(cfs)	(cfs)	capt (cfs)	Byp (cfs)	Type	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
24	395A	0.38	0.00	0.37	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	3.87	0.05	0.77	0.0	Off
25	385B	1.24	0.00	1.24	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.14	29.72	0.14	29.72	0.0	Off
26	385C	0.81	0.00	0.81	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.020	0.020	0.013	0.10	12.42	0.10	12.42	0.0	Off
27	390	0.76	0.00	0.66	0.10	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.80	0.10	1.62	0.0	Off
28	390B	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
29	391	0.38	0.00	0.37	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	3.87	0.05	0.77	0.0	Off
30	392	0.83	0.00	0.71	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	6.07	0.10	1.74	0.0	Off
31	393	0.97	0.00	0.80	0.17	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.21	6.55	0.12	1.95	0.0	Off
32	393A	1.80	0.00	1.57	0.23	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.25	8.73	0.13	2.65	0.0	Off
33	393B	4.94	0.00	4.94	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.35	71.71	0.35	71.71	0.0	Off
34	393C	0.38	0.00	0.38	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.06	14.62	0.06	14.62	0.0	Off
35	381D	0.87	0.00	0.87	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.11	23.82	0.11	23.82	0.0	Off
36	381A	1.39	0.00	1.06	0.33	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.24	7.76	0.15	3.46	0.0	Off
37	381B	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.09	0.05	0.87	0.0	Off
38	392A	1.11	0.00	0.89	0.22	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.99	0.13	2.46	0.0	Off
39	391A	1.14	0.00	0.91	0.23	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.09	0.13	2.60	0.0	Off
40	380A	1.18	0.00	0.94	0.24	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.19	0.13	2.73	0.0	Off
41	380B	4.50	0.00	4.50	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.33	67.53	0.33	67.53	0.0	Off
42	378A	0.69	0.00	0.61	0.08	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.52	0.09	1.49	0.0	Off
43	378B	0.38	0.00	0.37	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	3.87	0.05	0.77	0.0	Off
44	390A	1.42	0.00	1.08	0.34	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.24	7.85	0.15	3.57	0.0	Off
45	377A	0.83	0.00	0.71	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	6.07	0.10	1.74	0.0	Off
46	375A	1.07	0.00	0.87	0.20	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.88	0.13	2.32	0.0	Off

Project File: Outfall #1.stm Run Date: 12/20/2024

NOTES: Inlet N-Values = 0.016; Intensity = 72.00 / (Inlet time + 12.50) ^ 0.80; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb I	nlet	Gra	ite Inlet				G	utter					Inlet		Вур
No		CIA (cfs)			Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
47	31A	2.01	0.00	2.01	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.19	40.27	0.19	40.27	0.0	Off
48	EX. 31	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00		Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
49	EX. 32	0.03	0.00	0.00	0.03	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
50	32A	13.49	0.00	13.49	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.68	138.22	0.68	138.22	0.0	Off

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/20/2024

NOTES: Inlet N-Values = 0.016; Intensity = 72.00 / (Inlet time + 12.50) ^ 0.80; Return period = 10 Yrs.; * Indicates Known Q added. All curb inlets are throat.

Hydraulic Grade Line Computations

Line	Size	Q			D	ownstre	eam				Len				Upsti	ream				Chec	k	JL "	Minor
			Invert	HGL elev	Depth	Area	Vel	Vel head	EGL elev	Sf		Invert elev	HGL elev	Depth	Area	Vel	Vel head	EGL elev	Sf	Ave Sf	Enrgy	coeff	loss
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
1	36	38.57	357.90	360.59	2.69	5.06	5.77	0.90	361.49	0.000	57.000	358.29	360.31	2.02**	5.06	7.62	0.90	361.21	0.000	0.000	n/a	1.50	1.35
2	36	37.85	358.40	360.31	1.91	4.75	7.97	0.89	361.20	0.000	41.866	358.85	360.85	2.00**	5.01	7.56	0.89	361.74	0.000	0.000	n/a	0.50	0.44
3	36	37.96	358.95	360.85	1.90	4.72	8.04	0.89	361.74	0.000	196.39	4 362.17	364.17	2.00**	5.01	7.57	0.89	365.06	0.000	0.000	n/a	1.50	n/a
4	36	36.99	362.27	364.17	1.90	4.73	7.82	0.87	365.04	0.000	78.359	363.50	365.48	1.98**	4.94	7.49	0.87	366.35	0.000	0.000	n/a	1.00	0.87
5	30	26.35	364.00	365.48	1.48	3.02	8.73	0.80	366.28	0.000	51.020	364.97	366.72	1.75**	3.67	7.19	0.80	367.52	0.000	0.000	n/a	1.30	1.04
6	30	25.26	365.07	366.72	1.65	3.43	7.36	0.77	367.49	0.000	126.89	7366.87	368.58	1.71**	3.58	7.06	0.77	369.36	0.000	0.000	n/a	0.50	0.39
7	30	25.19	366.97	368.58	1.61	3.34	7.53	0.77	369.35	0.000	59.532	368.00	369.71	1.71**	3.58	7.05	0.77	370.48	0.000	0.000	n/a	1.50	n/a
8	30	20.28	368.10	369.71	1.61	3.14	6.07	0.65	370.36	0.000	210.96	4 371.75	373.28 j	1.53**	3.14	6.45	0.65	373.92	0.000	0.000	n/a	1.44	n/a
9	30	18.55	371.86	373.28	1.42	2.87	6.46	0.61	373.88	0.000	140.87	5372.77	374.23	1.46**	2.97	6.24	0.61	374.83	0.000	0.000	n/a	1.50	0.91
10	30	17.77	373.07	374.40	1.33*	2.65	6.71	0.59	374.98	0.000	86.180	373.60	375.03	1.43**	2.89	6.14	0.59	375.61	0.000	0.000	n/a	0.50	n/a
11	24	17.60	373.70	375.18	1.48*	2.50	7.04	0.74	375.93	0.000	40.124	374.00	375.51	1.51**	2.55	6.91	0.74	376.25	0.000	0.000	n/a	1.00	0.74
12	24	11.02	375.70	376.90	1.20*	1.98	5.58	0.48	377.39	0.521	23.025	375.82	377.02	1.20	1.98	5.58	0.48	377.51	0.520	0.521	0.120	1.50	0.73
13	24	10.76	376.02	377.75	1.73	1.92	3.73	0.49	378.24	0.000	49.905	376.30	377.47	1.17**	1.92	5.61	0.49	377.96	0.000	0.000	n/a	1.07	0.52
14	24	9.99	376.40	377.47	1.07	1.72	5.81	0.46	377.94	0.000	31.516	376.71	377.84	1.13**	1.83	5.46	0.46	378.30	0.000	0.000	n/a	0.65	0.30
15	24	9.32	376.81	377.86	1.05*	1.67	5.57	0.44	378.30	0.000	27.860	376.97	378.06	1.09**	1.75	5.33	0.44	378.50	0.000	0.000	n/a	0.99	0.44
16	18	8.83	377.47	378.58	1.11*	1.40	6.32	0.57	379.15	0.000	25.968	377.70	378.85	1.15**	1.45	6.08	0.57	379.42	0.000	0.000	n/a	1.00	0.57
17	24	8.03	374.10	375.51	1.41	1.59	3.39	0.40	375.91	0.000	71.389	374.48	375.49	1.01**	1.59	5.06	0.40	375.89	0.000	0.000	n/a	1.50	n/a
18	24	6.37	374.58	375.49	0.91	1.36	4.59	0.34	375.83	0.000	110.81	6375.13	376.02 j	0.89**	1.36	4.69	0.34	376.37	0.000	0.000	n/a	0.66	0.23
19	24	6.21	375.23	376.10	0.87*	1.30	4.77	0.34	376.43	0.000	133.89	7375.90	376.78	0.88**	1.33	4.66	0.34	377.12	0.000	0.000	n/a	2.18	0.73
20	18	2.69	377.00	377.62	0.62*	0.69	3.86	0.23	377.86	0.500	260.14	1378.30	378.93	0.63**	0.70	3.86	0.23	379.16	0.497	0.499	1.297	1.50	0.35
21	15	1.11	378.55	379.27	0.72	0.36	1.51	0.15	379.42	0.000	25.751	378.72	379.13	0.41**	0.36	3.12	0.15	379.29	0.000	0.000	n/a	1.00	0.15
22	15	2.11	376.03	376.43	0.40*	0.34	6.30	0.22	376.65	0.000	28.157	376.66	377.24	0.58**	0.56	3.80	0.22	377.46	0.000	0.000	n/a	1.00	n/a

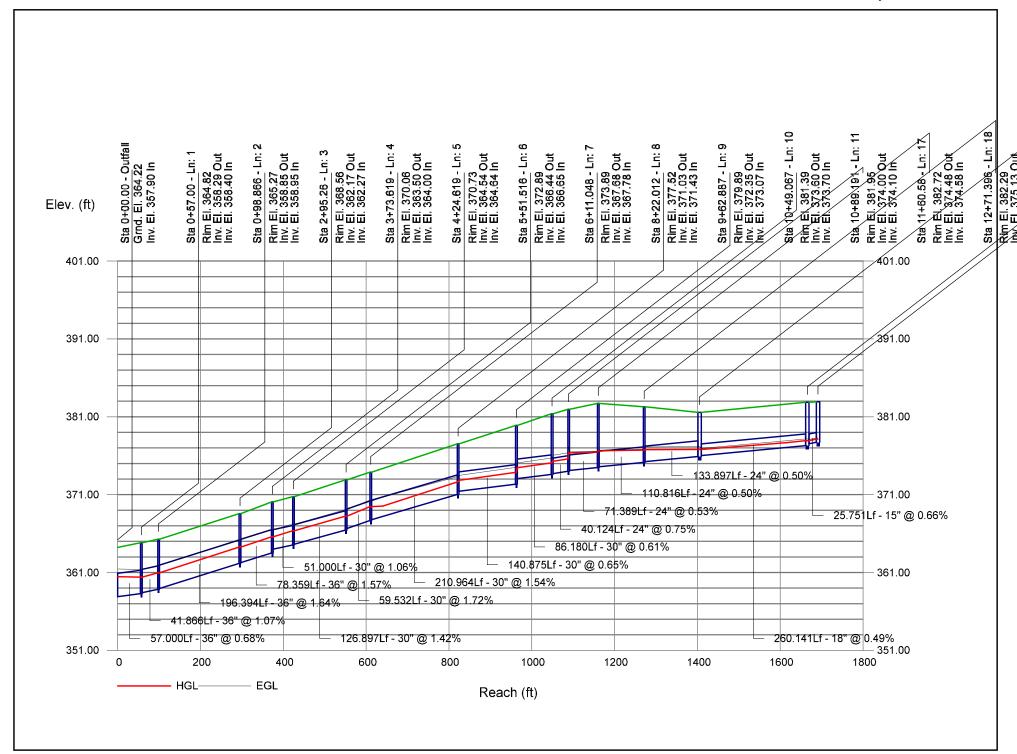
Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/20/2024

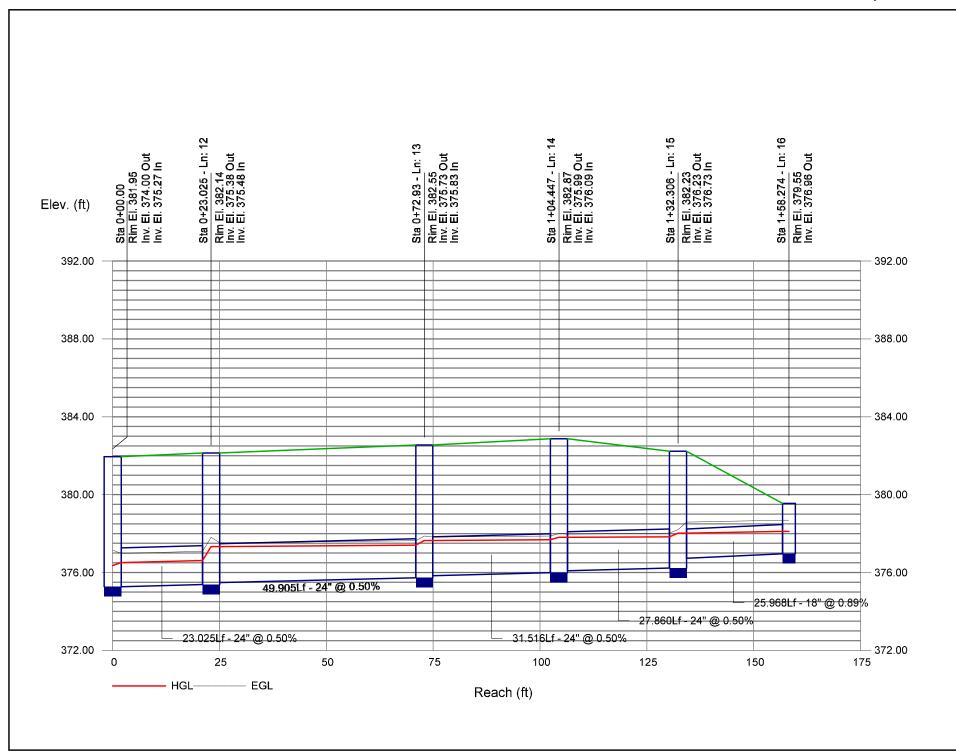
Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

