Downstream Analysis

THE POINT - NORTH Package 3

Rolesville, North Carolina

DOWNSTREAM ANALYSIS

CONSTRUCTION DRAWINGS

Project Number:

Designed By:
AWH-20000
Daniel Wiebke, PE, CFM
Tommy Dabolt

DATE:
February 2024

플
 McAdAMS

2905 Meridian Parkway
Durham, North Carolina 27713
NC LIC. \# C-0293

THE POINT - CD PACKAGE 3
 Downstream Analysis

GENERAL DESCRIPTION

The Point is a proposed residential development in Rolesville, North Carolina, located between Highway 401 and East Young Street/Rolesville Road. The development is approximately 300 acres, divided into a northern parcel and a southern parcel. This Stormwater Impact Analysis covers the development of the southern parcel only. The total development will consist of approximately 804 lots, a mixture of townhomes and various types of single-family housing, thirteen stormwater control measures, sidewalks, roadways, greenway trail, and associated infrastructure.

Of the total site area, approximately 34.1 acres of CD Package 3 will be treated by primary stormwater control measures (SCMs). The outflow from the SCM discharges into Harris Creek and leaves the property just upstream of the flooded quarry on the neighboring properties. The overall Harris Creek watershed to the southern property boundary extends northeast of the site to the other side of Highway 401 up to South Main Street as well as east of East Young Street, enveloping the previous two CD Packages, totaling approximately 822.22 acres. The CD Package 3 project site is 47.48 acres (including bypass areas), making up approximately 5% of the total watershed at this point, which is less than the 10% rule requirement. This point along Reedy Creek is referred to as the Downstream Point of Analysis (POA \#6) in this report.

A hydrologic analysis was performed for the 10-year storm event using both pre- and post-development conditions to determine if the proposed project will cause any impacts to flooding or channel degradation downstream of the project site, in accordance with the stormwater management performance standards for development set forth in the Rolesville Unified Development Ordinance Article 7, Section 7.5.4 - Standards.

The downstream analysis regulations are as follows:

(B) General Standards

(1) Downstream Impact Analysis The downstream impact analysis must be performed in accordance with the "ten percent rule," and a copy of the analysis must be provided with the permit application. The purpose of the downstream impact analysis is to determine if the project will cause any impacts on flooding or channel degradation downstream of the project site. The analysis must include the assumptions, results and supporting calculations to show safe passage of post-Development design flows downstream. This analysis shall be performed at the outlet(s) of the site, and downstream at each tributary junction to the point(s) in the conveyance system where the area of the portion of the site draining into the system is less than or equal to ten percent of the total drainage area above that point.

CALCULATION METHODOLOGY

- The SCS Curve Number Method was used to estimate direct runoff. A composite curve number was calculated for each subbasin using soils and land cover data.
- Depth-Duration Frequency (DDF) rainfall data was obtained from NOAA Atlas 14. Synthetic rainfall hyetographs were generated using frequency-based hypothetical storms assuming a storm duration of 1 day, intensity duration of 5 minutes, intensity position of 50%, and a uniform distribution for all subbasins. Rainfall depths were input into the meteorological model within PondPack for peak flow rate calculations. Please reference the rainfall data section within this report for additional information.
- Hydrologic soil groups within each subbasin were determined using NRCS Web Soil Survey.
- Land cover conditions for the pre-development condition were based on survey provided by McAdams and aerial imagery for the site. Land cover conditions for the post-development condition were taken from the proposed layout. Offsite cover conditions were based onQL2 LiDAR, aerial imagery for the site, and Town of Apex Official Zoning Map.
- Existing conditions survey data and proposed grading was used for onsite topography. QL2 LiDAR topography data was obtained from North Carolina Spatial Data Download and used for offsite areas.
- The pre-development and post-development times of concentration were calculated using the SCS TR-55 Segmental Approach. The flow path was divided into the following segments where applicable: overland flow, concentrated flow, pipe flow, and channel flow. The travel time was then computed for each segment, from which the overall time of concentration was determined by taking the sum of each segmental time.
- The time of concentration to the proposed stormwater control measures was conservatively assumed to be 5 minutes.
- PondPack Version V8i was used in determining the pre- and post-development peak flow rates and routing calculations for the proposed stormwater control measures.
- Design and routing information for the proposed SCMs can be found in The Point - CD Package 3 Stormwater Impact Analysis report dated February 2023.

DISCUSSION OF RESULTS

 project site makes up approximately 5% of the total watershed. Our analysis shows that peak flows in the post development 10 -year storm are less than in the pre development at point of analysis 6 . As shown in the Summary of Results section of this report, the proposed stormwater control measures provide the peak runoff control for the proposed development such that there are no adverse impacts to the existing downstream infrastructure. Therefore, the proposed project will not cause any impacts to flooding or channel degradation downstream of the project site, in accordance with the stormwater management performance standards for development set forth in the Rolesville Unified Development Ordinance Article 7, Section 7.5.4 - Standards.

CONCLUSION

If the development on this tract is built as proposed within this report, then the requirements set forth in Town of Rolesville regulations will be met. However, modifications to the proposed development may require that this analysis be revised. Some modifications that would require this analysis to be revised include:

1. The proposed site impervious surface exceeds the amount accounted for in this report.
2. The post-development watershed breaks change significantly from those used to prepare this report.

The above modifications may result in the assumptions within this report becoming invalid. The computations within this report will need to be revisited if any of the above conditions become apparent as development of the proposed site moves forward.

1	SUMMARYOF RESULTS
$\mathbf{2}$	MISGELANEOUSSTEINFORMATION
$\mathbf{3}$	PRE-DEVEOPMENTHMROLOGICCALOLLATIONS
$\mathbf{4}$	POST-DEVEOPMENTHDROLOGICCALOLLATIONS

SUMMARY OF RESULTS

RELEASE RATE MANAGEMENT RESULTS

POINT OF ANALYSIS \#1			
Return Period	$\begin{gathered} \text { Pre-Dev } \\ \text { [cfs] } \end{gathered}$	$\begin{gathered} \text { Post-Dev } \\ \text { [cfs] } \end{gathered}$	\% Increase [\%]
1-Year	283.5	219.4	-23\%
10-Year	545.3	514.0	-6\%
POINT OF ANALYSIS \#2			
Return Period	$\begin{gathered} \text { Pre-Dev } \\ \text { [cfs] } \end{gathered}$	$\begin{gathered} \text { Post-Dev } \\ \text { [cfs] } \end{gathered}$	\% Increase [\%]
1-Year	77.3	70.0	-9\%
10-Year	153.0	138.6	-9\%
POINT OF ANALYSIS \#3			
Return Period	$\begin{aligned} & \text { Pre-Dev } \\ & \text { [cfs] } \end{aligned}$	$\begin{gathered} \text { Post-Dev } \\ \text { [cfs] } \end{gathered}$	\% Increase [\%]
1-Year	8.7	6.7	-23\%
10-Year	22.3	16.6	-26\%
POINT OF ANALYSIS \#4			
Return Period	$\begin{gathered} \text { Pre-Dev } \\ \text { [cfs] } \end{gathered}$	$\begin{gathered} \text { Post-Dev } \\ \text { [cfs] } \end{gathered}$	\% Increase [\%]
1-Year	344.2	248.9	-28\%
10-Year	704.1	636.3	-10\%
POINT OF ANALYSIS \#5			
Return Period	$\begin{aligned} & \text { Pre-Dev } \\ & \text { [cfs] } \end{aligned}$	$\begin{aligned} & \text { Post-Dev } \\ & \text { [cfs] } \end{aligned}$	\% Increase [\%]
1-Year	359.7	241.2	-33\%
10-Year	787.2	611.7	-22\%
POINT OF ANALYSIS \#6			
Return Period	$\begin{aligned} & \text { Pre-Dev } \\ & \text { [cfs] } \end{aligned}$	$\begin{gathered} \text { Post-Dev } \\ \text { [cfs] } \end{gathered}$	\% Increase [\%]
1-Year	704.0	485.3	-31\%
10-Year	1494.8	1231.6	-18\%
POINT OF ANALYSIS \#7			
Return Period	$\begin{gathered} \text { Pre-Dev } \\ \text { [cfs] } \end{gathered}$	$\begin{aligned} & \text { Post-Dev } \\ & \text { [cfs] } \end{aligned}$	\% Increase [\%]
1-Year	2.5	2.5	0\%
10-Year	17.2	8.6	-50\%
POINT OF ANALYSIS \#8			
Return Period	$\begin{gathered} \text { Pre-Dev } \\ \text { [cfs] } \end{gathered}$	$\begin{gathered} \text { Post-Dev } \\ \text { [cfs] } \end{gathered}$	\% Increase [\%]
1-Year	0.2	0.6	200\%
10-Year	4.3	3.7	-14\%

MISCELLANEOUS SITE INFORMATION

Name of Stream	Description	Class	Class Date	Index No.
NEUSE RIVER	From a point 0.5 mile upstream of Town of Wake Forest proposed water supply intake to Town of Wake Forest proposed water supply intake	WS-IV;NSW,CA	07/01/04	27-(22)
NEUSE RIVER	From Town of Wake Forest proposed water supply intake to mouth of Beddingfield Creek	C;NSW	08/03/92	27-(22.5)
Smith Creek	From source to a point 0.3 mile downstream of Franklin-Wake County Line	WS-II;HQW,NSW	08/03/92	27-23-(1)
Smith Creek (Wake Forest Reservoir)	From a point 0.3 mile downstream of Franklin-Wake County Line to dam at Wake Reservoir	WS-II;HQW,NSW, CA	08/03/92	27-23-(1.5)
Smith Creek	From dam at Wake Forest Reservoir to Neuse River	C;NSW	05/01/88	27-23-(2)
Austin Creek (Mitchell Pond)	From source to Smith Creek	C;NSW	07/01/96	27-23-3
Hatters Branch	From source to Smith Creek	C;NSW	05/01/88	27-23-4
Spring Branch	From source to Hatters Branch	C;NSW	05/01/88	27-23-4-1
Sanford Creek	From source to Smith Creek	C;NSW	05/01/88	27-23-5
Toms Creek (Mill Creek)	From source to Neuse River	C;NSW	05/01/88	27-24
Perry Creek (Greshams Lake)	From source to dam at Greshams Lake	B;NSW	05/01/88	27-25-(1)
Perry Creek	From dam at Greshams Lake to Neuse River	C;NSW	05/01/88	27-25-(2)
Unnamed Tributary near Neuse	From source to dam at Camp Durant	B;NSW	05/01/88	27-25-3-(1)
Unnamed Tributary near Neuse	From dam at Camp Durant to Perry Creek	C;NSW	05/01/88	27-25-3-(2)
Harris Creek (Peeples Creek)	From source to Neuse River	C;NSW	05/01/88	27-26
(Wake Crossroads Lake) Hodges Mill Creek (Lake Mirl)	From source to water intake at Lake Mirl	B;NSW	05/01/88	27-26-1-(1)
Hodges Mill Creek	From water intake at Lake Mirl to Harris Creek	C;NSW	05/01/88	27-26-1-(2)
Beaverdam Creek (west side of Neuse River)	From source to Neuse River	C;NSW	05/01/88	27-27
Rocky Creek	From source to Neuse River	C;NSW	05/01/88	27-28
Beaverdam Creek (east side of Neuse River) (Neuseco Lake, Beaverdam Lake)	From soruce to Neuse River	C;NSW	05/01/88	27-29
Bridges Creek (Bridges Lake)	From source to Neuse River	C;NSW	05/01/88	27-30
Milburnie Creek (Milburnie Lake)	From source to Neuse River	C;NSW	05/01/88	27-31
Mango Creek	From source to Neuse River	C;NSW	05/01/88	27-32
Crabtree Creek	From source to backwaters of Crabtree Lake	C;NSW	05/01/88	27-33-(1)
Turkey Creek	From source to Crabtree Creek	C;NSW	05/01/88	27-33-2
Coles Branch	From source to Crabtree Creek	C;NSW	05/01/88	27-33-3
South Fork Coles Branch	From source to Coles Branch	C;NSW	05/01/88	27-33-3-1
Crabtree Creek (Crabtree Lake)	From backwaters of Crabtree Lake to mouth of Richlands Creek	B;NSW	04/01/94	27-33-(3.5)

FLOOD HAZARD INFORMATION

SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP

 FOR FIRM PANEL LAYOUT DOCUMENTATION ARE ALSO AVAILABLE IN DINGITAL FORMAT AT HITPS://FRIS.NC.GOV/FRI| SHZARD AEAS | Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR Regulatory Floodway |
| :---: | :---: |
| OTHER AREAS OF FLOOD HAZARD | 0.2% Annual Chance Flood Hazard, Areas of 1\% Annual Chance Flood with Average Depth Less Than One Foot or With Drainage Areas of Less Than One Square Mile Zone X Future Conditions 1\% Annual Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee See Notes Zone X |
| $\begin{aligned} & \text { OTHER } \\ & \text { AREAS } \end{aligned}$ | Areas Determined to be Outside the 0.2\% Annual Chance Flood plain Zone X |
| GENERALSTRUCTURES | Channel, Culvert, or Storm Sewer Levee, Dike, or Floodwall |
| | 012-18-2- Cross Sections with 1\% Annual Chance Water Surface Elevation (BFE)
 (8) ----- Coastal Transect |
| | ---- Coastal Transect Baseline \qquad Profile Baseline |
| | Hydrographic Feature |
| | Limit of Study |
| features | Jurisdiction Boundary |

