
RAMEY KEMP ASSOCIATES

TOGETHER WE ARE LIMITLESS

Harris Creek Farm **Traffic Impact Analysis Rolesville, North Carolina**

TRAFFIC IMPACT ANALYSIS

FOR

HARRIS CREEK FARM

LOCATED

IN

ROLESVILLE, NORTH CAROLINA

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By: Infrastructure Consulting Services, Inc. *dba*

Ramey Kemp Associates 5808 Faringdon Place Raleigh, NC 27609

License #F-1489

MAY 2023

Prepared By: <u>DAR</u>

Reviewed By: <u>JAE</u>

TRAFFIC IMPACT ANALYSIS HARRIS CREEK FARM ROLESVILLE, NORTH CAROLINA

EXECUTIVE SUMMARY

1. Development Overview

A Traffic Impact Analysis (TIA) was conducted for the proposed Harris Creek Farm development in accordance with the Town of Rolesville (Town) Land Development Ordinance (LDO) and North Carolina Department of Transportation (NCDOT) capacity analysis guidelines. The proposed development, anticipated to be completed in 2027, is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The proposed development is expected to consist of 68 single-family homes and 81 townhomes. Site access is proposed via two (2) full-movement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions
- 2027 Build-Improved Traffic Conditions

2. Existing Traffic Conditions

The study area for the TIA was determined through coordination with the Town and NCDOT and consists of the following existing intersections:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Mitchell Mill Road and Jonesville Road / Peebles Road
- Jonesville Road and Universal Drive

Existing peak hour traffic volumes were determined based on traffic counts conducted at the study intersections listed above except for Jonesville Road and Universal Drive, in November of 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning.

Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive were estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive. It was estimated that there will be 8 AM trips: 2 enter 6 exit and 10 PM trips: 7 enter 3 exit. The trips were distributed to the north and south along Jonesville Road the same as site trips. Through traffic volumes were balanced from the Mitchell Mill Road/Jonesville Road intersection.

Previously collected counts from the year 2021 were projected to the 2022 existing analysis year using a compounded annual growth rate of 2%. Weekday AM and PM traffic volumes were balanced between study intersections, where appropriate.

3. Site Trip Generation

The proposed development is assumed to consist of 68 single-family homes and 81 townhomes,. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11th Edition. Table E-1 provides a summary of the trip generation potential for the site.

Table E-1: Site Trip Generation

Land Use (ITE Code)	Intensity	Daily Traffic	Weekday AM Peak Hour Trips I (vph)			Weekday PM Peak Hour Trips (vph)		
		(vpd)	Enter	Exit	Total	Enter	Exit	Total
Single-Family Home (210)	68 DU	708	13	39	52	44	25	69
Single Family Attached (215)	81 DU	568	9	27	36	26	19	45
Total Primary Trips		1,276	22	66	88	70	44	114

4. Future Traffic Conditions

Through coordination with the Town and NCDOT, it was determined that an annual growth rate of 0% would be used to generate 2027 projected weekday AM and PM peak hour traffic volumes. A growth rate of 0% was used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. The following adjacent developments were identified to be considered under future conditions:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

5. Capacity Analysis Summary

The analysis considered weekday AM and PM peak hour traffic for 2022 existing, 2027 no-build, 2027 build, and 2027 build-improved conditions. Refer to Section 7 of the TIA for the capacity analysis summary performed at each study intersection.

6. Recommendations

Based on the findings of this study, specific geometric and traffic control improvements have been identified at study intersections. The improvements are summarized below and are illustrated in Figure E-1.

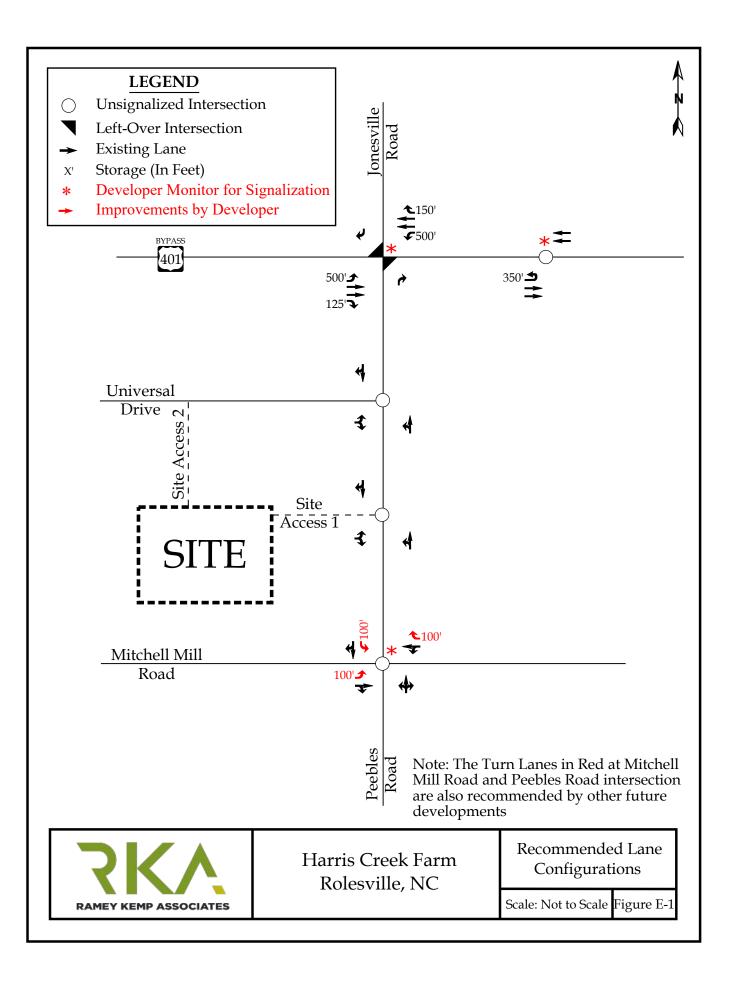
Recommended Improvements by Developer

US 401 Bypass and Jonesville Road

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.


Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA and Hills at Harris Creek TIA
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the Hills at Harris Creek TIA
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Jonesville Road and Site Drive

- Construct the eastbound approach (Site Drive) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Drive).

TABLE OF CONTENTS

1.	INTRODUCTION	1
1.1	. Site Location and Study Area	1
1.2	. Proposed Land Use and Site Access	2
1.3	. Adjacent Land Uses	2
1.4	. Existing Roadways	2
2.	2022 EXISTING PEAK HOUR CONDITIONS	7
2.1	. 2022 Existing Peak Hour Traffic Volumes	7
2.2	. Analysis of 2022 Existing Peak Hour Traffic Conditions	7
3.	2027 NO-BUILD PEAK HOUR CONDITIONS	9
3.1	. Ambient Traffic Growth	9
3.2	. Adjacent Development Traffic	9
3.3	. Future Roadway Improvements	11
3.4	. 2027 No-Build Peak Hour Traffic Volumes	11
3.5	. Analysis of 2027 No-Build Peak Hour Traffic Conditions	11
4.	SITE TRIP GENERATION AND DISTRIBUTION	15
4.1	. Trip Generation	15
4.2	. Site Trip Distribution and Assignment	16
5.	2027 BUILD TRAFFIC CONDITIONS	19
5.1	. 2027 Build Peak Hour Traffic Volumes	19
5.2	. Analysis of 2027 Build Peak Hour Traffic Conditions	19
6.	TRAFFIC ANALYSIS PROCEDURE	21
6.1	. Adjustments to Analysis Guidelines	21
7.	CAPACITY ANALYSIS	22
7.1	. US 401 Bypass and Jonesville Road	22
7.2	. US 401 Bypass and Eastern U-Turn Location	25
7.3	. Mitchell Mill Road and Jonesville Road / Peebles Road	28
7.4	. Jonesville Road and Universal Drive	30
7.5	. Jonesville Road and Site Drive	31
8.	CONCLUSIONS	32

RAMEY KEMP ASSOCIATES

9. RECOMMENDATIONS	33							
LIST OF FIGURES								
Figure 1 – Site Location Map	4							
Figure 2 – Preliminary Site Plan	5							
Figure 3 – Existing Lane Configurations	6							
Figure 4 – 2022 Existing Peak Hour Traffic	8							
Figure 5 – 2027 Projected Peak Hour Traffic	12							
Figure 6 – Adjacent Development Trips	13							
Figure 7 – 2027 No-Build Peak Hour Traffic	14							
Figure 8 – Site Trip Distribution	17							
Figure 9 – Site Trip Assignment	18							
Figure 10 – 2027 Build Peak Hour Traffic	20							
Figure 11 – Recommended Lane Configurations	35							