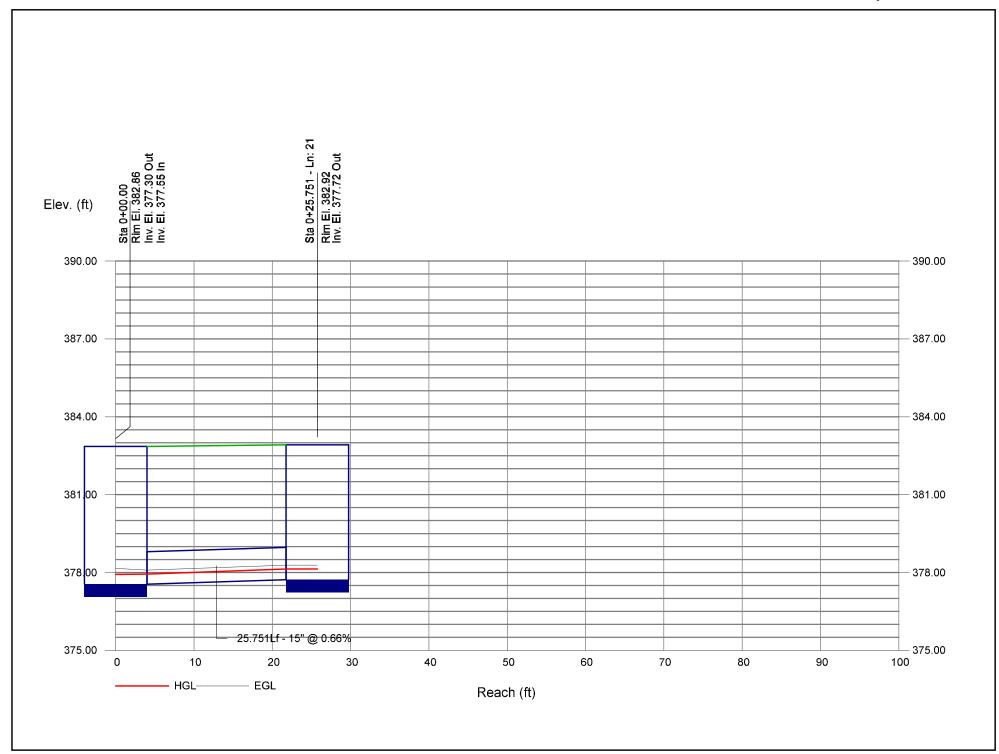
Hydraulic Grade Line Computations

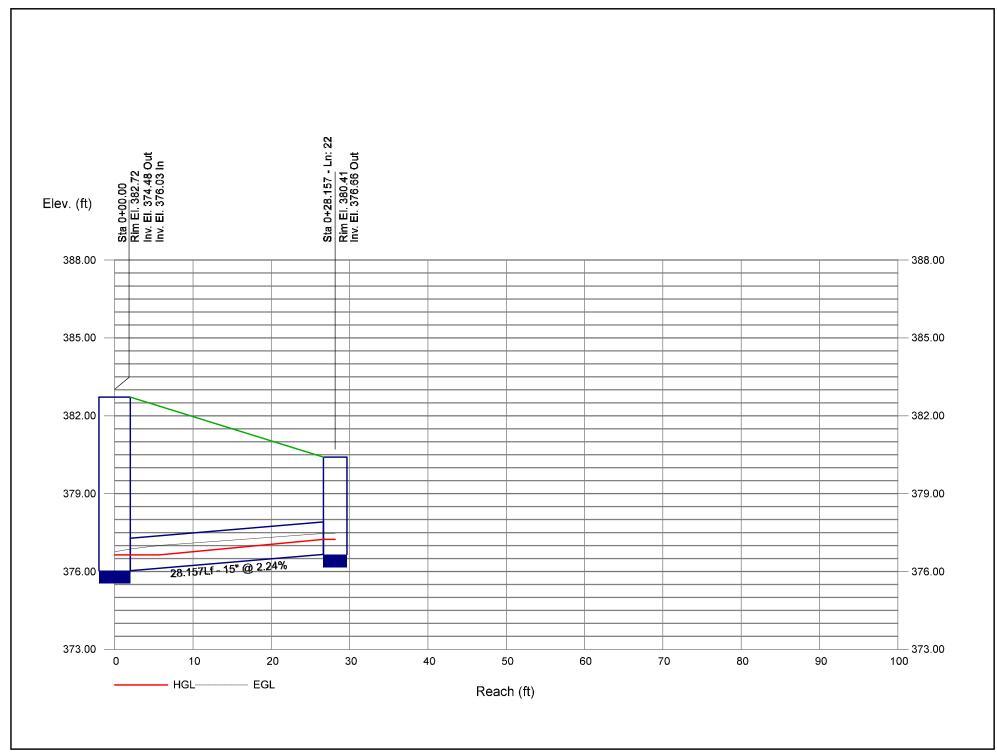
Line	Size	Q			D	ownstre	am				Len				Upst	ream				Chec	k	JL "	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
	(,	(013)	(12)	(10)	(11)	(Sqit)	(183)	(11)	(12)	(70)	(11)	(11)	(1.5)	(11)	(Sqit)	(103)	(10)	(1.5)	(70)	(/0 /	(12)	(14)	\(\frac{1}{2}\)
23	15	1.11	377.45	377.86	0.41*	0.35	3.13	0.15	378.01	0.000	24.491	377.58	377.99	0.41**	0.36	3.12	0.15	378.15	0.000	0.000	n/a	1.00	0.15
24	15	0.38	376.87	377.75	0.88	0.16	0.41	0.08	377.83	0.000	24.507	377.05	377.29	0.24**	0.16	2.32	0.08	377.37	0.000	0.000	n/a	1.00	n/a
25	15	1.88	376.05	376.78	0.73	0.51	2.52	0.21	376.99	0.000	23.549	376.22	376.76 j	0.54**	0.51	3.66	0.21	376.97	0.000	0.000	n/a	1.49	n/a
26	15	0.81	376.32	376.76	0.44	0.28	2.07	0.13	376.89	0.000	100.85	0376.85	377.20 j	0.35**	0.28	2.85	0.13	377.33	0.000	0.000	n/a	1.00	0.13
27	24	12.44	364.00	365.48	1.48	2.10	5.00	0.55	366.02	0.000	41.676	364.35	365.62 j	1.27**	2.10	5.93	0.55	366.16	0.000	0.000	n/a	1.42	n/a
28	24	10.62	364.75	365.62	0.87	1.31	8.13	0.48	366.10	0.000	88.898	366.75	367.92	1.17**	1.90	5.58	0.48	368.40	0.000	0.000	n/a	0.41	n/a
29	24	10.72	366.95	367.92	0.97	1.50	7.13	0.49	368.40	0.000	80.422	368.56	369.73	1.17**	1.91	5.60	0.49	370.22	0.000	0.000	n/a	1.48	n/a
30	18	9.46	369.06	370.00	0.94*	1.17	8.10	0.62	370.62	0.000	166.11	5371.67	372.86	1.19**	1.50	6.31	0.62	373.48	0.000	0.000	n/a	1.39	n/a
31	18	7.79	371.77	372.86	1.09	1.36	5.68	0.51	373.37	0.000	161.82	4374.90	375.98 j	1.08**	1.36	5.72	0.51	376.49	0.000	0.000	n/a	2.22	1.13
32	18	6.72	375.00	375.99	0.99*	1.23	5.46	0.45	376.43	0.000	24.500	375.17	376.17	1.00**	1.25	5.36	0.45	376.62	0.000	0.000	n/a	0.50	0.22
33	15	4.94	375.42	376.24	0.82*	0.86	5.77	0.42	376.67	0.000	22.252	375.64	376.54	0.90**	0.95	5.22	0.42	376.96	0.000	0.000	n/a	1.00	n/a
34	15	0.38	375.15	375.98	0.83	0.16	0.44	0.08	376.06	0.000	20.817	375.30	375.54	0.24**	0.16	2.32	0.08	375.62	0.000	0.000	n/a	1.00	n/a
35	18	0.87	374.07	374.36	0.28*	0.23	3.71	0.12	374.48	0.000		374.43	374.78	0.35**	0.31	2.81	0.12	374.90	0.000	0.000	n/a	1.00	0.12
36	15	1.71	372.50	373.28	0.78	0.48	2.14	0.20	373.47	0.000		372.68	373.20	0.52**	0.48	3.55	0.20	373.40	0.000	0.000	n/a	0.50	n/a
37	15	0.42	372.80	373.20	0.40	0.18	1.23	0.09	373.29	0.000		373.68	373.93 j		0.18	2.37	0.09	374.02	0.000	0.000	n/a	1.00	0.09
38	15	1.11	371.92	372.86	0.94	0.36	1.12	0.15	373.01	0.000		372.30	372.71	0.41**	0.36	3.12	0.15	372.87	0.000	0.000	n/a	1.00	0.15
39	15	1.14	368.91	369.73	0.82	0.36	1.34	0.15	369.89	0.000		369.13	369.55	0.42**	0.36	3.15	0.15	369.71	0.000	0.000	n/a	1.00	n/a
40	15	1.18	368.75	369.71	0.96	0.37	1.17	0.16	369.87	0.000		369.01	369.44	0.43**	0.37	3.18	0.16	369.59	0.000	0.000	n/a	1.00	0.16
41	18	4.50	368.30	369.71	1.41	1.72	2.61	0.11	369.82	0.159		5368.97	369.90	0.93	1.15	3.90	0.24	370.14	0.367	0.263	0.324	1.00	0.24
42	15 15	1.02	365.72 366.20	366.72	1.00	0.33	0.97	0.14	366.86	0.000		366.10 366.35	366.50	0.40**	0.33	3.04	0.14	366.64	0.000	0.000	n/a	0.50 1.00	0.07
43	18	0.38	364.85	366.50 365.62	0.30	0.16	1.71	0.05	366.54 365.78	0.230	29.509		366.59 j 365.55	0.24**	0.17	3.22	0.08	366.67 365.71	0.519	0.375	0.111	1.00	0.08
44	10	1.42	304.05	303.02	0.77	0.44	1.56	0.16	365.76	0.000	24.451	300.10	305.55	0.45***	0.44	3.22	0.16	305.71	0.000	0.000	n/a	1.00	0.16
														<u> </u>					<u> </u>				<u></u>

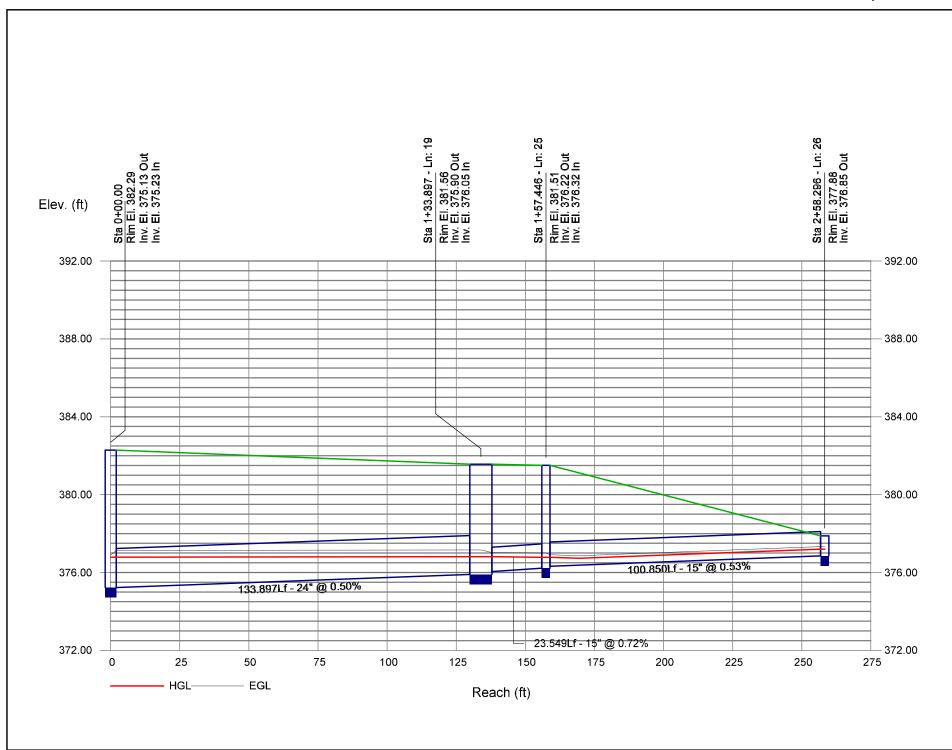
Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/20/2024