VNGU

 mersond әouennsul poold leuolten

FLOOD HAZARD INFORMATION SEE FIS REPORT FOR ZONE DESCRIPTIONS AND INDEX MAP SEE FIS REPORT FOR ZONE DEECRRPTIIONS
FOR PANEL LAYOUT THE INFORMATION DEPICTED ON THIS MAP AND SUPPORTING
DOCUMENTATION ARE AISO AVALIABLEIN HTTPS://FRIS.NC.GOV/FRIS HTPS.//MSC FEMA.GOV

NOTES TO USERS

LLimit of Moderate Wave Action (LiMWA)

SCALE
0

 1 inch $=500$ feet $\quad 1: 6,000$ \begin{tabular}{cccc}

0 \& 250 \& 500 \& | 1,000 |
| :---: |
| Feet |

\hline 0 \& 75 \& 150 \& Meters
\end{tabular}

PANEL LOCATOR

VWGコ 窥

wearodd әouexnsul poold jeuo!ten NATIONAL LLOLOD INSUODPANAIN MAP
FLOOG
\qquad

resion number
SION NUMBER
2.3 .3 .2
MAP NUMBER 2.3.3.2
MAP NuMBER
20175800K MAP NUMBER
3720175800 K

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils \square		
Soil Rating Polygons \square		
] A	\square	Not rated or not available
A/D	Water Fea	ures
	\sim	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	-	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	\geq	Local Roads
Soil Rating Lines	Backgro	
\cdots A		Aerial Photography
\cdots A/D		
$\cdots B$		
\cdots B/D		
$\cdots \mathrm{C}$		
\cdots C/D		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
$\square \quad \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: Wake County, North Carolina
Survey Area Data: Version 18, Sep 16, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Oct 11, 2019-Oct 19, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
AaA	Altavista fine sandy loam, 0 to 4 percent slopes, rarely flooded	C	4.1	1.4\%
AuA	Augusta fine sandy loam, 0 to 2 percent slopes, rarely flooded	C/D	10.1	3.3\%
ChA	Chewacla and Wehadkee soils, 0 to 2 percent slopes, frequently flooded	B/D	27.0	8.9\%
HeB	Helena sandy loam, 2 to 6 percent slopes	D	7.1	2.4\%
RgB	Rawlings-Rion complex, 2 to 6 percent slopes	C	43.5	14.4\%
RgC	Rawlings-Rion complex, 6 to 10 percent slopes	C	45.6	15.1\%
RgD	Rawlings-Rion complex, 10 to 15 percent slopes	C	15.0	5.0\%
W	Water		9.7	3.2\%
WaB	Wake-Rolesville complex, 2 to 6 percent slopes, very rocky	D	7.4	2.4\%
WaC	Wake-Rolesville complex, 6 to 10 percent slopes, very rocky	D	29.0	9.6\%
WaD	Wake-Rolesville complex, 10 to 15 percent slopes, very rocky	D	51.1	16.9\%
WaE	Wake-Rolesville complex, 15 to 25 percent slopes, very rocky	D	28.9	9.6\%
WeB	Wedowee sandy loam, 2 to 6 percent slopes	D	0.2	0.1\%
WfB	Wedowee-Saw complex, 2 to 6 percent slopes	D	22.9	7.6\%
WgC	Wedowee-Urban land complex, 6 to 15 percent slopes	D	0.1	0.0\%
Totals for Area of Interest			301.6	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

NOAA Atlas 14, Volume 2, Version 3
Location name: Wake Forest, North Carolina, USA* Latitude: $\mathbf{3 5 . 9 0 5 3}^{\circ}$, Longitude: $\mathbf{- 7 8 . 4 5 2}^{\circ}$

Elevation: $354.67 \mathrm{ft}^{* *}$

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M. Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\mathbf{0 . 4 0 3}$ $(0.369-0.442)$	$\mathbf{0 . 4 6 8}$ $(0.429-0.512)$	$\mathbf{0 . 5 3 4}$ $(0.489-0.582)$	$\mathbf{0 . 6 0 0}$ $(0.548-0.654)$	$\mathbf{0 . 6 6 6}$ $(0.606-0.726)$	$\mathbf{0 . 7 1 8}$ $(0.651-0.783)$	0.765 $(0.690-0.834)$	$\mathbf{0 . 8 0 7}$ $(0.723-0.881)$	$\mathbf{0 . 8 5 3}$ $(0.758-0.932)$	0.895 $(0.789-0.979)$
10-min	$\mathbf{0 . 6 4 4}$ $(0.590-0.705)$	0.749 $(0.687-0.818)$	$\mathbf{0 . 8 5 5}$ $(0.783-0.933)$	0.959 $(0.877-1.05)$	1.06 $(0.966-1.16)$	$\begin{gathered} 1.14 \\ (1.04-1.25) \\ \hline \end{gathered}$	$\begin{gathered} 1.22 \\ (1.10-1.33) \\ \hline \end{gathered}$	$\begin{gathered} 1.28 \\ (1.15-1.40) \\ \hline \end{gathered}$	$\begin{gathered} 1.35 \\ (1.20-1.47) \\ \hline \end{gathered}$	$\begin{gathered} 1.41 \\ (1.24-1.54) \\ \hline \end{gathered}$
15-min	$\mathbf{0 . 8 0 6}$ $(0.738-0.882)$	$\begin{gathered} \hline \boldsymbol{0 . 9 4 2} \\ (0.863-1.03) \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.08 \\ (0.991-1.18) \\ \hline \end{gathered}$	$\begin{gathered} 1.21 \\ (1.11-1.32) \\ \hline \end{gathered}$	$\begin{gathered} 1.35 \\ (1.22-1.47) \\ \hline \end{gathered}$	$\begin{gathered} 1.45 \\ (1.31-1.58) \\ \hline \end{gathered}$	$\begin{gathered} 1.54 \\ (1.39-1.68) \\ \hline \end{gathered}$	$\begin{gathered} 1.61 \\ (1.45-1.76) \\ \hline \end{gathered}$	$\begin{gathered} 1.70 \\ (1.51-1.86) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.77 \\ (1.56-1.94) \\ \hline \end{gathered}$
30-min	$\begin{gathered} 1.10 \\ (1.01-1.21) \end{gathered}$	$\begin{gathered} 1.30 \\ (1.19-1.42) \end{gathered}$	$\begin{gathered} 1.54 \\ (1.41-1.68) \end{gathered}$	$\begin{gathered} 1.76 \\ (1.61-1.92) \end{gathered}$	$\begin{gathered} 1.99 \\ (1.81-2.17) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 1 8} \\ (1.98-2.38) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 3 5} \\ (2.12-2.57) \end{gathered}$	$\begin{gathered} \mathbf{2 . 5 1} \\ (2.25-2.74) \end{gathered}$	$\begin{gathered} \mathbf{2 . 7 0} \\ (2.40-2.95) \end{gathered}$	$\begin{gathered} \mathbf{2 . 8 7} \\ (2.52-3.14) \end{gathered}$
60-min	$\begin{gathered} 1.38 \\ (1.26-1.51) \\ \hline \end{gathered}$	$\begin{gathered} 1.63 \\ (1.50-1.78) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.97 \\ (1.81-2.15) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 2 9} \\ (2.09-2.50) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 6 5} \\ (2.42-2.89) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 9 6} \\ (2.68-3.22) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.24 \\ (2.92-3.53) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.52 \\ (3.16-3.85) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.88 \\ (3.45-4.24) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.18 \\ (3.69-4.58) \\ \hline \end{gathered}$
2-hr	$\begin{gathered} \hline 1.61 \\ (1.46-1.78) \\ \hline \end{gathered}$	$\begin{gathered} 1.92 \\ (1.75-2.10) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 3 4} \\ (2.13-2.56) \\ \hline \end{gathered}$	$\begin{gathered} 2.75 \\ (2.49-3.01) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.23 \\ (2.91-3.54) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.66 \\ (3.28-4.00) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.07 \\ (3.63-4.45) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.49 \\ (3.98-4.91) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.04 \\ (4.42-5.51) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.52 \\ (4.80-6.05) \\ \hline \end{gathered}$
3-hr	$\begin{gathered} 1.71 \\ (1.55-1.89) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 0 3} \\ (1.85-2.24) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 4 9} \\ (2.26-2.74) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 9 4} \\ (2.67-3.24) \\ \hline \end{gathered}$	$\begin{gathered} 3.50 \\ (3.15-3.84) \\ \hline \end{gathered}$	$\begin{gathered} 3.99 \\ (3.58-4.39) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.49 \\ (3.98-4.92) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.00 \\ (4.41-5.48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.69 \\ (4.96-6.24) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.32 \\ (5.45-6.95) \\ \hline \end{gathered}$
6-hr	$\begin{gathered} 2.05 \\ (1.87-2.26) \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 4} \\ (2.23-2.68) \end{gathered}$	$\begin{gathered} 2.99 \\ (2.72-3.28) \end{gathered}$	$\begin{gathered} 3.54 \\ (3.22-3.88) \\ \hline \end{gathered}$	$\begin{gathered} 4.22 \\ (3.82-4.62) \end{gathered}$	$\begin{gathered} 4.84 \\ (4.35-5.29) \end{gathered}$	$\begin{gathered} \mathbf{5 . 4 6} \\ (4.86-5.96) \end{gathered}$	$\begin{gathered} 6.12 \\ (5.39-6.67) \end{gathered}$	$\begin{gathered} 7.00 \\ (6.10-7.64) \end{gathered}$	$\begin{gathered} 7.82 \\ (6.72-8.55) \end{gathered}$
12-hr	$\begin{gathered} \hline \mathbf{2 . 4 1} \\ (2.21-2.66) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 8 7} \\ (2.64-3.15) \\ \hline \end{gathered}$	$\begin{gathered} 3.54 \\ (3.24-3.88) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.21 \\ (3.84-4.62) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.07 \\ (4.59-5.53) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{5 . 8 5} \\ (5.26-6.36) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.64 \\ (5.91-7.22) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.49 \\ (6.59-8.14) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.66 \\ (7.50-9.41) \\ \hline \end{gathered}$	$\begin{gathered} 9.76 \\ (8.32-10.6) \\ \hline \end{gathered}$
24-h	$\begin{gathered} \hline \mathbf{2 . 8 6} \\ (2.66-3.08) \\ \hline \end{gathered}$	$\begin{gathered} 3.46 \\ (3.22-3.73) \\ \hline \end{gathered}$	$\begin{gathered} 4.35 \\ (4.04-4.69) \\ \hline \end{gathered}$	$\begin{gathered} 5.06 \\ (4.69-5.44) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6 . 0 2} \\ (5.57-6.49) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6 . 8 0} \\ (6.27-7.32) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 7.60 \\ (6.98-8.19) \\ \hline \hline \end{gathered}$	$\begin{gathered} 8.43 \\ (7.71-9.09) \\ \hline \end{gathered}$	$\begin{gathered} 9.58 \\ (8.71-10.3) \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ (9.50-11.3) \\ \hline \end{gathered}$
2-day	$\begin{gathered} 3.32 \\ (3.09-3.57) \\ \hline \end{gathered}$	$\begin{gathered} 3.99 \\ (3.72-4.30) \\ \hline \end{gathered}$	$\begin{gathered} 4.98 \\ (4.64-5.37) \\ \hline \end{gathered}$	$\begin{gathered} 5.77 \\ (5.35-6.21) \\ \hline \end{gathered}$	$\begin{gathered} 6.83 \\ (6.32-7.36) \\ \hline \end{gathered}$	$\begin{gathered} 7.68 \\ (7.09-8.27) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.56 \\ (7.87-9.22) \\ \hline \end{gathered}$	$\begin{gathered} 9.46 \\ (8.66-10.2) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (9.74-11.6) \\ \hline \end{gathered}$	$\begin{gathered} 11.7 \\ (10.6-12.7) \\ \hline \end{gathered}$
3-day	$\begin{gathered} 3.52 \\ (3.28-3.77) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.23 \\ (3.94-4.54) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{5 . 2 5} \\ (4.89-5.63) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.06 \\ (5.64-6.50) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.17 \\ (6.64-7.69) \\ \hline \end{gathered}$	8.05 $(7.44-8.64)$ 8.42	$\begin{gathered} \hline \hline 8.96 \\ (8.25-9.62) \\ \hline \hline \end{gathered}$	$\begin{gathered} 9.89 \\ (9.07-10.6) \\ \hline \end{gathered}$	$\begin{gathered} 11.2 \\ (10.2-12.1) \\ \hline \end{gathered}$	$\begin{gathered} 12.2 \\ (11.1-13.2) \\ \hline \end{gathered}$
4-day	$\begin{gathered} 3.72 \\ (3.47-3.98) \end{gathered}$	$\begin{gathered} \hline 4.46 \\ (4.17-4.77) \end{gathered}$	$\begin{gathered} 5.52 \\ (5.15-5.90) \end{gathered}$	$\begin{gathered} \mathbf{6 . 3 5} \\ (5.92-6.79) \end{gathered}$	$\begin{gathered} \hline 7.50 \\ (6.96-8.01) \end{gathered}$	$\begin{gathered} 8.42 \\ (7.79-9.00) \end{gathered}$	$\begin{gathered} \hline 9.36 \\ (8.63-10.0) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \\ (9.49-11.1) \end{gathered}$	$\begin{gathered} 11.7 \\ (10.7-12.5) \end{gathered}$	$\begin{gathered} 12.7 \\ (11.6-13.7) \\ \hline \end{gathered}$
7-day	$\begin{gathered} 4.31 \\ (4.04-4.61) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 1 5} \\ (4.82-5.50) \end{gathered}$	$\begin{gathered} 6.29 \\ (5.88-6.71) \\ \hline \end{gathered}$	$\begin{gathered} 7.19 \\ (6.72-7.68) \\ \hline \end{gathered}$	$\begin{gathered} 8.43 \\ (7.85-9.00) \\ \hline \end{gathered}$	$\begin{gathered} 9.42 \\ (8.75-10.1) \\ \hline \end{gathered}$	$\begin{gathered} 10.4 \\ (9.66-11.2) \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ (10.6-12.3) \\ \hline \end{gathered}$	$\begin{gathered} 12.9 \\ (11.8-13.9) \end{gathered}$	$\begin{gathered} 14.1 \\ (12.8-15.1) \end{gathered}$
10-day	$\begin{gathered} \hline 4.91 \\ (4.61-5.24) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.85 \\ (5.48-6.23) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.04 \\ (6.60-7.50) \\ \hline \end{gathered}$	$\begin{gathered} 7.99 \\ (7.47-8.50) \\ \hline \end{gathered}$	$\begin{gathered} \hline 9.26 \\ (8.64-9.86) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \\ (9.55-10.9) \\ \hline \end{gathered}$	$\begin{gathered} 11.3 \\ (10.5-12.0) \\ \hline \end{gathered}$	$\begin{gathered} 12.3 \\ (11.4-13.2) \end{gathered}$	$\begin{gathered} 13.7 \\ (12.6-14.7) \\ \hline \end{gathered}$	$\begin{gathered} 14.8 \\ (13.6-15.9) \end{gathered}$
20-day	$\begin{gathered} \hline 6.59 \\ (6.20-7.02) \\ \hline \end{gathered}$	$\begin{gathered} 7.79 \\ (7.32-8.29) \\ \hline \end{gathered}$	$\begin{gathered} 9.23 \\ (8.67-9.81) \\ \hline \end{gathered}$	$\begin{gathered} 10.4 \\ (9.72-11.0) \end{gathered}$	$\begin{gathered} 11.9 \\ (11.1-12.7) \end{gathered}$	$\begin{gathered} 13.1 \\ (12.2-14.0) \end{gathered}$	$\begin{gathered} 14.3 \\ (13.3-15.3) \end{gathered}$	$\begin{gathered} 15.6 \\ (14.5-16.6) \end{gathered}$	$\begin{gathered} 17.3 \\ (16.0-18.5) \end{gathered}$	$\begin{gathered} 18.6 \\ (17.1-19.9) \end{gathered}$
30-day	$\begin{gathered} \hline 8.18 \\ (7.72-8.69) \\ \hline \end{gathered}$	$\begin{gathered} 9.63 \\ (9.08-10.2) \\ \hline \end{gathered}$	$\begin{gathered} 11.2 \\ (10.6-11.9) \\ \hline \end{gathered}$	$\begin{gathered} 12.5 \\ (11.7-13.2) \\ \hline \end{gathered}$	$\begin{gathered} 14.1 \\ (13.2-15.0) \\ \hline \end{gathered}$	$\begin{gathered} 15.4 \\ (14.4-16.3) \\ \hline \end{gathered}$	$\begin{gathered} 16.6 \\ (15.5-17.7) \\ \hline \end{gathered}$	$\begin{gathered} 17.9 \\ (16.7-19.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 19.5 \\ (18.1-20.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{2 0 . 8} \\ (19.3-22.3) \\ \hline \end{gathered}$
45-day	$\begin{gathered} 10.4 \\ (9.89-11.0) \\ \hline \end{gathered}$	$\begin{gathered} 12.2 \\ (11.6-12.9) \\ \hline \end{gathered}$	$\begin{gathered} 14.0 \\ (13.3-14.8) \\ \hline \end{gathered}$	$\begin{gathered} 15.4 \\ (14.6-16.2) \\ \hline \end{gathered}$	$\begin{gathered} 17.2 \\ (16.3-18.1) \\ \hline \end{gathered}$	$\begin{gathered} 18.6 \\ (17.5-19.6) \\ \hline \end{gathered}$	$\begin{gathered} 19.9 \\ (18.7-21.0) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 1 . 2} \\ (19.9-22.5) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 3 . 0} \\ (21.5-24.4) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 4 . 3} \\ (22.7-25.8) \\ \hline \end{gathered}$
60-day	$\begin{gathered} 12.5 \\ (11.9-13.1) \\ \hline \end{gathered}$	$\begin{gathered} 14.6 \\ (13.9-15.4) \\ \hline \end{gathered}$	$\begin{gathered} 16.6 \\ (15.7-17.4) \\ \hline \end{gathered}$	$\begin{gathered} 18.1 \\ (17.1-19.0) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 0 . 0} \\ (19.0-21.1) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 1 . 5} \\ (20.3-22.6) \\ \hline \end{gathered}$	$\begin{gathered} 22.9 \\ (21.6-24.1) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 4 . 2} \\ (22.9-25.6) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 6 . 0} \\ (24.5-27.5) \\ \hline \end{gathered}$	$\begin{gathered} 27.4 \\ (25.7-29.0) \\ \hline \end{gathered}$