LIST OF TABLES

Table 1: Existing Roadway Inventory	3
Table 2: Adjacent Development Information	10
Table 3: Trip Generation Summary	15
Table 4: Highway Capacity Manual – Levels-of-Service and Delay	21
Table 5: Analysis Summary of US 401 Bypass and Jonesville Road	22
Table 6: Analysis Summary of US 401 Bypass and Eastern U-Turn Locati	on
	25
Table 7: Analysis Summary of Mitchell Mill Road and Jonesville Road	1 /
Peebles Road	28
Table 8: Analysis Summary of Jonesville Road and Universal Drive	30
Table 9: Analysis Summary of Jonesville Road and Site Drive	31

TECHNICAL APPENDIX

Appendix A: Scoping Documentation

Appendix B: Traffic Counts

Appendix C: Adjacent Development Information

Appendix D: Capacity Calculations – US 401 Bypass & Jonesville Road

Appendix E: Capacity Calculations - US 401 Bypass & Eastern U-Turn

Location

Appendix F: Capacity Calculations – Mitchell Mill Road & Jonesville Road /

Peebles Road

Appendix G: Capacity Calculations – Jonesville Road & Universal Drive

Appendix H: Capacity Calculations – Jonesville Road & Site Drive

Appendix I: Turn Lane Warrants

Appendix J: MUTCD / ITRE Signal Warrant Analysis

TRAFFIC IMPACT ANALYSIS HARRIS CREEK FARM ROLESVILLE, NORTH CAROLINA

1. INTRODUCTION

The contents of this report present the findings of the Traffic Impact Analysis (TIA) conducted for the proposed Harris Creek Farm development in Rolesville, North Carolina. The proposed development, anticipated to be completed in 2027, is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The proposed development is expected to consist of 68 single-family homes and 81 townhomes. The purpose of this study is to determine the potential impacts to the surrounding transportation system created by traffic generated by the proposed development, as well as recommend improvements to mitigate the impacts.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

1.1. Site Location and Study Area

The proposed development is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. Refer to Figure 1 for the site location map. The study area for the TIA was determined through coordination with the North Carolina Department of Transportation (NCDOT) and the Town of Rolesville (Town) and consists of the following existing intersections:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Jonesville Road and Universal Drive
- Mitchell Mill Road and Jonesville Road / Peebles Road

Refer to Appendix A for the approved scoping documentation.

1.2. Proposed Land Use and Site Access

The site is to be located on the west side of Jonesville Road near Universal Drive. The proposed development is anticipated to be completed in 2027, and is assumed to consist of the following uses:

- 68 single-family homes
- 81 townhomes

Site access to the proposed development is expected to be provided via two (2) full-movement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive. Refer to Figure 2 for a copy of the preliminary site plan.

1.3. Adjacent Land Uses

The proposed development is located in an area consisting primarily of undeveloped land and residential development.

1.4. Existing Roadways

Existing lane configurations (number of traffic lanes on each intersection approach), storage capacities, and other intersection and roadway information within the study area are shown in Figure 3. Table 1 provides a summary of this information, as well.

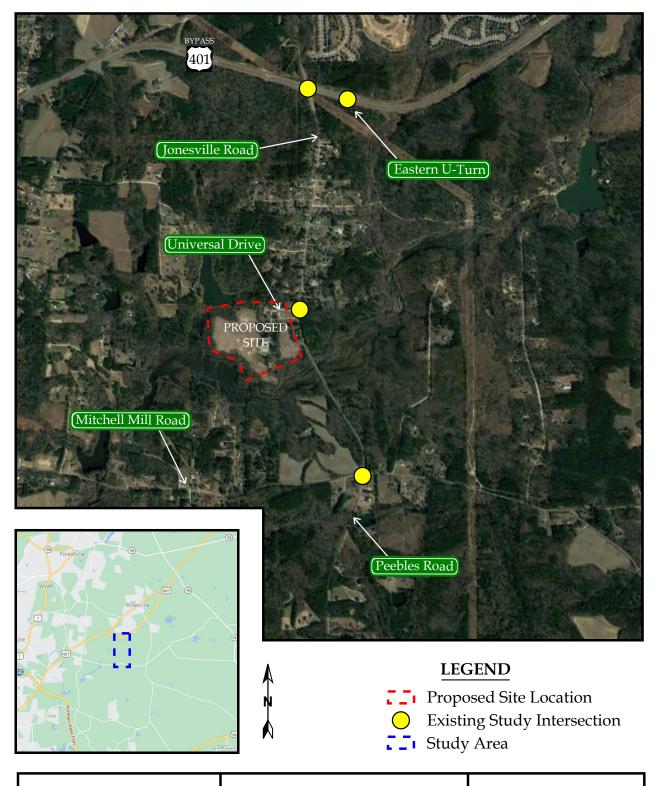
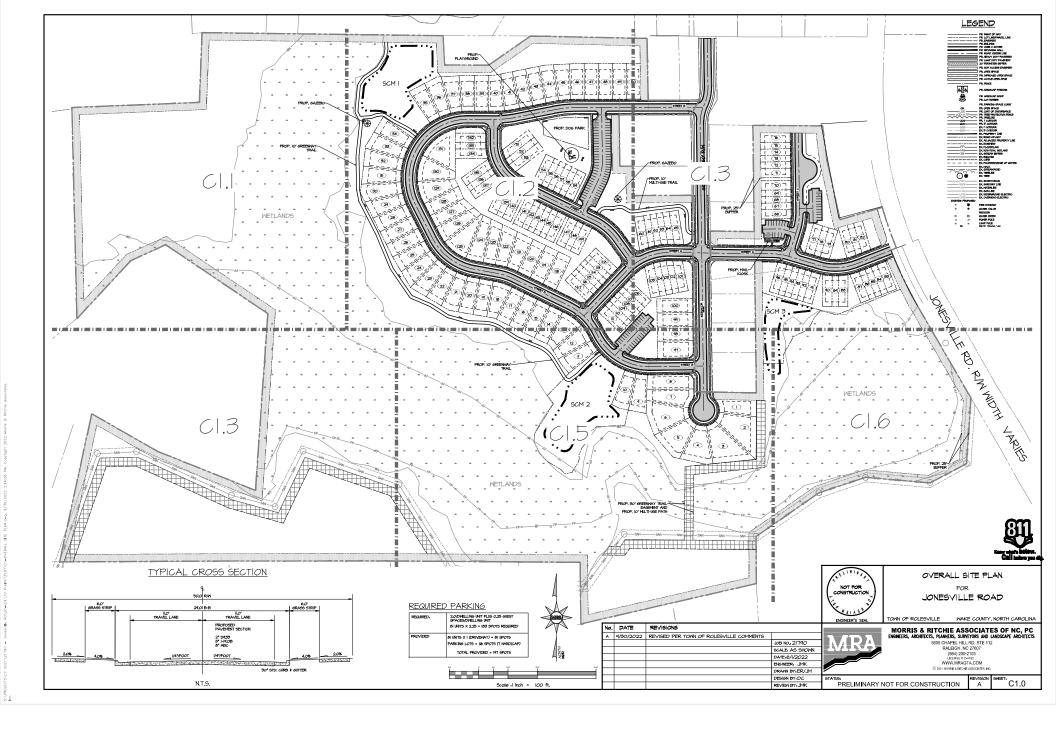
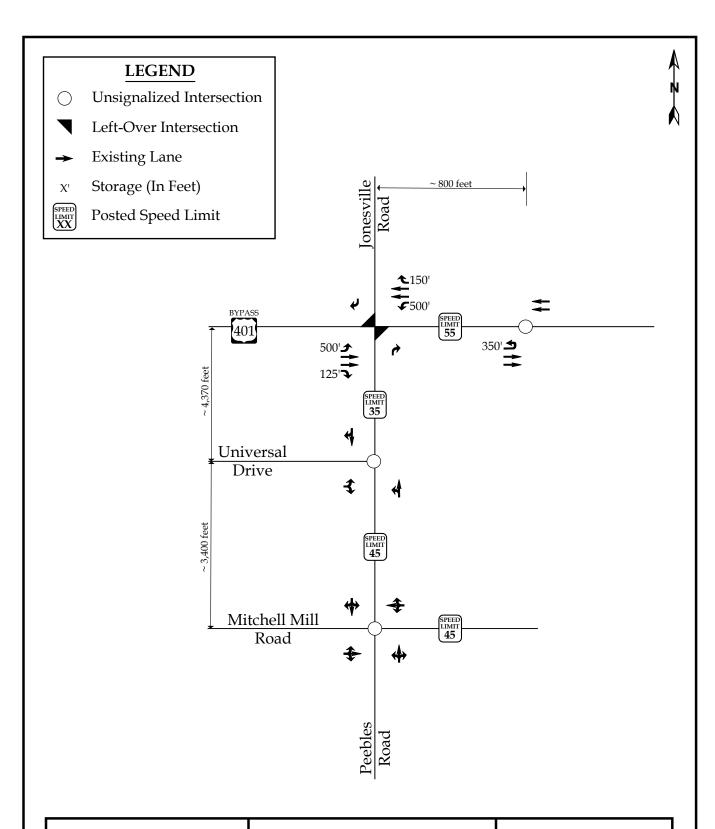


Table 1: Existing Roadway Inventory

Road Name	Route Number	Typical Cross- Section	Speed Limit	Maintained By	2019 AADT (vpd)
US 401 Byr	oass	4-lane divided	55 mph	NCDOT	17,500
Jonesville Road	SR 2226	2-lane undivided	35 mph / 45 mph	NCDOT	2,210*
Mitchell Mill Road	SR 2224	2-lane undivided	45 mph	NCDOT	4,000
Peebles Road	SR 2929	2-lane undivided	45 mph	NCDOT	1,700*

^{*}ADT based on 2022 existing traffic volumes and assuming the weekday PM peak hour volume is 10% of the average daily traffic.