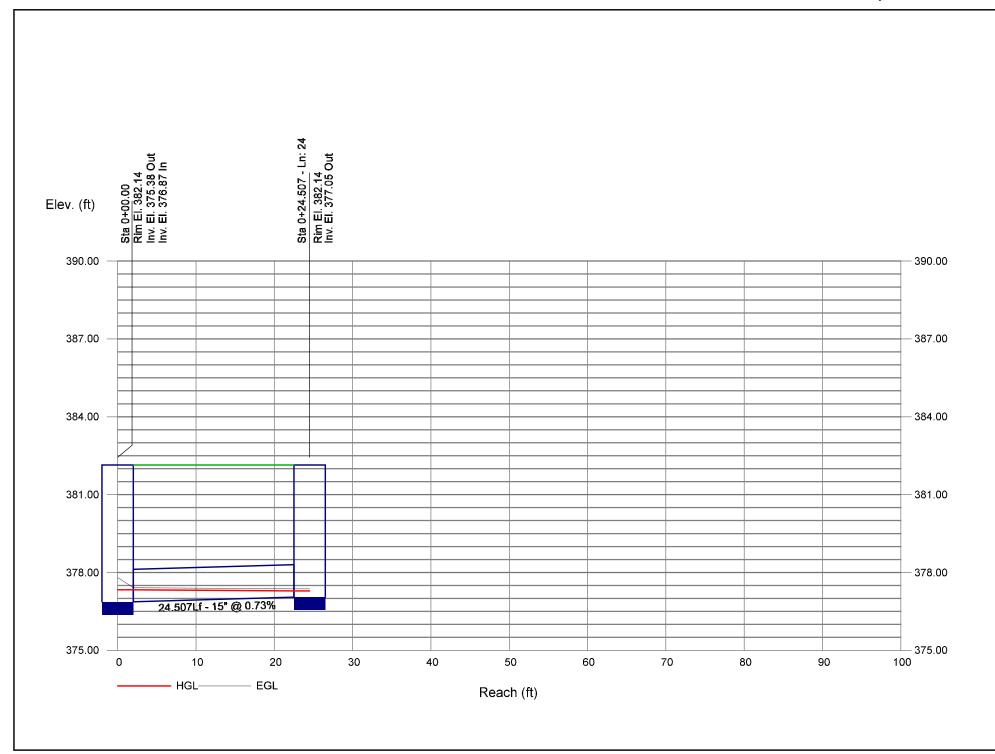

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

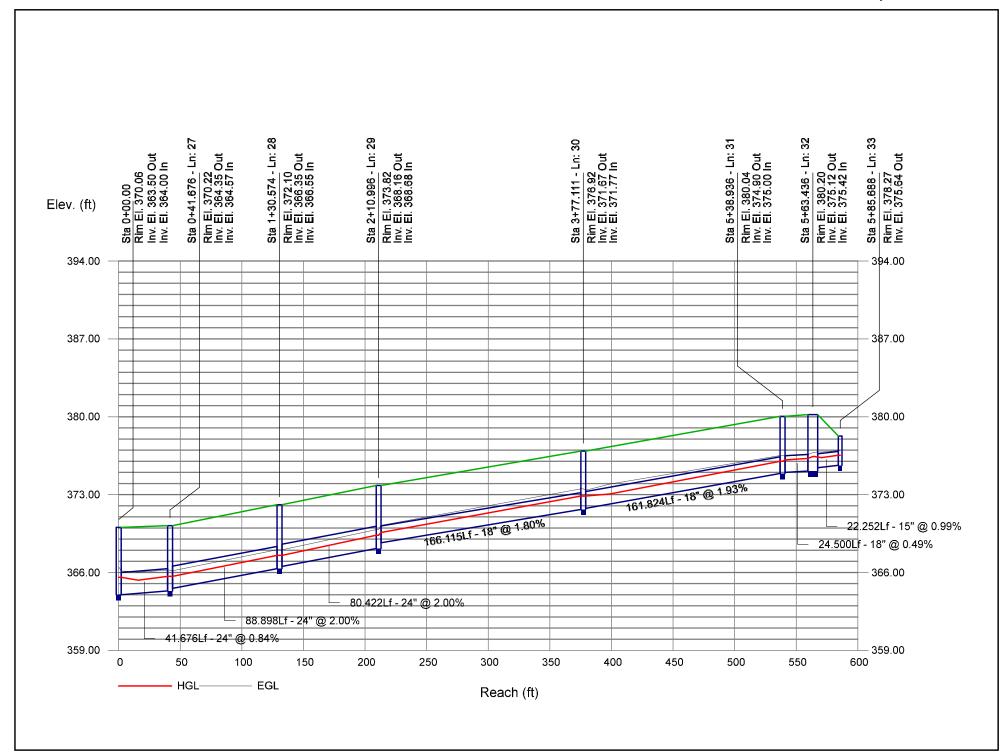

Hydraulic Grade Line Computations

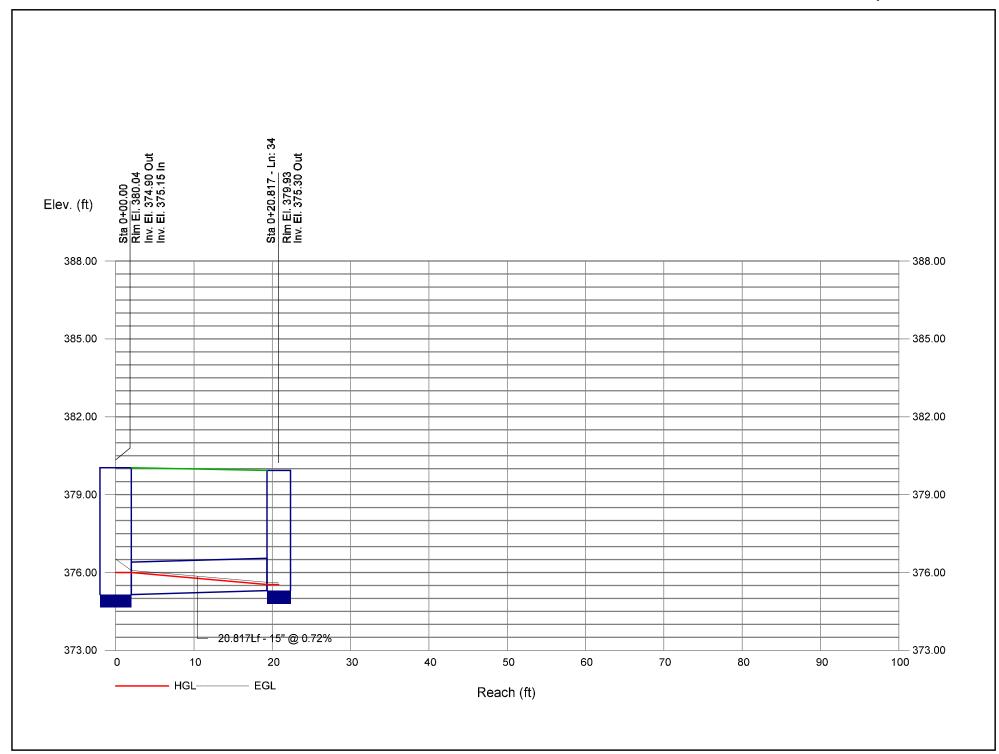

Line			Downstream								Len	Upstream								Check		JL coeff	Minor
			Invert	HGL elev	Depth			head	elev	Sf	е	Invert	elev	Depth		Vel	Vel head	elev		Sf	Enrgy		
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
45	15	0.83	363.42	364.17	0.75	0.29	1.08	0.13	364.30	0.000	24.503	363.65	364.01	0.36**	0.29	2.87	0.13	364.14	0.000	0.000	n/a	1.00	n/a
46	18	1.07	359.79	360.31	0.52	0.36	1.98	0.14	360.45		25.748		360.35 j		0.36	2.98	0.14	360.48	0.000	0.000	n/a	1.00	n/a
47	36	14.87	353.31	355.42	2.11		2.79	0.46	355.89	0.000	38.074		354.73	1.23**	2.72	5.46	0.46	355.19	0.000	0.000	n/a	0.50	0.23
48	30	13.22	353.61	354.80	1.19*		5.75	0.48	355.28	0.000		354.10	355.32	1.22**		5.55	0.48	355.80	0.000	0.000	n/a	0.15	n/a
49	30	13.33	354.21	355.32		2.11	6.32	0.48	355.80	0.000		354.69	355.92	1.23**	2.40	5.56	0.48	356.40	0.000	0.000	n/a	0.96	n/a
50	24	13.49	355.19	356.06	0.87*	1.30	10.34	0.58	356.64	0.000	109.03	0357.75	359.07	1.32**	2.20	6.13	0.58	359.66	0.000	0.000	n/a	1.00	n/a