[^0]
PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 35.9053°, Longitude: -78.4520°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
— 100
— 200
— 500
-1000

Duration	
	— 2 -day — 3 -day — 4 -day — ${ }^{\text {-day }}$ — 10 -day — ${ }^{20 \text {-day }}$ — 40 -day — 60 -day

NOAA Atlas 14, Volume 2, Version 3
Created (GMT): Wed Jun 3 19:09:38 2020
Back to Top
Maps \& aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov
Disclaimer

PRE-DEVELOPMENT HYDROLOGIC CALCULATIONS

Land Use	HSG	CN	Onsite	Percent Impervious (\%)	Impervious Area (ac)	Total Area (ac)
Crops	B	78	Yes	0	0.00	23.79
Crops	B/D	89	Yes	0	0.00	0.13
Crops	D	89	Yes	0	0.00	6.70
Low Density Residential	B	68		20	0.06	0.29
Low Density Residential	D	84		20	4.53	22.63
Medium Density Residential	B	70		25	0.29	1.14
Medium Density Residential	D	85		25	0.02	0.08
Mixed Use Neighborhood	B	85		65	9.26	14.25
Mixed Use Neighborhood	B/D	92		65	2.68	4.12
Mixed Use Neighborhood	C	90		65	1.16	1.79
Mixed Use Neighborhood	D	92		65	10.60	16.30
Open	B	61	Yes	0	0.00	16.63
Open	B/D	80	Yes	0	0.00	0.38
Open	D	80	Yes	0	0.00	8.88
Pond	B	100	Yes	0	0.00	0.13
Pond	B/D	100	Yes	0	0.00	0.02
Pond	D	100	Yes	0	0.00	6.78
Roadway		98		100	7.98	7.98
Roof	B	98	Yes	100	0.35	0.35
Roof	D	98	Yes	100	0.00	0.00
School	B	88		72	12.90	17.91
School	B/D	93		72	6.11	8.49
School	D	93		72	43.84	60.89
Trail	B	82	Yes	100	0.52	0.52
Trail	B/D	89	Yes	100	0.01	0.01
Trail	D	89	Yes	100	0.11	0.11
Wooded	B	55	Yes	0	0.00	8.52
Wooded	B/D	77	Yes	0	0.00	6.40
Wooded	C	70	Yes	0	0.00	0.03
Wooded	D	77	Yes	0	0.00	1.61
Total Area						
Total Impervious Area						
Onsite Area						
Onsite Impervious Area						
Percent Impervious						
Composite Curve Number						

Time of Concentration Information
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Land Use	HSG	CN	Onsite	Percent Impervious (\%)	Impervious Area (ac)	Area (ac)
Crops	B	78	Yes	0	0.00	1.34
Crops	D	89	Yes	0	0.00	0.55
Low Density Residential	D	84		20	3.59	17.96
Mixed Use Neighborhood	B	85		65	3.44	5.30
Mixed Use Neighborhood	B/D	92		65	0.58	0.89
Mixed Use Neighborhood	D	92		65	8.11	12.48
Open	B	61	Yes	0	0.00	0.92
Open	D	80	Yes	0	0.00	0.75
Roadway		98		100	13.35	13.35
Trail	B	82	Yes	100	0.07	0.07
Trail	D	89	Yes	100	0.22	0.22
Wooded	B	55	Yes	0	0.00	2.53
Wooded	B/D	77	Yes	0	0.00	1.21
Wooded	D	77	Yes	0	0.00	2.33
Total Area						
Total Impervious Area						
Onsite Area						
Onsite Impervious Area						
Percent Impervious						
Composite Curve Number						

Time of Concentration Information
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow		
Length $=$	100	ft
Top Elev =	427.00	ft
Bot Elev =	426.00	ft
Height =	1	ft
Slope $=$	0.0100	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.17	cultivated soils, residue cover
$\mathrm{P}(2$-year/24-hour) $=$	3.46	inches (Rolesville, NC)
Segment Time $=$	13.74	minutes

Segment 2: Concentrated Flow

Length $=$	2541	ft
Top Elev $=$	426.00	ft
Bot Elev $=$	368.00	ft
Height $=$	58	ft
Slope $=$	0.0228	$\mathrm{ft} / \mathrm{ft}$
Paved ? $=$	No	
Velocity $=$	2.44	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	17.37	minutes

Time of Concentration $=$	31.12	minutes
SCS Lag Time $=$	18.67	minutes (SCS Lag = 0.6* Tc)
Time Increment $=$	5.41	minutes $\left(=0.29^{*}\right.$ SCS Lag)

Land Use	HSG	CN	Onsite	Percent Impervious (\%)	Impervious Area (ac)	Area (ac)
Open	C	74	Yes	0	0.00	1.23
Open	D	80	Yes	0	0.00	1.45
Wooded	C	70	Yes	0	0.00	0.85
Wooded	D	77	Yes	0	0.00	4.59
Total Area						
Total Impervious Area						
Onsite Area						
Onsite Impervious Area						
Percent Impervious						
Composite Curve Number						

Time of Concentration Information
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow				Segment 2: Concentrated Flow		
Length $=$	100	ft		Length $=$	698	ft
Top Elev =	368.00	ft		Top Elev =	363.00	ft
Bot Elev =	363.00	ft		Bot Elev =	336.00	ft
Height =	5	ft		Height =	27	ft
Slope $=$	0.0500	$\mathrm{ft} / \mathrm{ft}$		Slope =	0.0387	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.24	dense grasses		Paved ? =	No	
P (2-year/24-hour) =	3.46	inches (Rolesville		Velocity =	3.17	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	9.51	minutes		Segment Time $=$	3.67	minutes
Segment 3: Channel Flow						
Length $=$	249	ft				
Top Elev =	336.00	ft				
Bot Elev =	333.00	ft				
Height $=$	3	ft				
Slope $=$	0.0120	$\mathrm{ft} / \mathrm{ft}$				
Manning's $\mathrm{n}=$	0.045	natural channel				
Flow Area =	15.00	sf (assume 5'w x	channel)			
Wetted Perimeter =	11.00	If (assume $5^{\prime} \mathrm{w} \times 3$	hannel)			
Channel Velocity =	4.47	$\mathrm{ft} / \mathrm{sec}$				
Segment Time $=$	0.93	minutes				
Time of Concentration =			14.11	minutes		
		SCS Lag Time =	8.46	minutes (SCS Lag $=0.6^{*} \mathrm{Tc}$)		
		Time Increment =	2.45	minutes ($=0.29 *$ SCS Lag)		

Land Use	HSG	CN	Onsite	Percent Impervious (\%)	Impervious Area (ac)	Area (ac)
Crops	B	78	Yes	0	0.00	6.35
Crops	B/D	89	Yes	0	0.00	0.16
Crops	D	89	Yes	0	0.00	3.19
Mixed Use Neighborhood	B	85		65	1.18	1.82
Mixed Use Neighborhood	B/D	92		65	0.56	0.86
Mixed Use Neighborhood	C	90		65	0.68	1.04
Mixed Use Neighborhood	D	92		65	5.08	7.81
Open	A	39	Yes	0	0.00	1.44
Open	B	61	Yes	0	0.00	10.63
Open	B/D	80	Yes	0	0.00	8.78
Open	C	74	Yes	0	0.00	4.91
Open	D	80	Yes	0	0.00	20.40
Roadway		98		100	7.47	7.47
Roof	B	98	Yes	100	0.11	0.11
Roof	B/D	98	Yes	100	0.00	0.00
Roof	D	98	Yes	100	0.03	0.03
Trail	A	72	Yes	100	0.17	0.17
Trail	B	82	Yes	100	0.39	0.39
Trail	B/D	89	Yes	100	0.19	0.19
Trail	D	89	Yes	100	0.69	0.69
Wooded	A	30	Yes	0	0.00	0.00
Wooded	B	55	Yes	0	0.00	3.07
Wooded	B/D	77	Yes	0	0.00	9.47
Wooded	C	70	Yes	0	0.00	7.15
Wooded	D	77	Yes	0	0.00	12.43
Total Area						
Total Impervious Area						
Onsite Area						
Onsite Impervious Area						
Percent Impervious						
Composite Curve Number						

