

# Vineyard Pine Commercial 4502 Vineyard Pine Lane

+

Rolesville, NC Wake County

.

# STORMWATER PERMIT ANALYSIS

August 28, 2023

MITTIN



**Prepared for:** 

MRR Development, LLC 10121 Capital Blvd., Suite 105 Wake Forest, NC 27587

Gettle Engineering and Design, PLLC, 3616 Waxwing Ct., Wake Forest, NC 27587, (919) 210-3934, NC License P-2538 Page 1 of 5

# Vineyard Pine Commercial Stormwater Management Analysis

**Project Name:** Vineyard Pine Commercial Project Address: 4502 Vineyard Pine Lane Rolesville, NC Pins: 175843022 Latitude: N 35.906083 W -79.688333 Longitude: Zoning: OP-CZ River Basin: Neuse Watershed: Lower Neuse HUC: 0302020107 MRR Development, LLC **Developer:** 10121 Capital Blvd., Suite 105 Wake Forest, NC 27587 Telephone: (330) 573-4030 Email: Omar@Meinekenc.com

### Site Description

The project consists of a single parcel located at the intersection of Jonesville and Vineyard Pine Lane in Rolesville. The lot is approximately 1.45 acres (63,259 sq feet). The parcel is vacant with grassy vegetation with approximately 0 sq ft of impervious area. The project will consist of a commercial building and associated parking.

The impervious area post development will be 1.09 acres.

The site is in the Neuse River Basin, Lower Neuse Watershed and subject to those rules regarding nutrient management and post storm water runoff.

Page 2 of 5

Based on the Wake County SCS soils map (attached) the onsite soils are primarily Durham Series (DuB), soil group B, throughout the tract. The Durham Series soil type is considered to be well drained soils and based on information in the Soil Survey.

# Proposed Development

The stormwater analysis considers a proposed development that will include one commercial building and associated parking on the site. One underground Storm Filter with pipe detention is proposed for the stormwater requirements. The treatment associated with Storm Filter accounts for the impervious area for the parcel and the device is proposed to treat the first inch of rainfall and control runoff within the drainage areas as shown on the attached drainage map EX1.

The Storm Filter SCM is a proprietary device approved by NCDNR and developed by Contech Engineered Solutions LLC. Detail design calculations are included within this report.

The device is designed in accordance with NCDENR DWR's BMP Manual, and will manage the 2, and 10 year, 24-hour storm events as noted below. The post development runoff from the noted storm events is less than the predevelopment rates for the site.

# Methodology (Peak Flow and Nutrient Management)

The project is located within the Town of Rolesville's / Wake County permitting authority, and within the Neuse River / Milburnie Lake watershed and the project is subjected to those rules listed in the LDO, Appendix B, Section 1.2 Stormwater Management, Adopted 6-1-2021.

Under the Town's LDO stormwater requirements as noted below. The project is considered a High-Density project.

# **Development Standards for High-Density**

Projects High-Density Projects shall implement stormwater control measures that comply with each of the following standards, in addition to the General Standards found in subsection B of this section:

a. The measures shall control and treat runoff from the first inch of rain. Runoff volume drawdown time shall be a minimum of 48 hours, but not more than 120 hours.

b. All structural stormwater treatment systems used to meet these requirements shall be designed to have a minimum of 85 percent average annual removal for Total Suspended Solids (TSS). c. All Development and Redevelopment projects required to manage storm water shall provide permanent on-site BMPs to lower the nitrogen export amounts as part of the storm water management plan. BMPs are to be in accordance with and as specified in the Design Manual d. Structural and Non-structural BMPs shall be used to ensure there is no net increase in peak flow leaving the site from the pre-Development conditions for the one-year, 24-hour storm. Runoff volume drawdown time shall be a minimum of 48 hours, but not more than 120 hours.
e. General engineering design criteria for all projects shall be in accordance with 15A NCAC 2H .1008(c), as explained in the Design Manual

The POI (point of interest) for the project is at the southeast corner of the site as shown on EX1.

Based on the proposed stormwater management system for the project no adverse impact is anticipated on adjacent parcels. The BMP system will tie into an existing junction box located along the eastern property line. The existing pipe system discharges into a ditch along the southern portion of the site.

Using the SCS Method, the modeling of the BMP at the POI provides the following results in peak flow management. The methodology used to determine the runoff is the SCS Method and the Time of Concentration used in both the pre and post analysis is 5 minutes.

### **Runoff Summary**

Total site peak runoff in cfs (noted in the attached Hydraflow report) is as follows.

| Storm Event | Pre  | Post |
|-------------|------|------|
| Q1          | 1.38 | .94  |
| Q10         | 4.74 | 1.82 |

### **Nutrient Management**

The BMP provides treatment for drainage area within the project and also provides the TSS removal of 85%.

### O&M Manual

A copy of the project's O&M manual is attached for the Storm Filter device.

# Flood Hazard Area

The parcel is not located within a flood zone as noted per FEMA map 3720175800K, Dated July 19, 2022.

# Q100 Backwater Effect at BMP (13. Z Wake County Checklist)

There is no storm pipe from the ROW that discharges to the BMP and as a result Q100 backwater review not needed.

## **Downstream Impact Analysis (DIA)**

The Town of Rolesville requires a DIA to be performed with the 10% rule. As a result of the proposed Storm Filter BMP; the post runoff from the development of the project for the post Q10 will be reduced from the peak stormwater runoff (pre Q10) to below the predevelopment standards. The post stormwater runoff increase is less than 10% on adjacent properties at the POI noted on EX1.

Attachments.







# **GIS Aerial**



**Disclaimer** iMaps makes every effort to produce and publish the most current and accurate information possible. However, the maps are produced for information purposes, and are **NOT** surveys. No warranties, expressed or implied , are provided for the data therein, its use, or its interpretation.

# National Flood Hazard Layer FIRMette



### Legend



Basemap Imagery Source: USGS National Map 2023





NOAA Atlas 14, Volume 2, Version 3 Location name: Raleigh, North Carolina, USA\* Latitude: 35.8332°, Longitude: -78.5409° Elevation: 224 ft\*\* \* source: ESRI Maps \*\* source: USGS



### POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF\_tabular | PF\_graphical | Maps\_&\_aerials

### **PF** tabular

| PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) <sup>1</sup> |                               |                                     |                               |                               |                               |                               |                               |                               |                               |                               |  |
|----------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|--|
| Duration                                                                                                 |                               | Average recurrence interval (years) |                               |                               |                               |                               |                               |                               |                               |                               |  |
| Duration                                                                                                 | 1                             | 2                                   | 5                             | 10                            | 25                            | 50                            | 100                           | 200                           | 500                           | 1000                          |  |
| 5-min                                                                                                    | <b>0.405</b><br>(0.371-0.443) | <b>0.472</b><br>(0.433-0.515)       | <b>0.540</b><br>(0.495-0.589) | <b>0.603</b><br>(0.552-0.658) | <b>0.668</b><br>(0.609-0.728) | <b>0.718</b><br>(0.651-0.781) | <b>0.762</b><br>(0.687-0.830) | <b>0.801</b><br>(0.718-0.873) | <b>0.844</b><br>(0.751-0.920) | <b>0.881</b><br>(0.777-0.963) |  |
| 10-min                                                                                                   | <b>0.647</b><br>(0.592-0.708) | <b>0.755</b><br>(0.692-0.824)       | <b>0.864</b><br>(0.793-0.943) | <b>0.965</b><br>(0.883-1.05)  | <b>1.06</b><br>(0.970-1.16)   | <b>1.14</b><br>(1.04-1.24)    | <b>1.21</b><br>(1.09-1.32)    | <b>1.27</b><br>(1.14-1.38)    | <b>1.34</b><br>(1.19-1.46)    | <b>1.39</b><br>(1.22-1.52)    |  |
| 15-min                                                                                                   | <b>0.808</b><br>(0.740-0.885) | <b>0.949</b><br>(0.870-1.04)        | <b>1.09</b><br>(1.00-1.19)    | <b>1.22</b><br>(1.12-1.33)    | <b>1.35</b><br>(1.23-1.47)    | <b>1.45</b><br>(1.31-1.58)    | <b>1.53</b><br>(1.38-1.67)    | <b>1.60</b><br>(1.44-1.75)    | <b>1.68</b><br>(1.49-1.83)    | <b>1.74</b><br>(1.54-1.90)    |  |
| 30-min                                                                                                   | <b>1.11</b><br>(1.02-1.21)    | <b>1.31</b><br>(1.20-1.43)          | <b>1.55</b><br>(1.42-1.70)    | <b>1.77</b><br>(1.62-1.93)    | <b>2.00</b><br>(1.82-2.18)    | <b>2.18</b><br>(1.98-2.37)    | <b>2.34</b><br>(2.11-2.55)    | <b>2.49</b><br>(2.24-2.72)    | <b>2.67</b><br>(2.38-2.92)    | <b>2.82</b><br>(2.49-3.08)    |  |
| 60-min                                                                                                   | <b>1.38</b><br>(1.26-1.51)    | <b>1.64</b><br>(1.51-1.80)          | <b>1.99</b><br>(1.83-2.17)    | <b>2.30</b><br>(2.11-2.51)    | <b>2.66</b><br>(2.42-2.90)    | <b>2.95</b><br>(2.68-3.22)    | <b>3.23</b><br>(2.91-3.52)    | <b>3.50</b><br>(3.14-3.81)    | <b>3.84</b><br>(3.41-4.18)    | <b>4.12</b> (3.63-4.50)       |  |
| 2-hr                                                                                                     | <b>1.62</b><br>(1.47-1.78)    | <b>1.93</b><br>(1.76-2.12)          | <b>2.36</b><br>(2.15-2.60)    | <b>2.76</b> (2.50-3.03)       | <b>3.23</b><br>(2.92-3.54)    | <b>3.64</b><br>(3.27-3.99)    | <b>4.03</b><br>(3.59-4.41)    | <b>4.43</b><br>(3.92-4.84)    | <b>4.94</b><br>(4.34-5.40)    | <b>5.38</b><br>(4.68-5.90)    |  |
| 3-hr                                                                                                     | <b>1.71</b><br>(1.56-1.89)    | <b>2.04</b><br>(1.87-2.25)          | <b>2.52</b><br>(2.29-2.77)    | <b>2.96</b><br>(2.68-3.25)    | <b>3.50</b><br>(3.16-3.84)    | <b>3.98</b><br>(3.57-4.36)    | <b>4.45</b><br>(3.96-4.87)    | <b>4.94</b><br>(4.36-5.40)    | <b>5.59</b><br>(4.88-6.12)    | <b>6.17</b><br>(5.33-6.76)    |  |
| 6-hr                                                                                                     | <b>2.06</b><br>(1.88-2.26)    | <b>2.46</b><br>(2.25-2.70)          | <b>3.02</b><br>(2.76-3.32)    | <b>3.56</b><br>(3.24-3.90)    | <b>4.23</b><br>(3.83-4.62)    | <b>4.82</b><br>(4.34-5.26)    | <b>5.42</b><br>(4.83-5.90)    | <b>6.04</b><br>(5.33-6.57)    | <b>6.88</b><br>(6.00-7.49)    | <b>7.63</b><br>(6.57-8.32)    |  |
| 12-hr                                                                                                    | <b>2.42</b><br>(2.22-2.66)    | <b>2.90</b><br>(2.66-3.18)          | <b>3.58</b><br>(3.27-3.92)    | <b>4.23</b> (3.86-4.64)       | <b>5.07</b><br>(4.59-5.54)    | <b>5.82</b><br>(5.23-6.33)    | <b>6.58</b> (5.85-7.15)       | <b>7.39</b><br>(6.50-8.02)    | <b>8.51</b><br>(7.36-9.23)    | <b>9.52</b> (8.11-10.3)       |  |
| 24-hr                                                                                                    | <b>2.88</b><br>(2.68-3.11)    | <b>3.48</b><br>(3.24-3.76)          | <b>4.38</b><br>(4.07-4.72)    | <b>5.08</b> (4.71-5.48)       | <b>6.05</b><br>(5.59-6.52)    | <b>6.82</b><br>(6.28-7.34)    | <b>7.60</b><br>(6.98-8.20)    | <b>8.42</b><br>(7.71-9.08)    | <b>9.53</b> (8.69-10.3)       | <b>10.4</b> (9.46-11.3)       |  |
| 2-day                                                                                                    | <b>3.34</b><br>(3.10-3.59)    | <b>4.02</b><br>(3.74-4.33)          | <b>5.01</b><br>(4.66-5.40)    | <b>5.80</b> (5.38-6.24)       | <b>6.86</b><br>(6.34-7.39)    | <b>7.70</b><br>(7.10-8.30)    | <b>8.56</b><br>(7.88-9.23)    | <b>9.45</b> (8.66-10.2)       | <b>10.7</b> (9.73-11.5)       | <b>11.6</b><br>(10.6-12.6)    |  |
| 3-day                                                                                                    | <b>3.54</b><br>(3.30-3.80)    | <b>4.25</b><br>(3.96-4.56)          | <b>5.28</b><br>(4.92-5.66)    | <b>6.08</b> (5.66-6.53)       | <b>7.19</b><br>(6.66-7.71)    | <b>8.06</b><br>(7.45-8.65)    | <b>8.96</b><br>(8.25-9.62)    | <b>9.88</b> (9.07-10.6)       | <b>11.1</b><br>(10.2-12.0)    | <b>12.1</b><br>(11.0-13.1)    |  |
| 4-day                                                                                                    | <b>3.74</b><br>(3.49-4.00)    | <b>4.48</b><br>(4.19-4.80)          | <b>5.54</b><br>(5.17-5.92)    | <b>6.38</b> (5.94-6.81)       | <b>7.52</b><br>(6.98-8.04)    | <b>8.43</b><br>(7.80-9.01)    | <b>9.36</b> (8.63-10.0)       | <b>10.3</b> (9.48-11.1)       | <b>11.6</b> (10.6-12.5)       | <b>12.7</b><br>(11.5-13.6)    |  |
| 7-day                                                                                                    | <b>4.33</b><br>(4.06-4.62)    | <b>5.17</b><br>(4.84-5.52)          | <b>6.31</b><br>(5.90-6.73)    | <b>7.21</b><br>(6.74-7.69)    | <b>8.45</b><br>(7.87-9.02)    | <b>9.44</b> (8.76-10.1)       | <b>10.4</b> (9.67-11.2)       | <b>11.5</b><br>(10.6-12.3)    | <b>12.9</b><br>(11.8-13.8)    | <b>14.0</b><br>(12.8-15.0)    |  |
| 10-day                                                                                                   | <b>4.94</b><br>(4.63-5.26)    | <b>5.88</b><br>(5.51-6.26)          | <b>7.07</b><br>(6.63-7.53)    | <b>8.01</b><br>(7.50-8.53)    | <b>9.28</b> (8.66-9.89)       | <b>10.3</b> (9.57-11.0)       | <b>11.3</b><br>(10.5-12.0)    | <b>12.3</b><br>(11.4-13.2)    | <b>13.7</b><br>(12.6-14.7)    | <b>14.8</b><br>(13.6-15.8)    |  |
| 20-day                                                                                                   | <b>6.61</b><br>(6.22-7.04)    | <b>7.81</b><br>(7.34-8.32)          | <b>9.25</b> (8.68-9.84)       | <b>10.4</b> (9.74-11.0)       | <b>11.9</b><br>(11.1-12.7)    | <b>13.1</b><br>(12.2-14.0)    | <b>14.3</b><br>(13.3-15.3)    | <b>15.6</b><br>(14.4-16.6)    | <b>17.2</b> (15.9-18.4)       | <b>18.5</b><br>(17.0-19.8)    |  |
| 30-day                                                                                                   | <b>8.21</b><br>(7.74-8.72)    | <b>9.66</b> (9.11-10.3)             | <b>11.3</b><br>(10.6-12.0)    | <b>12.5</b><br>(11.7-13.3)    | <b>14.1</b><br>(13.2-15.0)    | <b>15.4</b><br>(14.4-16.3)    | <b>16.6</b><br>(15.5-17.7)    | <b>17.8</b><br>(16.6-19.0)    | <b>19.5</b><br>(18.1-20.8)    | <b>20.8</b> (19.2-22.2)       |  |
| 45-day                                                                                                   | <b>10.5</b> (9.92-11.0)       | <b>12.3</b><br>(11.6-12.9)          | <b>14.0</b><br>(13.3-14.8)    | <b>15.4</b><br>(14.6-16.3)    | <b>17.2</b> (16.3-18.2)       | <b>18.6</b><br>(17.5-19.6)    | <b>19.9</b><br>(18.7-21.0)    | <b>21.2</b> (19.9-22.4)       | <b>22.9</b><br>(21.5-24.3)    | <b>24.2</b><br>(22.6-25.7)    |  |
| 60-day                                                                                                   | <b>12.5</b><br>(11.9-13.2)    | <b>14.7</b><br>(13.9-15.4)          | <b>16.6</b><br>(15.7-17.4)    | <b>18.1</b><br>(17.2-19.0)    | <b>20.0</b> (19.0-21.1)       | <b>21.5</b> (20.3-22.6)       | <b>22.8</b><br>(21.6-24.1)    | <b>24.2</b><br>(22.8-25.6)    | <b>26.0</b><br>(24.4-27.5)    | <b>27.3</b> (25.6-28.9)       |  |