Harris Creek Farm Rolesville, NC Site Location Map

Scale: Not to Scale

Figure 1

Harris Creek Farm Rolesville, NC 2022 Existing Lane Configurations

Scale: Not to Scale

Figure 3

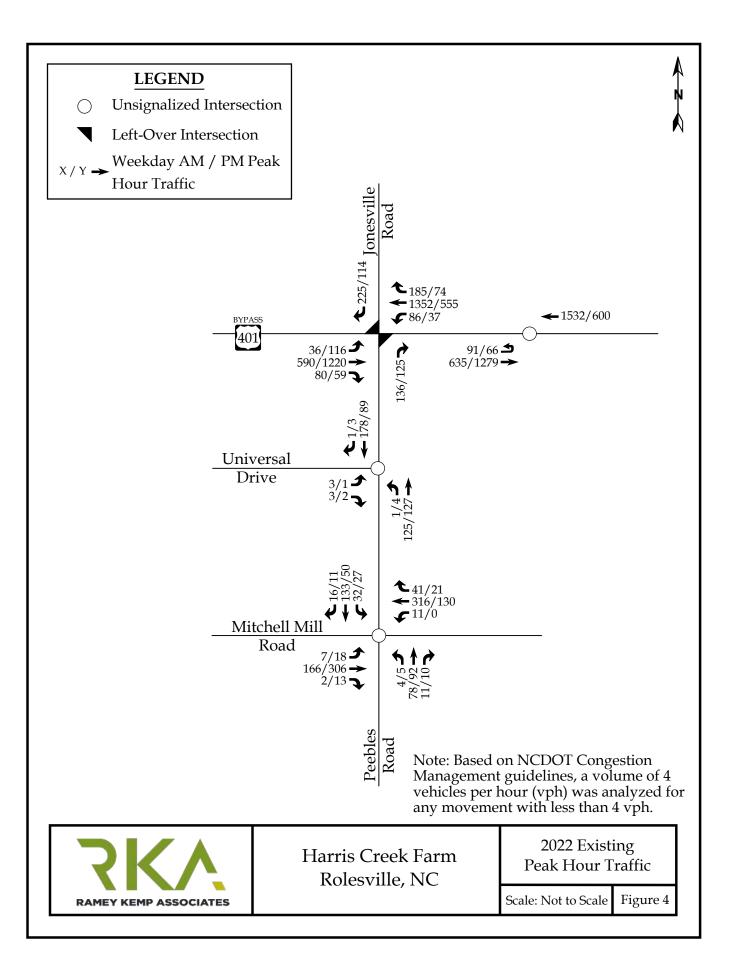
2. 2022 EXISTING PEAK HOUR CONDITIONS

2.1. 2022 Existing Peak Hour Traffic Volumes

Existing peak hour traffic volumes were determined based on previously collected traffic counts conducted at the study intersections listed below, in November of 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Mitchell Mill Road and Jonesville Road / Peebles Road

Previously collected counts from the year 2021 were projected to the 2022 existing analysis year using a compounded annual growth rate of 2%.


Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive were estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive. It was estimated that there will be 8 AM trips: 2 enter 6 exit and 10 PM trips: 7 enter 3 exit. The trips were distributed to the north and south along Jonesville Road the same as site trips. Through traffic volumes were balanced from the Mitchell Mill Road/Jonesville Road intersection.

Weekday AM and PM traffic volumes were balanced between study intersections, where appropriate. Refer to Figure 4 for 2022 existing weekday AM and PM peak hour traffic volumes. A copy of the count data is located in Appendix B of this report.

2.2. Analysis of 2022 Existing Peak Hour Traffic Conditions

The 2022 existing weekday AM and PM peak hour traffic volumes were analyzed to determine the current levels of service at the study intersections under existing roadway conditions. The results of the analysis are presented in Section 7 of this report.

3. 2027 NO-BUILD PEAK HOUR CONDITIONS

In order to account for growth of traffic and subsequent traffic conditions at a future year, nobuild traffic projections are needed. No-build traffic is the component of traffic due to the growth of the community and surrounding area that is anticipated to occur regardless of whether or not the proposed development is constructed. No-build traffic is comprised of existing traffic growth within the study area and additional traffic created as a result of adjacent approved developments.

3.1. Ambient Traffic Growth

Through coordination with NCDOT and the Town, it was determined that an annual growth rate of 0% would be used to generate 2027 projected weekday AM and PM peak hour traffic volumes. A growth rate of 0% was used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. Refer to Figure 5 for 2027 projected peak hour traffic.

3.2. Adjacent Development Traffic

Through coordination with NCDOT and the Town, the following adjacent developments were identified to be included in this study:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

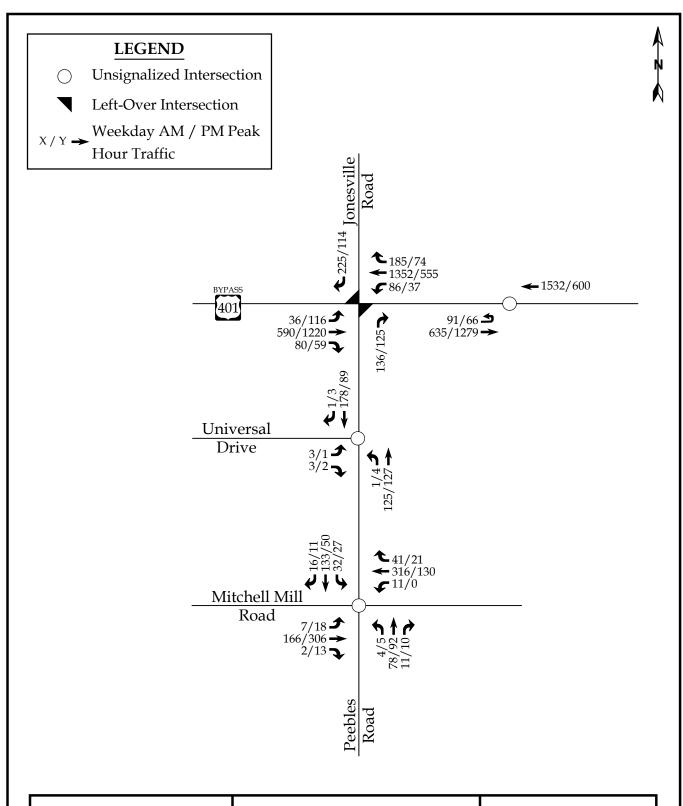
Table 2, on the following page, provides a summary of the adjacent developments. Adjacent development trips are shown in Figure 6. Adjacent development information can be found in Appendix C.