Time of Concentration Information
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow				Segment 2: Concentrated Flow			
Length $=$	100	ft			Length =	1855	ft
Top Elev =	389.00	ft			Top Elev =	388.00	ft
Bot Elev =	388.00	ft			Bot Elev =	339.00	ft
Height =	1	ft			Height =	49	ft
Slope =	0.0100	$\mathrm{ft} / \mathrm{ft}$			Slope =	0.0264	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.17	cultivated soils,	e cover		Paved ? =	No	
P (2-year/24-hour) =	3.46	inches (Rolesville			Velocity =	2.62	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	13.74	minutes			Segment Time $=$	11.79	minutes
Segment 3: Channel Flow							
Length $=$	2366	ft					
Top Elev =	339.00	ft					
Bot Elev =	302.00	ft					
Height $=$	37	ft					
Slope =	0.0156	$\mathrm{ft} / \mathrm{ft}$					
Manning's $\mathrm{n}=$	0.045	natural channel					
Flow Area =	15.00	sf (assume 5'w x	channel)				
Wetted Perimeter =	11.00	If (assume $5^{\prime} \mathrm{w} \times 3$	channel)				
Channel Velocity =	5.09	$\mathrm{ft} / \mathrm{sec}$					
Segment Time $=$	7.74	minutes					
Time of Concentration =			33.28	minutes			
		SCS Lag Time $=$	19.97	minutes (SCS Lag $=0.6^{*} \mathrm{Tc}$)			
		Time Increment =	5.79	minutes ($=0.29 *$ SCS Lag)			

Land Use	HSG	CN	Onsite	Percent Impervious (\%)	Impervious Area (ac)	Area (ac)
Business Park	A	89		85	0.01	0.01
Business Park	B	92		85	0.02	0.02
Business Park	D	95		85	0.03	0.03
Commercial	D	95		85	0.86	1.01
High Density Residential	B	85		65	46.03	70.82
High Density Residential	D	92		65	33.44	51.45
Low Density Residential	B	65		20	0.18	0.92
Low Density Residential	D	82		20	0.37	1.85
Medium Density Residential	A	54		25	0.00	0.01
Medium Density Residential	B	70		25	11.98	47.92
Medium Density Residential	D	85		25	10.74	42.98
Mixed Use Neighborhood	B	85		65	4.36	6.71
Mixed Use Neighborhood	B/D	92		65	2.15	3.31
Mixed Use Neighborhood	D	92		65	7.50	11.55
Open	A	49	Yes	0	0.00	1.90
Open	B	69	Yes	0	0.00	10.33
Open	D	84	Yes	0	0.00	11.86
Preserved Open Space	A	39		0	0.00	0.39
Preserved Open Space	B	61		0	0.00	4.48
Preserved Open Space	D	80		0	0.00	34.05
Roadway		98		100	49.05	49.05
School	B	88		72	0.34	0.47
School	D	93		72	5.12	7.11
Town Center	B	92		85	5.55	6.53
Town Center	D	95		85	1.48	1.74
Trail	A	72	Yes	100	0.02	0.02
Trail	B	82	Yes	100	0.43	0.43
Trail	D	89	Yes	100	1.93	1.93
Wooded	A	30	Yes	0	0.00	0.70
Wooded	B	55	Yes	0	0.00	4.50
Wooded	B/D	77	Yes	0	0.00	0.15
Wooded	D	77	Yes	0	0.00	50.68
Total Area						
Total Impervious Area						
Onsite Area						
Onsite Impervious Area						
Percent Impervious						
Composite Curve Number						

Time of Concentration Information
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow | | | |
| ---: | :---: | :--- |
| Length $=$ | 100 | ft |
| Top Elev $=$ | 440.00 | ft |
| Bot Elev $=$ | 438.00 | ft |
| Height $=$ | 2 | ft |
| Slope $=$ | 0.0200 | $\mathrm{ft} / \mathrm{ft}$ |
| Manning's $\mathrm{n}=$ | 0.24 | dense grasses |
| $\mathrm{P}(2$-year/24-hour $)$ | $=$ | 3.46 |
| Segment Time $=$ | 13.72 | inches (Rolesville, NC$)$ |
| minutes | | |

Segment 2: Concentrated Flow

Length $=$	2989	ft
Top Elev $=$	438.00	ft
Bot Elev $=$	372.00	ft
Height $=$	66	ft
Slope $=$	0.0221	$\mathrm{ft} / \mathrm{ft}$
Paved ? $=$	No	
Velocity $=$	2.40	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	20.78	minutes

Segment 3: Open Water Flow

Length $=$	655	ft
Top Elev $=$	372.00	ft
Bot Elev $=$	372.00	ft
Segment Time $=$	0.00	minutes

Segment 4: Concentrated Flow

Length $=$	2379	ft
Top Elev $=$	372.00	ft
Bot Elev $=$	320.00	ft
Height $=$	52	ft
Slope $=$	0.0219	$\mathrm{ft} / \mathrm{ft}$
Paved ? $=$	No	
Velocity $=$	2.39	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	16.62	minutes

Segment 5: Channel Flow

Length $=$	3730	ft		
Top Elev =	320.00	ft		
Bot Elev =	292.00	ft		
Height $=$	28	ft		
Slope $=$	0.0075	$\mathrm{ft} / \mathrm{ft}$		
Manning's $\mathrm{n}=$	0.045	natural channel		
Flow Area =	32.00	sf (assume 8'w x	channel)	
Wetted Perimeter =	16.00	If (assume $8^{\prime} w x$	hannel)	
Channel Velocity =	4.55	$\mathrm{ft} / \mathrm{sec}$		
Segment Time =	13.65	minutes		
	Time of Concentration =		64.78	minutes
		SCS Lag Time =	38.87	minutes (SCS Lag $=0.6$ * Tc)
		Time Increment =	11.27	minutes ($=0.29 *$ SCS Lag)

Land Use	HSG	CN	Onsite	Percent Impervious (\%)	Impervious Area (ac)	Area (ac)
Trail	D	89	Yes	100	0.16	0.16
Wooded	A	30	Yes	0	0.00	0.37
Wooded	D	77	Yes	0	0.00	8.04
Total Area						
Total Impervious Area						
Onsite Area						
Onsite Impervious Area						
Percent Impervious						
Composite Curve Number						

Time of Concentration Information
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow	Segment 2: Concentrated Flow					
Length $=$	100	ft		Length $=$	599	ft
Top Elev =	386.00	ft		Top Elev =	380.00	ft
Bot Elev =	380.00	ft		Bot Elev =	288.00	ft
Height $=$	6	ft		Height $=$	92	ft
Slope $=$	0.0600	$\mathrm{ft} / \mathrm{ft}$		Slope =	0.1536	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.40	wooded		Paved ? =	No	
P (2-year/24-hour) $=$	3.46	inches (Rolesvill		Velocity =	6.32	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	13.31	minutes		Segment Time $=$	1.58	minutes
	Time	Concentration =	14.89	minutes		
		SCS Lag Time =	8.93	minutes (SCS Lag $=0.6^{*} \mathrm{Tc}$)		
		Time Increment =	2.59	minutes ($=0.29 *$ SCS Lag)		

Land Use	HSG	CN	Onsite	Percent Impervious (\%)	Impervious Area (ac)	Area (ac)
Open	A	39	Yes	0	0.00	0.70
Open	B	61	Yes	0	0.00	1.00
Open	D	80	Yes	0	0.00	0.06
Trail	B	82	Yes	100	0.15	0.15
Wooded	A	30	Yes	0	0.00	0.66
Wooded	B	55	Yes	0	0.00	7.85
Wooded	D	77	Yes	0	0.00	5.24
Total Area	15.67 ac					
Total Impervious Area	0.15 ac					
Onsite Area	15.67 ac					
Onsite Impervious Area	0.15 ac					
Percent Impervious	1 \%					
Composite Curve Number	61					

Time of Concentration Information
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow		
Length $=$	100	ft
Top Elev =	418.00	ft
Bot Elev =	417.00	ft
Height =	1	ft
Slope =	0.0100	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.24	dense grasses
P (2-year/24-hour) =	3.46	inches (Rolesville, NC)
Segment Time $=$	18.11	minutes

Segment 2: Concentrated Flow

Length $=$	593	ft
Top Elev $=$	417.00	ft
Bot Elev $=$	338.00	ft
Height $=$	79	ft
Slope $=$	0.1332	$\mathrm{ft} / \mathrm{ft}$
Paved ? $=$	No	
Velocity $=$	5.89	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	1.68	minutes

Segment 3: Channel Flow

Length $=$	285	ft
Top Elev $=$	338.00	ft
Bot Elev $=$	324.00	ft
Height $=$	14	ft
Slope $=$	0.0491	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.045	natural channel
Flow Area $=$	10.00	sf (assume 5'w \times 2'h channel)
Wetted Perimeter $=$	9.00	If (assume 5'w \times 2'h channel)
Channel Velocity $=$	7.87	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	0.60	minutes

Time of Concentration $=$	20.39	minutes
SCS Lag Time $=$	12.23	minutes (SCS Lag = 0.6* Tc)
Time Increment $=$	3.55	minutes ($=0.29^{* S C S ~ L a g) ~}$

Land Use	HSG	CN	Onsite	Percent Impervious (\%)	Impervious Area (ac)	Area (ac)
Open	A	39	Yes	0	0.00	0.67
Open	B	61	Yes	0	0.00	1.24
Open	D	80	Yes	0	0.00	0.02
Trail	A	72	Yes	100	0.04	0.04
Trail	B	82	Yes	100	0.07	0.07
Wooded	A	30	Yes	0	0.00	0.71
Wooded	B	55	Yes	0	0.00	3.22
Wooded	D	77	Yes	0	0.00	0.26
Total Area						
Total Impervious Area						
Onsite Area						
Onsite Impervious Area						
Percent Impervious						
Composite Curve Number						

Time of Concentration Information
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow | | | |
| ---: | :---: | :--- |
| Length | $=$ | 100 |
| Top Elev | $=$ | 398.00 |
| ft | | |
| ft | | |
| Bot Elev | $=$ | 393.00 |
| ft | | |
| Height $=$ | 5 | ft |
| Slope $=$ | 0.0500 | $\mathrm{ft} / \mathrm{ft}$ |
| Manning's $\mathrm{n}=$ | 0.24 | dense grasses |
| $\mathrm{P}(2$-year/24-hour $)$ | $=$ | 3.46 |
| Segment Time | $=$ | 9.51 |

Segment 2: Concentrated Flow

Length $=$	697	ft
Top Elev $=$	393.00	ft
Bot Elev $=$	365.00	ft
Height $=$	28	ft
Slope $=$	0.0402	$\mathrm{ft} / \mathrm{ft}$
Paved ? $=$	No	
Velocity $=$	3.23	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	3.59	minutes

Time of Concentration $=$	13.10	minutes
SCS Lag Time $=$	7.86	minutes (SCS Lag = 0.6* Tc)
Time Increment $=$	2.28	minutes ($=0.29^{*}$ SCS Lag)

REACH DATA

Reach 1-POA 1 to POA 4		
Length $=$	2988	ft
Top Elev $=$	344.00	ft
Bot Elev $=$	302.00	ft
Height $=$	42	ft
Slope $=$	0.0141	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.045	natural channel
Flow Area $=$	10.00	sf (assume 5'w \times 2'h channel)
Wetted Perimeter $=$	9.00	If (assume 5'w \times 2'h channel)
Channel Velocity $=$	4.21	ft/sec
Reach Travel Time $=$	11.83	minutes

FlexTable: Catchment
 Table (AWH20000Master.ppc)

Current Time: 0.00 min

Label	Area $\left(\mathrm{ft}^{2}\right)$	SCS CN		Time of Concentration (min)
SUB 1	$10,318,492.80$	89.0	40.80	PRE
SUB 2	$2,609,244.00$	87.0	31.12	PRE
SUB 5	$18,508,208.41$	84.0	48.15	PRE
SUB 4	$4,729,309.20$	78.0	33.28	PRE
SUB 7	$682,585.20$	20.39	PRE	
SUB 8	$271,269.00$	61.0	13.10	PRE
SUB 6	$372,873.60$	53.0	14.89	PRE
SUB 3	$353,271.60$	75.0	14.11	PRE

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
SUB 1	Pre-Dev 10 yr	10	74.868	745.00	545.3
SUB 2	Pre-Dev 10 yr	10	17.950	738.00	153.0
SUB 3	Pre-Dev 10 yr	10	1.740	728.00	22.3
SUB 4	Pre-Dev 10 yr	10	24.755	741.00	204.9
SUB 5	Pre-Dev 10 yr	10	116.278	751.00	787.2
SUB 6	Pre-Dev 10 yr	10	1.774	728.00	22.0
SUB 7	Pre-Dev 10 yr	10	1.820	734.00	17.2
SUB 8	Pre-Dev 10 yr	10	0.458	729.00	4.3

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	$\begin{aligned} & \text { Peak Flow } \\ & \left(\mathrm{ft}^{3} / \mathrm{s}\right) \end{aligned}$
POA 1	Pre-Dev 10 yr	10	74.868	745.00	545.3
POA 2	Pre-Dev 10 yr	10	17.950	738.00	153.0
POA 3	Pre-Dev 10 yr	10	1.740	728.00	22.3
POA 4	Pre-Dev 10 yr	10	99.357	752.00	704.1
POA 5	Pre-Dev 10 yr	10	116.278	751.00	787.2
POA 6	Pre-Dev 10 yr	10	216.993	758.00	1,494.8
POA 7	Pre-Dev 10 yr	10	1.820	734.00	17.2
POA 8	Pre-Dev 10 yr	10	0.458	729.00	4.3

It
MCADAMS

CLIENT
Sish

PHoN: 191.232 .239
CONTACT: BOB MSHLLER

REVISIONS
.ind
plan information

$\begin{array}{l}\text { DARE } \\ \text { SHEET }\end{array}$

PRE

POST-DEVELOPMENT HYDROLOGIC CALCULATIONS

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	B	61	Yes	2.20	0	0.00
Open Space, Good Condition	D	80	Yes	0.87	0	0.00
Pond	B	100	Yes	0.26	99	0.26
Road	B	98	Yes	1.80	100	1.80
Road	D	98	Yes	0.57	100	0.57
Sidewalk	B	98	Yes	1.28	100	1.28
Sidewalk	D	98	Yes	0.52	100	0.52
Singlefam40	B	84	Yes	1.85	62	1.15
Singlefam40	D	91	Yes	0.16	62	0.10
Singlefam60	B	80	Yes	0.53	50	0.27
Sidewalk	B	98	No	0.02	100	0.02
Sidewalk	D	98	No	0.07	100	0.07
Mixed Use Neighborhood	B	85	No	0.42	65	0.27
Mixed Use Neighborhood	D	92	No	1.81	65	1.18

Onsite Area	10.03	ac
Onsite Impervious Area	5.93	ac
Offsite Area	2.33	ac
Offsite Impervious Area	1.55	ac
Total Area	12.35	ac
Total Impervious Area	7.48	ac
Percent Impervious	61	$\%$
Composite Curve Number	86	

time of concentration

Time of concentration is assumed to be 5 minutes.