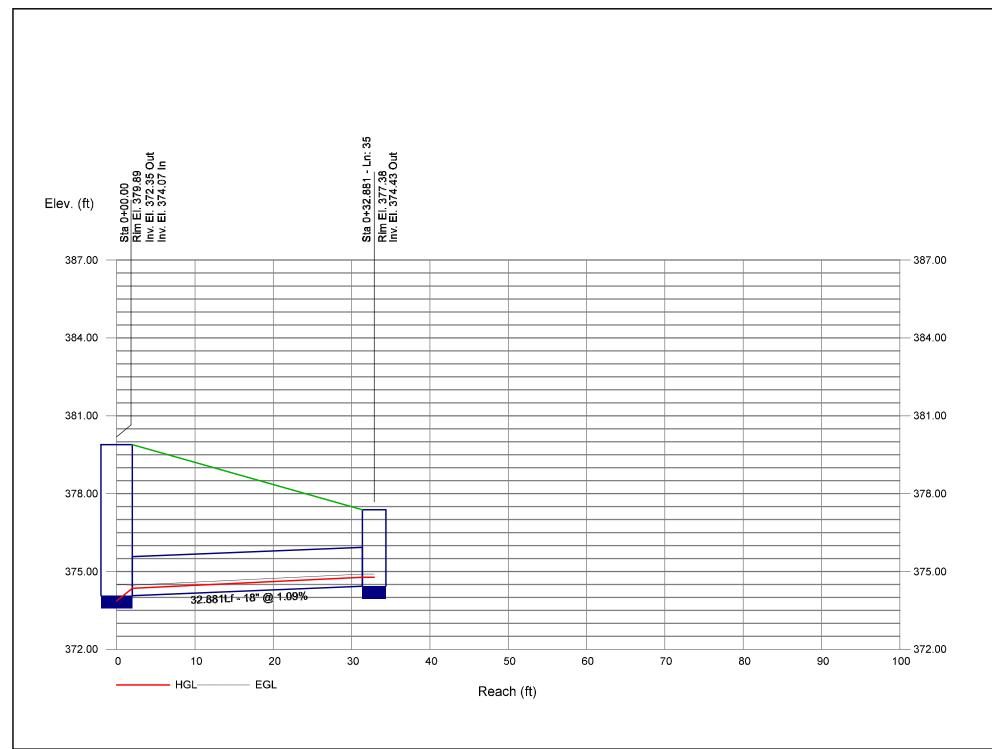

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/20/2024

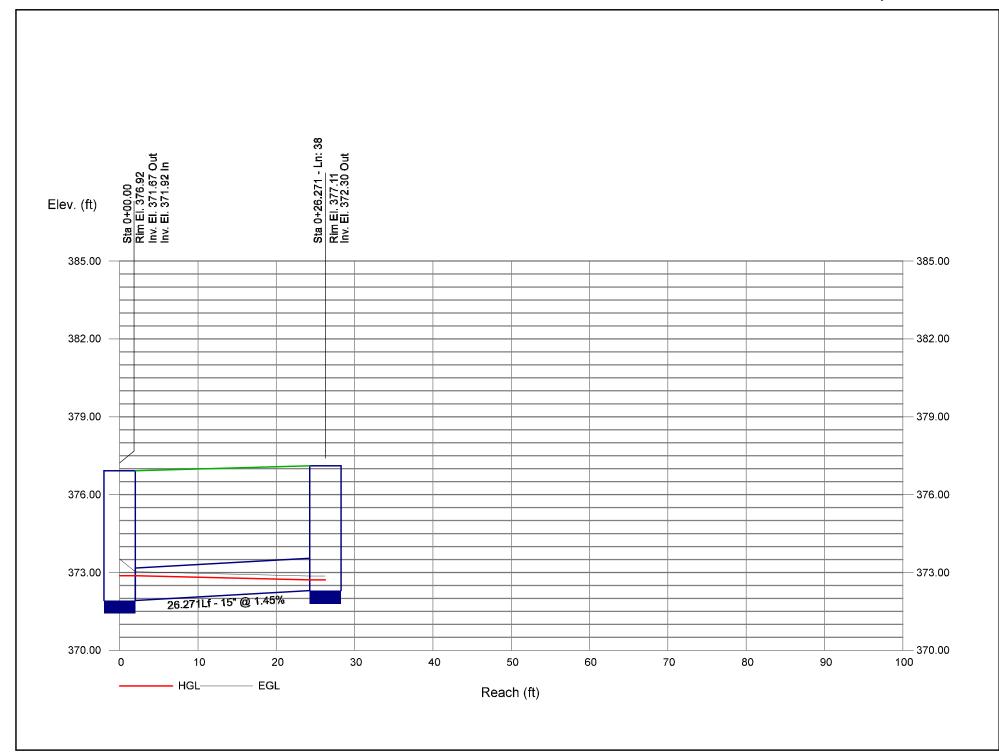

Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

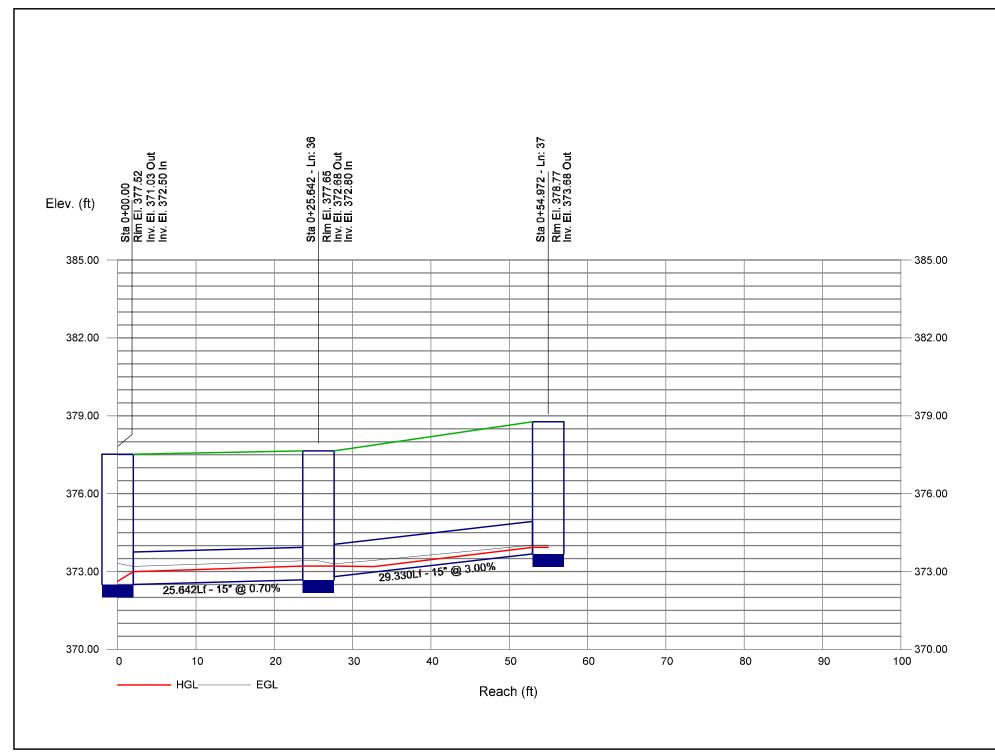


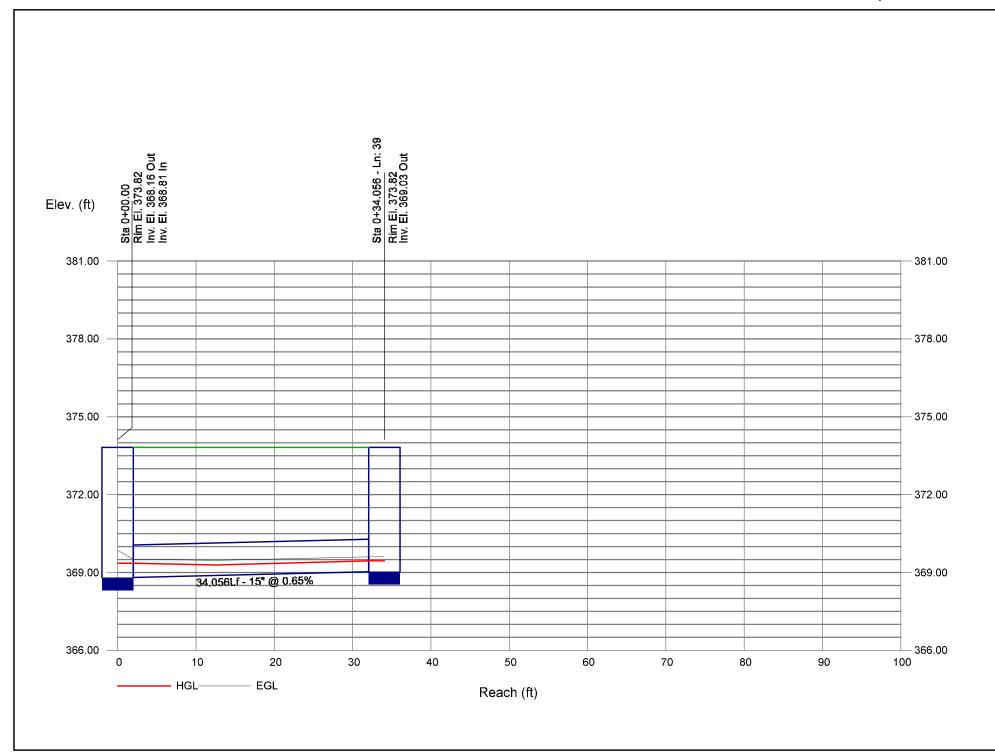


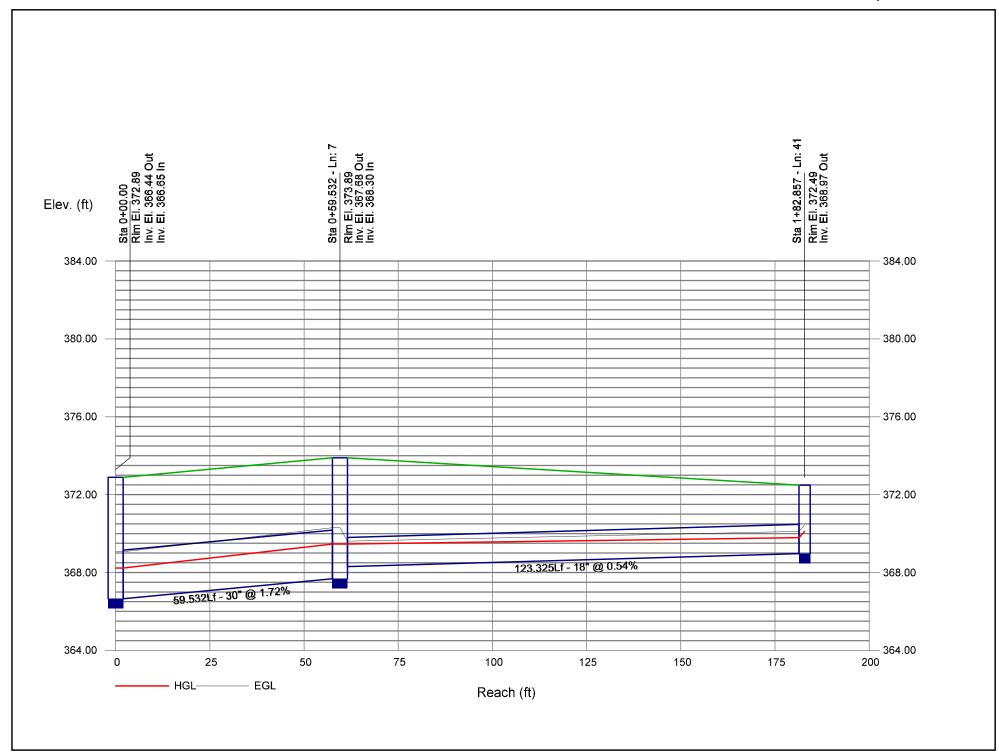


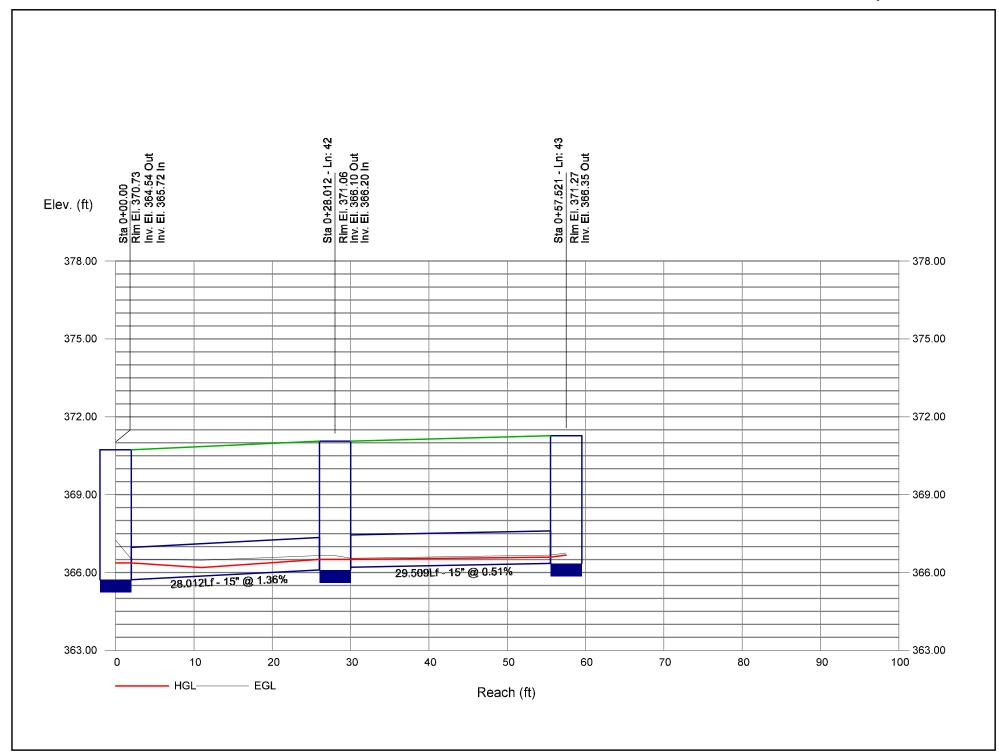


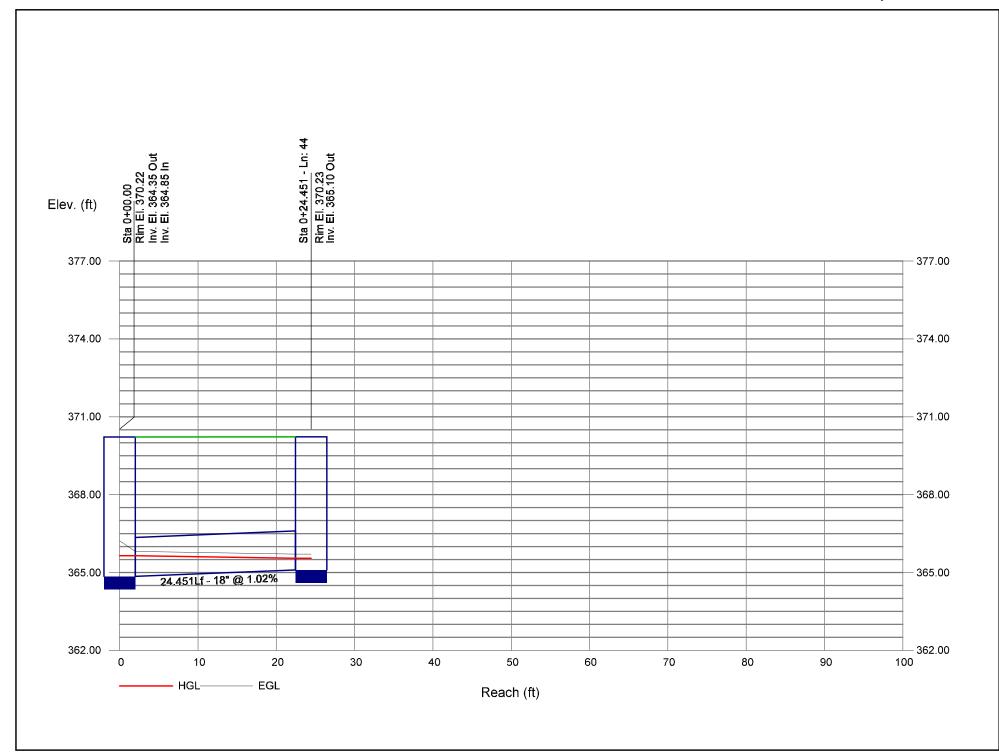


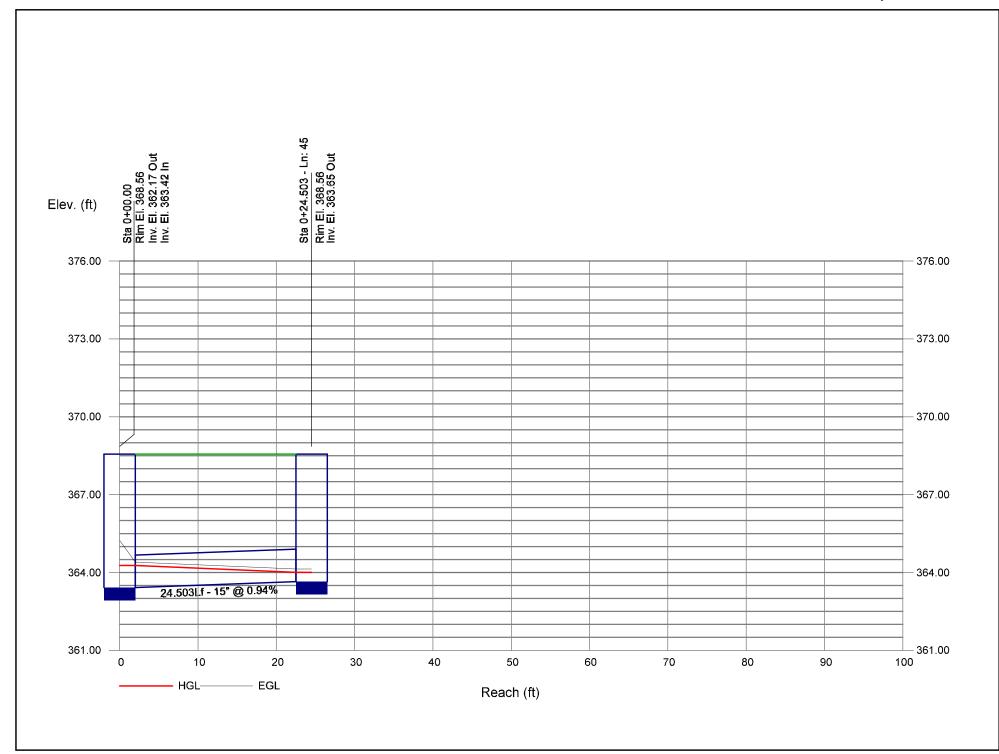


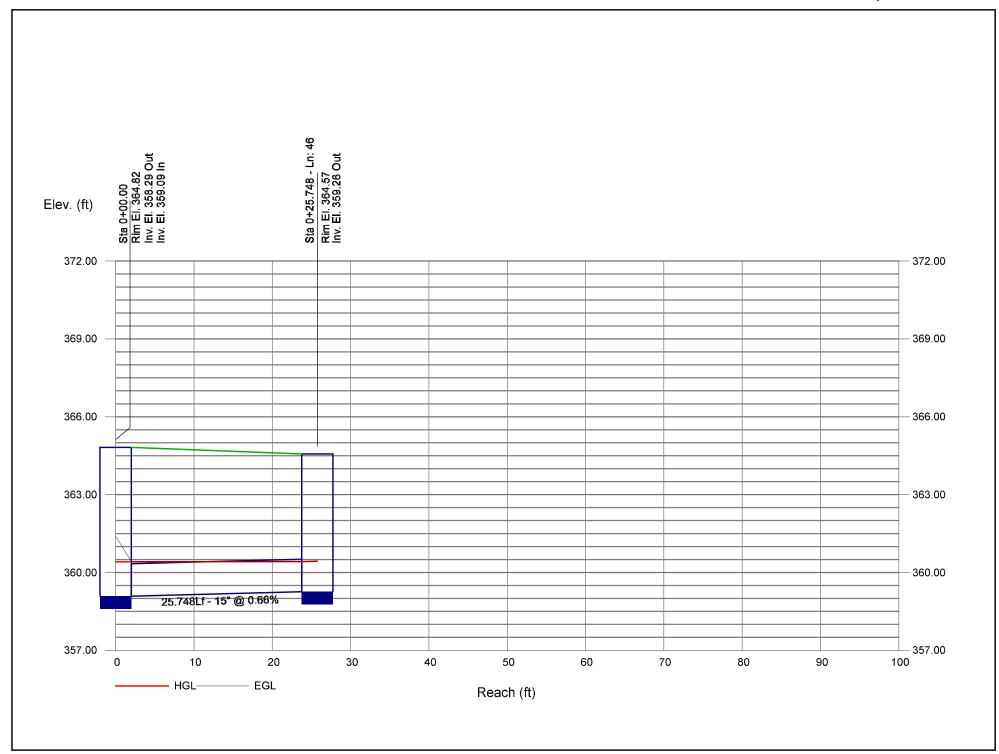


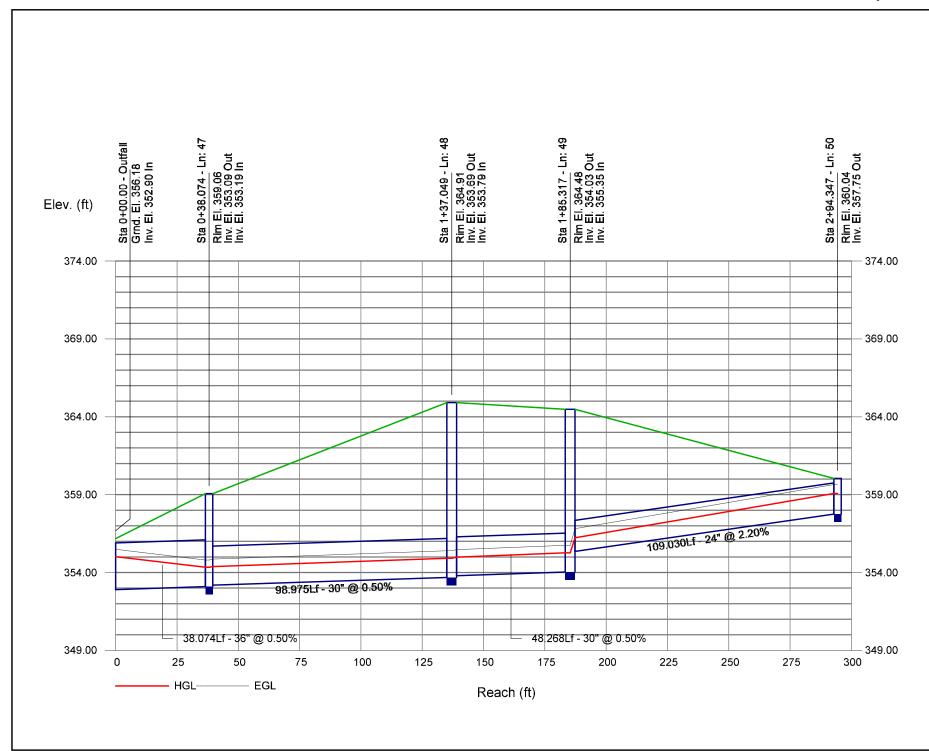


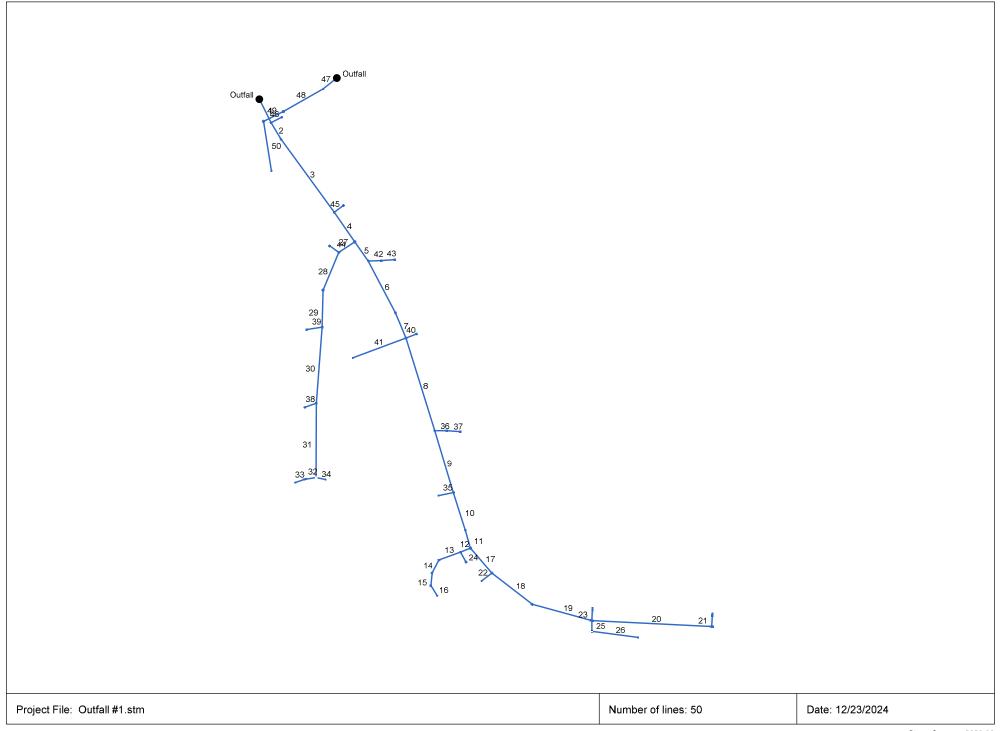












Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan 25-Year Report

Storm Sewer Inventory Report

ine		Aligni	ment			Flow	Data					Physical	l Data				Line ID
lo.	Dnstr Line No.		Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
1	End	57.000	63.252	Comb	0.00	0.01	0.59	10.0	357.90	0.68	358.29	36	Cir	0.013	1.50	364.82	Ex. 375 Out
2	1	41.866	-4.047	Comb	0.00	0.18	0.59	10.0	358.40	1.07	358.85	36	Cir	0.013	0.50	365.27	Pipe - (20)
3	2	196.394	-5.160	Comb	0.00	0.21	0.59	10.0	358.95	1.64	362.17	36	Cir	0.013	1.50	368.56	Pipe - (19)
4	3	78.359	1.332	мн	0.00	0.01	0.59	10.0	362.27	1.57	363.50	36	Cir	0.013	1.00	370.06	Pipe - (18)
5	4	51.000	-0.352	Comb	0.00	0.19	0.59	10.0	364.00	1.06	364.54	30	Cir	0.013	1.30	370.73	Pipe - (16)
6	5	126.897	7.290	Comb	0.00	0.07	0.59	10.0	364.64	1.42	366.44	30	Cir	0.013	0.50	372.89	Pipe - (15)
7	6	59.532	5.165	Comb	0.00	0.31	0.59	10.0	366.65	1.72	367.68	30	Cir	0.013	1.50	373.89	Pipe - (14)
8	7	210.964	5.328	Comb	0.00	0.20	0.59	10.0	367.78	1.54	371.03	30	Cir	0.013	1.44	377.52	Pipe - (13)
9	8	140.875	0.547	Comb	0.00	0.09	0.59	10.0	371.43	0.65	372.35	30	Cir	0.013	1.50	379.89	Pipe - (12) (1)
10	9	86.180	-0.829	Comb	0.00	0.08	0.59	10.0	373.07	0.61	373.60	30	Cir	0.013	0.50	381.39	Pipe - (12)
11	10	40.124	1.547	мн	0.00	0.01	0.59	10.0	373.70	0.75	374.00	24	Cir	0.013	1.00	381.95	Pipe - (51)
12	11	23.025	83.735	Comb	0.00	0.07	0.59	10.0	375.27	0.50	375.38	24	Cir	0.013	1.50	382.14	Pipe - (50) (1)
13	12	49.905	2.092	Comb	0.00	0.24	0.59	10.0	375.48	0.50	375.73	24	Cir	0.013	1.07	382.55	Pipe - (50)
14	13	31.516	-41.901	Comb	0.00	0.21	0.59	10.0	375.83	0.50	375.99	24	Cir	0.013	0.65	382.87	Pipe - (49)
15	14	27.860	-22.271	Comb	0.00	0.15	0.59	10.0	376.09	0.50	376.23	24	Cir	0.013	0.99	382.23	Pipe - (48)
16	15	25.968	-37.432	DrGrt	0.00	4.70	0.32	10.0	376.73	0.89	376.96	18	Cir	0.013	1.00	379.55	Pipe - (58)
17	11	71.389	-24.767	Comb	0.00	0.01	0.59	10.0	374.10	0.53	374.48	24	Cir	0.013	1.50	382.72	Pipe - (11)
18	17	110.816	-11.425	Comb	0.00	0.12	0.59	10.0	374.58	0.50	375.13	24	Cir	0.013	0.66	382.29	Pipe - (10)
19	18	133.897	-22.601	Comb	0.00	0.30	0.59	10.0	375.23	0.50	375.90	24	Cir	0.013	2.18	381.56	Pipe - (9)
20	19	260.141	-12.381	Comb	0.00	0.47	0.59	10.0	376.02	0.49	377.30	18	Cir	0.013	1.50	382.86	Pipe - (8)
21	20	25.751	-90.000	Comb	0.00	0.32	0.59	10.0	377.55	0.66	377.72	15	Cir	0.013	1.00	382.92	Pipe - (7)
22	17	28.157	93.178	DrGrt	0.00	0.61	0.59	10.0	376.03	2.24	376.66	15	Cir	0.013	1.00	380.41	Pipe - (59)
23	19	24.491	-102.38	2 Comb	0.00	0.32	0.59	10.0	376.45	0.53	376.58	15	Cir	0.013	1.00	381.56	Pipe - (55)
Project	ect File: Outfall #1.stm											Number	of lines: 50			Data: 1	2/23/2024

Storm Sewer Inventory Report

Line	Line No. Length (ft) angle (deg) Typ 12 24.507 -95.925 Co 19 23.549 74.368 Dro 25 100.850 -82.180 Dro 4 41.676 91.283 Co 27 88.898 -34.214 MH 28 80.422 -21.032 Co 29 166.115 2.964 Co				Flow	Data					Physical	l Data				Line ID	
No.	Line	Length	angle	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
24	12	24.507	-95.925	Comb	0.00	0.11	0.59	10.0	376.87	0.73	377.05	15	Cir	0.013	1.00	382.14	Pipe - (70)
25	19	23.549	74.368	DrGrt	0.00	0.66	0.32	10.0	376.05	0.72	376.22	15	Cir	0.013	1.49	381.51	Pipe - (60)
26	25	100.850	-82.180	DrGrt	0.00	0.43	0.32	10.0	376.32	0.53	376.85	15	Cir	0.013	1.00	377.88	Pipe - (71)
27	4	41.676	91.283	Comb	0.00	0.22	0.59	10.0	364.00	0.84	364.35	24	Cir	0.013	1.42	370.22	Pipe - (57)
28	27	88.898	-34.214	мн	0.00	0.01	0.59	10.0	364.57	2.00	366.35	24	Cir	0.013	0.41	372.10	Pipe - (56)
29	28	80.422	-21.032	Comb	0.00	0.11	0.59	10.0	366.55	2.00	368.16	24	Cir	0.013	1.48	373.82	Pipe - (39)