Table 2: Adjacent Development Information

Development Name	Location	Build- Out Year	Land Use / Intensity	TIA Performed
Cobblestone Crossing Mixed- Use	Northwest quadrant of the intersection of Main Street and Young Street	2023	180 multi-family homes 18,200 sq. ft. municipal flex space 50,000 sq. ft. general retail	March 2021 by RKA
Young Street PUD	Along both sides of US 401 Bypass west of Young Street	2025	96 single-family homes 525 single-family homes 320 multi-family homes 122,800 sq. ft. general retail	June 2019 by Kimley Horn
Wheeler Tract	Northeast quadrant of the intersection of Rolesville Road and Mitchell Mill Road	2026	233 single-family homes 125 multi-family homes	June 2019 by RKA
Louisbury Road Assemblage	West of Louisbury Road and south of Stells Road	2025	152 single-family homes	May 2020 by RKA
Kalas / Watkins Family Property	Along the west side of Rolesville Road, north of Mitchell Mill Road	2025	439 single-family homes 96 multi-family homes	August 2019 by Stantec
5109 Mitchell Mill	Along both sides of Jonesville Road north of Mitchell Mill Road	2028	69 single-family homes 195 single-family homes 129 multi-family homes 50,000 sq. ft. shopping center	August 2022 by RKA
Hills at Harris Creek	North of Mitchell Mill Road, west of Manly Farm Road and east of Gro Peg Lane	2027	211 single-family homes 109 multi-family homes 25,400 sq. ft. general retail	May 2022 by RKA

3.3. Future Roadway Improvements

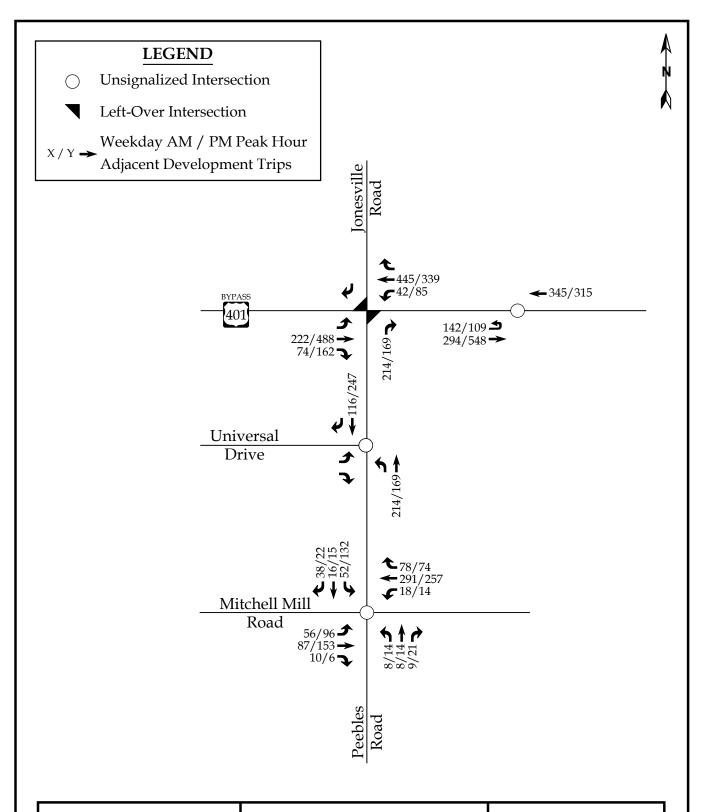
Based on coordination with NCDOT and the Town, it was determined there were two previously approved TIA's that recommended roadway improvements that were considered under future conditions with this study. Both developments are to construct improvements at the intersection of Jonesville Road and Mitchell Mill Road. An exclusive eastbound left-turn lane was identified in the 5109 Mitchell Mill Road TIA. An exclusive westbound right-turn lane was identified in the Hills at Harris Creek TIA. In both the 5109 Mitchell Mill Road TIA and the Hills at Harris Creek TIA an exclusive southbound left-turn lane improvement was identified. It should be noted that per the Rolesville Community Transportation Plan (dated May 2022), the ultimate cross-section of Jonesville Road is identified as a 2-lane roadway with a center two-way-left-turn-lane (TWLTL) and Mitchell Mill Road is identified as a 4-lane median-divided roadway.


3.4. 2027 No-Build Peak Hour Traffic Volumes

The 2027 no-build traffic volumes were determined by projecting the 2022 existing peak hour traffic to the year 2027 and adding the adjacent development trips. Refer to Figure 7 for an illustration of the 2027 no-build peak hour traffic volumes at the study intersections.

3.5. Analysis of 2027 No-Build Peak Hour Traffic Conditions

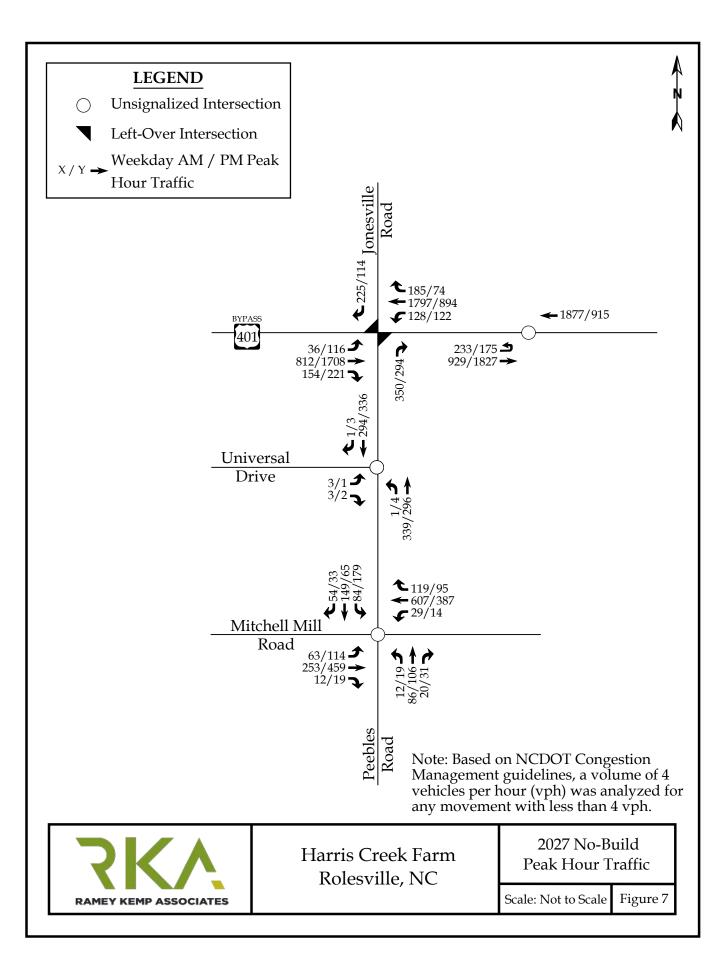
The 2027 no-build AM and PM peak hour traffic volumes at the study intersections were analyzed with existing geometric roadway conditions and traffic control. The analysis results are presented in Section 7 of this report.



Harris Creek Farm Rolesville, NC 2027 Projected Peak Hour Traffic

Scale: Not to Scale

Figure 5



Harris Creek Farm Rolesville, NC Peak Hour Adjacent Developement Trips

Scale: Not to Scale

Figure 6

4. SITE TRIP GENERATION AND DISTRIBUTION

4.1. Trip Generation

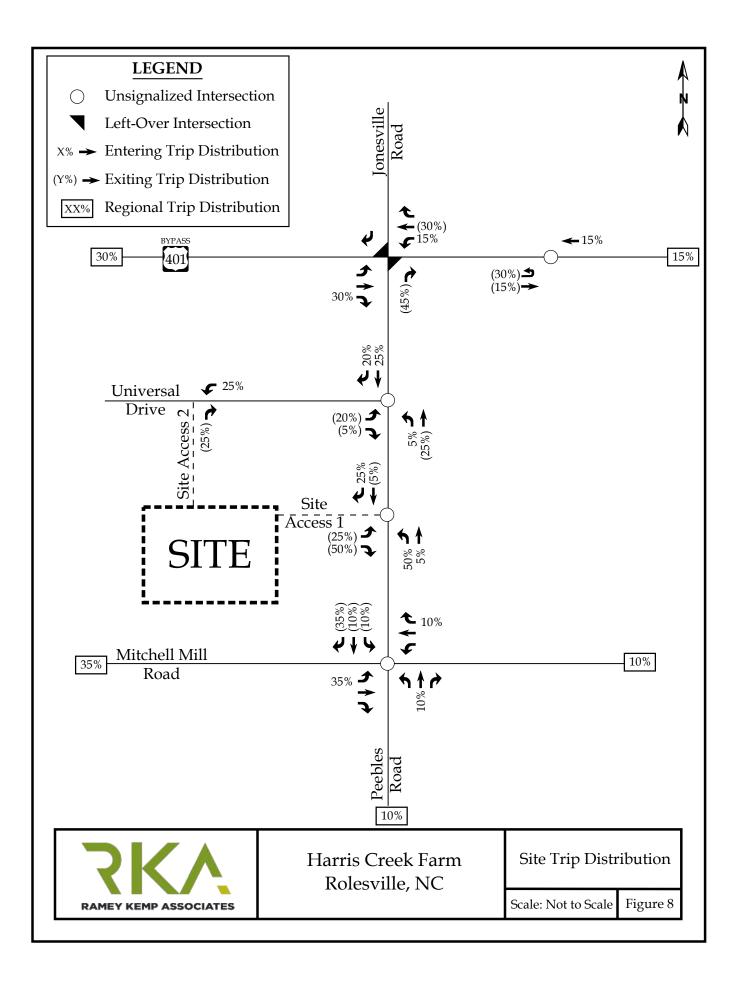
The proposed development is assumed to consist of 68 single-family homes and 81 townhomes. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11th Edition. Table 3 provides a summary of the trip generation potential for the site.