Time of Concentration $=$	5.00	minutes
SCS Lag Time $=$	3.00	minutes (SCS Lag $=0.6^{*}$ Tc)
Time Increment $=$	0.87	minutes ($=0.29^{*}$ SCS Lag)

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	0.05	0	0.00
Open Space, Good Condition	B	61	Yes	0.04	0	0.00
Open Space, Good Condition	C	74	Yes	0.00	0	0.00
Open Space, Good Condition	D	80	Yes	0.19	0	0.00
Road	D	98	Yes	0.46	100	0.46
Sidewalk	A	98	Yes	0.00	100	0.00
Sidewalk	B	98	Yes	0.00	100	0.00
Sidewalk	C	98	Yes	0.00	100	0.00
Sidewalk	D	98	Yes	0.00	100	0.00

Onsite Area	0.74	ac
Onsite Impervious Area	0.47	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	0.74	ac
Total Impervious Area	0.47	ac
Percent Impervious	63	$\%$
Composite Curve Number	87	

TIME OF CONCENTRATION
Time of concentration is assumed to be 5 minutes.

| Time of Concentration $=$ | 5.00 | minutes |
| ---: | ---: | :--- | :--- |
| SCS Lag Time $=$ | 3.00 | minutes (SCS Lag $=0.6^{*}$ Tc) |
| Time Increment $=$ | 0.87 | minutes ($=0.29 *$ SCS Lag) |

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	B	61	Yes	1.65	0	0.00
Open Space, Good Condition	D	80	Yes	1.34	0	0.00
Pond	B	100	Yes	0.13	99	0.13
Pond	D	100	Yes	0.08	100	0.08
Road	B	98	Yes	0.66	100	0.66
Road	D	98	Yes	0.90	100	0.90
Sidewalk	B	98	Yes	0.20	100	0.20
Sidewalk	D	98	Yes	0.24	100	0.24
Townhome 22	B	95	Yes	1.56	91	1.42
Townhome 22	D	96	Yes	1.53	91	1.39
Mixed Use Neighborhood	B	85	No	1.61	65	1.05
Mixed Use Neighborhood	D	92	No	0.32	65	0.21

Onsite Area	8.29	ac
Onsite Impervious Area	5.02	ac
Offsite Area	1.93	ac
Offsite Impervious Area	1.25	ac
Total Area	10.22	ac
Total IIpervious Area	6.28	ac
Percent Impervious	61	$\%$
Composite Curve Number	87	

TIME OF CONCENTRATION
Time of concentration is assumed to be 5 minutes.

Time of Concentration $=$	5.00	minutes
SCS Lag Time $=$	3.00	minutes $\left(\right.$ SCS Lag $\left.=0.6^{*} \mathrm{Tc}\right)$
Time Increment $=$	0.87	minutes $\left(=0.29^{* S C S ~ L a g) ~}\right.$

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	B	61	Yes	1.45	0	0.00
Open Space, Good Condition	D	80	Yes	1.18	0	0.00
Pond	B	100	Yes	0.03	99	0.03
Pond	D	100	Yes	0.32	100	0.32
Road	A	98	Yes	0.00	100	0.00
Road	B	98	Yes	1.68	100	1.68
Road	D	98	Yes	0.93	100	0.93
Sidewalk	B	98	Yes	0.51	100	0.51
Sidewalk	D	98	Yes	0.30	100	0.30
Singlefam39	B	85	Yes	2.07	0	0.00
Singlefam39	D	80	Yes	1.83	0	0.00
Singlefam40	B	84	Yes	3.25	62	2.02
Singlefam40	D	91	Yes	0.90	62	0.56
Singlefam60	B	80	Yes	1.00	50	0.50
Singlefam60	D	89	Yes	0.24	50	0.12

Onsite Area	15.68	ac
Onsite Impervious Area	6.96	ac
Offite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	15.68	ac
Total Impervious Area	6.96	ac
Percent Impervious	44	$\%$
Composite Curve Number	85	

time of concentration
Time of concentration is assumed to be 5 minutes.

Time of Concentration $=$	5.00	minutes
SCS Lag Time $=$	3.00	minutes (SCS Lag $\left.=0.6^{*} \mathrm{Tc}\right)$
Time Increment $=$	0.87	minutes $\left(=0.29^{*}\right.$ SCS Lag $)$

CURVE NUMBER CALCULATIONS

	Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
	Open Space, Good Condition	B	61	Yes	1.07	0	0.00
	Open Space, Good Condition	D	80	Yes	1.22	0	0.00
	Pond	B	100	Yes	0.20	99	0.20
	Pond	D	100	Yes	0.35	100	0.35
	Road	B	98	Yes	1.37	100	1.37
	Road	D	98	Yes	1.48	100	1.48
	Sidewalk	B	98	Yes	0.37	100	0.37
	Sidewalk	D	98	Yes	0.42	100	0.42
	Singlefam39	B	85	Yes	1.32	0	0.00
	Singlefam39	D	80	Yes	1.14	0	0.00
	Singlefam40	B	84	Yes	2.25	62	1.40
	Singlefam40	D	91	Yes	2.36	62	1.47
	Singlefam60	B	80	Yes	2.00	50	1.00
	Singlefam60	D	89	Yes	1.80	50	0.90
	Onsite Area	17.35	ac				
	Onsite Impervious Area	8.95	ac				
	Offsite Area	0.00	ac				
	Offsite Impervious Area	0.00	ac				
	Total Area	17.35	ac				
	Total Impervious Area	8.95	ac				
	Percent Impervious	52	\%				
	Composite Curve Number	87					
time of Concentration							
Time of concentration is assumed to be 5 minutes.							
		Time of Concentration = SCS Lag Time = Time Increment =		$\begin{aligned} & \hline 5.00 \\ & 3.00 \\ & 0.87 \\ & \hline \end{aligned}$	minutes minutes (SCS Lag $=0.6^{*} \mathrm{Tc}$) minutes ($=0.29 *$ SCS Lag)		

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	B	61	Yes	1.62	0	0.00
Open Space, Good Condition	D	80	Yes	0.08	0	0.00
Pond	B	100	Yes	0.45	99	0.44
Road	B	98	Yes	1.65	100	1.65
Road	D	98	Yes	0.07	100	0.07
Sidewalk	B	98	Yes	0.57	100	0.57
Sidewalk	D	98	Yes	0.03	100	0.03
Singlefam60	B	80	Yes	8.33	50	4.17
Singlefam60	D	89	Yes	0.39	50	0.20

Onsite Area	$\mathbf{1 3 . 2 0}$	ac
Onsite Impervious Area	7.13	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	13.20	ac
Total Impervious Area	$\mathbf{7 . 1 3}$	ac
Percent Impervious	54	$\%$
Composite Curve Number	82	

TIME OF CONCENTRATION
Time of concentration is assumed to be 5 minutes.

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	B	61	Yes	1.24	0	0.00
Open Space, Good Condition	D	80	Yes	4.15	0	0.00
Pond	D	100	Yes	0.37	100	0.37
Road	B	98	Yes	1.18	100	1.18
Road	D	98	Yes	1.73	100	1.73
Sidewalk	B	98	Yes	0.31	100	0.31
Sidewalk	D	98	Yes	0.64	100	0.64
Townhome 22	B	95	Yes	0.23	91	0.21
Townhome 22	D	96	Yes	1.30	91	1.18
Singlefam39	B	85	Yes	2.08	0	0.00
Singlefam39	D	80	Yes	0.86	0	0.00
Singlefam40	B	84	Yes	1.97	62	1.22
Singlefam40	D	91	Yes	1.97	62	1.22
Singlefam60	D	89	Yes	0.60	50	0.30

Onsite Area	18.63	ac
Onsite Impervious Area	8.36	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	18.63	ac
Total Impervious Area	8.36	ac
Percent Impervious	45	$\%$
Composite Curve Number	87	

TIME OF CONCENTRATION
Time of concentration is assumed to be 5 minutes.

Time of Concentration $=$	5.00	minutes
SCS Lag Time $=$	3.00	minutes (SCS Lag $=0.6^{*}$ Tc)
Time Increment $=$	0.87	minutes $\left(=0.29^{* S C S ~ L a g) ~}\right.$

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	B	61	Yes	0.92	0	0.00
Open Space, Good Condition	D	80	Yes	2.65	0	0.00
Pond	D	100	Yes	0.36	100	0.36
Road	B	98	Yes	0.71	100	0.71
Road	D	98	Yes	1.60	100	1.60
Sidewalk	B	98	Yes	0.26	100	0.26
Sidewalk	D	98	Yes	0.50	100	0.50
Townhome 22	B	95	Yes	1.30	91	1.18
Townhome 22	D	96	Yes	2.40	91	2.19
Singlefam50	B	83	Yes	0.58	59	0.35
Singlefam50	D	91	Yes	2.38	59	1.40

Onsite Area	$\mathbf{1 3 . 6 6}$	ac
Onsite Impervious Area	8.54	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	13.66	ac
Total Impervious Area	8.54	ac
Percent Impervious	63	$\%$
Composite Curve Number	90	

TIME OF CONCENTRATION
Time of concentration is assumed to be 5 minutes.

Time of Concentration $=$	5.00	minutes
SCS Lag Time $=$	3.00	minutes (SCS Lag $=0.6 *$ Tc)
Time Increment $=$	0.87	minutes $(=0.29 * S C S ~ L a g)$

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	C	74	Yes	0.96	0	0.00
Open Space, Good Condition	D	80	Yes	0.94	0	0.00
Pond	D	100	Yes	0.76	100	0.76
Road	C	98	Yes	1.31	100	1.31
Road	D	98	Yes	0.99	100	0.99
Sidewalk	C	98	Yes	0.41	100	0.41
Sidewalk	D	98	Yes	0.27	100	0.27
Singlefam50	C	89	Yes	7.71	59	4.55
Singlefam50	D	91	Yes	2.85	59	1.68
Woods, Good Condition	D	77	Yes	0.22	0	0.00

Onsite Area	16.40	ac
Onsite Impervious Area	9.96	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	16.40	ac
Total Impervious Area	9.96	ac
Percent Impervious	61	$\%$
Composite Curve Number	90	

TIME OF CONCENTRATION
Time of concentration is assumed to be 5 minutes.

| Time of Concentration $=$ | 5.00 | minutes |
| ---: | :--- | :--- | :--- |
| SCS Lag Time $=$ | 3.00 | minutes (SCS Lag $=0.6^{*}$ Tc) |
| Time Increment $=$ | 0.87 | minutes ($=0.29^{* S C S ~ L a g) ~}$ |

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	0.15	0	0.00
Open Space, Good Condition	B	61	Yes	0.04	0	0.00
Open Space, Good Condition	D	80	Yes	1.31	0	0.00
Pond	D	100	Yes	0.18	10	0.18
Road	A	98	Yes	0.26	100	0.26
Road	B	98	Yes	0.08	100	0.08
Road	D	98	Yes	0.77	100	0.77
Sidewalk	A	98	Yes	0.09	100	0.09
Sidewalk	B	98	Yes	0.03	100	0.03
Sidewalk	D	98	Yes	0.27	100	0.27
Singlefam50	A	74	Yes	0.91	59	0.54
Singlefam50	B	83	Yes	0.69	59	0.41
Singlefam50	D	91	Yes	3.58	59	2.11

Onsite Area	8.37	ac
Onsite Impervious Area	4.75	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	8.37	ac
Total Impervious Area	4.75	ac
Percent Impervious	57	$\%$
Composite Curve Number	87	

TIME OF CONCENTRATION

Time of concentration is assumed to be 5 minutes.