30	29	166.115	2.964	Comb	0.00	0.24	0.59	10.0	368.68	1.80	371.67	18	Cir	0.013	1.39	376.92	Pipe - (37)
31	30	161.824	-4.236	Comb	0.00	0.28	0.59	10.0	371.77	1.93	374.90	18	Cir	0.013	2.22	380.04	Pipe - (36)
32	31	24.500	81.321	Comb	0.00	0.52	0.59	10.0	375.00	0.49	375.12	18	Cir	0.013	0.50	380.20	Pipe - (42)
33	32	22.252	-10.400	DrGrt	0.00	2.63	0.32	10.0	375.42	0.99	375.64	15	Cir	0.013	1.00	378.27	Pipe - (61)
34	31	20.817	-78.889	DrGrt	0.00	0.11	0.59	10.0	375.15	0.72	375.30	15	Cir	0.013	1.00	379.93	Pipe - (62)
35	9	32.881	95.114	DrGrt	0.00	0.25	0.59	10.0	374.07	1.09	374.43	18	Cir	0.013	1.00	377.38	Pipe - (69)
36	8	25.642	-72.321	Comb	0.00	0.40	0.59	10.0	372.50	0.70	372.68	15	Cir	0.013	0.50	377.65	Pipe - (54)
37	36	29.330	3.216	Comb	0.00	0.12	0.59	10.0	372.80	3.00	373.68	15	Cir	0.013	1.00	378.77	Pipe - (22)
38	30	26.271	65.734	Comb	0.00	0.32	0.59	10.0	371.92	1.45	372.30	15	Cir	0.013	1.00	377.11	Pipe - (41)
39	29	34.056	79.521	Comb	0.00	0.33	0.59	10.0	368.81	0.65	369.03	15	Cir	0.013	1.00	373.82	Pipe - (40)
40	7	24.427	-88.012	Comb	0.00	0.34	0.59	10.0	368.75	1.06	369.01	15	Cir	0.013	1.00	374.05	Pipe - (43)
41	7	123.325	91.973	DrGrt	0.00	1.30	0.59	10.0	368.30	0.54	368.97	18	Cir	0.013	1.00	372.49	Pipe - (63)
42	5	28.012	-57.519	Comb	0.00	0.20	0.59	10.0	365.72	1.36	366.10	15	Cir	0.013	0.50	371.06	Pipe - (24)
43	42	29.509	-1.479	Comb	0.00	0.11	0.59	10.0	366.20	0.51	366.35	15	Cir	0.013	1.00	371.27	Pipe - (53)
44	27	24.451	69.302	Comb	0.00	0.41	0.59	10.0	364.85	1.02	365.10	18	Cir	0.013	1.00	370.23	Pipe - (17)
45	3	24.503	-90.507	Comb	0.00	0.24	0.59	10.0	363.42	0.94	363.65	15	Cir	0.013	1.00	368.56	Pipe - (28)
46	1	25.748	-90.230	Comb	0.00	0.31	0.59	10.0	359.09	0.66	359.26	15	Cir	0.013	1.00	364.57	Pipe - (26)
Project	:File: Out	fall #1.stm										Number	of lines: 50			Date: 1	2/23/2024

Storm Sewer Inventory Report

Line		Aligni	ment			Flow	Data					Physical	Data				Line ID
No.	Dnstr Line No.	Length	Defl angle (deg)	Junc Type	Known Q (cfs)	Drng Area (ac)	Runoff Coeff (C)	Inlet Time (min)	Invert EI Dn (ft)	Line Slope (%)	Invert EI Up (ft)	Line Size (in)	Line Shape	N Value (n)	J-Loss Coeff (K)	Inlet/ Rim El (ft)	
47	End	38.074	141.899	DrGrt	0.00	1.07	0.32	10.0	352.90	0.50	353.09	36	Cir	0.013	0.50	359.06	Pipe - (67)
48	47	98.975	8.202	мн	0.00	0.01	0.59	10.0	353.19	0.50	353.69	30	Cir	0.013	0.15	364.91	Pipe - (66)
49	48	48.268	3.525	МН	0.00	0.01	0.59	10.0	353.79	0.50	354.03	30	Cir	0.013	0.96	364.48	Pipe - (65)
50	49	109.030	-72.571	DrGrt	0.00	7.18	0.32	10.0	355.35	2.20	357.75	24	Cir	0.013	1.00	360.04	Pipe - (29)
Project	File: Out	fall #1.stm	1		1	1		1		1		Number	of lines: 50	1		Date: 1	2/23/2024

Structure Report

Project File: Outfall #1.stm

Struct	Structure ID	Junction	Rim		Structure			Line Out	:		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
1	EX. CB 375	Combination	364.82	Rect	4.00	4.00	36	Cir	358.29	36 15	Cir Cir	358.40 359.09
2	376	Combination	365.27	Rect	4.00	4.00	36	Cir	358.85	36	Cir	358.95
3	377	Combination	368.56	Rect	4.00	4.00	36	Cir	362.17	36 15	Cir Cir	362.27 363.42
4	377B	Manhole	370.06	Cir	4.00	4.00	36	Cir	363.50	30 24	Cir Cir	364.00 364.00
5	378	Combination	370.73	Rect	4.00	4.00	30	Cir	364.54	30 15	Cir Cir	364.64 365.72
6	379	Combination	372.89	Rect	4.00	4.00	30	Cir	366.44	30	Cir	366.65
7	380	Combination	373.89	Rect	4.00	4.00	30	Cir	367.68	30 15 18	Cir Cir Cir	367.78 368.75 368.30
8	381	Combination	377.52	Rect	4.00	4.00	30	Cir	371.03	30 15	Cir Cir	371.43 372.50
9	381C	Combination	379.89	Rect	4.00	4.00	30	Cir	372.35	30 18	Cir Cir	373.07 374.07
10	382	Combination	381.39	Rect	4.00	4.00	30	Cir	373.60	24	Cir	373.70
11	382A	Manhole	381.95	Cir	4.00	4.00	24	Cir	374.00	24 24	Cir Cir	375.27 374.10
12	395	Combination	382.14	Rect	4.00	4.00	24	Cir	375.38	24 15	Cir Cir	375.48 376.87
13	396	Combination	382.55	Rect	4.00	4.00	24	Cir	375.73	24	Cir	375.83
14	396A	Combination	382.87	Rect	4.00	4.00	24	Cir	375.99	24	Cir	376.09
15	396B	Combination	382.23	Rect	4.00	4.00	24	Cir	376.23	18	Cir	376.73
16	396C	DropGrate	379.55	Rect	3.00	3.00	18	Cir	376.96			
17	383	Combination	382.72	Rect	4.00	4.00	24	Cir	374.48	24 15	Cir Cir	374.58 376.03