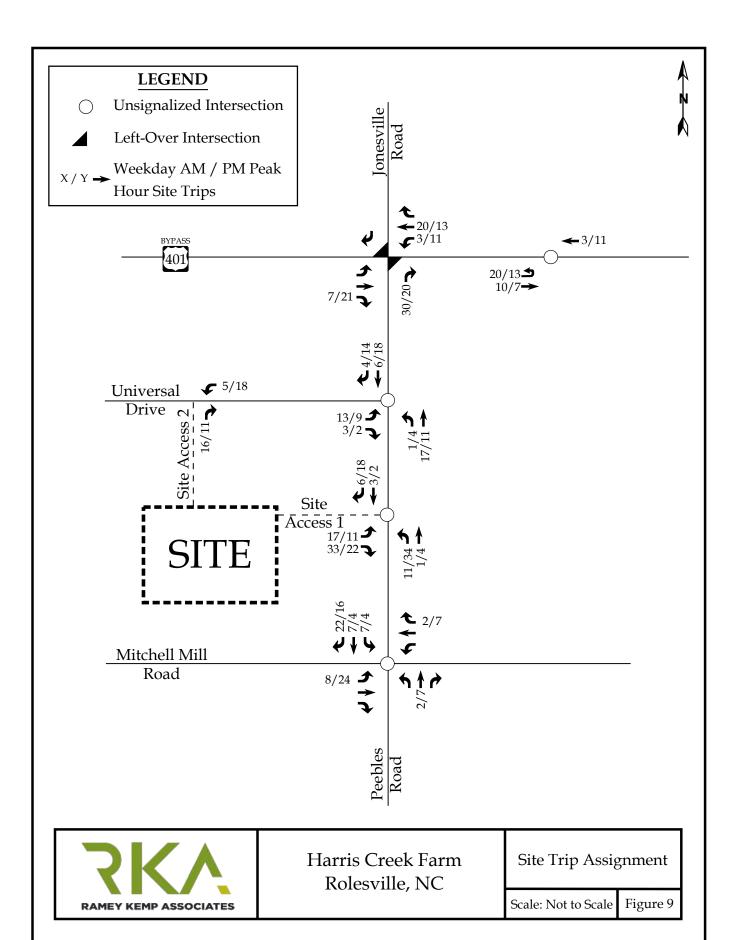
Table 3: Trip Generation Summary

Land Use (ITE Code)	Intensity	Weekday AM Peak Hour Trips (vph)			Weekday PM Peak Hour Trips (vph)			
		(vpd)	Enter	Exit	Total	Enter	Exit	Total
Single-Family Home (210)	68 DU	708	13	39	52	44	25	69
Single Family Attached (215)	81 DU	568	9	27	36	26	19	45
Total Primary Trips		1,276	22	66	88	70	44	114

It is estimated that the proposed development will generate approximately 1,276 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.

4.2. Site Trip Distribution and Assignment

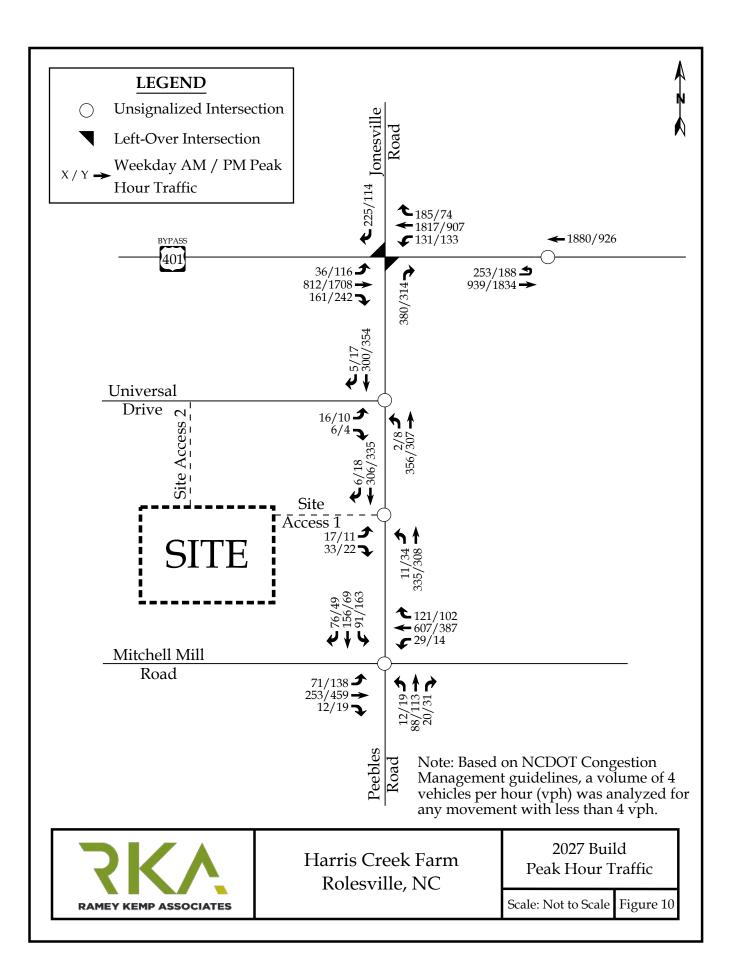

Trip distribution percentages used in assigning site trips for this development were approved during the scoping process and were estimated based on a combination of existing traffic patterns, population centers adjacent to the study area, and engineering judgment.


It is estimated that the residential site trips will be regionally distributed as follows:

- 35% to/from the west via Mitchell Mill Road
- 30% to/from the west via US 401 Bypass
- 15% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 10% to/from the east via Mitchell Mill Road

The site trip distribution is shown in Figure 8 and the peak hour site trip assignment is shown in Figure 9.

5. 2027 BUILD TRAFFIC CONDITIONS


5.1. 2027 Build Peak Hour Traffic Volumes

To estimate traffic conditions with the site fully built-out, the total site trips were added to the 2027 no-build traffic volumes to determine the 2027 build traffic volumes. Refer to Figure 10 for an illustration of the 2027 build peak hour traffic volumes with the proposed site fully developed.

5.2. Analysis of 2027 Build Peak Hour Traffic Conditions

Study intersections were analyzed with the 2027 build traffic volumes using the same methodology previously discussed for existing and no-build traffic conditions. Intersections were analyzed with improvements necessary to accommodate future traffic volumes. The results of the capacity analysis for each intersection are presented in Section 7 of this report.

6. TRAFFIC ANALYSIS PROCEDURE

Study intersections were analyzed using the methodology outlined in the *Highway Capacity Manual* (HCM), 6th Edition published by the Transportation Research Board. Capacity and level of service are the design criteria for this traffic study. A computer software package, Synchro (Version 11), was used to complete the analyses for most of the study area intersections. Please note that the unsignalized capacity analysis does not provide an overall level of service for an intersection; only delay for an approach with a conflicting movement.

The HCM defines capacity as "the maximum hourly rate at which persons or vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions." Level of service (LOS) is a term used to represent different driving conditions, and is defined as a "qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers." Level of service varies from Level "A" representing free flow, to Level "F" where breakdown conditions are evident. Refer to Table 4 for HCM levels of service and related average control delay per vehicle for both signalized and unsignalized intersections. Control delay as defined by the HCM includes "initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay." An average control delay of 50 seconds at a signalized intersection results in LOS "D" operation at the intersection.

Table 4: Highway Capacity Manual – Levels-of-Service and Delay

UNSIGNA	ALIZED INTERSECTION	SIGNALIZED INTERSECTION				
LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)	LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)			
A	0-10	A	0-10			
В	10-15	В	10-20			
С	15-25	С	20-35			
D	25-35	D	35-55			
E	35-50	E	55-80			
F	>50	F	>80			

6.1. Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to Town LDO and NCDOT Congestions Management Guidelines.

7. CAPACITY ANALYSIS

7.1. US 401 Bypass and Jonesville Road

The existing unsignalized intersection of US 401 Bypass Road and Jonesville Road was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 5. Refer to Table 5 for a summary of the analysis results. Refer to Appendix D for the Synchro capacity analysis reports.