Time of Concentration $=$	5.00	minutes
SCS Lag Time $=$	3.00	minutes (SCS Lag $=0.6^{*}$ Tc)
Time Increment $=$	0.87	minutes $(=0.29 * S C S$ Lag)

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	0.56	0	0.00
Open Space, Good Condition	B	61	Yes	0.64	0	0.00
Open Space, Good Condition	D	80	Yes	2.51	0	0.00
Poond	D	100	Yes	0.31	100	0.31
Road	A	98	Yes	0.20	100	0.20
Road	B	98	Yes	0.42	100	0.42
Road	D	98	Yes	1.68	100	1.68
Sidewalk	A	98	Yes	0.07	100	0.07
Sidewalk	B	98	Yes	0.13	100	0.13
Sidewalk	D	98	Yes	0.54	100	0.54
Townhome 22	B	95	Yes	0.51	91	0.47
Townhome 22	D	96	Yes	1.30	91	1.19
Singlefam50	A	74	Yes	1.08	59	0.64
Singlefam50	B	83	Yes	0.44	59	0.26
Singlefam50	D	91	Yes	3.83	59	2.26

Onsite Area	14.20	ac
Onsite Impervious Area	8.14	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	14.20	ac
Total Impervious Area	8.14	ac
Percent Impervious	57	$\%$
Composite Curve Number	86	

time of concentration
Time of concentration is assumed to be 5 minutes.

Time of Concentration $=$	5.00	minutes
SCS Lag Time $=$	3.00	minutes (SCS Lag $\left.=0.6^{*} \mathrm{Tc}\right)$
Time Increment $=$	0.87	minutes $\left(=0.29^{*}\right.$ SCS Lag $)$

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	0.15	0	0.00
Open Space, Good Condition	B	61	Yes	0.00	0	0.00
Open Space, Good Condition	D	80	Yes	5.38	0	0.00
Pond	D	100	Yes	0.73	100	0.73
Road	D	98	Yes	1.94	100	1.94
Sidewalk	D	98	Yes	0.53	100	0.53
Townhome 22	A	93	Yes	0.00	91	0.00
Townhome 22	D	96	Yes	4.75	91	4.33
Singlefam50	A	74	Yes	1.08	59	0.64
Singlefam50	B	83	Yes	1.19	59	0.70
Singlefam50	D	91	Yes	0.42	59	0.25

Onsite Area	16.19	ac
Onsite Impervious Area	9.12	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	16.19	ac
Total Impervious Area	9.12	ac
Percent Impervious	56	$\%$
Composite Curve Number	88	

TIME OF CONCENTRATION
Time of concentration is assumed to be 5 minutes.

| Time of Concentration $=$ | 5.00 | minutes |
| ---: | :--- | :--- | :--- |
| SCS Lag Time $=$ | 3.00 | minutes (SCS Lag $=0.6^{*}$ Tc) |
| Time Increment $=$ | 0.87 | minutes ($=0.29^{* S C S ~ L a g) ~}$ |

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	1.24	0	0.00
Open Space, Good Condition	B	61	Yes	2.96	0	0.00
Open Space, Good Condition	D	80	Yes	0.64	0	0.00
Pond	B	100	Yes	0.37	99	0.37
Pond	D	100	Yes	0.42	100	0.42
Road	A	98	Yes	0.06	100	0.06
Road	B	98	Yes	1.24	100	1.24
Road	D	98	Yes	0.29	100	0.29
Sidewalk	A	98	Yes	0.02	100	0.02
Sidewalk	B	98	Yes	0.36	100	0.36
Sidewalk	D	98	Yes	0.11	100	0.11
Singlefam50	A	74	Yes	0.60	59	0.36
Singlefam50	B	83	Yes	5.41	59	3.19
Singlefam50	D	91	Yes	2.10	59	1.24
Woods, Good Condition	A	30	Yes	0.09	0	0.00
Wooss, Good Condition	B	55	Yes	0.11	0	0.00
Woods, Good Condition	D	77	Yes	0.01	0	0.00

Onsite Area	16.04	ac
Onsite Impervious Area	7.65	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Tota I Area	16.04	ac
Total Impervious Area	7.65	ac
Percent Impervious	48	$\%$
Composite Curve Number	78	

TIME OF CONCENTRATION
Time of concentration is assumed to be 5 minutes.

CURVE NUMBER CALCULATIONS

Land Use	HsG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	B	61	Yes	12.28	0	0.00
Open Space, Good Condition	D	80	Yes	4.82	0	0.00
Pond	в	100	Yes	0.09	99	0.09
Pond	D	100	Yes	6.80	100	6.80
Road	B	98	Yes	0.18	100	0.18
Sidewalk	B	98	Yes	0.22	100	0.22
Sidewalk	D	98	Yes	0.00	100	0.00
Singlefam60	B	80	Yes	0.30	50	0.15
Singlefam60	D	89	Yes	0.05	50	0.03
Woods, Good Condition	B	55	Yes	3.23	0	0.00
Woods, Good Condition	C	70	Yes	0.03	0	0.00
Woods, Good Condition	D	77	Yes	5.78	0	0.00
Mixed Use Neighborhood	в	85	No	12.22	65	7.94
Mixed Use Neighborhood	c	90	No	1.79	65	1.16
Mixed Use Neighborhood	D	92	No	18.30	65	11.89
Low Density Residential	B	68	No	0.29	20	0.06
Low Density Residential	D	84	No	22.63	20	4.53
Medium Density Residential	B	70	No	1.14	25	0.29
Medium Density Residential	D	85	No	0.08	25	0.02
Right-Of-Way	B	89	No	4.08	90	3.67
Right-Of-Way	D	93	No	3.89	90	3.50
School	B	88	No	17.91	72	12.90
School	D	93	No	69.37	72	49.95
Onsite Area	33.79	ac				
Onsite Impervious Area	7.47	ac				
Offsite Area	151.71	ac				
Offsite Impervious Area	95.91	ac				
Total Area	185.50	ac				
Total Impervious Area	103.38	ac				
Percent Impervious	56	\%				
Composite Curve Number	87					

TIME OF CONCENTRATION
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow		
Length $=$	100	ft
Top Elev =	426.00	ft
Bot Elev =	425.00	ft
Height $=$	1	ft
Slope $=$	0.0100	$\mathrm{ft} / \mathrm{tt}$
Manning's $\mathrm{n}=$	0.17	cultivated soils, residue cover
$\mathrm{P}(2$-year/24-hour) $=$	3.46	inches (Rolesville, NC)

Segment 2: Concentrated		
Flow		
Tength $=$	2645	ft
Top Elev $=$	425.00	ft
Bot Elev $=$	374.00	ft
Height $=$	51	ft
Slope $=$	0.0193	$\mathrm{ft} / \mathrm{ft}$
Paved ?	No	
Velocity $=$	2.24	$\mathrm{ft} /$ sec
Segment Time $=$	19.68	minutes

Segment 3: Open Water Flow $\begin{aligned} & \text { Length }=580 \mathrm{ft}\end{aligned}$
 Top Elev $=374.00 \mathrm{ft}$

$\begin{array}{llll}\text { Segment Time } & = & 372.00 & \mathrm{ft} \\ 0.00 & \text { minutes }\end{array}$

Segment 4: Channel Flow		
Length $=$	2088	ft
Top Elev =	372.00	$f t$
Bot Elev =	344.00	ft
Height =	28	$f t$
Slope $=$	0.0134	ft/ft
Manning's $\mathrm{n}=$	0.045	natural channel
Flow Area $=$	15.00	sf (assume $5^{\prime \prime} \times \times 3^{\prime} h$ channel)
Wetted Perimeter =	11.00	If (assume $5^{\prime} \mathrm{w} \times 3^{\prime} \mathrm{h}$ channel)
Channel Velocity =	4.72	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	7.38	minutes

Time of Concentration $=$	40.80	minutes
SCS Lag Time $=$	24.48	minutes $\left(\right.$ SCS Lag $=0.6^{*}$ Tc)
Time Increment $=$	7.10	minutes $\left(=0.29^{* S C S ~ L a g) ~}\right.$

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	B	61	Yes	1.27	0	0.00
Open Space, Good Condition	D	80	Yes	0.71	0	0.00
Sidewalk	B	98	Yes	0.14	100	0.14
Sidewalk	D	98	Yes	0.07	100	0.07
Woods Good Condition	B	55	Yes	0.43	0	0.00
Woods, Good Condition	D	77	Yes	1.65	0	0.00
Mixed Use Neighborhood	B	85	No	5.30	65	3.44
Mixed Use Neighborhood	D	92	No	13.37	65	8.69
Low Density Residential	D	84	No	17.96	20	3.59
Risht-Of-Way	B	89	No	2.31	90	2.08
Right-Of-Way	D	93	No	11.03	90	9.93

Onsite Area		
Ons	ac	
Onsite Impervious Area	0.22	ac
Offsite Area	4.97	ac
Offsite Impervious Area	27.74	ac
Total Area	54.25	ac
Total Impervious Area	27.95	ac
Percent Impervious	52	$\%$
Composite Curve Number	87	

TIME OF CONCENTRATION
Time of concentration is calculated using the SCS Segmental Approach (TR-55).

CURVE NUMBER CALCULATIONS

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	0.00	0	0.00
Open Space, Good Condition	B	61	Yes	0.00	0	0.00
Open Space, Good Condition	c	74	Yes	1.50	0	0.00
Open Space, Good Condition	D	80	Yes	4.88	0	0.00
Singlefam50	c	89	Yes	0.00	59	0.00
Singlefam60	D	89	Yes	0.02	50	0.01
Woods, Good Condition	c	70	Yes	1.79	0	0.00
Woods, Good Condition	D	77	Yes	9.53	0	0.00
Mixed Use Neighborhood	в	85	No	1.78	65	1.16
Mixed Use Neighborhood	c	90	No	1.04	65	0.68
Mixed Use Neighborhood	D	92	No	8.00	65	5.20
Onsite Area	17.72	ac				
Onsite Impervious Area	0.01	ac				
Offsite Area	10.83	ac				
Offsite Impervious Area	7.04	ac				
Total Area	28.55	ac				
Total Impervious Area	7.05	ac				
Percent Impervious	25	\%				
Composite Curve Number	82					

TIME OF CONCENTRATION
Time of concentration is calculated using the SCS Segmental Approach (TR-55),

Segment 1: Overland Flow		
Length $=$	100	ft
Top Elev =	394.00	ft
Bot Elev =	392.00	ft
Height $=$	2	ft
Slope $=$	0.0200	$\mathrm{ft} / \mathrm{tt}$
Manning's $\mathrm{n}=$	0.17	cultivated soils, residue cov
$\mathrm{P}(2$-year/24-hour) $=$	3.46	inches (Rolesville, NC)

Segment 2: Concentrated Flow		
Length $=$	1223	ft
Top Elev $=$	392.00	ft
Bot Elev $=$	341.00	ft
Height $=$	51	ft
Slope $=$	0.0417	$\mathrm{ft} / \mathrm{ft}$
Paved ?	No	
Velocity $=$	3.29	$\mathrm{ft} /$ sec
Segment Time $=$	6.19	minutes

Segment 3: Channel Flow
Length $=2660 \mathrm{ft}$
Top Elev $=341.00 \mathrm{ft}$
Bot Elev $=302.00 \mathrm{ft}$

$\begin{array}{rll}\text { Slope } & =0.0147 & \mathrm{ft} / \mathrm{ft} \\ \text { Hanning's } \mathrm{n} & =0.045 & \text { natural channel }\end{array}$
Flow Area $=\begin{array}{ll}15.00 & \text { sf (assume 5'w } \times 3^{\prime} \text { 'h channel) }\end{array}$
etted Perimeter = $\begin{aligned} & 11.00 \\ & \text { If (assume } 5^{\prime} \mathrm{w} \times 3^{\prime} \mathrm{h} \text { channel) }\end{aligned}$
Channel Velocity $=4.93 \mathrm{ft} / \mathrm{sec}$
segment Time $=8.99 \quad$ minutes

Time of Concentration $=$	25.59	minutes
SCS Lag Time $=$	15.36	minutes (SCS Lag $=0.6^{*}$ TC)
Time Increment $=$	4.45	minutes $\left(=0.29^{*}\right.$ SCS Lag $)$

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	0.43	0	0.00
Open Space, Good Condition	B	61	Yes	2.06	0	0.00
Open Space, Good Condition	D	80	Yes	9.69	0	0.00
Sidewalk	A	98	Yes	0.02	100	0.02
Sidewalk	B	98	Yes	0.26	100	0.26
Sidewalk	D	98	Yes	0.86	100	0.86
Townhome 22	D	96	Yes	0.03	91	0.03
Woods, Good Condition	B	55	Yes	0.03	0	0.00
Woods, Good Condition	D	77	Yes	6.25	0	0.00
Open Space, Good Condition	B	61	No	9.58	0	0.00
Open Space, Good Condition	D	80	No	9.24	0	0.00
Mixed Use Neighborhood	B	85	No	6.75	65	4.39
Mixed Use Neighborhood	D	92	No	15.53	65	10.09
Low Density Residential	B	68	No	0.92	20	0.18
Low Density Residential	D	84	No	1.85	20	0.37
Medium Density Residential	A	54	No	0.01	25	0.00
Medium Density Residential	B	70	No	47.92	25	11.98
Medium Density Residential	D	85	No	42.98	25	10.74
High Density Residential	B	72	No	70.82	30	21.24
High Density Residential	D	86	No	51.45	30	15.43
Right-Of-Way	A	83	No	0.76	90	0.68
Right-Of-Way	B	89	No	23.84	90	21.46
Right-Of-Way	D	93	No	31.95	90	28.75
School	B	88	No	0.47	72	0.34
School	D	93	No	7.11	72	5.12
Preserved Open	A	39	No	0.39	0	0.00
Preserved Open	B	61	No	4.48	0	0.00
Preserved Open	D	80	No	34.04	0	0.00
Woods, Good Condition	B	55	No	3.27	0	0.00
Woods, Good Condition	D	77	No	23.30	0	0.00
Business Park	A	89	No	0.01	85	0.01
Business Park	B	92	No	0.02	85	0.02
Business Park	D	95	No	0.03	85	0.03
Commercial	D	95	No	1.01	85	0.86
Town Center	B	92	No	6.53	85	5.55
Town Center	C	94	No	0.00	85	0.00
Town Center	D	95	No	1.74	85	1.48