<sup>1</sup> Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

### **PF** graphical



Large scale terrain



Large scale map



Large scale aerial



# Determining Number of Cartridges for Volume-Based Design in NC

| Design Engineer:<br>Date                                     | lrs<br>8/2/2023               | Blue Cells = Input<br>Black Cells = Calculation                             |
|--------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------|
| Site Information                                             |                               |                                                                             |
| Project Name<br>Project State                                | Jonesville Road Com<br>NC     | mercial                                                                     |
| Project Location                                             | Rolesville                    |                                                                             |
| Impervious Area, Au                                          | 1.10 ac                       |                                                                             |
| Pervious Area, Ap                                            | 0.00                          |                                                                             |
| % Impervious                                                 | 100%                          |                                                                             |
| Runoff Coefficient, Rv                                       | 0.95                          | =0.05+0.9*(Ai/Ad)                                                           |
| Water Quality Volume Calculations                            |                               |                                                                             |
| Design storm rainfall depth, Rd                              | <b>1.0</b> in                 |                                                                             |
| Water quality volume, WQV                                    | <b>3793.4</b> ft <sup>3</sup> | =Ad*Rv*Rd*(43560/12)                                                        |
| Storage Component Calculations                               |                               |                                                                             |
| Capture 75% of WQV                                           | <b>2845.0</b> ft <sup>3</sup> | =0.75*WQV                                                                   |
| Pretreatment credit (estimated or calculated), %pre          | 30%                           |                                                                             |
| Mass loading calculations                                    |                               |                                                                             |
| Mean Annual Rainfall, P                                      | 46 in                         |                                                                             |
| Agency required % removal                                    | <b>85%</b>                    |                                                                             |
| Percent Runoff Capture (% capture)                           | 90%                           |                                                                             |
| Mean Annual Runoff,V <sub>t</sub>                            | 157,045 <sup>ft°</sup>        | =P*Ad*Rv*(43560/12)*%capture                                                |
| Event Mean Concentration of Pollutant, EMC                   | <b>70.0</b> mg/               | (Suggestion: Use 60 for residential, 70 for Commercial, 100 for Industrial) |
| Annual Mass Load, M <sub>total</sub>                         | 685.86 lbs                    | =EMC*Vt*(28.3)*(0.000001)*(2.2046)                                          |
| Filter System                                                |                               |                                                                             |
| Filtration brand                                             | StormFilter                   |                                                                             |
| Cartridge height                                             | <b>18</b> in                  |                                                                             |
| Cartridge Quantity Calculation                               |                               |                                                                             |
| Mass removed by pretreatment system, M <sub>pre</sub>        | <b>206</b> lbs                | =Mtotal * %removal                                                          |
| Mass load to filters after pretreatment, $M_{\text{pass1}}$  | <b>480</b> lbs                | =Mtotal - Mpre                                                              |
| Estimate the required filter efficiency, E <sub>filter</sub> | 79%                           | =1+(%removal - 1)/(1 - %pre)                                                |
| Mass to be captured by filters, M <sub>filter</sub>          | <b>377</b> lbs                | =Mpass1 * Efilter                                                           |
| Maximum Cartridge Flow rate, Q <sub>cart</sub>               | <b>7.5</b> gpn                | n =q * (7.5 ft2/cartridge)                                                  |
| Mass load per cartridge, M <sub>cart</sub> (lbs)             | <b>36</b> lbs                 | =lookup mass load per cartridge                                             |
| Number of Cartridges required, N <sub>mass</sub>             | 11                            | =ROUNDUP(Mfilter/Mcart,0)                                                   |
| Maximum Treatment Capacity                                   | 0.18                          | =Nmass*(Qcart/449)                                                          |
| SUMMARY                                                      |                               |                                                                             |
| Maximum Treatment Flow Rate, cfs                             | 0.18                          | Target Pollutant(s): TSS, N & P                                             |
| Cartridge Flow Rate, gpm                                     | 7.5                           | Media: Phosphosorb                                                          |
| Number of Cartridges                                         | 11<br>06" MU                  |                                                                             |
| Stommiter Size                                               | 90 IVIH                       |                                                                             |

# Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023



# Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

| Hyd.<br>No.                        | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|------------------------------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
| 1                                  | SCS Runoff                     | 1.358                 | 2                         | 718                      | 2,890                    |                  |                              |                               | Pre Development           |
| 2                                  | SCS Runoff                     | 4.170                 | 2                         | 716                      | 9,259                    |                  |                              |                               | Post to BMP               |
| 3                                  | SCS Runoff                     | 0.194                 | 2                         | 718                      | 476                      |                  |                              |                               | Post Bypass               |
| 4                                  | Reservoir                      | 0.787                 | 2                         | 726                      | 9,158                    | 2                | 366.17                       | 3,076                         | UGD BMP                   |
| 5                                  | Combine                        | 0.941                 | 2                         | 720                      | 9,634                    | 3, 4             |                              |                               | Post Combine              |
|                                    |                                |                       |                           |                          |                          |                  |                              |                               |                           |
| Storm Water Review Revised SCS.gpw |                                |                       |                           | Return P                 | eriod: 1 Ye              | ar               | Saturday, 0                  | 8 / 26 / 2023                 |                           |

# Hydrograph Summary Report

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

| Hyd.<br>No. | Hydrograph<br>type<br>(origin) | Peak<br>flow<br>(cfs) | Time<br>interval<br>(min) | Time to<br>Peak<br>(min) | Hyd.<br>volume<br>(cuft) | Inflow<br>hyd(s) | Maximum<br>elevation<br>(ft) | Total<br>strge used<br>(cuft) | Hydrograph<br>Description |
|-------------|--------------------------------|-----------------------|---------------------------|--------------------------|--------------------------|------------------|------------------------------|-------------------------------|---------------------------|
| 1           | SCS Runoff                     | 4.743                 | 2                         | 718                      | 9,486                    |                  |                              |                               | Pre Development           |
| 2           | SCS Runoff                     | 7.457                 | 2                         | 716                      | 17,191                   |                  |                              |                               | Post to BMP               |
| 3           | SCS Runoff                     | 0.917                 | 2                         | 718                      | 1,843                    |                  |                              |                               | Post Bypass               |
| 4           | Reservoir                      | 0.991                 | 2                         | 728                      | 17,090                   | 2                | 368.23                       | 6,194                         | UGD BMP                   |
| 5           | Combine                        | 1.822                 | 2                         | 718                      | 18,932                   | 3, 4             |                              |                               | Post Combine              |
|             |                                |                       |                           |                          |                          |                  |                              |                               |                           |
| Sto         | rm Water Rev                   | iew Revi              | sed SCS                   | 3.gpw                    | Return P                 | eriod: 10 Y      | ear                          | Saturday, 0                   | 8 / 26 / 2023             |

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

# Hyd. No. 1

Pre Development

| Hydrograph type | = SCS Runoff | Peak discharge     | = 1.358 cfs  |
|-----------------|--------------|--------------------|--------------|
| Storm frequency | = 1 yrs      | Time to peak       | = 11.97 hrs  |
| Time interval   | = 2 min      | Hyd. volume        | = 2,890 cuft |
| Drainage area   | = 1.450 ac   | Curve number       | = 68         |
| Basin Slope     | = 0.0 %      | Hydraulic length   | = 0 ft       |
| Tc method =     | = User       | Time of conc. (Tc) | = 5.00 min   |
| Total precip.   | = 2.92 in    | Distribution       | = Type II    |
| Storm duration  | = 24 hrs     | Shape factor       | = 484        |



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

# Hyd. No. 2

Post to BMP

| Hydrograph type | = SCS Runoff | Peak discharge     | = 4.170 cfs  |
|-----------------|--------------|--------------------|--------------|
| Storm frequency | = 1 yrs      | Time to peak       | = 11.93 hrs  |
| Time interval   | = 2 min      | Hyd. volume        | = 9,259 cuft |
| Drainage area   | = 1.100 ac   | Curve number       | = 96         |
| Basin Slope     | = 0.0 %      | Hydraulic length   | = 0 ft       |
| Tc method       | = User       | Time of conc. (Tc) | = 5.00 min   |
| Total precip.   | = 2.92 in    | Distribution       | = Type II    |
| Storm duration  | = 24 hrs     | Shape factor       | = 484        |