Table 5: Analysis Summary of US 401 Bypass and Jonesville Road

ANALYSIS	A P P R LANE		PEAK	DAY AM HOUR F SERVICE	WEEKDAY PM PEAK HOUR LEVEL OF SERVICE		
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)	
	EB WB* NB	2 TH, 1 RT 1 LT 1 RT	 C ¹ B ²	N/A	 E ¹ C ²	N/A	
2022 Existing	EB** WB SB	1 LT 2 TH, 1 RT 1 RT	F ¹ E ²	N/A	C ¹ B ²	N/A	
2027 N. B. :14	EB WB* NB	2 TH, 1 RT 1 LT 1 RT	 D¹ D²	N/A	 F ¹ F ²	N/A	
2027 No-Build	EB** WB SB	1 LT 2 TH, 1 RT 1 RT	F ¹ F ²	N/A	E ¹ B ²	N/A	
2027 Build	EB WB* NB	2 TH, 1 RT 1 LT 1 RT	 D¹ D²	N/A	 F ¹ F ²	N/A	
2027 Build	EB** WB SB	1 LT 2 TH, 1 RT 1 RT	F ¹ F ²	N/A	E ¹ B ²	N/A	
2027 Build-	EB WB* NB	2 TH, 1 RT 1 LT 1 RT	B B B	B (16)	B D C	C (23)	
Improved	EB** WB SB	1 LT 2 TH, 1 RT 1 RT	F ¹ F ²	N/A	E ¹ B ²	N/A	

^{*}Synchro analyzed the WB left-turns as SB through movements due to the nature of the superstreet and synchro limitations.

^{2.} Level of service for minor-street approach.

^{**}Synchro analyzed the EB left-turns as NB through movements due to the nature of the superstreet and synchro limitations.

^{1.} Level of service for major-street left-turn movement.

Capacity analysis of 2022 existing traffic conditions indicates that the major-street left-turn movements and minor-street approaches are expected to operate at LOS D or better with the exception of the eastbound left-turn movement during the weekday AM peak hour (LOS F), the westbound left-turn movement during the weekday PM peak hour (LOS E), and the southbound minor-street approach during the weekday AM peak hour (LOS E).

Under 2027 no-build and 2027 build traffic conditions, the major-street left-turn movements are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the westbound left-turn movement during the weekday AM peak hour (LOS D) under 2027 no-build and 2027 build traffic conditions. The minor-street approaches are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the northbound approach during the weekday AM peak hour (LOS D) and the southbound approach during the weekday PM peak hour (LOS B) under 2027 no-build and 2027 build traffic conditions. It should be noted that the proposed development is expected to account for approximately 2% of the overall traffic at this intersection during the weekday AM and PM peak hours. The proposed development is expected to account for 8% and 6% of the northbound right movements during the AM and PM peak hours, respectively.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the *Manual on Uniform Traffic Control Devices* (MUTCD) and within the *Guidelines for Signalization of Intersections with Two or Three Approaches Final Report*, published by ITRE. Based on a review of the peak hour signal warrant at this intersection, the intersection is expected to meet the peak hour warrant for both the weekday AM and PM peak hours under 2027 no-build and 2027 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the northbound right-turn movement demand is expected to be over 85%

capacity during the weekday AM peak hour and exceed capacity during the weekday PM peak hour under 2027 no-build and 2027 build traffic conditions. Refer to Appendix J for a copy of the MUTCD warrants and the ITRE 95th percentile queue length calculations.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-of-service under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the northbound right-turn and westbound left-turn movements at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.2. US 401 Bypass and Eastern U-Turn Location

The existing unsignalized intersection of US 401 Bypass and Eastern U-Turn Location was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 6. Refer to Table 6 for a summary of the analysis results. Refer to Appendix E for the Synchro capacity analysis reports.

Table 6: Analysis Summary of US 401 Bypass and Eastern U-Turn Location

A P P P ANALYSIS R		LANE	PEAK	DAY AM HOUR SERVICE	WEEKDAY PM PEAK HOUR LEVEL OF SERVICE		
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)	
2022 Existing	EB* WB	1 UT 2 TH	C ¹	N/A	B ¹	N/A	
2027 No-Build	EB* WB	1 UT 2 TH	F1 	N/A	C¹	N/A	
2027 Build	EB* WB	1 UT 2 TH	F ¹	N/A	C ¹	N/A	
2027 Build - Improved	EB* WB	1 UT 2 TH	D B	C (21)	B A	B (11)	

^{*}Synchro analyzed the EB u-turn as a NB left-turn movement due to the nature of the superstreet and synchro limitations.

Capacity analysis of 2022 existing and 2027 no-build traffic conditions indicates that the major-street u-turn movement is expected to operate at LOS C or better during the weekday AM and PM peak hours, with the exception of the weekday AM peak hour under 2027 no-build conditions (LOS F).

Under 2027 build traffic conditions, the major-street u-turn movement is expected to operate at LOS F during the weekday AM peak hour and at LOS C during the weekday PM peak hour. It should be noted that the proposed development is expected to account for approximately 1% of the overall traffic at this intersection during the weekday AM and PM peak hours. The proposed development is expected to account for approximately 8% and 7%

^{1.} Level of service for major-street u-turn movement.

of the overall eastbound u-turn movements at this intersection during the weekday AM and PM peak hours, respectively.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the Manual on Uniform Traffic Control Devices (MUTCD) and within the Guidelines for Signalization of Intersections with Two or Three Approaches Final Report, published by ITRE. Based on a review of signal warrants at this intersection, the peak hour warrant (warrant 3) from the MUTCD is expected to be met for the weekday AM peak hour under 2027 no-build and build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the eastbound u-turn movement demand is expected to exceed capacity during the weekday AM peak hour under 2027 no-build and 2027 build traffic conditions. Refer to Appendix J for a copy of the MUTCD warrants and the ITRE 95th percentile queue length calculations.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-of-service under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the eastbound u-turn movement at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town

and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.3. Mitchell Mill Road and Jonesville Road / Peebles Road

The existing unsignalized four-way stop intersection of Mitchell Mill Road and Jonesville Road / Peebles Road was analyzed under 2022 existing, 2027 no-build, and 2027 build traffic conditions with the lane configurations and traffic control shown in Table 7. Refer to Table 7 for a summary of the analysis results. Refer to Appendix F for the Synchro capacity analysis reports.

Table 7: Analysis Summary of Mitchell Mill Road and Jonesville Road /
Peebles Road

ANALYSIS	A P P R	LANE	PEAK	DAY AM HOUR SERVICE	WEEKDAY PM PEAK HOUR LEVEL OF SERVICE				
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)			
2022 Existing	EB WB NB SB	1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT	$egin{array}{c} B^1 \ B^1 \ B^1 \end{array}$	B (13)	$egin{array}{c} B^1 \ A^1 \ A^1 \ A^1 \end{array}$	B (11)			
2027 No-Build	EB WB NB SB	1 LT, 1 TH-RT 1 LT-TH, 1 RT 1 LT-TH-RT 1 LT, 1 TH-RT	C ₁ C ₁ C ₁	F (95)	F1 C1 C1	F (57)			
2027 Build	EB WB NB SB	1 LT, 1 TH-RT 1 LT-TH, 1 RT 1 LT-TH-RT 1 LT, 1 TH-RT	C ₁ C ₁	F (104)	C ₁ C ₁	F (61)			
2027 Build - WB Improved NB SB		1 LT, 1 TH-RT 1 LT-TH, 1 RT 1 LT-TH-RT 1 LT, 1 TH-RT	A B B C	B (14)	B B B	B (13)			

^{1.} Level of service for all-way stop controlled approach.

Capacity analysis of 2022 existing indicates that the intersection is expected to operate at an overall LOS B or better during the weekday AM and PM peak hours. Under 2027 no-build and 2027 build traffic conditions, this intersection is expected to operate at an overall LOS F during the weekday AM and PM peak hours. It should be noted that the proposed development is expected to account for approximately 3% and 4% of the overall traffic at this

intersection during the weekday AM and PM peak hours, respectively. The proposed development is expected to account for approximately 11% and 17% of the eastbound left movement and 17% and 7% of the westbound right movements during the weekday AM and PM peak hours, respectively.

Several turn lanes expected to be constructed by adjacent developments were included in the 2027 no-build and 2027 build scenarios. An exclusive eastbound left-turn lane was identified in the 5109 Mitchell Mill Road TIA. An exclusive westbound right-turn lane was identified in the Hills at Harris Creek TIA. In both the 5109 Mitchell Mill Road TIA and the Hills at Harris Creek TIA an exclusive southbound left-turn lane improvement was identified.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2027 build traffic conditions to achieve acceptable levels-of-service. The peak hour warrant (warrant 3) from the *Manual on Uniform Traffic Control Devices* (MUTCD) was considered. Based on a review of the peak hour signal warrant at this intersection, the intersection is expected to meet the peak hour warrant for both the weekday AM and PM peak hours under 2027 no-build and 2027 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Refer to Appendix J for a copy of the MUTCD warrants.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.4. Jonesville Road and Universal Drive

The existing unsignalized intersection of Jonesville Road and Universal Drive was analyzed under 2027 build traffic conditions with the lane configurations and traffic control shown in Table 8. Refer to Table 8 for a summary of the analysis results. Refer to Appendix G for the synchro capacity analysis reports.