Onsite Area	19.63	ac
Onsite Impervious Area	1.16	ac
Offsite Area	395.98	ac
Offsite Impervious Area	138.72	ac
Total Area	415.61	ac
Total Inpervious Area	139.88	ac
Percent Impervious	34	$\%$
Composite Curve Number	80	

time of concentration

Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland flow		
Length $=$	100	$f t$
Top Elev =	440.00	$f t$
Bot Elev =	438.00	$f t$
Height $=$	2	$f t$
Slope $=$	0.0200	$\mathrm{ft} / \mathrm{tt}$
Manning's $\mathrm{n}=$	0.24	dense grasses
$\mathrm{P}(2$-year $/ 24$-hour $)=$	3.46	inches (Rolesville, NC)
Segment Time $=$	13.72	minutes

$\begin{array}{cc}\text { Segment 2: } \text { Concentrated Flow } \\ \text { Length }= & 2989 \\ \text { Top Elev }= & 438.00\end{array}$
$\begin{array}{lll}\text { Length }= & 2989 & \mathrm{ft} \\ \text { Top Elev }= & 438.00 & \mathrm{ft}\end{array}$
$\begin{array}{ll}\text { Bot Elev }= & 372.0\end{array}$
Slope $=0.022$
Paved? = No ft/t

Velocity $=$	2.40	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	20.78	minute

Segment 3: Open Water Flow
Length $=655 \mathrm{ft}$ Top Elev $=372.00 \mathrm{ft}$
Bot Elev $=372.00 \quad \mathrm{ft}$
Segment Time $=0.00$ minutes

Segment 4: Concentrated Flow		
Length $=$	2379	ft
Top Elev $=$	372.00	ft
Bot Elev $=$	320.00	ft
Height $=$	52	ft
Stope $=$	0.0219	$\mathrm{ft} / \mathrm{ft}$
Paved ?	No	
Velocity $=$	2.39	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	16.62	minutes

Segment 5: Channel Flow
Length $=3029 \mathrm{ft}$
Top Elev $=320.00 \mathrm{ft}$
Bot Elev $=39200$
$\begin{array}{ccc}\text { Bot Elev }= & 292.00 & \mathrm{ft} \\ \text { Height }= & 28 & \mathrm{ft}\end{array}$
$\begin{array}{ll}\text { Height }= & 28 \\ \text { Slope }= & 0.0092 \\ \mathrm{ft} / \mathrm{ft}\end{array}$
Manning's $\mathrm{n}=0.045$ natural channel
Flow Area $=32.00 \quad$ sf (assume $8^{\prime} w \times 4^{\prime} h$ channel)
Wetted Perimeter $=16.00$ If (assume $8^{\prime} \mathbf{w} \times 4^{\prime} \mathrm{h}$ channel)
Channel Velocity $=\begin{array}{ll}5.05 & \mathrm{ft} / \mathrm{sec}\end{array}$
Segment Time $=9.99 \quad$ minutes

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	D	80	Yes	1.69	0	0.00
Road	D	98	Yes	0.01	100	0.01
Sidewalk	D	98	Yes	0.14	100	0.14
Townhome 22	D	96	Yes	0.04	91	0.04
Woods, Good Condition	D	77	Yes	0.23	0	0.00

Onsite Area	2.11	ac
Onsite Impervious Area	0.19	ac
Offite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	2.11	ac
Total Impervious Area	$\mathbf{0 . 1 9}$	ac
Percent Impervious	9	\%
Composite Curve Number	$\mathbf{8 1}$	

time of concentration

Time of concentration is assumed to be 5 minutes.
$\begin{array}{rlll}\text { Time of Concentration }= & 5.00 & \text { minutes } \\ \text { SCS Lag Time }= & 3.00 & \text { minutes (SCS Lag }=0.6^{*} \text { Tc) }\end{array}$

CURVE NUMBER CALCULATIONS

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	0.01	0	0.00
Open Space, Good Condition	B	61	Yes	0.10	0	0.00
Open Space, Good Condition	D	80	Yes	0.63	0	0.00
Woods, Good Condition	A	30	Yes	0.05	0	0.00
Woods Good Condition	B	55	Yes	0.17	0	0.00
Woods, Good Condition	D	77	Yes	1.16	0	0.00

Onsite Area	$\mathbf{2 . 1 2}$	ac
Onsite Impervious Area	0.00	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	2.12	ac
Total Impervious Area	0.00	ac
Percent Impervious	0	$\%$
Composite Curve Number	74	

TIME OF CONCENTRATION

Time of concentration is calculated using the SCS Segmental Approach (TR-55).

Segment 1: Overland Flow			Segment 2: Concentrated Flow		
Length $=$	100	ft	Length $=$	115	ft
Top Elev =	352.00	ft	Top Elev =	345.00	ft
Bot Elev =	345.00	ft	Bot Elev =	324.00	$f t$
Height $=$	7	f ft	Height $=$	21	ft
Slope $=$	070	ft/ft	Slope $=$. 1826	ft/ft
Manning's $\mathrm{n}=$	0.24	dense grasses	Paved ? $=$	No	
$\mathrm{P}(2$-year/24-hour) $=$	3.46	inches (Rolesville, NC)	Velocity $=$	6.89	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	8.31	minutes	Segment Time $=$	0.28	minutes

| Time of Concentration $=$ | 8.59 | minutes |
| ---: | ---: | ---: | :--- |
| SCS Lag Time $=$ | 5.16 | minutes (SCS Lag $=0.6^{*}$ TC) |
| Time Increment $=$ | 1.50 | minutes $\left(=0.29^{*}\right.$ SCS Lag) |

Land Use	HSG	CN	Onsite	Area (ac)	Percent Impervious (\%)	Impervious Area (ac)
Open Space, Good Condition	A	39	Yes	0.25	0	0.00
Open Space, Good Condition	B	61	Yes	0.94	0	0.00
Open Space, Good Condition	D	80	Yes	0.10	0	0.00
Sidewalk	A	98	Yes	0.03	100	0.03
Sidewalk	B	98	Yes	0.13	100	0.13
Sidewalk	D	98	Yes	0.02	100	0.02
Woods, Good Condition	A	30	Yes	0.02	0	0.00
Woods, Good Condition	B	55	Yes	0.56	0	0.00
Woods, Good Condition	D	77	Yes	0.08	0	0.00

Onsite Area	2.13	ac
Onsite Impervious Area	0.18	ac
Offsite Area	0.00	ac
Offsite Impervious Area	0.00	ac
Total Area	2.13	ac
Total Impervious Area	0.18	ac
Percent Impervious	9	$\%$
Composite Curve Number	61	

TIME OF CONCENTRATION
Time of concentration is calculated using the SCS Seqmental Approach (TR-55).

Segment 1: Overland Flow		
Length $=$	37	$f t$
Top Elev =	398.00	ft
Bot Elev =	396.00	ft
Height $=$	2	ft
Slope $=$	0.0541	ft/f
Manning's $\mathrm{n}=$	0.24	dense grasses
$\mathrm{P}(2$-year/ 24 -hour $)=$	3.46	inches (Rolesville, NC)
Segment Time $=$	4.16	minutes

Segment 2: Concentrated Flow		
Length $=$	575	ft
Top Elev $=$	396.00	ft
Bot Elev $=$	365.00	ft
Height $=$	31	ft
Slope $=$	0.0539	$\mathrm{ft} / \mathrm{tt}$
Paved ?	No	
Velocity $=$	3.75	$\mathrm{ft} /$ sec
Segment Time $=$	2.56	minutes

REACH DATA
 Reach \#1-POA 1 to POA 4

Segment 1: Concentrated Flow		
Length $=$	2988	ft
Top Elev $=$	344.00	ft
Bot Elev $=$	302.00	ft
Height $=$	42	ft
Slope $=$	0.0141	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.045	natural channel
Flow Area $=$	10.00	sf (assume $5^{\prime} \mathrm{w} \times 2^{\prime} \mathrm{h}$ channel)
Wetted Perimeter $=$	9.00	If (assume $5^{\prime} \mathrm{w} \times 2^{\prime} \mathrm{h}$ channel)
Channel Velocity $=$	4.21	$\mathrm{ft} / \mathrm{sec}$
Reach Travel Time $=$	11.83	minutes

Reach \#2 - SCM A TO POA 1

Reach \#4 - SCM F TO POA 4

Segment 1: Concentrated Flow				Segment 2: Channel Flow		
Length $=$	77	ft		Length $=$	2292	ft
Top Elev =	339.00	ft		Top Elev =	336.00	ft
Bot Elev =	336.00	ft		Bot Elev =	302.00	ft
Height =	3	ft		Height =	34	ft
Slope $=$	0.0390	$\mathrm{ft} / \mathrm{ft}$		Slope $=$	0.0148	$\mathrm{ft} / \mathrm{ft}$
Paved ? =	No			Manning's $\mathrm{n}=$	0.045	natural channel
Velocity =	3.18	$\mathrm{ft} / \mathrm{sec}$		Flow Area =	10.00	sf (assume 5'w $\times 2$ 'h channel)
				Wetted Perimeter $=$	9.00	If (assume $5^{\prime} \mathrm{w} \times 2 \mathrm{~h}$ channel)
				Channel Velocity =	4.33	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	0.40	minutes		Reach Travel Time $=$	8.83	minutes
Total Travel Time $=9.23$ minutes						
Reach \#5 - SCM B TO POA 1						
Segment 1: Concentrated Flow				Segment 2: Channel Flow		
Length $=$	161	ft		Length $=$	1850	ft
Top Elev =	375.00	ft		Top Elev =	363.00	ft
Bot Elev =	363.00	ft		Bot Elev =	344.00	ft
Height $=$	12	ft		Height =	19	ft
Slope $=$	0.0745	$\mathrm{ft} / \mathrm{ft}$		Slope $=$	0.0103	$\mathrm{ft} / \mathrm{ft}$
Paved ? =	No			Manning's $\mathrm{n}=$	0.045	natural channel
Velocity =	4.40	$\mathrm{ft} / \mathrm{sec}$		Flow Area $=$	12.00	sf (assume 6'w $\times 2$ 'h channel)
				Wetted Perimeter =	10.00	If (assume $6^{\prime} \mathrm{w} \times 2 \mathrm{~h}$ channel)
				Channel Velocity =	3.79	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	0.61	minutes		Reach Travel Time =	8.14	minutes
Total Travel Time $=8.75$ minutes						

Reach \#6-SCM G TO POA 4

Segment 1: Concentrated Flow				Segment 2: Channel Flow		
Length $=$	75	ft		Length $=$	1566	ft
Top Elev =	338.00	ft		Top Elev =	337.00	ft
Bot Elev =	337.00	ft		Bot Elev =	303.00	ft
Height =	1	ft		Height =	34	ft $\mathrm{ft} / \mathrm{ft}$
Slope $=$	0.0133	$\mathrm{ft} / \mathrm{ft}$		Slope $=$	0.0217	
Paved ? =	No	$\mathrm{ft} / \mathrm{sec}$		Manning's $\mathrm{n}=$	0.045	natural channel sf (assume $6^{\prime} w \times 2$ 'h channel)
Velocity $=$	1.86			Flow Area =	12.00	
Segment Time $=$				Wetted Perimeter =	10.00	If (assume $6^{\prime} w \times 2$ 'h channel) $\mathrm{ft} / \mathrm{sec}$
				Channel Velocity =	5.51	
	0.67	minutes		Reach Travel Time =	4.74	minutes
Total Travel Time $=5.41$ minutes						
Reach \#7-SCM H TO POA 4						
Segment 1: Concentrated Flow				Segment 2: Channel Flow		
Length =	482	ft		Length $=$	1567	ft
Top Elev =	374.00	ft		Top Elev =	361.00	ft
Bot Elev =	361.00	ft		Bot Elev =	344.00	ft
Height $=$	13	ft		Height $=$	17	ft
Slope $=$	0.0270	$\mathrm{ft} / \mathrm{ft}$		Slope $=$	0.0108	$\mathrm{ft} / \mathrm{ft}$
Paved ? =	No			Manning's $\mathrm{n}=$	0.045	natural channel
Velocity $=$	2.65	$\mathrm{ft} / \mathrm{sec}$		Flow Area =	12.00	sf (assume $6^{\prime} \mathrm{w} \times 2$ 'h channel)
				Wetted Perimeter $=$	10.00	If (assume $6^{\prime} w \times 2$ 'h channel)
				Channel Velocity =	3.89	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	3.03	minutes		Reach Travel Time =	6.71	minutes
			9.74 minutes			