Number of Structures: 50

Run Date: 12/23/2024

Structure Report

Project File: Outfall #1.stm

Struct	Structure ID	Junction	Rim		Structure			Line Out	:		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
18	384	Combination	382.29	Rect	4.00	4.00	24	Cir	375.13	24	Cir	375.23
19	385	Combination	381.56	Rect	8.00	4.00	24	Cir	375.90	18 15 15	Cir Cir Cir	376.02 376.45 376.05
20	386	Combination	382.86	Rect	8.00	4.00	18	Cir	377.30	15	Cir	377.55
21	386A	Combination	382.92	Rect	8.00	4.00	15	Cir	377.72			
22	383A	DropGrate	380.41	Rect	3.00	3.00	15	Cir	376.66			
23	385A	Combination	381.56	Rect	8.00	4.00	15	Cir	376.58			
24	395A	Combination	382.14	Rect	4.00	4.00	15	Cir	377.05			
25	385B	DropGrate	381.51	Rect	3.00	3.00	15	Cir	376.22	15	Cir	376.32
26	385C	DropGrate	377.88	Rect	3.00	3.00	15	Cir	376.85			
27	390	Combination	370.22	Rect	4.00	4.00	24	Cir	364.35	24 18	Cir Cir	364.57 364.85
28	390B	Manhole	372.10	Cir	4.00	4.00	24	Cir	366.35	24	Cir	366.55
29	391	Combination	373.82	Rect	4.00	4.00	24	Cir	368.16	18 15	Cir Cir	368.68 368.81
30	392	Combination	376.92	Rect	4.00	4.00	18	Cir	371.67	18 15	Cir Cir	371.77 371.92
31	393	Combination	380.04	Rect	4.00	4.00	18	Cir	374.90	18 15	Cir Cir	375.00 375.15
32	393A	Combination	380.20	Rect	8.00	4.00	18	Cir	375.12	15	Cir	375.42
33	393B	DropGrate	378.27	Rect	3.00	3.00	15	Cir	375.64			
34	393C	DropGrate	379.93	Rect	3.00	3.00	15	Cir	375.30			
35	381D	DropGrate	377.38	Rect	3.00	3.00	18	Cir	374.43			
36	381A	Combination	377.65	Rect	4.00	4.00	15	Cir	372.68	15	Cir	372.80
37	381B	Combination	378.77	Rect	4.00	4.00	15	Cir	373.68			

Number of Structures: 50

Run Date: 12/23/2024

Structure Report

Project File: Outfall #1.stm

Struct	Structure ID	Junction	Rim		Structure			Line Ou	t		Line In	
No.		Туре	Elev (ft)	Shape	Length (ft)	Width (ft)	Size (in)	Shape	Invert (ft)	Size (in)	Shape	Invert (ft)
38	392A	Combination	377.11	Rect	4.00	4.00	15	Cir	372.30			
39	391A	Combination	373.82	Rect	4.00	4.00	15	Cir	369.03			
40	380A	Combination	374.05	Rect	4.00	4.00	15	Cir	369.01			
41	380B	DropGrate	372.49	Rect	3.00	3.00	18	Cir	368.97			
42	378A	Combination	371.06	Rect	4.00	4.00	15	Cir	366.10	15	Cir	366.20
43	378B	Combination	371.27	Rect	4.00	4.00	15	Cir	366.35			
44	390A	Combination	370.23	Rect	4.00	4.00	18	Cir	365.10			
45	377A	Combination	368.56	Rect	4.00	4.00	15	Cir	363.65			
46	375A	Combination	364.57	Rect	4.00	4.00	15	Cir	359.26			
47	31A	DropGrate	359.06	Rect	3.00	3.00	36	Cir	353.09	30	Cir	353.19
48	EX. 31	Manhole	364.91	Cir	4.00	4.00	30	Cir	353.69	30	Cir	353.79
49	EX. 32	Manhole	364.48	Cir	4.00	4.00	30	Cir	354.03	24	Cir	355.35
50	32A	DropGrate	360.04	Rect	3.00	3.00	24	Cir	357.75			
							1					

Number of Structures: 50 Run Date: 12/23/2024

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
1	Ex. 375 Out	46.35	36	Cir	57.000	357.90	358.29	0.684	360.90	361.13	1.05	362.17	End	Combination
2	Pipe - (20)	45.47	36	Cir	41.866	358.40	358.85	1.075	362.17*	362.37*	0.32	362.69	1	Combination
3	Pipe - (19)	45.44	36	Cir	196.394	358.95	362.17	1.640	362.69	364.36	n/a	364.36 j	2	Combination
4	Pipe - (18)	44.18	36	Cir	78.359	362.27	363.50	1.570	364.36	365.66	n/a	365.66	3	Manhole
5	Pipe - (16)	31.44	30	Cir	51.000	364.00	364.54	1.059	365.66	366.45	n/a	366.45	4	Combination
6	Pipe - (15)	30.05	30	Cir	126.897	364.64	366.44	1.418	366.45	368.31	0.45	368.31	5	Combination
7	Pipe - (14)	29.92	30	Cir	59.532	366.65	367.68	1.723	368.31	369.54	n/a	369.54	6	Combination
8	Pipe - (13)	23.91	30	Cir	210.964	367.78	371.03	1.539	369.54	372.69	n/a	372.69 j	7	Combination
9	Pipe - (12) (1)	21.73	30	Cir	140.875	371.43	372.35	0.653	372.91	373.93	1.02	373.93	8	Combination
10	Pipe - (12)	20.72	30	Cir	86.180	373.07	373.60	0.615	374.53	375.15	n/a	375.15	9	Combination
11	Pipe - (51)	20.51	24	Cir	40.124	373.70	374.00	0.747	375.45	375.75	0.77	376.52	10	Manhole
12	Pipe - (50) (1)	12.60	24	Cir	23.025	375.27	375.38	0.499	376.60	376.72	0.74	377.46	11	Combination
13	Pipe - (50)	12.01	24	Cir	49.905	375.48	375.73	0.501	377.46	377.57	0.26	377.83	12	Combination
14	Pipe - (49)	11.15	24	Cir	31.516	375.83	375.99	0.501	377.83	377.90	0.13	378.03	13	Combination
15	Pipe - (48)	10.39	24	Cir	27.860	376.09	376.23	0.499	378.03	378.07	0.18	378.25	14	Combination
16	Pipe - (58)	9.84	18	Cir	25.968	376.73	376.96	0.886	378.25	378.46	0.48	378.94	15	DropGrate
17	Pipe - (11)	9.35	24	Cir	71.389	374.10	374.48	0.532	376.52*	376.64*	0.21	376.85	11	Combination
18	Pipe - (10)	7.40	24	Cir	110.816	374.58	375.13	0.496	376.85	376.95	0.06	377.01	17	Combination
19	Pipe - (9)	7.17	24	Cir	133.897	375.23	375.90	0.500	377.01	376.85	0.81	376.85	18	Combination
20	Pipe - (8)	3.03	18	Cir	260.141	376.02	377.30	0.491	376.85	377.96	n/a	377.96 j	19	Combination
21	Pipe - (7)	1.24	15	Cir	25.751	377.55	377.72	0.660	377.96	378.16	n/a	378.16	20	Combination
22	Pipe - (59)	2.36	15	Cir	28.157	376.03	376.66	2.237	376.85	377.27	n/a	377.27 j	17	DropGrate
23	Pipe - (55)	1.24	15	Cir	24.491	376.45	376.58	0.531	376.89	377.02	n/a	377.02	19	Combination
24	Pipe - (70)	0.42	15	Cir	24.507	376.87	377.05	0.734	377.46	377.30	n/a	377.30	12	Combination

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/23/2024

NOTES: Return period = 25 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
25	Pipe - (60)	2.13	15	Cir	23.549	376.05	376.22	0.722	376.85	376.80	0.34	376.80	19	DropGrate
26	Pipe - (71)	0.90	15	Cir	100.850	376.32	376.85	0.526	376.80	377.22	n/a	377.22	25	DropGrate
27	Pipe - (57)	14.60	24	Cir	41.676	364.00	364.35	0.840	365.66	365.73	n/a	365.73 j	4	Combination
28	Pipe - (56)	12.39	24	Cir	88.898	364.57	366.35	2.002	365.73	367.61	0.22	367.61	27	Manhole
29	Pipe - (39)	12.43	24	Cir	80.422	366.55	368.16	2.001	367.61	369.43	0.81	369.43	28	Combination
30	Pipe - (37)	10.92	18	Cir	166.115	368.68	371.67	1.800	369.67	372.94	1.02	372.94	29	Combination
31	Pipe - (36)	8.94	18	Cir	161.824	371.77	374.90	1.934	372.94	376.06	n/a	376.06 j	30	Combination
32	Pipe - (42)	7.50	18	Cir	24.500	375.00	375.12	0.490	376.26	376.38	0.17	376.55	31	Combination
33	Pipe - (61)	5.51	15	Cir	22.252	375.42	375.64	0.989	376.55	376.59	0.47	376.59	32	DropGrate
34	Pipe - (62)	0.42	15	Cir	20.817	375.15	375.30	0.721	376.06	375.55	n/a	375.55	31	DropGrate
35	Pipe - (69)	0.97	18	Cir	32.881	374.07	374.43	1.095	374.37	374.80	0.13	374.80	9	DropGrate
36	Pipe - (54)	1.99	15	Cir	25.642	372.50	372.68	0.702	373.02	373.24	n/a	373.24	8	Combination
37	Pipe - (22)	0.46	15	Cir	29.330	372.80	373.68	3.000	373.24	373.94	n/a	373.94 j	36	Combination
38	Pipe - (41)	1.24	15	Cir	26.271	371.92	372.30	1.446	372.94	372.74	n/a	372.74	30	Combination
39	Pipe - (40)	1.27	15	Cir	34.056	368.81	369.03	0.646	369.43	369.48	n/a	369.48 j	29	Combination
40	Pipe - (43)	1.31	15	Cir	24.427	368.75	369.01	1.064	369.54	369.46	n/a	369.46	7	Combination
41	Pipe - (63)	5.02	18	Cir	123.325	368.30	368.97	0.543	369.54	369.84	0.34	370.19	7	DropGrate
42	Pipe - (24)	1.19	15	Cir	28.012	365.72	366.10	1.357	366.45	366.53	n/a	366.53 j	5	Combination
43	Pipe - (53)	0.42	15	Cir	29.509	366.20	366.35	0.508	366.53	366.61	0.09	366.69	42	Combination
44	Pipe - (17)	1.58	18	Cir	24.451	364.85	365.10	1.022	365.73	365.57	n/a	365.57	27	Combination
45	Pipe - (28)	0.93	15	Cir	24.503	363.42	363.65	0.939	364.36	364.03	n/a	364.03	3	Combination
46	Pipe - (26)	1.20	15	Cir	25.748	359.09	359.26	0.660	362.17*	362.18*	0.01	362.20	1	Combination
47	Pipe - (67)	16.81	36	Cir	38.074	352.90	353.09	0.499	355.90	355.92	0.05	355.96	End	DropGrate
48	Pipe - (66)	14.91	30	Cir	98.975	353.19	353.69	0.500	355.96	356.08	0.02	356.11	47	Manhole

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/23/2024

NOTES: Return period = 25 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

Storm Sewer Summary Report

о.	D Flow rate (cfs)	Line Size (in)	Line shape	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line Slope (%)	HGL Down (ft)	HGL Up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns Line No.	Junction Type
49 Pipe - (65)	14.96	30	Cir	48.268	353.79	354.03	0.497	356.11	355.33	0.50	355.33	48	Manhole
Pipe - (65) Pipe - (29)	14.96		Cir	48.268		354.03 357.75	0.497	356.11 356.29	355.33 359.15	0.50 n/a	355.33 359.15	48 49	Manhole DropGrate

NOTES: Return period = 25 Yrs.; *Surcharged (HGL above crown).; j - Line contains hyd. jump.

	Inlet ID	Q =	Q	Q	Q	Junc							G	utter					Inlet		Вур	
No		CIA (cfs)	(cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
1	EX. CB 375	0.04	0.00	0.04	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.07	1.13	0.00	0.00	0.0	Off
2	376	0.69	0.00	0.61	0.08	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.53	0.09	1.49	0.0	Off
3	377	0.81	0.00	0.70	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.99	0.10	1.70	0.0	Off
4	377B	0.04	0.00	0.00	0.04	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
5	378	0.73	0.00	0.64	0.09	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.19	5.69	0.09	1.56	0.0	Off
6	379	0.27	0.00	0.27	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.14	3.00	0.02	0.39	0.0	Off
7	380	1.20	0.00	0.95	0.25	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.25	0.14	2.80	0.0	Off
8	381	0.77	0.00	0.67	0.10	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.84	0.10	1.64	0.0	Off
9	381C	0.35	0.00	0.34	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.15	3.63	0.04	0.67	0.0	Off
10	382	0.31	0.00	0.30	0.01	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.15	3.33	0.03	0.54	0.0	Off
11	382A	0.04	0.00	0.00	0.04	мн	6.0	0.00	0.00	3.00	2.50	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
12	395	0.27	0.00	0.27	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.14	3.00	0.02	0.39	0.0	Off
13	396	0.93	0.00	0.77	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.21	6.40	0.11	1.89	0.0	Off
14	396A	0.81	0.00	0.70	0.12	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.99	0.10	1.70	0.0	Off
15	396B	0.58	0.00	0.53	0.05	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.18	5.00	0.08	1.26	0.0	Off
16	396C	9.84	0.00	9.84	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.55	112.36	0.55	112.36	0.0	Off
17	383	0.04	0.00	0.04	0.00	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.07	1.13	0.00	0.00	0.0	Off
18	384	0.46	0.00	0.44	0.03	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.17	4.38	0.06	0.99	0.0	Off
19	385	1.16	0.00	1.06	0.10	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.13	0.10	1.63	0.0	Off
20	386	1.81	0.00	1.58	0.24	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.26	8.76	0.13	2.67	0.0	Off
21	386A	1.24	0.00	1.12	0.12	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.35	0.10	1.71	0.0	Off
22	383A	2.36	0.00	2.36	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.21	44.52	0.21	44.52	0.0	Off
23	385A	1.24	0.00	1.12	0.12	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.35	0.10	1.71	0.0	Off