Table 8: Analysis Summary of Jonesville Road and Universal Drive

ANALYSIS	A P P R	LANE	PEAK	DAY AM HOUR SERVICE	WEEKDAY PM PEAK HOUR LEVEL OF SERVICE				
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)			
2022 Existing	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	A ² A ¹	N/A	A ² A ¹	N/A			
2027 No-Build	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	B ² A ¹	N/A	B ² A ¹	N/A			
2027 Build	EB NB SB	1 LT-RT 1 LT-TH 1 TH-RT	B ² A ¹	N/A	B ² A ¹	N/A			

^{1.} Level of service for major-street left-turn movement.

Capacity analysis of 2027 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B or better during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways*. Based on the estimated low volume of right-turn and left-turn movements into the proposed development at this intersection, exclusive right-turn and left-turn lanes are not recommended. Refer to Appendix I for a copy of the turn lane warrants. No improvements are recommended by the developer.

^{2.} Level of service for minor-street approach.

2027 Build

7.5. Jonesville Road and Site Drive

The proposed intersection of Jonesville Road and Site Drive was analyzed under 2027 build traffic conditions with the lane configurations and traffic control shown in Table 9. Refer to Table 9 for a summary of the analysis results. Refer to Appendix H for the synchro capacity analysis reports.

Α **WEEKDAY AM WEEKDAY PM** P **PEAK HOUR PEAK HOUR** P LEVEL OF SERVICE **LEVEL OF SERVICE ANALYSIS** R LANE **SCENARIO** 0 **CONFIGURATIONS Overall** Α Overall **Approach Approach** C (seconds) (seconds) Н EB 1 LT-RT B^2 B^2

 A^1

Table 9: Analysis Summary of Jonesville Road and Site Drive

1 LT-TH

1 TH-RT

NB

SB

Capacity analysis of 2027 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B or better during the weekday AM and PM peak hours.

N/A

 A^1

N/A

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways*. Based on the estimated low volume of right-turn and left-turn movements into the proposed development at this intersection, exclusive right-turn and left-turn lanes are not recommended. Refer to Appendix I for a copy of the turn lane warrants. No improvements are recommended by the developer.

^{1.} Level of service for major-street left-turn movement.

^{2.} Level of service for minor-street approach.

8. CONCLUSIONS

This Traffic Impact Analysis was conducted to determine the potential traffic impacts of the proposed Harris Creek Farm development to be located on the west side of Jonesville Road near Universal Drive in Rolesville, North Carolina. The development is expected to consist of 68 single-family homes and 81 townhomes and to be built-out in 2027. Site access is proposed via two (2) full-movement driveway connections: one on Universal Drive and one on Jonesville Road approximately 700 feet south of Universal Drive.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

Trip Generation

It is estimated that the proposed development will generate approximately 1,276 site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.

Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to NCDOT Congestion Management Guidelines. Refer to section 6.1 of this report for a detailed description of any adjustments to these guidelines made throughout the analysis.

<u>Intersection Capacity Analysis Summary</u>

All the study area intersections (including the proposed site driveways) are expected to operate at acceptable levels-of-service under existing and future year conditions with the exception of those identified in Section 7 of this report.

9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 11 for an illustration of the recommended lane configurations for the proposed development.

Recommended Improvements by Developer

US 401 Bypass and Jonesville Road

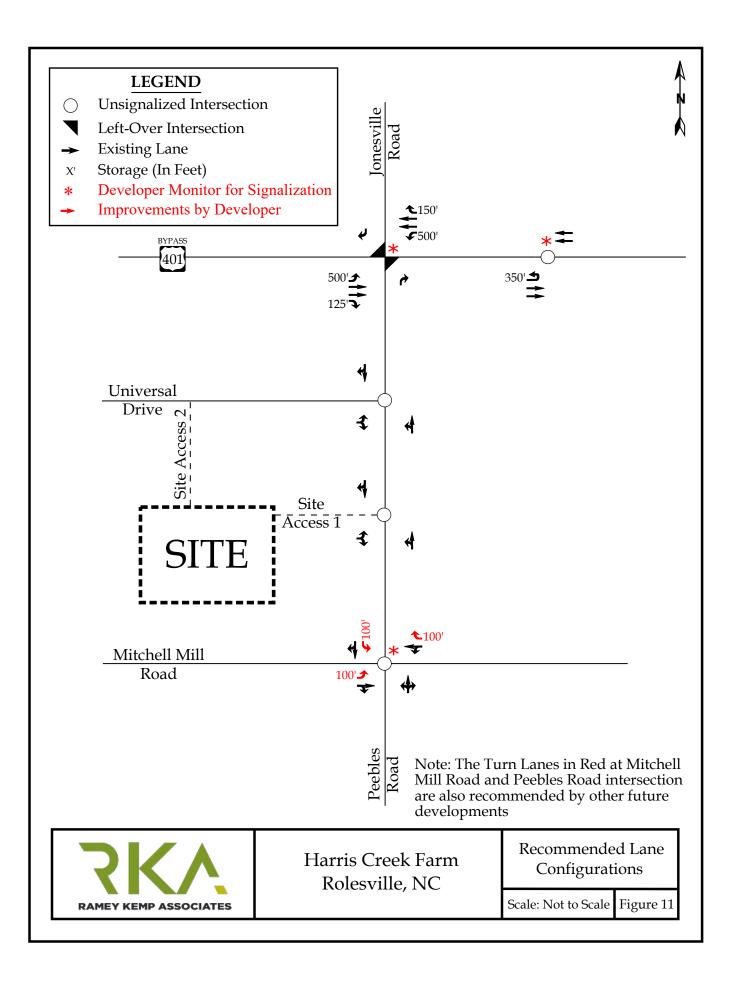
 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA and Hills at Harris Creek TIA
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the Hills at Harris Creek TIA
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA



 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Jonesville Road and Site Drive

- Construct the eastbound approach (Site Drive) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Drive).

TECHNICAL APPENDIX

APPENDIX A

SCOPING DOCUMENTATION

RAMEY KEMP ASSOCIATES

TOGETHER WE ARE LIMITLESS

March 17, 2023

Jeremy L. Warren, PE NCDOT District 1 Engineer 4009 District Drive Raleigh, NC 27507 <u>jlwarren@ncdot.gov</u> [Sent via Email]

Reference: Harris Creek Farm

Rolesville, North Carolina

Subject: Memorandum of Understanding for TIA Report

Dear Mr. Warren:

The following is a Memorandum of Understanding (MOU) outlining the proposed scope of work and assumptions related to the Traffic Impact Analysis (TIA) for the proposed Harris Creek Farm development in Rolesville, North Carolina. The proposed development is to be located on the west side of Jonesville Road near Universal Drive in Rolesville, NC. The development is expected to consist of 68 single-family homes and 81 townhomes and is anticipated to be built out by 2027. Refer to the attached site location map. Site access to the proposed development is expected to be provided via two (2) full-movement driveway connections: one on Jonesville Road and one on Universal Drive. Refer to the attachments for a copy of the preliminary site plan.

Study Area

The study area is proposed to consist of the following intersections:

- Mitchell Mill Road & Jonesville Road / Peebles Road (unsignalized)
- US 401 Bypass and Jonesville Road (unsignalized)
- US 401 Bypass and Eastern U-Turn Location (unsignalized)
- Jonesville Road and Universal Drive (unsignalized)
- Jonesville Road and Site Driveway (unsignalized)

Existing Traffic Volumes

Existing peak hour traffic volumes will be determined based on previously collected traffic counts at the study intersections below, in November 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for in-person learning:

- Mitchell Mill Road & Jonesville Road / Peebles Road
- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location

These previously collected counts will be projected to the year 2022 using a compounded annual growth rate of 2%.

Existing peak hour turning movement volumes at the intersection of Jonesville Road and Universal Drive will be estimated by generating and assigning trips for the nine (9) homes that are accessed via Universal Drive (AM trips: 2 enter 6 exit and PM trips: 7 enter 3 exit, distributed to the north and south along Jonesville Road the same as site trips). Through traffic volumes will be balanced from the Mitchell Mill Road/Jonesville Road intersection.