Reach \#8-SCM I TO POA 4

Segment 1: Concentrated Flow				Segment 2: Channel		
Length $=$	482	ft		Length $=$	805	ft
Top Elev =	308.00	ft		Top Elev =	296.00	ft
Bot Elev =	296.00	ft		Bot Elev =	292.00	ft
Height $=$	12	ft		Height =	4	ft
Slope =	0.0249	$\mathrm{ft} / \mathrm{ft}$		Slope $=$	0.0050	$\mathrm{ft} / \mathrm{ft}$
Paved ? =	No			Manning's $\mathrm{n}=$	0.045	natural channel
Velocity =	2.55	$\mathrm{ft} / \mathrm{sec}$		Flow Area =	12.00	sf (assume $6^{\prime} w \times 2$ 'h channel)
				Wetted Perimeter $=$	10.00	If (assume $6^{\prime} \mathrm{w} \times 2^{\prime} \mathrm{h}$ channel)
				Channel Velocity =	2.64	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	3.16	minutes		Reach Travel Time =	5.09	minutes
		Total Travel Time $=$	8.25 minutes			
Reach \#9 - CULVERT TO POA 5						
Segment 1: Channel Flow						
Length $=$	650	ft				
Top Elev =	296.00	ft				
Bot Elev =	291.00	ft				
Height =	5	ft				
Slope $=$	0.0077	$\mathrm{ft} / \mathrm{ft}$				
Manning's $\mathrm{n}=$	0.045	natural channel				
Flow Area =	12.00	sf (assume $6^{\prime} w \times 2$ 'h channel)				
Wetted Perimeter $=$	10.00	If (assume 6 'w $\times 2$ 'h channel)				
Channel Velocity =	3.28	$\mathrm{ft} / \mathrm{sec}$				
Reach Travel Time $=$	3.30	minutes				
		Total Travel Time $=$	3.30 minutes			
Reach \#10-POA 5 TO POA 6						
Segment 1: Channel Flow						
Length $=$	822	ft				
Top Elev =	291.00	ft				
Bot Elev =	288.00	ft				
Height =	3	ft				
Slope $=$	0.0036	$\mathrm{ft} / \mathrm{ft}$				
Manning's $\mathrm{n}=$	0.045	natural channel				
Flow Area =	12.00	sf (assume $6^{\prime} w \times 2$ 'h channel)				
Wetted Perimeter =	10.00	If (assume 6'w x 2'h channel)				
Channel Velocity =	2.26	$\mathrm{ft} / \mathrm{sec}$				
Reach Travel Time $=$	6.07	minutes				
		Total Travel Time $=$	6.07 minutes			

Reach \#11 - POA 4 TO POA 6

Segment 1: Channel Flow		
Length $=$	883	ft
Top Elev =	292.00	ft
Bot Elev =	288.00	ft
Height $=$	4	ft
Slope $=$	0.0045	$\mathrm{ft} / \mathrm{ft}$
Manning's $\mathrm{n}=$	0.045	natural channel
Flow Area =	12.00	sf (assume 6'w $\times 2$ 'h channel)
Wetted Perimeter =	10.00	If (assume $6^{\prime} \mathbf{w} \times 2$ 'h channel)
Channel Velocity =	2.52	$\mathrm{ft} / \mathrm{sec}$
Reach Travel Time $=$	5.85	minutes

Total Travel Time $=5.85$ minutes

Reach \#12-SCM L TO POA 7

Segment 1: Concentrated Flow				Segment 2: Channel Flow		
Length $=$	85	ft		Length $=$	68	ft
Top Elev =	338.00	ft		Top Elev =	327.00	ft
Bot Elev =	327.00	ft		Bot Elev =	324.00	ft
Height =	11	ft		Height =	3	ft
Slope =	0.1294	$\mathrm{ft} / \mathrm{ft}$		Slope $=$	0.0441	$\mathrm{ft} / \mathrm{ft}$
Paved ? =	No			Manning's $\mathrm{n}=$	0.045	natural channel
Velocity =	5.80	$\mathrm{ft} / \mathrm{sec}$		Flow Area $=$	12.00	sf (assume 6'w $\times 2$ 'h channel)
				Wetted Perimeter $=$	10.00	If (assume 6 ' $\mathrm{w} \times 2$ 'h channel)
				Channel Velocity =	7.85	$\mathrm{ft} / \mathrm{sec}$
Segment Time $=$	0.24	minutes		Reach Travel Time =	0.14	minutes
Total Travel Time $=0.39$ minutes						

Scenario: Post-Dev 1 yr

FlexTable: Catchment
 Table (AWH20000Master.ppc)

Current Time: $\mathbf{0 . 0 0} \mathbf{~ m i n}$

Label	Area $\left(\mathrm{ft}^{2}\right)$	SCS CN Concentration (min)		
Sub 5 Bypass	$18,106,649.00$	80.0	61.11	POST
Sub 2	$2,363,457.00$	87.0	31.12	POST
Sub 1 Bypass	$8,081,866.00$	87.0	40.80	POST
Sub 1 to SCM B	$445,000.00$	87.0	5.00	POST
Sub 1 to SCM A	$538,121.00$	86.0	5.00	POST
Sub 1 to SCM D	$574,908.00$	82.0	5.00	POST
Sub 1 to SCM C	$683,139.00$	86.0	5.00	POST
Sub 1 to SCM E	$755,874.00$	87.0	5.00	POST
Sub 4 to SCM F	$811,326.00$	87.0	5.00	POST
Sub 4 to SCM H	$714,539.00$	90.0	5.00	POST
Sub 4 Bypass	$1,243,502.00$	82.0	25.59	POST
Sub 4 to SCM G	$595,088.00$	90.0	5.00	POST
Sub 5 to SCM J	$618,668.00$	86.0	5.00	POST
Sub 4 to SCM I	$364,616.00$	87.0	5.00	POST
Sub 6 to SCM K	$705,046.00$	88.0	5.00	POST
Sub 7 to SCM L	$698,883.00$	78.0	5.00	POST
Sub 7 Bypass	$92,480.00$	74.0	8.59	POST
Sub 8	$92,863.00$	61.0	6.72	POST
Sub 1 to SCM P	$32,425.00$	87.0	5.00	POST
Sub 6 Bypass	$92,122.00$	81.0	5.00	POST

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
Sub 1 Bypass	Post-Dev 10 yr	10	55.470	745.00	407.2
Sub 1 to SCM A	Post-Dev 10 yr	10	3.622	721.00	65.5
Sub 1 to SCM B	Post-Dev 10 yr	10	3.081	721.00	55.5
Sub 1 to SCM C	Post-Dev 10 yr	10	4.598	721.00	83.2
Sub 1 to SCM D	Post-Dev 10 yr	10	3.441	721.00	62.8
Sub 1 to SCM E	Post-Dev 10 yr	10	5.234	721.00	94.4
Sub 1 to SCM P	Post-Dev 10 yr	10	0.225	721.00	4.0
Sub 2	Post-Dev 10 yr	10	16.259	738.00	138.6
Sub 3	Post-Dev 10 yr	10	1.195	726.00	16.6
Sub 4 Bypass	Post-Dev 10 yr	10	7.401	734.00	70.7
Sub 4 to SCM F	Post-Dev 10 yr	10	5.618	721.00	101.3
Sub 4 to SCM G	Post-Dev 10 yr	10	4.474	721.00	79.4
Sub 4 to SCM H	Post-Dev 10 yr	10	5.372	721.00	95.4
Sub 4 to SCM I	Post-Dev 10 yr	10	2.525	721.00	45.5
Sub 5 Bypass	Post-Dev 10 yr	10	100.289	758.00	596.8
Sub 5 to SCM J	Post-Dev 10 yr	10	4.164	721.00	75.4
Sub 6 Bypass	Post-Dev 10 yr	10	0.535	721.00	9.8
Sub 6 to SCM K	Post-Dev 10 yr	10	5.020	721.00	90.1
Sub 7 Bypass	Post-Dev 10 yr	10	0.426	724.00	6.5
Sub 7 to SCM L	Post-Dev 10 yr	10	3.688	721.00	67.2
Sub 8	Post-Dev 10 yr	10	0.249	723.00	3.7

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$
	Post-Dev 10 yr	10	2.205	728.00	28.8
	Post-Dev 10 yr	10	3.010	730.00	24.2
	Post-Dev 10 yr	10	3.738	726.00	51.5
	Post-Dev 10 yr	10	4.686	725.00	73.1
	Post-Dev 10 yr	10	3.287	729.00	37.1
	Post-Dev 10 yr	10	1.478	730.00	16.5
	Post-Dev 10 yr	10	2.665	734.00	19.7
CULVERT	Post-Dev 10 yr	10	103.144	758.00	611.7
POA 1	Post-Dev 10 yr	10	70.939	743.00	514.0
POA 2	Post-Dev 10 yr	10	16.259	738.00	138.6
POA 3	Post-Dev 10 yr	10	1.195	726.00	16.6
POA 4	Post-Dev 10 yr	10	90.143	753.00	636.3
POA 5	Post-Dev 10 yr	10	103.033	761.00	611.7
POA 6	Post-Dev 10 yr	10	195.937	763.00	1,231.6
POA 7	Post-Dev 10 yr	10	2.441	753.00	8.6
POA 8	Post-Dev 10 yr	10	0.249	723.00	3.7

Pond Summary

| Label | Scenario | Return
 Event
 (years) | Hydrograph
 Volume
 $(\mathrm{ac}-\mathrm{ft})$ | Time to Peak
 (min) | Peak Flow
 $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$ | Maximum
 Water
 Surface
 Elevation
 (ft) | Maximum
 Pond Storage
 (ac-ft) |
| :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: |

Pond Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (min)	Peak Flow $\left(\mathrm{ft}^{3} / \mathrm{s}\right)$	Maximum Water Surface Elevation (ft)	Maximum Pond Storage (ac-ft)
$\begin{aligned} & \text { SCM A } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	3.010	730.00	24.2	384.19	1.488
SCM B (IN)	Post-Dev 10 yr	10	3.081	721.00	55.5	(N/A)	(N/A)
$\begin{aligned} & \text { SCM B } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	2.205	728.00	28.8	377.88	1.176
SCM C (IN)	Post-Dev 10 yr	10	4.598	721.00	83.2	(N/A)	(N/A)
$\begin{aligned} & \text { SCM C } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	3.738	726.00	51.5	379.49	1.405
SCM D (IN)	Post-Dev 10 yr	10	3.441	721.00	62.8	(N/A)	(N/A)
$\begin{aligned} & \text { SCM D } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	2.382	783.00	3.9	357.55	2.006
SCM E (IN)	Post-Dev 10 yr	10	5.234	721.00	94.4	(N/A)	(N/A)
SCM E (OUT)	Post-Dev 10 yr	10	4.166	731.00	29.2	358.69	2.112
SCM F (IN)	Post-Dev 10 yr	10	5.618	721.00	101.3	(N/A)	(N/A)
SCM F (OUT)	Post-Dev 10 yr	10	4.686	725.00	73.1	347.79	1.625
SCM G (IN)	Post-Dev 10 yr	10	4.474	721.00	79.4	(N/A)	(N/A)
$\begin{aligned} & \text { SCM G } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	2.665	734.00	19.7	344.41	2.160
SCM H (IN)	Post-Dev 10 yr	10	5.372	721.00	95.4	(N/A)	(N/A)
$\begin{aligned} & \text { SCM H } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	3.287	729.00	37.1	334.37	2.463
SCM I (IN)	Post-Dev 10 yr	10	2.525	721.00	45.5	(N/A)	(N/A)
SCM I (OUT)	Post-Dev 10 yr	10	1.478	730.00	16.5	322.28	1.134
SCM J (IN)	Post-Dev 10 yr	10	4.164	721.00	75.4	(N/A)	(N/A)
SCM J (OUT)	Post-Dev 10 yr	10	2.855	732.00	21.0	314.19	1.851
SCM K (IN)	Post-Dev 10 yr	10	5.020	721.00	90.1	(N/A)	(N/A)
$\begin{aligned} & \text { SCM K } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	2.635	761.00	7.2	303.40	3.036
SCM L (IN)	Post-Dev 10 yr	10	3.688	721.00	67.2	(N/A)	(N/A)
SCM L (OUT)	Post-Dev 10 yr	10	2.016	757.00	6.8	343.71	2.036
SCM P (1) (IN)	Post-Dev 10 yr	10	0.090	725.00	3.1	(N/A)	(N/A)
$\begin{aligned} & \text { SCM P (1) } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	0.047	734.00	1.3	400.59	0.037
$\begin{aligned} & \text { SCM P (2) } \\ & \text { (IN) } \end{aligned}$	Post-Dev 10 yr	10	0.185	722.00	3.9	(N/A)	(N/A)
$\begin{aligned} & \text { SCM P (2) } \\ & \text { (OUT) } \end{aligned}$	Post-Dev 10 yr	10	0.090	725.00	3.1	402.06	0.046
SCM P (3) (IN)	Post-Dev 10 yr	10	0.225	721.00	4.0	(N/A)	(N/A)
$\begin{aligned} & \text { SCM P (3) } \\ & \text { (OUT) } \\ & \hline \end{aligned}$	Post-Dev 10 yr	10	0.185	722.00	3.9	403.06	0.010

[^0]: ${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