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

# Hyd. No. 3

Post Bypass

| = SCS Runoff | Peak discharge                                                                                 | = 0.194 cfs                                                                                                                                                                   |
|--------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = 1 yrs      | Time to peak                                                                                   | = 11.97 hrs                                                                                                                                                                   |
| = 2 min      | Hyd. volume                                                                                    | = 476 cuft                                                                                                                                                                    |
| = 0.350 ac   | Curve number                                                                                   | = 63                                                                                                                                                                          |
| = 0.0 %      | Hydraulic length                                                                               | = 0 ft                                                                                                                                                                        |
| = User       | Time of conc. (Tc)                                                                             | = 5.00 min                                                                                                                                                                    |
| = 2.92 in    | Distribution                                                                                   | = Type II                                                                                                                                                                     |
| = 24 hrs     | Shape factor                                                                                   | = 484                                                                                                                                                                         |
|              | = SCS Runoff<br>= 1 yrs<br>= 2 min<br>= 0.350 ac<br>= 0.0 %<br>= User<br>= 2.92 in<br>= 24 hrs | = SCS RunoffPeak discharge= 1 yrsTime to peak= 2 minHyd. volume= 0.350 acCurve number= 0.0 %Hydraulic length= UserTime of conc. (Tc)= 2.92 inDistribution= 24 hrsShape factor |



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Saturday, 08 / 26 / 2023

# Hyd. No. 4

UGD BMP

| Hydrograph type | = Reservoir       | Peak discharge | = 0.787 cfs  |
|-----------------|-------------------|----------------|--------------|
| Storm frequency | = 1 yrs           | Time to peak   | = 12.10 hrs  |
| Time interval   | = 2 min           | Hyd. volume    | = 9,158 cuft |
| Inflow hyd. No. | = 2 - Post to BMP | Max. Elevation | = 366.17 ft  |
| Reservoir name  | = Underground     | Max. Storage   | = 3,076 cuft |

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Saturday, 08 / 26 / 2023

# Hyd. No. 5

**Post Combine** 

| Hydrograph type<br>Storm frequency<br>Time interval<br>Inflow hyds. | = Combine<br>= 1 yrs<br>= 2 min<br>= 3, 4 | Peak discharge<br>Time to peak<br>Hyd. volume<br>Contrib. drain. area | = 0.941 cfs<br>= 12.00 hrs<br>= 9,634 cuft<br>= 0.350 ac |
|---------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|
| innow nyas.                                                         | = 3, 4                                    | Contrip. drain. area                                                  | = 0.350 ac                                               |
| Inflow hyds.                                                        | = 3, 4                                    | Contrib. drain. area                                                  | = 0.350 ac                                               |



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

# Hyd. No. 1

Pre Development

| Hydrograph type | = SCS Runoff | Peak discharge     | = 4.743 cfs  |
|-----------------|--------------|--------------------|--------------|
| Storm frequency | = 10 yrs     | Time to peak       | = 11.97 hrs  |
| Time interval   | = 2 min      | Hyd. volume        | = 9,486 cuft |
| Drainage area   | = 1.450 ac   | Curve number       | = 68         |
| Basin Slope     | = 0.0 %      | Hydraulic length   | = 0 ft       |
| Tc method       | = User       | Time of conc. (Tc) | = 5.00 min   |
| Total precip.   | = 5.06 in    | Distribution       | = Type II    |
| Storm duration  | = 24 hrs     | Shape factor       | = 484        |
|                 |              |                    |              |



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

# Hyd. No. 2

Post to BMP

| Hydrograph type | = SCS Runoff | Peak discharge     | = 7.457 cfs   |
|-----------------|--------------|--------------------|---------------|
| Storm frequency | = 10 yrs     | Time to peak       | = 11.93 hrs   |
| Time interval   | = 2 min      | Hyd. volume        | = 17,191 cuft |
| Drainage area   | = 1.100 ac   | Curve number       | = 96          |
| Basin Slope     | = 0.0 %      | Hydraulic length   | = 0 ft        |
| Tc method       | = User       | Time of conc. (Tc) | = 5.00 min    |
| Total precip.   | = 5.06 in    | Distribution       | = Type II     |
| Storm duration  | = 24 hrs     | Shape factor       | = 484         |



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

# Hyd. No. 3

Post Bypass

| = 0.917 cfs  |
|--------------|
| = 11.97 hrs  |
| = 1,843 cuft |
| = 63         |
| = 0 ft       |
| = 5.00 min   |
| = Type II    |
| = 484        |
|              |



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Saturday, 08 / 26 / 2023

# Hyd. No. 4

UGD BMP

| Hydrograph type | = Reservoir       | Peak discharge | = 0.991 cfs   |
|-----------------|-------------------|----------------|---------------|
| Storm frequency | = 10 yrs          | Time to peak   | = 12.13 hrs   |
| Time interval   | = 2 min           | Hyd. volume    | = 17,090 cuft |
| Inflow hyd. No. | = 2 - Post to BMP | Max. Elevation | = 368.23 ft   |
| Reservoir name  | = Underground     | Max. Storage   | = 6,194 cuft  |

Storage Indication method used.



Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

### Saturday, 08 / 26 / 2023

# Hyd. No. 5

**Post Combine** 



# **Hydraflow Rainfall Report**

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® by Autodesk, Inc. v2023

Saturday, 08 / 26 / 2023

| Return<br>Period | Intensity-Duration-Frequency Equation Coefficients (FHA) |         |        |       |  |  |  |  |  |  |
|------------------|----------------------------------------------------------|---------|--------|-------|--|--|--|--|--|--|
| (Yrs)            | В                                                        | D       | E      | (N/A) |  |  |  |  |  |  |
| 1                | 0.0000                                                   | 0.0000  | 0.0000 |       |  |  |  |  |  |  |
| 2                | 74.0559                                                  | 13.3000 | 0.8788 |       |  |  |  |  |  |  |
| 3                | 0.0000                                                   | 0.0000  | 0.0000 |       |  |  |  |  |  |  |
| 5                | 83.5112                                                  | 14.8000 | 0.8514 |       |  |  |  |  |  |  |
| 10               | 105.7041                                                 | 16.8000 | 0.8710 |       |  |  |  |  |  |  |
| 25               | 118.9252                                                 | 17.6000 | 0.8582 |       |  |  |  |  |  |  |
| 50               | 137.0265                                                 | 18.6000 | 0.8630 |       |  |  |  |  |  |  |
| 100              | 157.1769                                                 | 19.6000 | 0.8692 |       |  |  |  |  |  |  |