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/23/2024

NOTES: Inlet N-Values = 0.016; Intensity = 65.79 / (Inlet time + 11.50) ^ 0.75; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb l	nlet	Gra	ate Inlet				G	utter					Inlet		Вур
No		CIA (cfs)	carry (cfs)	capt (cfs)	Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	—Line No
24	395A	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.15	0.05	0.90	0.0	Off
25	385B	1.38	0.00	1.38	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.15	31.80	0.15	31.80	0.0	Off
26	385C	0.90	0.00	0.90	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.020	0.020	0.013	0.11	13.19	0.11	13.19	0.0	Off
27	390	0.85	0.00	0.72	0.13	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	6.13	0.11	1.76	0.0	Off
28	390B	0.04	0.00	0.00	0.04	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
29	391	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.15	0.05	0.90	0.0	Off
30	392	0.93	0.00	0.77	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.21	6.40	0.11	1.89	0.0	Off
31	393	1.08	0.00	0.87	0.21	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	6.90	0.13	2.35	0.0	Off
32	393A	2.01	0.00	1.72	0.28	Comb	6.0	1.50	0.00	6.00	2.50	0.005	2.00	0.060	0.020	0.013	0.26	9.15	0.14	3.11	0.0	Off
33	393B	5.51	0.00	5.51	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.37	76.93	0.37	76.93	0.0	Off
34	393C	0.42	0.00	0.42	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.07	15.56	0.07	15.56	0.0	Off
35	381D	0.97	0.00	0.97	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.12	25.45	0.12	25.45	0.0	Off
36	381A	1.54	0.00	1.15	0.39	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.24	8.15	0.16	3.94	0.0	Off
37	381B	0.46	0.00	0.44	0.03	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.17	4.38	0.06	0.99	0.0	Off
38	392A	1.24	0.00	0.97	0.27	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.35	0.14	2.95	0.0	Off
39	391A	1.27	0.00	0.99	0.28	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.46	0.14	3.08	0.0	Off
40	380A	1.31	0.00	1.02	0.29	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.23	7.57	0.14	3.21	0.0	Off
41	380B	5.02	0.00	5.02	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.35	72.43	0.35	72.43	0.0	Off
42	378A	0.77	0.00	0.67	0.10	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.20	5.84	0.10	1.64	0.0	Off
43	378B	0.42	0.00	0.40	0.02	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.16	4.15	0.05	0.90	0.0	Off
44	390A	1.58	0.00	1.17	0.41	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.24	8.24	0.16	4.05	0.0	Off
45	377A	0.93	0.00	0.77	0.15	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.21	6.40	0.11	1.89	0.0	Off
46	375A	1.20	0.00	0.95	0.25	Comb	6.0	1.50	0.00	3.00	2.50	0.005	2.00	0.060	0.020	0.013	0.22	7.25	0.14	2.80	0.0	Off

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/23/2024

NOTES: Inlet N-Values = 0.016; Intensity = 65.79 / (Inlet time + 11.50) ^ 0.75; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

Line	Inlet ID	Q =	Q	Q	Q	Junc	Curb li	nlet	Gra	ite Inlet				G	utter					Inlet		Вур
No		CIA (cfs)			Byp (cfs)	Туре	Ht (in)	L (ft)	Area (sqft)	L (ft)	W (ft)	So (ft/ft)	W (ft)	Sw (ft/ft)	Sx (ft/ft)	n	Depth (ft)	Spread (ft)	Depth (ft)	Spread (ft)	Depr (in)	Line No
47	31A	2.24	0.00	2.24	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.21	43.13	0.21	43.13	0.0	Off
48	EX. 31	0.04	0.00	0.00	0.04	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
49	EX. 32	0.04	0.00	0.00	0.04	мн	0.0	0.00	0.00	0.00	0.00	Sag	2.00	0.060	0.020	0.013	0.00	0.00	0.00	0.00	0.0	Off
50	32A	15.03	0.00	15.03	0.00	DrGrt	0.0	0.00	4.00	2.00	2.00	Sag	2.00	0.010	0.010	0.013	0.73	148.40	0.73	148.40	0.0	Off

Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/23/2024

NOTES: Inlet N-Values = 0.016; Intensity = 65.79 / (Inlet time + 11.50) ^ 0.75; Return period = 25 Yrs.; * Indicates Known Q added.All curb inlets are throat.

Hydraulic Grade Line Computations

Line	Size	Q	Downstream								Len	n Upstream								Check		JL	Minor
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	VeI (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth (ft)	Area (sqft)	Vel (ft/s)	VeI head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
1	36	46.35	357.90	360.90	3.00	7.07	6.56	0.67	361.57	0.483	57.000	358.29	361.13	2.84	6.92	6.70	0.70	361.83	0.418	0.451	0.257	1.50	1.05
2	36	45.47	358.40	362.17	3.00	7.07	6.43	0.64	362.82	0.465	41.866	358.85	362.37	3.00	7.07	6.43	0.64	363.01	0.465	0.465	0.195	0.50	0.32
3	36	45.44	358.95	362.69	3.00	5.54	6.43	0.64	363.33	0.464	196.39	4362.17	364.36 j	2.19**	5.54	8.20	1.05	365.41	0.593	0.528	n/a	1.50	n/a
4	36	44.18	362.27	364.36	2.09	5.27	8.39	1.02	365.38	0.000	78.359	363.50	365.66	2.16**	5.46	8.10	1.02	366.68	0.000	0.000	n/a	1.00	n/a
5	30	31.44	364.00	365.66	1.66	3.47	9.06	0.95	366.61	0.000	51.000	364.54	366.45	1.91**	4.02	7.82	0.95	367.40	0.000	0.000	n/a	1.30	n/a
6	30	30.05	364.64	366.45	1.81	3.80	7.90	0.91	367.36	0.000	126.89	7366.44	368.31	1.87**	3.93	7.64	0.91	369.22	0.000	0.000	n/a	0.50	0.45
7	30	29.92	366.65	368.31	1.65	3.44	8.69	0.90	369.21	0.000	59.532	367.68	369.54	1.86**	3.92	7.63	0.90	370.45	0.000	0.000	n/a	1.50	n/a
8	30	23.91	367.78	369.54	1.76	3.47	6.48	0.74	370.28	0.000	210.96	4371.03	372.69 j	1.66**	3.47	6.89	0.74	373.43	0.000	0.000	n/a	1.44	1.06
9	30	21.73	371.43	372.91	1.48*	3.02	7.20	0.68	373.59	0.000	140.87	5372.35	373.93	1.58**	3.28	6.63	0.68	374.62	0.000	0.000	n/a	1.50	1.02
10	30	20.72	373.07	374.53	1.46*	2.98	6.96	0.66	375.19	0.000	86.180	373.60	375.15	1.54**	3.18	6.51	0.66	375.80	0.000	0.000	n/a	0.50	n/a
11	24	20.51	373.70	375.45	1.75*	2.91	7.05	0.77	376.22	0.747	40.124	374.00	375.75	1.75	2.91	7.05	0.77	376.52	0.747	0.747	0.300	1.00	0.77
12	24	12.60	375.27	376.60	1.34*	2.24	5.64	0.49	377.10	0.499	23.025	375.38	376.72	1.34	2.23	5.64	0.50	377.21	0.501	0.500	0.115	1.50	0.74
13	24	12.01	375.48	377.46	1.98	3.14	3.83	0.23	377.69	0.260	49.905	375.73	377.57	1.84	3.02	3.97	0.25	377.81	0.245	0.252	0.126	1.07	0.26
14	24	11.15	375.83	377.83	2.00	3.14	3.55	0.20	378.03	0.241	31.516	375.99	377.90	1.91	3.09	3.61	0.20	378.10	0.211	0.226	0.071	0.65	0.13
15	24	10.39	376.09	378.03	1.93	3.11	3.34	0.17	378.20	0.185	27.860	376.23	378.07	1.84	3.02	3.44	0.18	378.25	0.183	0.184	0.051	0.99	0.18
16	18	9.84	376.73	378.25	1.50	1.77	5.57	0.48	378.73	0.879	25.968	376.96	378.46	1.50	1.77	5.57	0.48	378.94	0.854	0.866	0.225	1.00	0.48
17	24	9.35	374.10	376.52	2.00	3.14	2.98	0.14	376.66	0.171	71.389	374.48	376.64	2.00	3.14	2.98	0.14	376.78	0.171	0.171	0.122	1.50	0.21
18	24	7.40	374.58	376.85	2.00	3.14	2.36	0.09	376.93	0.107	110.81	6375.13	376.95	1.82	3.00	2.47	0.09	377.04	0.094	0.100	0.111	0.66	0.06
19	24	7.17	375.23	377.01	1.78	1.47	2.42	0.37	377.38	0.106	133.89	7375.90	376.85	0.95**	1.47	4.88	0.37	377.22	0.138	0.122	n/a	2.18	0.81
20	18	3.03	376.02	376.85	0.83	0.75	3.04	0.14	376.99	0.241	260.14	1377.30	377.96 j	0.66**	0.75	4.04	0.25	378.21	0.516	0.379	n/a	1.50	n/a
21	15	1.24	377.55	377.96	0.41*	0.35	3.49	0.16	378.12	0.000	25.751	377.72	378.16	0.44**	0.38	3.22	0.16	378.32	0.000	0.000	n/a	1.00	n/a
22	15	2.36	376.03	376.85	0.82	0.60	2.77	0.24	377.09	0.000	28.157	376.66	377.27 j	0.61**	0.60	3.93	0.24	377.51	0.000	0.000	n/a	1.00	0.24

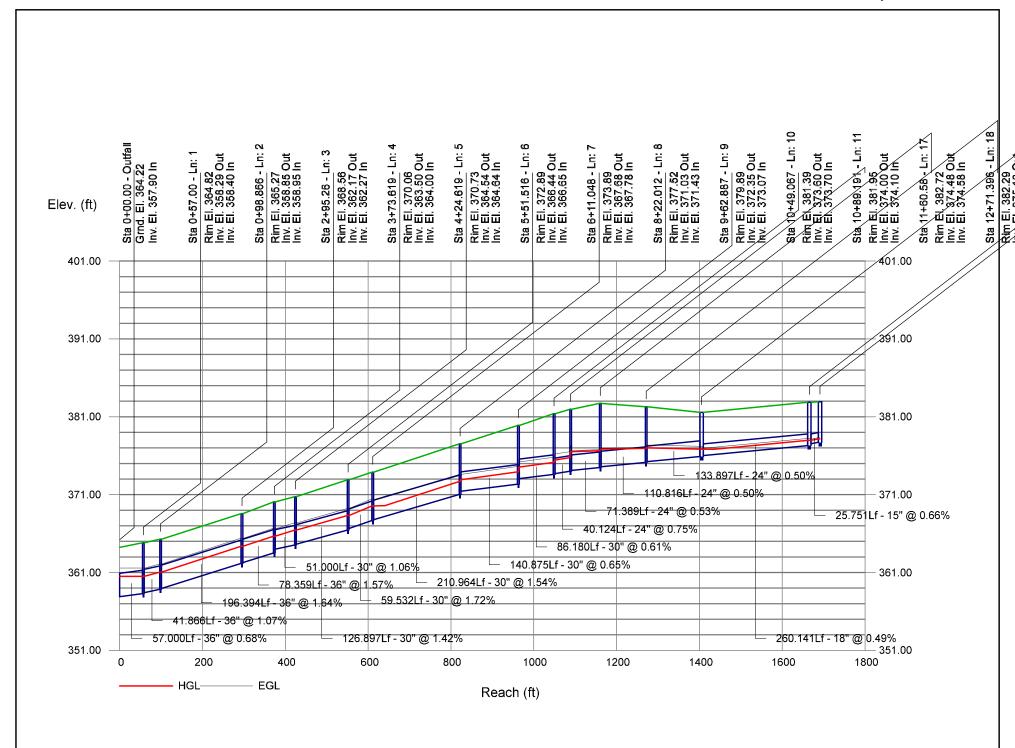
Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/23/2024

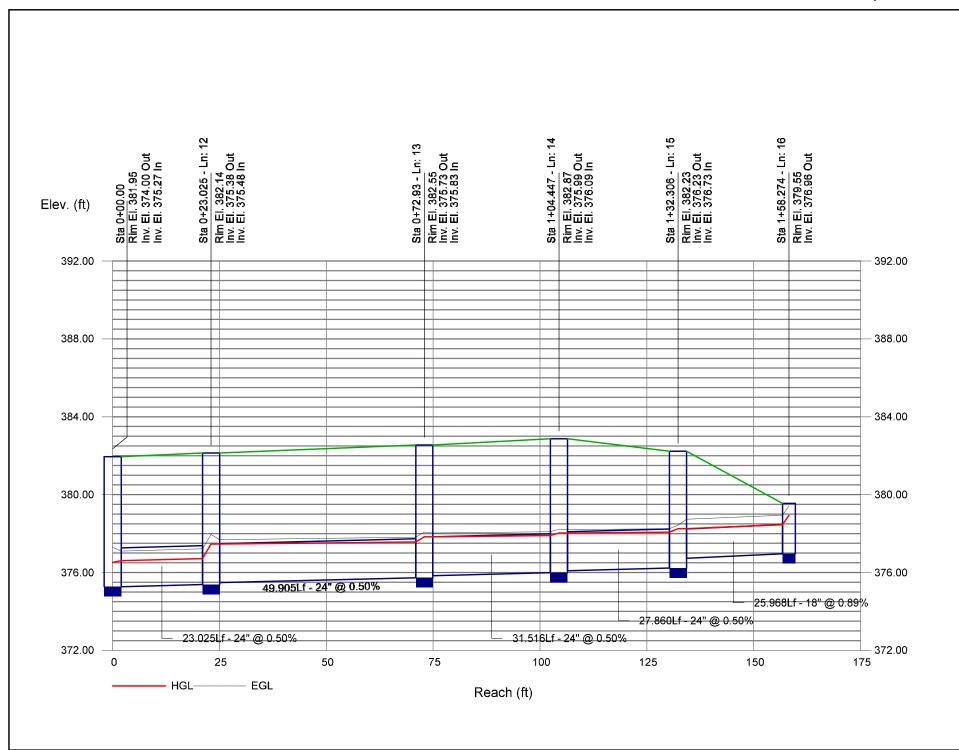
Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