File name: Raleigh-2002.IDF

### Intensity = B / (Tc + D)^E

| Intensity Values (in/hr) |                                                                              |                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                               |  |
|--------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 5 min                    | 10                                                                           | 15                                                                                                                                                                                                                                               | 20                                                                                                                                                                                                                                                                                                                                                                  | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 55                                                                                                                                                                                                                                                                                                                                                                              | 60                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| 0.00                     | 0.00                                                                         | 0.00                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 5.76                     | 4.65                                                                         | 3.92                                                                                                                                                                                                                                             | 3.40                                                                                                                                                                                                                                                                                                                                                                | 3.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.81                                                                                                                                                                                                                                                                                                                                                                            | 1.70                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 0.00                     | 0.00                                                                         | 0.00                                                                                                                                                                                                                                             | 0.00                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 6.57                     | 5.43                                                                         | 4.64                                                                                                                                                                                                                                             | 4.07                                                                                                                                                                                                                                                                                                                                                                | 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.25                                                                                                                                                                                                                                                                                                                                                                            | 2.12                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 7.22                     | 6.03                                                                         | 5.19                                                                                                                                                                                                                                             | 4.57                                                                                                                                                                                                                                                                                                                                                                | 4.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2.56                                                                                                                                                                                                                                                                                                                                                                            | 2.41                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8.19                     | 6.90                                                                         | 5.98                                                                                                                                                                                                                                             | 5.29                                                                                                                                                                                                                                                                                                                                                                | 4.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.01                                                                                                                                                                                                                                                                                                                                                                            | 2.84                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 8.95                     | 7.59                                                                         | 6.60                                                                                                                                                                                                                                             | 5.86                                                                                                                                                                                                                                                                                                                                                                | 5.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.36                                                                                                                                                                                                                                                                                                                                                                            | 3.17                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 9.71                     | 8.27                                                                         | 7.22                                                                                                                                                                                                                                             | 6.42                                                                                                                                                                                                                                                                                                                                                                | 5.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.70                                                                                                                                                                                                                                                                                                                                                                            | 3.50                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                          | <b>5 min</b><br>0.00<br>5.76<br>0.00<br>6.57<br>7.22<br>8.19<br>8.95<br>9.71 | 5 min         10           0.00         0.00           5.76         4.65           0.00         0.00           6.57         5.43           7.22         6.03           8.19         6.90           8.95         7.59           9.71         8.27 | 5 min         10         15           0.00         0.00         0.00           5.76         4.65         3.92           0.00         0.00         0.00           6.57         5.43         4.64           7.22         6.03         5.19           8.19         6.90         5.98           8.95         7.59         6.60           9.71         8.27         7.22 | 5 min         10         15         20           0.00         0.00         0.00         0.00           5.76         4.65         3.92         3.40           0.00         0.00         0.00         0.00           5.76         4.65         3.92         3.40           0.00         0.00         0.00         0.00           6.57         5.43         4.64         4.07           7.22         6.03         5.19         4.57           8.19         6.90         5.98         5.29           8.95         7.59         6.60         5.86           9.71         8.27         7.22         6.42 | 5 min         10         15         20         25           0.00         0.00         0.00         0.00         0.00           5.76         4.65         3.92         3.40         3.01           0.00         0.00         0.00         0.00         0.00           5.76         4.65         3.92         3.40         3.01           0.00         0.00         0.00         0.00         0.00           6.57         5.43         4.64         4.07         3.63           7.22         6.03         5.19         4.57         4.09           8.19         6.90         5.98         5.29         4.75           8.95         7.59         6.60         5.86         5.27           9.71         8.27         7.22         6.42         5.79 | Intensity Values           5 min         10         15         20         25         30           0.00         0.00         0.00         0.00         0.00         0.00           5.76         4.65         3.92         3.40         3.01         2.70           0.00         0.00         0.00         0.00         0.00         0.00           6.57         5.43         4.64         4.07         3.63         3.28           7.22         6.03         5.19         4.57         4.09         3.71           8.19         6.90         5.98         5.29         4.75         4.32           8.95         7.59         6.60         5.86         5.27         4.80           9.71         8.27         7.22         6.42         5.79         5.28 | Intensity Values (in/hr)           5 min         10         15         20         25         30         35           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           5.76         4.65         3.92         3.40         3.01         2.70         2.45           0.00         0.00         0.00         0.00         0.00         0.00         0.00           6.57         5.43         4.64         4.07         3.63         3.28         3.00           7.22         6.03         5.19         4.57         4.09         3.71         3.40           8.19         6.90         5.98         5.29         4.75         4.32         3.97           8.95         7.59         6.60         5.86         5.27         4.80         4.41           9.71         8.27         7.22         6.42         5.79         5.28         4.86 | Intensity Values (in/hr)           5 min         10         15         20         25         30         35         40           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           5.76         4.65         3.92         3.40         3.01         2.70         2.45         2.25           0.00         0.00         0.00         0.00         0.00         0.00         0.00           6.57         5.43         4.64         4.07         3.63         3.28         3.00         2.76           7.22         6.03         5.19         4.57         4.09         3.71         3.40         3.13           8.19         6.90         5.98         5.29         4.75         4.32         3.97         3.67           8.95         7.59         6.60         5.86         5.27         4.80         4.41         4.08           9.71         8.27         7.22         6.42         5.79         5.28         4.86         4.50 | Intensity Values (in/hr)           5 min         10         15         20         25         30         35         40         45           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00           5.76         4.65         3.92         3.40         3.01         2.70         2.45         2.25         2.08           0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00         0.00 | Intensity Values (in/hr)5 min1015202530354045500.000.000.000.000.000.000.000.000.000.005.764.653.923.403.012.702.452.252.081.930.000.000.000.000.000.000.000.000.000.006.575.434.644.073.633.283.002.762.572.407.226.035.194.574.093.713.403.132.912.728.196.905.985.294.754.323.973.673.413.208.957.596.605.865.274.804.414.083.813.579.718.277.226.425.795.284.864.504.203.93 | Intensity Values (in/hr)5 min101520253035404550550.000.000.000.000.000.000.000.000.000.000.005.764.653.923.403.012.702.452.252.081.931.810.000.000.000.000.000.000.000.000.000.006.575.434.644.073.633.283.002.762.572.402.257.226.035.194.574.093.713.403.132.912.722.568.196.905.985.294.754.323.973.673.413.203.018.957.596.605.865.274.804.414.083.813.573.369.718.277.226.425.795.284.864.504.203.933.70 |  |

Tc = time in minutes. Values may exceed 60.

| Precip. file name: raleigh.pc |      |                                   |      |      |       |       |       |        |  |  |  |  |  |
|-------------------------------|------|-----------------------------------|------|------|-------|-------|-------|--------|--|--|--|--|--|
|                               |      | Rainfall Precipitation Table (in) |      |      |       |       |       |        |  |  |  |  |  |
| Storm<br>Distribution         | 1-yr | 2-yr                              | 3-yr | 5-yr | 10-yr | 25-yr | 50-yr | 100-yr |  |  |  |  |  |
| SCS 24-hour                   | 2.92 | 3.44                              | 0.00 | 4.31 | 5.06  | 6.41  | 7.21  | 7.39   |  |  |  |  |  |
| SCS 6-Hr                      | 2.11 | 2.42                              | 0.00 | 2.99 | 3.64  | 0.00  | 0.00  | 5.52   |  |  |  |  |  |
| Huff-1st                      | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |  |
| Huff-2nd                      | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |  |
| Huff-3rd                      | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |  |
| Huff-4th                      | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |  |
| Huff-Indy                     | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |  |
| Custom                        | 0.00 | 0.00                              | 0.00 | 0.00 | 0.00  | 0.00  | 0.00  | 0.00   |  |  |  |  |  |

# SITE DATA

| Project Information                                     |                                            |  |  |  |  |  |  |
|---------------------------------------------------------|--------------------------------------------|--|--|--|--|--|--|
| Project Name:                                           | Vineyard Pine Commercial                   |  |  |  |  |  |  |
| Permit No (if known):                                   |                                            |  |  |  |  |  |  |
| Applicant:                                              | Gettle Engineering and Design, PLLC        |  |  |  |  |  |  |
| Applicant Contact Name:                                 | Keith P. Gettle, PE                        |  |  |  |  |  |  |
| Applicant Contact Number:                               | 919-210-3934                               |  |  |  |  |  |  |
| Contact Email:                                          | Kpgettle@gmail.com                         |  |  |  |  |  |  |
| Last Modified Date:                                     | Tuesday, September 26, 2023                |  |  |  |  |  |  |
|                                                         | Site Data:                                 |  |  |  |  |  |  |
| River Basin:                                            | Neuse                                      |  |  |  |  |  |  |
| Regulatory Watershed:                                   | N/A                                        |  |  |  |  |  |  |
| Physiographic/Geologic Region:                          | Piedmont                                   |  |  |  |  |  |  |
| Type of Development (Select from Dropdown menu):        | Non-Residential                            |  |  |  |  |  |  |
| Zoning:                                                 | General Business                           |  |  |  |  |  |  |
| Total Site Area (Ac):                                   | 1.45                                       |  |  |  |  |  |  |
| Existing Lake/Pond Area (Ac):                           | 0.00                                       |  |  |  |  |  |  |
| Proposed Disturbed Area (Ac):                           | 1.39                                       |  |  |  |  |  |  |
| Proposed Impervious Surface Area from DA Sheets (acre): | 1.09                                       |  |  |  |  |  |  |
| Percent Built Upon Area (BUA):                          | 75%                                        |  |  |  |  |  |  |
| Is the proposed project a site expansion?               | No                                         |  |  |  |  |  |  |
| Number of Drainage Areas on Site (Points of Analysis):  | 1                                          |  |  |  |  |  |  |
| Annual Rainfall (in):                                   | 45.41                                      |  |  |  |  |  |  |
| One-year, 24-hour rainfall (in):                        | 3.00                                       |  |  |  |  |  |  |
| Two-year, 24-hour rainfall (in):                        | 3.60                                       |  |  |  |  |  |  |
| Proposed Reside                                         | ential Stormwater Details (if applicable): |  |  |  |  |  |  |
| Site Square Footage:                                    | 63,162                                     |  |  |  |  |  |  |
| Total Acreage in Lots:                                  |                                            |  |  |  |  |  |  |
| Lot Square Footage:                                     |                                            |  |  |  |  |  |  |
| Number of Lots:                                         |                                            |  |  |  |  |  |  |
| Average Lot Size (SF):                                  |                                            |  |  |  |  |  |  |
| Proposed Impervious Surface Area from DA sheets (SF):   | 47,480                                     |  |  |  |  |  |  |
| Proposed Impervious Surface Area Devoted to Lots (SF):  |                                            |  |  |  |  |  |  |
| Total Impervious Surface Area Devoted to Roads (SF):    |                                            |  |  |  |  |  |  |
| Other Impervious Surface Area (SF):                     |                                            |  |  |  |  |  |  |



### Project Name:

Г

Vineyard Pine Commercial

### DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

| LAND USE & SITE DATA                 | PRE-DEVELOPMENT |         |      |         |      |         |      | POST-DEVELOPMENT |      |                 |      |         |         |         |         |         |
|--------------------------------------|-----------------|---------|------|---------|------|---------|------|------------------|------|-----------------|------|---------|---------|---------|---------|---------|
| Drainage Area (Acres)=               |                 | 1.45    |      |         |      |         |      |                  |      |                 |      | 1.      | 45      |         |         |         |
| Site Acreage within Drainage=        |                 | 1.45    |      |         |      |         |      |                  |      |                 |      | 1.      | 45      |         |         |         |
| One-year, 24-hour rainfall (in)=     |                 | 3.00    |      |         |      |         |      |                  |      |                 |      |         |         |         |         |         |
| Land Use (acres) by Soil Group:      | AS              | Soils   | в    | Soils   | C S  | oils    | DS   | Soils            | AS   | A Soils B Soils |      |         | C Soils |         | D Soils |         |
| Commercial                           | Site            | Offsite | Site | Offsite | Site | Offsite | Site | Offsite          | Site | Offsite         | Site | Offsite | Site    | Offsite | Site    | Offsite |
| Parking lot                          |                 |         |      |         |      |         |      |                  |      |                 | 0.67 |         |         |         |         |         |
| Roof                                 |                 |         |      |         |      |         |      |                  |      |                 | 0.42 |         |         |         |         |         |
| Open/Landscaped                      |                 |         |      | 1       |      | 1       |      | 1                |      |                 | 0.19 |         |         |         |         |         |
| Industrial                           | Site            | Offsite | Site | Offsite | Site | Offsite | Site | Offsite          | Site | Offsite         | Site | Offsite | Site    | Offsite | Site    | Offsite |
| Parking lot                          |                 | 1       |      | 1       |      | i       |      | 1                |      | Ì               |      | 1       |         | l       |         |         |
| Roof                                 |                 |         |      |         |      |         |      |                  |      |                 |      |         |         |         |         |         |
| Open/Landscaped                      |                 | 1       |      | 1       |      | i       |      | 1                |      | 1               |      | 1       |         | l       |         |         |
| Transportation                       | Site            | Offsite | Site | Offsite | Site | Offsite | Site | Offsite          | Site | Offsite         | Site | Offsite | Site    | Offsite | Site    | Offsite |
| High Density (interstate, main)      |                 | ļ       |      | ļ       |      | į       |      | 1                |      | ļ               |      | ļ       |         |         |         |         |
| High Density (Grassed Right-of-ways) |                 | İ       |      | 1       |      | 1       |      | 1                |      | 1               |      | İ       |         | 1       |         | 1       |
| Low Density (secondary, feeder)      |                 | 1       |      | 1       |      | 1       |      |                  |      |                 |      | 1       |         |         |         |         |
| Low Density (Grassed Right-of-ways)  |                 |         |      | 1       |      | 1       |      | 1                |      |                 |      |         |         |         |         |         |
| Rural                                |                 |         |      | 1       |      | 1       |      |                  |      |                 |      |         |         |         |         |         |
| Rural (Grassed Right-of-ways)        |                 |         |      |         |      |         |      |                  |      |                 |      |         |         |         |         |         |
| Sidewalk                             |                 |         |      |         |      |         |      |                  |      |                 |      |         |         |         |         |         |
| Misc. Pervious                       | Site            | Offsite | Site | Offsite | Site | Offsite | Site | Offsite          | Site | Offsite         | Site | Offsite | Site    | Offsite | Site    | Offsite |
| Managed pervious (Open Space)        |                 |         | 1.45 |         |      |         |      |                  |      |                 | 0.17 |         |         |         |         |         |
| Unmanaged (pasture)                  |                 |         |      |         |      | 1       |      | 1                |      |                 |      |         |         |         |         |         |
| Woods (not on lots)                  |                 |         |      | 1       |      | 1       |      |                  |      |                 |      |         |         |         |         |         |
| Residential                          | Site            | Offsite | Site | Offsite | Site | Offsite | Site | Offsite          | Site | Offsite         | Site | Offsite | Site    | Offsite | Site    | Offsite |
| Roadway                              |                 |         |      |         |      | 1       |      |                  |      |                 |      |         |         |         |         |         |
| Grassed Right-of-ways                |                 | İ       |      | 1       |      | 1       |      | 1                |      | İ               |      | İ       |         | 1       |         |         |
| Driveway                             |                 |         |      | 1       |      | 1       |      | 1                |      |                 |      |         |         |         |         |         |
| Parking lot                          |                 | į       |      | į       |      | i       |      | ļ                |      | ļ               |      | į       |         | ļ —     |         |         |
| Roof                                 |                 |         |      |         |      |         |      | 1                |      |                 |      |         |         |         |         |         |
| Sidewalk (Includes Patios)           |                 |         |      |         |      |         |      |                  |      |                 |      |         |         |         |         |         |
| Lawn                                 |                 |         |      | 1       |      |         |      | 1                |      |                 |      |         |         |         |         |         |
| Managed pervious (Open Space)        |                 |         |      | 1       |      | 1       |      |                  |      |                 |      |         |         |         |         |         |
| Woods (on lots)                      |                 |         |      |         |      |         |      |                  |      |                 |      |         |         |         |         |         |
| Land Taken up by BMP                 |                 |         |      |         |      |         |      |                  |      |                 |      |         |         |         |         |         |
| JURISDICTIONAL LANDS                 | Site            | Offsite | Site | Offsite | Site | Offsite | Site | Offsite          | Site | Offsite         | Site | Offsite | Site    | Offsite | Site    | Offsite |
| Natural wetland                      |                 |         |      | 1       |      |         |      |                  |      |                 |      |         |         |         |         |         |
| Riparian buffer (Zone 1 only)        |                 |         |      | 1       |      |         |      |                  |      |                 |      |         |         |         |         |         |
| Open water                           |                 | 1       |      | i       |      | i       |      | i                |      | 1               |      | 1       |         | i       |         | i       |
| Totals (Ac)=                         | 0.00            | 0.00    | 1.45 | 0.00    | 0.00 | 0.00    | 0.00 | 0.00             | 0.00 | 0.00            | 1.45 | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |

| SITE FLOW                                          | PRE-DEVELOPMENT T <sub>c</sub>                                                | POST-DEVELOPMENT Tc         |
|----------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------|
| Sheet Flow                                         |                                                                               |                             |
| Length (ft)=                                       | 50.00                                                                         | 100.00                      |
| Slope (ft/ft)=                                     | 7.00                                                                          | 0.01                        |
| Surface Cover:                                     | Grass                                                                         | Paved, Gravel, or Bare Soil |
| n-value=                                           | 0.24                                                                          | 0.011                       |
| T <sub>t</sub> (hrs)=                              | 0.01                                                                          | 0.03                        |
| Shallow Flow                                       |                                                                               |                             |
| Length (ft)=                                       | 297.00                                                                        |                             |
| Slope (ft/ft)=                                     | 7.00                                                                          |                             |
| Surface Cover:                                     | Unpaved                                                                       |                             |
| Average Velocity (ft/sec)=                         | 42.69                                                                         | 0.00                        |
| T <sub>t</sub> (hrs)=                              | 0.00                                                                          | 0.00                        |
| Channel Flow 1                                     |                                                                               |                             |
| Length (ft)=                                       |                                                                               | 315.00                      |
| Slope (ft/ft)=                                     |                                                                               | 0.01                        |
| Cross Sectional Flow Area (ft <sup>2</sup> )=      |                                                                               | 0.87                        |
| Wetted Perimeter (ft)=                             |                                                                               | 2.39                        |
| Channel Lining:                                    |                                                                               | Concrete, finished          |
| n-value=                                           |                                                                               | 0.012                       |
| Hydraulic Radius (ft)=                             | 0.00                                                                          | 0.36                        |
| Average Velocity (ft/sec)=                         | 0.00                                                                          | 6.33                        |
| T <sub>t</sub> (hrs)=                              | 0.00                                                                          | 0.01                        |
| Tc (hrs)=                                          |                                                                               |                             |
| RESULTS                                            | PRE-DEVELOPMENT                                                               | POST-DEVELOPMENT            |
| Site Impervious Surface Area (Ac) =                | 0.00                                                                          | 1.09                        |
| Lot Impervious Surface Area (Ac) =                 | 0.00                                                                          | 0.00                        |
| 1-year, 24-hour storm (Peak Flow)                  |                                                                               |                             |
| Volume of runoff (ft <sup>3</sup> ) =              | 1,922                                                                         | 11,430                      |
| Volume change (ft³) =                              |                                                                               | 9,509                       |
| Runoff (inches) = Q*=                              | 0.3651                                                                        | 2.1716                      |
| Peak Discharge (cfs)= Q=                           |                                                                               |                             |
| Composite Curve Number (DA)=                       | 61                                                                            | 89                          |
| Composite Curve Number (Site only)=                | 61                                                                            | 89                          |
| DISCONNECTED IMPERVIOUS - Credit given on          | ly to residential development with drainage area with less than 30% imperviou | s                           |
| Percent Disconnected Impervious Credit (Residentia | al Only) =                                                                    |                             |
| Disconnected impervious area (Ac) =                |                                                                               | 0.00                        |
| Drainage Area CN <sub>adjusted</sub> =             |                                                                               | 89                          |
| Site Only CN <sub>adjusted</sub> =                 |                                                                               | 89                          |