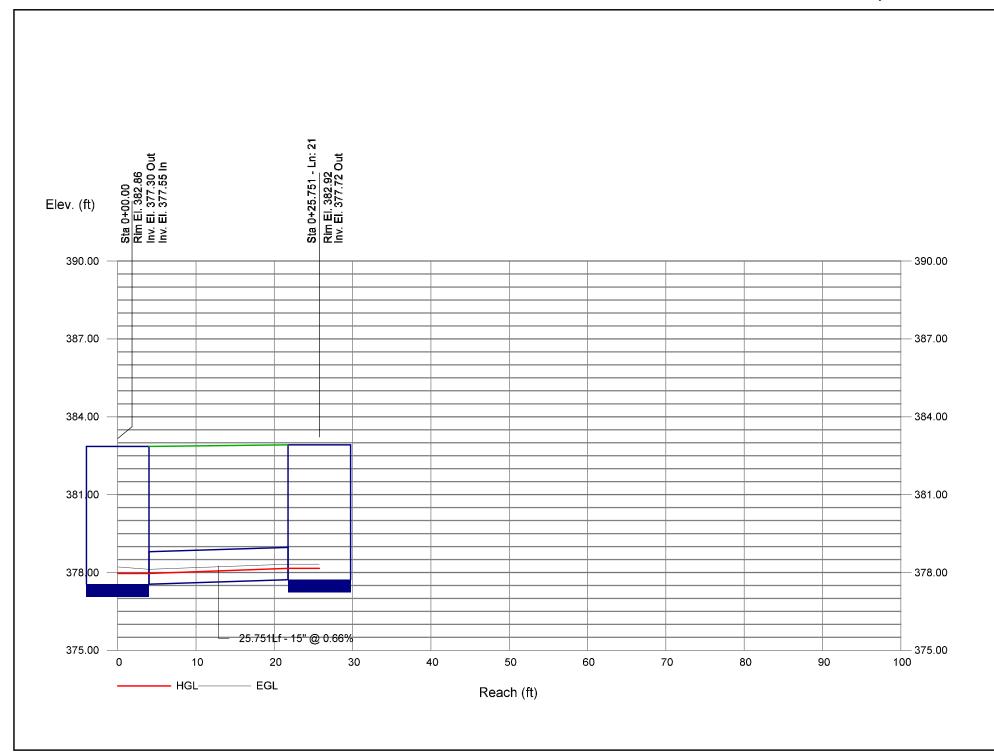
Hydraulic Grade Line Computations

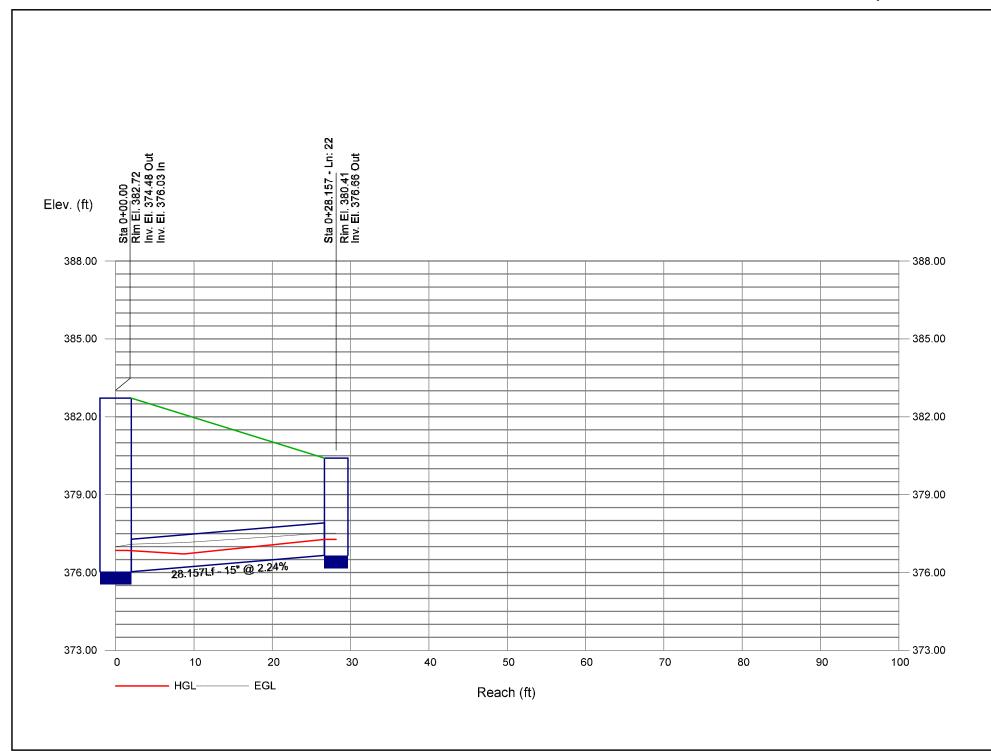
Line	Size	Q	Downstream						Len				Upst	ream				Check JL			Minor		
	(in)	(cfs)	Invert elev (ft)	HGL elev (ft)	Depth	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	(ft)	Invert elev (ft)	HGL elev (ft)	Depth	Area (sqft)	Vel (ft/s)	Vel head (ft)	EGL elev (ft)	Sf (%)	Ave Sf (%)	Enrgy loss (ft)	coeff (K)	loss (ft)
	,	(3.5)	(,	(1-7)	(,	(- 4)	(,	,	(/	(//	(,		(1-7	1,	(-4)	(,	(,	(,	(70)	(7-7	(,	(,	
23	15	1.24	376.45	376.89	0.44*	0.38	3.23	0.16	377.05	0.000	24.491	376.58	377.02	0.44**	0.38	3.22	0.16	377.18	0.000	0.000	n/a	1.00	n/a
24	15	0.42	376.87	377.46	0.59	0.18	0.74	0.09	377.55	0.000	24.507	377.05	377.30	0.25**	0.18	2.39	0.09	377.39	0.000	0.000	n/a	1.00	n/a
25	15	2.13	376.05	376.85	0.80	0.56	2.57	0.23	377.08	0.119	23.549	376.22	376.80	0.58**	0.56	3.81	0.23	377.03	0.119	0.119	n/a	1.49	0.34
26	15	0.90	376.32	376.80	0.48	0.31	2.06	0.13	376.94	0.019	100.85	0376.85	377.22	0.37**	0.31	2.94	0.13	377.36	0.024	0.022	n/a	1.00	n/a
27	24	14.60	364.00	365.66	1.66	2.30	5.23	0.62	366.29	0.000	41.676	364.35	365.73 j	1.38**	2.30	6.34	0.62	366.35	0.000	0.000	n/a	1.42	0.89
28	24	12.39	364.57	365.73	1.16	1.88	6.58	0.54	366.27	0.000	88.898	366.35	367.61	1.26**	2.09	5.92	0.54	368.16	0.000	0.000	n/a	0.41	0.22
29	24	12.43	366.55	367.61	1.06	1.70	7.33	0.55	368.16	0.000	80.422	368.16	369.43	1.27**	2.10	5.93	0.55	369.97	0.000	0.000	n/a	1.48	0.81
30	18	10.92	368.68	369.67	0.99*	1.24	8.81	0.73	370.41	0.000	166.11	5371.67	372.94	1.27**	1.59	6.87	0.73	373.67	0.000	0.000	n/a	1.39	1.02
31	18	8.94	371.77	372.94	1.17	1.46	6.07	0.58	373.52	0.000	161.82	4374.90	376.06 j	1.16**	1.46	6.12	0.58	376.64	0.000	0.000	n/a	2.22	n/a
32	18	7.50	375.00	376.26	1.26*	1.58	4.74	0.35	376.61	0.490	24.500	375.12	376.38	1.26	1.58	4.73	0.35	376.73	0.489	0.490	0.120	0.50	0.17
33	15	5.51	375.42	376.55	1.13	1.00	4.71	0.47	377.02	0.000	22.252	375.64	376.59	0.95**	1.00	5.50	0.47	377.06	0.000	0.000	n/a	1.00	0.47
34	15	0.42	375.15	376.06	0.91	0.18	0.45	0.09	376.14	0.000	20.817	375.30	375.55	0.25**	0.18	2.39	0.09	375.64	0.000	0.000	n/a	1.00	n/a
35	18	0.97	374.07	374.37	0.30*	0.25	3.82	0.13	374.50	0.000	32.881	374.43	374.80	0.37**	0.33	2.89	0.13	374.93	0.000	0.000	n/a	1.00	0.13
36	15	1.99	372.50	373.02	0.52*	0.49	4.07	0.22	373.24	0.000	25.642	372.68	373.24	0.56**	0.53	3.73	0.22	373.46	0.000	0.000	n/a	0.50	n/a
37	15	0.46	372.80	373.24	0.44	0.19	1.20	0.09	373.33	0.000	29.330	373.68	373.94 j	0.26**	0.19	2.45	0.09	374.04	0.000	0.000	n/a	1.00	0.09
38	15	1.24	371.92	372.94	1.02	0.38	1.16	0.16	373.10	0.000	26.271	372.30	372.74	0.44**	0.38	3.22	0.16	372.90	0.000	0.000	n/a	1.00	n/a
39	15	1.27	368.81	369.43	0.62	0.39	2.11	0.16	369.59	0.000		369.03	369.48 j	0.45**	0.39	3.25	0.16	369.64	0.000	0.000	n/a	1.00	n/a
40	15	1.31	368.75	369.54	0.79	0.40	1.60	0.17	369.71	0.000		369.01	369.46	0.45**	0.40	3.28	0.17	369.63	0.000	0.000	n/a	1.00	n/a
41	18	5.02	368.30	369.54	1.24	1.57	3.21	0.16	369.70	0.224		5368.97	369.84	0.87	1.07	4.71	0.34	370.19	0.558	0.391	0.482	1.00	0.34
42	15	1.19	365.72	366.45	0.73	0.37	1.60	0.16	366.61	0.000		366.10	366.53 j	0.43**	0.37	3.18	0.16	366.69	0.000	0.000	n/a	0.50	n/a
43	15	0.42	366.20	366.53	0.33	0.18	1.65	0.04	366.57	0.188		366.35	366.61	0.26**	0.18	2.35	0.09	366.69	0.516	0.352	0.104	1.00	0.09
44	18	1.58	364.85	365.73	0.88	0.48	1.48	0.17	365.90	0.000	24.451	365.10	365.57	0.47**	0.48	3.32	0.17	365.74	0.000	0.000	n/a	1.00	n/a
																			<u> </u>				

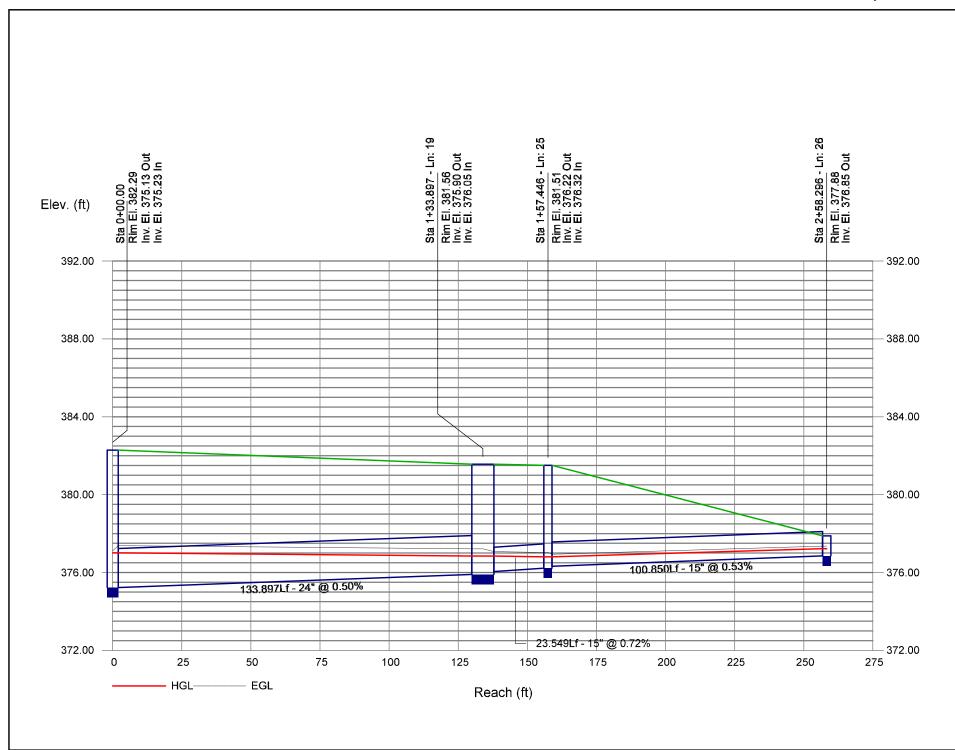
Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/23/2024


Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box


Hydraulic Grade Line Computations


Line	Size	Q	Downstream								Len	en Upstream								Check		JL "	Minor
		(252)	Invert	HGL elev	Depth				elev	Sf		Invert	elev	Depth		Vel	Vel head	EGL elev		Sf	Enrgy	coeff	loss
	(in)	(cfs)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(ft)	(ft)	(ft)	(ft)	(sqft)	(ft/s)	(ft)	(ft)	(%)	(%)	(ft)	(K)	(ft)
45	15	0.93	363.42	364.36	0.94	0.31	0.93	0.14	364.50	0.000	24.503	363.65	364.03	0.38**	0.31	2.97	0.14	364.16	0.000	0.000	n/a	1.00	n/a
46	15	1.20	359.09	362.17	1.25	1.23	0.98	0.01	362.19	0.034		359.26	362.18	1.25	1.23	0.98	0.01	362.20	0.034	0.034	0.009	1.00	0.01
47	36	16.81	352.90	355.90	3.00*	7.07	2.38	0.09	355.99	0.064	38.074	353.09	355.92	2.83	6.91	2.43	0.09	356.01	0.055	0.059	0.023	0.50	0.05
48	30	14.91	353.19	355.96	2.50	4.91	3.04	0.14	356.11	0.132	98.975		356.08	2.40	4.84	3.08	0.15	356.23	0.115	0.124	0.122	0.15	0.02
49	30	14.96	353.79	356.11	2.32	2.59	3.15	0.52	356.63	0.000	48.268	354.03	355.33	1.30**	2.59	5.78	0.52	355.85	0.000	0.000	n/a	0.96	0.50
50	24	15.03	355.35	356.29	0.94*	1.45	10.38	0.64	356.93	0.000	109.03	D357.75	359.15	1.40**	2.34	6.42	0.64	359.79	0.000	0.000	n/a	1.00	n/a


Project File: Outfall #1.stm Number of lines: 50 Run Date: 12/23/2024


Notes: * depth assumed; ** Critical depth.; j-Line contains hyd. jump ; c = cir e = ellip b = box