Vineyard Pine Commercial



Project Name:

### DRAINAGE AREA 1 BMP CALCULATIONS

| DRAINAGE AREA 1 - BMP DEVICES                                                 | AND ADJUSTMENTS               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|-------------------------------------------------------------------------------|-------------------------------|----------------------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------------|----------------------------|-------------------------------------|----------------------------|-------------------------------------|-----------------------------------------|
| DA1 Site Acreage=                                                             |                               |                                              |                           | 1.45                            |                           |                                 |                            |                                     |                            |                                     |                                         |
| DA1 Off-Site Acreage=                                                         |                               |                                              |                           | 0.00                            |                           |                                 |                            |                                     |                            |                                     |                                         |
| Total Required Storage Volume for Site<br>TCN Requirement (ft <sup>3</sup> )= |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Will site use underground water harvesting?                                   |                               | Enter % volume reduction in<br>decimal form= |                           |                                 |                           |                                 |                            | Note: Sup<br>should be<br>water usa | oporting in<br>submitte    | formation/<br>d to demoi            | details<br>nstrate                      |
| ENTER AREA TREATED BY BMP                                                     | L                             | 1                                            |                           |                                 | 1                         |                                 |                            |                                     |                            |                                     |                                         |
| Land Use (acres                                                               | )                             | Sub-I                                        | DA1(a)                    | Sub-E                           | DA1(b)                    | Sub-E                           | DA1(c)                     | Sub-DA1(d)                          |                            | Sub-DA1(e)                          |                                         |
| Commercial                                                                    |                               |                                              | Off-site                  | Site                            | Off-site                  | Site                            | Off-site                   | Site                                | Off-site                   | Site                                | Off-site                                |
| Parking lot                                                                   |                               | 0.67                                         | on one                    | - Child                         | on one                    | 0.110                           | on one                     | 0.110                               | on one                     | 0.110                               | on one                                  |
| Roof                                                                          |                               | 0.42                                         | ł                         |                                 | i                         |                                 | i                          |                                     | ł                          |                                     |                                         |
| Open/Landscaped                                                               |                               | 0.01                                         | <u> </u>                  |                                 |                           |                                 |                            |                                     | <u> </u>                   |                                     |                                         |
| Industrial                                                                    |                               | Site                                         | Off-site                  | Site                            | Off-site                  | Site                            | Off-site                   | Site                                | Off-site                   | Site                                | Off-site                                |
| Parking lot                                                                   |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Roof                                                                          |                               |                                              | 1                         |                                 | 1                         |                                 | 1                          |                                     | 1                          |                                     | Ì                                       |
| Open/Landscaped                                                               |                               |                                              | i                         |                                 | 1                         |                                 | 1                          |                                     | i                          |                                     | 1                                       |
| Transportation                                                                |                               | Site                                         | Off-site                  | Site                            | Off-site                  | Site                            | Off-site                   | Site                                | Off-site                   | Site                                | Off-site                                |
| High Density (interstate, main)                                               |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| High Density (Grassed Right-of-ways)                                          |                               |                                              |                           |                                 |                           |                                 | 1                          |                                     |                            |                                     |                                         |
| Low Density (secondary, feeder)                                               |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Low Density (Grassed Right-of-ways)                                           |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Rural                                                                         |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Rural (Grassed Right-of-ways)                                                 |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Sidewalk                                                                      |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Misc. Pervious                                                                |                               |                                              | Off-site                  | Site                            | Off-site                  | Site                            | Off-site                   | Site                                | Off-site                   | Site                                | Off-site                                |
| Managed pervious                                                              |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Unmanaged (pasture)                                                           |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Woods (not on lots)                                                           |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Residential                                                                   |                               | Site                                         | Off-site                  | Site                            | Off-site                  | Site                            | Off-site                   | Site                                | Off-site                   | Site                                | Off-site                                |
| Roadway                                                                       |                               |                                              |                           |                                 | 1                         |                                 | 1                          |                                     |                            |                                     | ļ                                       |
| Grassed Right-of-ways                                                         |                               |                                              |                           |                                 | i                         |                                 | i                          |                                     |                            |                                     | i                                       |
| Driveway                                                                      |                               |                                              | i                         |                                 | İ                         |                                 | 1                          |                                     | i                          |                                     | İ                                       |
| Parking lot                                                                   |                               |                                              | ļ                         |                                 | ļ                         |                                 | ļ                          |                                     | ļ                          |                                     | ļ                                       |
| Roof                                                                          |                               |                                              | ļ                         |                                 | ļ                         |                                 | ļ                          |                                     | ļ                          |                                     | ļ                                       |
| Sidewalk                                                                      |                               |                                              | ļ                         |                                 | i                         |                                 | i                          |                                     | ļ                          |                                     |                                         |
| Lawn                                                                          |                               |                                              | <br>                      |                                 | 1                         |                                 |                            |                                     | <br>                       |                                     | <br>                                    |
| Woods (on lots)                                                               |                               |                                              |                           |                                 | 1                         |                                 |                            |                                     |                            |                                     |                                         |
| L and Taken up by BMP                                                         |                               |                                              | i<br>İ                    |                                 | i<br>İ                    |                                 | i<br>İ                     |                                     | i<br>İ                     |                                     | i<br>İ                                  |
| JURISDICTIONAL LANDS                                                          |                               | Site                                         | Off-site                  | Site                            | Offsite                   | Site                            | Offsite                    | Site                                | Offsite                    | Site                                | Offsite                                 |
| Natural wetland                                                               |                               |                                              |                           |                                 |                           |                                 |                            |                                     | -                          |                                     |                                         |
| Riparian buffer (Zone 1 only)                                                 |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                               | Totals (Ac)=                  | 1.10                                         | 0.00                      | 0.00                            | 0.00                      | 0.00                            | 0.00                       | 0.00                                | 0.00                       | 0.00                                | 0.00                                    |
| Sub-DA1(a) BMP(s)                                                             |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Device Name (As Shown on Plan)                                                | Device Type                   | Water<br>Quality<br>Volume<br>(c.f.)         | Inflow N<br>EMC<br>(mg/L) | Total<br>Inflow N<br>(lb/ac/yr) | Inflow P<br>EMC<br>(mg/L) | Total<br>Inflow P<br>(lb/ac/yr) | Outflow<br>N EMC<br>(mg/L) | Total<br>Outflow<br>N<br>(lb/ac/yr) | Outflow<br>P EMC<br>(mg/L) | Total<br>Outflow<br>P<br>(lb/ac/yr) | Provided<br>Volume<br>Managed<br>(c.f.) |
| Storm Filter                                                                  | Sand Filter                   |                                              | 1.30                      | 12.62                           | 0.16                      | 1.52                            | 0.96                       | 8.82                                | 0.14                       | 1.30                                |                                         |
|                                                                               |                               | 3,761                                        |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                               |                               |                                              |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Outfl                                                                         | ow Total Nitrogen (lb/ac/yr)= | 8.                                           | .82                       |                                 |                           | Outflov                         | v Total Ph                 | osphorus (                          | (lb/ac/yr)=                | 1                                   | .30                                     |
| Sub-DA1(b) BMP(s)                                                             |                               | •                                            |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |

| If Sub-DA1(b) is connected to upstream sub-<br>dropdown menus): | basin(s), select all contributir           | ig sub-bas                           | in(s from                 |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|-----------------------------------------------------------------|--------------------------------------------|--------------------------------------|---------------------------|---------------------------------|---------------------------|---------------------------------|----------------------------|-------------------------------------|----------------------------|-------------------------------------|-----------------------------------------|
| Device Name (As Shown on Plan)                                  | Device Type                                | Water<br>Quality<br>Volume<br>(c.f.) | Inflow N<br>EMC<br>(mg/L) | Total<br>Inflow N<br>(lb/ac/yr) | Inflow P<br>EMC<br>(mg/L) | Total<br>Inflow P<br>(lb/ac/yr) | Outflow<br>N EMC<br>(mg/L) | Total<br>Outflow<br>N<br>(lb/ac/yr) | Outflow<br>P EMC<br>(mg/L) | Total<br>Outflow<br>P<br>(lb/ac/yr) | Provided<br>Volume<br>Managed<br>(c.f.) |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Outfl                                                           | ow Total Nitrogen (lb/ac/yr)=              |                                      |                           |                                 |                           | Outflow                         | / Total Ph                 | osphorus                            | (lb/ac/yr)=                |                                     |                                         |
| Sub-DA1 (c) BMP(s)                                              |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            | L                                   |                                         |
| If Sub-DA1(c) is connected to upstream sub-t                    | pasin(s), select all contributin           | g sub-bas                            | in(s):                    |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Device Name (As Shown on Plan)                                  | Device Type                                | Water<br>Quality<br>Volume<br>(c.f.) | Inflow N<br>EMC<br>(mg/L) | Total<br>Inflow N<br>(lb/ac/yr) | Inflow P<br>EMC<br>(mg/L) | Total<br>Inflow P<br>(lb/ac/yr) | Outflow<br>N EMC<br>(mg/L) | Total<br>Outflow<br>N<br>(lb/ac/yr) | Outflow<br>P EMC<br>(mg/L) | Total<br>Outflow<br>P<br>(lb/ac/yr) | Provided<br>Volume<br>Managed<br>(c.f.) |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Outfl                                                           | ow Total Nitrogen (lb/ac/yr)=              |                                      |                           |                                 |                           | Outflow                         | / Total Ph                 | osphorus                            | (lb/ac/yr)=                |                                     | 1                                       |
| Sub-DA1 (d) BMP(s)                                              | <u> </u>                                   |                                      | <u> </u>                  |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| If Sub-DA1(d) is connected to upstream sub-l                    | basin(s), select all contributir           | ig sub-bas                           | in(s):                    |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Device Name (As Shown on Plan)                                  | Device Type                                | Water<br>Quality<br>Volume<br>(c.f.) | Inflow N<br>EMC<br>(mg/L) | Total<br>Inflow N<br>(lb/ac/yr) | Inflow P<br>EMC<br>(mg/L) | Total<br>Inflow P<br>(lb/ac/yr) | Outflow<br>N EMC<br>(mg/L) | Total<br>Outflow<br>N<br>(lb/ac/yr) | Outflow<br>P EMC<br>(mg/L) | Total<br>Outflow<br>P<br>(lb/ac/yr) | Provided<br>Volume<br>Managed<br>(c.f.) |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Outfl                                                           | I<br>ow Total Nitrogen (lb/ac/yr)=         |                                      |                           |                                 |                           | Outflow                         | / Total Ph                 | osphorus (                          | (lb/ac/yr)=                |                                     |                                         |
| Sub-DA1 (e) BMP(s)                                              |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            | <u> </u>                            |                                         |
| If Sub-DA1(e) is connected to upstream sub-I                    | basin(s), select all contributir           | ig sub-bas                           | sin(s):                   |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Device Name (As Shown on Plan)                                  | Device Type                                | Water<br>Quality<br>Volume<br>(c.f.) | Inflow N<br>EMC<br>(mg/L) | Total<br>Inflow N<br>(lb/ac/yr) | Inflow P<br>EMC<br>(mg/L) | Total<br>Inflow P<br>(lb/ac/yr) | Outflow<br>N EMC<br>(mg/L) | Total<br>Outflow<br>N<br>(lb/ac/yr) | Outflow<br>P EMC<br>(mg/L) | Total<br>Outflow<br>P<br>(lb/ac/yr) | Provided<br>Volume<br>Managed<br>(c.f.) |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Outfl                                                           | ow Total Nitrogen (lb/ac/yr)=              |                                      |                           |                                 |                           | Outflow                         | / Total Ph                 | osphorus                            | (lb/ac/yr)=                |                                     |                                         |
|                                                                 |                                            | DA1 BN                               | IP SUM                    | MARY                            |                           |                                 |                            |                                     |                            |                                     |                                         |
|                                                                 | Total Volume Treated (c.f.)=               |                                      |                           |                                 |                           |                                 | 0                          |                                     |                            |                                     |                                         |
| DA1 Outfl                                                       | ow Total Nitrogen (lb/ac/yr)=              |                                      |                           |                                 |                           | 8                               | .82                        |                                     |                            |                                     |                                         |
| DA1 Outflow                                                     | Total Phosphorus (lb/ac/yr)=               |                                      |                           |                                 |                           | 1.                              | .30                        |                                     |                            |                                     |                                         |
| 1-year, 24-hour storm                                           |                                            |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Pre Development Pe                                              | eak Discharge (cfs)= Q <sub>1-year</sub> = |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |
| Post BMP Pe                                                     | eak Discharge (cfs)= Q <sub>1-year</sub> = |                                      |                           |                                 |                           |                                 |                            |                                     |                            |                                     |                                         |

Project Name: Vineyard Pine Commercial



### DA SITE SUMMARY BMP CALCULATIONS

| BMP SUMMARY                                          |            |           |           |     |     |     |  |  |  |  |
|------------------------------------------------------|------------|-----------|-----------|-----|-----|-----|--|--|--|--|
| DRAINAGE AREA SUMMARIES                              |            |           |           |     |     |     |  |  |  |  |
| DRAINAGE AREA:                                       | DA1        | DA2       | DA3       | DA4 | DA5 | DA6 |  |  |  |  |
| Post-Development (1-year, 24-hour storm)             |            |           |           |     |     |     |  |  |  |  |
| Peak Flow (cfs)=Q <sub>1-year</sub> =                |            |           |           |     |     |     |  |  |  |  |
| Post-Development with BMPs (1-year, 24-hour storm)   |            |           |           |     |     |     |  |  |  |  |
| % Impervious =                                       |            |           | 75        | 5%  |     |     |  |  |  |  |
| Volume Managed (CF)=                                 |            | 0         |           |     |     |     |  |  |  |  |
| Post BMP Peak Discharge (cfs)= Q <sub>1-year</sub> = |            |           |           |     |     |     |  |  |  |  |
| Have Target Curve Number Requirements been met?      | N/A        |           |           |     |     |     |  |  |  |  |
| Pre Development Ni                                   | trogen and | d Phospho | rus Load  |     |     |     |  |  |  |  |
| Total Nitrogen (lb/ac/yr)=                           |            |           | 1.        | 57  |     |     |  |  |  |  |
| Total Phosphorus (lb/ac/yr)=                         |            |           | N         | /A  |     |     |  |  |  |  |
| Post Development N                                   | itrogen an | d Phospho | orus Load |     |     |     |  |  |  |  |
| Total Nitrogen (lb/ac/yr)=                           |            |           | 9.        | 90  |     |     |  |  |  |  |
| Total Phosphorus (lb/ac/yr)=                         |            |           | N         | /A  |     |     |  |  |  |  |
| Post-BMF                                             | P Nitrogen | Loading   |           |     |     |     |  |  |  |  |
| Outflow Total Nitrogen (lb/ac/yr)=                   |            |           | 7.        | 02  |     |     |  |  |  |  |
| Outflow Total Phosphorus (lb/ac/yr)=                 |            |           | 1.        | 05  |     |     |  |  |  |  |
| Has site met the Target?                             |            |           | N         | 0   |     |     |  |  |  |  |
| Has site met requirements for offsetting?            |            |           | YI        | ES  |     |     |  |  |  |  |









Stormwater Sum

# **Overal Site**

Impervious Summ Pre

Parking Lot Managed Pervious Total

Post Parking Lot Roof Open Landscape Managed Pervious Total

# Drainage Area to BMP = 1.1 Ac (47,916 sf) Impervious Area = 1.09 Ac (47,480 sf)

| nmary |             |       |
|-------|-------------|-------|
| •     | Square Feet | Acres |
|       | 63,162.00   | 1.45  |
| nary  | Square Feet | Acres |
|       | 0.00        | 0.00  |
| 3     | 63,162.00   | 1.45  |
|       |             | 1.45  |
|       | 29,394.00   | 0.67  |
|       | 18,086.00   | 0.42  |
|       | 8,436.00    | 0.19  |
| 3     | 7,245.00    | 0.17  |
|       |             | 1.45  |



| -   | DATE | COMMENT              | BΥ |
|-----|------|----------------------|----|
| 2   | DATE | COMMENT              | ВΥ |
| 3   | DATE | COMMENT              | ВΥ |
| 3   | DATE | COMMENT              | ВΥ |
| 4   | DATE | COMMENT              | ВΥ |
| 5   | DATE | COMMENT              | ВΥ |
| 9   | DATE | COMMENT              | ВΥ |
| 8   | Date | Comment              | By |
| NO. | DATE | REVISION DESCRIPTION | ВΥ |

PRELIMINARY DO NOT USE FOR CONSTRUCTION

Post Drainage Map Jonesville Road Commercial MRR Development, LLC Rolesville, Wake County, North Carolina