Refer to the attachments for an illustration of 2022 existing peak hour traffic volumes.

Background Traffic Volumes

Background traffic volumes will be determined by projecting 2022 existing traffic volumes to the year 2027 using a 0% annual growth rate. A growth rate of 0% will be used due to the number of developments included in the background traffic and the proximity of some of these developments to the proposed development. It is assumed that the following adjacent developments are to be included in this study:

- Cobblestone Crossing Mixed-Use (Cobblestone)
- Young Street PUD (The Point)
- Wheeler Tract (Rolesville Crossing)
- Louisbury Road Assemblage
- Kalas / Watkins Family Property (Kalas Falls)
- 5109 Mitchell Mill
- Hills at Harris Creek

Future Roadway Improvements

There are no future roadway improvements within the study area to consider under future traffic conditions.

Trip Generation

Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 11th Edition. Refer to Table 1, on the following page, for a summary of the proposed site trip generation for full buildout of the proposed development.

Table 1: Trip Generation Summary

Land Use (ITE Code)	Intensity	Daily Traffic		Weekday eak Hour (vph)		Weekday PM Peak Hour Trips (vph)				
		(vpd)	Enter	Exit	Total	Enter	Exit	Total		
Single-Family Home (210)	68 DU	710	13	39	52	44	25	69		
Multi-Family Home (Low-Rise) (220)	81 DU	568	9	27	36	26	19	45		
Total Trips	_	1,268	22	66	88	70	44	114		

It is estimated that the proposed development will generate approximately 1,268 site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 88 trips (22 entering and 66 exiting) will occur during the weekday AM peak hour and 114 trips (70 entering and 44 exiting) will occur during the weekday PM peak hour.

Trip Distribution and Assignment

Site trips are distributed based on the locations of existing traffic patterns, population centers adjacent to the study area, and engineering judgment. A summary of the overall distributions is below.

Residential

- 30% to/from the west via US 401 Bypass
- 15% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 35% to/from the west via Mitchell Mill Road
- 10% to/from the east via Mitchell Mill Road

Refer to the attached site trip distribution figure.

Analysis Scenarios

All capacity analyses will be performed utilizing Synchro (Version 11). All study intersections will be analyzed during the weekday AM and PM peak hours under the following proposed traffic scenarios:

- 2022 Existing Traffic Conditions
- 2027 No-Build Traffic Conditions
- 2027 Build Traffic Conditions

Report

The TIA report will be prepared based on the Town and NCDOT requirements.

If you find this memorandum of understanding acceptable, please let me know so that we may include it in the TIA report. If you have any questions or concerns, please do not hesitate to contact me.

Sincerely,

Ramey Kemp Associates,

J. Andrew Eagle, PE, PTOE

Senior Traffic Engineering Project Manager

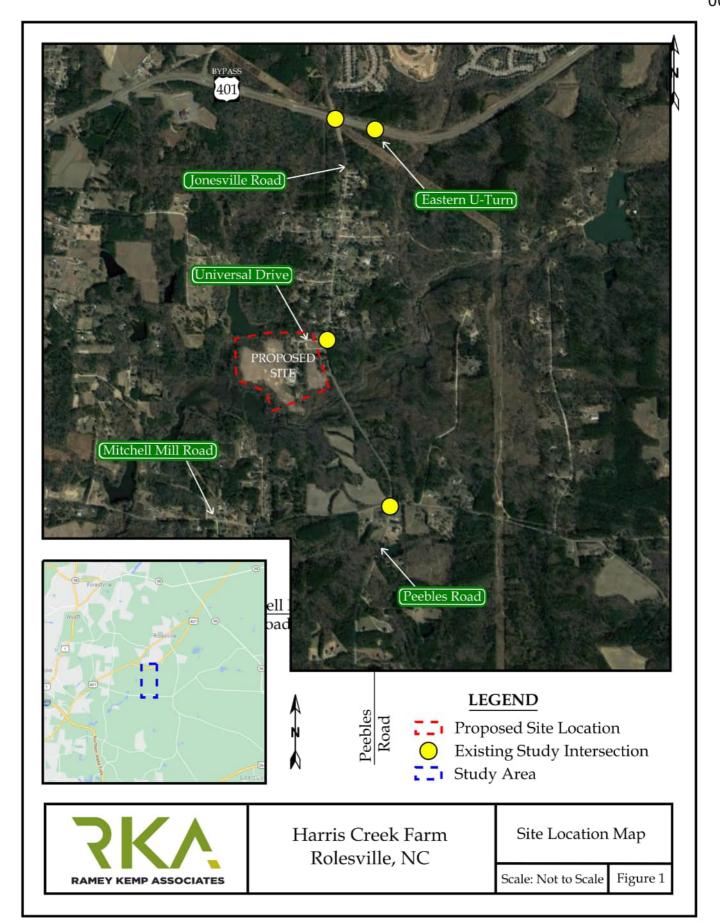
Attachments: Site Location Map

Site Plan

2022 Existing Traffic Volumes Figure Proposed Site Trip Distribution Figure

cc: Matthew J. Nolfo, NCDOT

Holt Willis, NCDOT


Clarence Bunting, NCDOT

Nicholas Lineberger, NCDOT

Daniel Collins, NCDOT

Meredith Gruber, Town of Rolesville Michael Elabarger, Town of Rolesville

REZONING AND ANNEXATION

FOR JONESVILLE ROAD

ROLESVILLE, NORTH CAROLINA

CASE NUMBER: MA 22-08

A. Town of Rolesville Planning Department 502 Southtown Circle Rolesville, NC 27571 B. Wake County

Matershed Management Waverly F. Akins Building 337 S. Salisbury St Raleigh, NC 27601 Contact: Karyn Pageau Phone: (919)-796-8769 Email: karyn.pageau@wakegov.com

AGENCY CONTACTS

C. City of Raleigh Public Utilities Department Oné Exchangé Plaza Suite 620 Raleigh, NC 27601 P.O.Box 590 Raleigh, NC 27602 Phone: 919-996-3245 Email: publicutilityinfo@raleighnc.gov

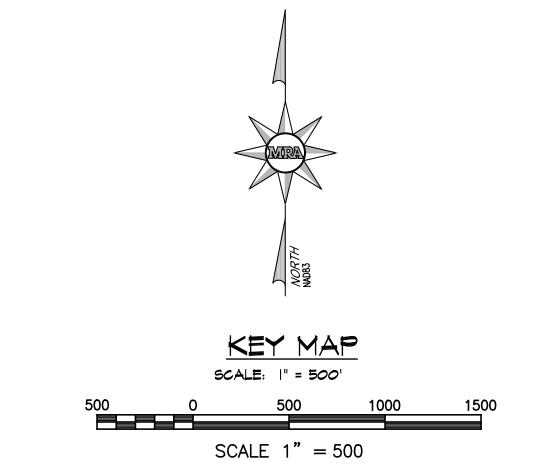
D. NCDOT Division 5, District | Office 4009 District Drive Raleiah, NC 27607 Contact: Amy Neidringhaus, District Engineer Phone: 919-733-3213

Email: anneidringhaus@ncdot.gov

STREET DATA

STREET C

STREET D


1,200 LF

2,368 LF 450 LF

743 LF

	Sheet List Table												
Sheet Number	Sheet Title	Date	Revised Date										
CO.0	COVER - REZONING	8/1/2022	9/30/2022										
CO.I	EXISTING CONDITIONS	8/1/2022	9/30/2022										
CI.O	OVERALL SITE PLAN	8/1/2022	9/30/2022										
CI.I	SITE PLAN - SHEET I OF 6	8/01/2022	9/30/2022										
CI.2	SITE PLAN - SHEET 2 OF 6	8/1/2022	9/30/2022										
CI.3	SITE PLAN - SHEET 3 OF 6	8/1/2022	9/30/2022										
CI.4	SITE PLAN - SHEET 4 OF 6	8/1/2022	9/30/2022										
CI.5	SITE PLAN - SHEET 5 OF 6	8/1/2022	9/30/2022										
CI.6	SITE PLAN - SHEET 6 OF 6	8/1/2022	9/30/2022										
CI.7	OVERALL ZONING PLAN	8/1/2022	9/30/2022										
	-												

|--|

9112	
OWNER	CHEN, PING 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519
SITE ADDRESS	4928 UNIVERSAL DR WAKE FOREST NC 27587-6356
PIN	17572778 , 1757375276, 1757375365, 1757375464, 1757375465, 1757375464, 1757375465, 1757375465, 1757375465, 1757385064, 1757384572, 17573688 6, 17573780 3, 175737809, 1757378303, 1757377990, 1757471559, 1757385349
DEED BOOK/PAGE/MAP	018953/00623/1757 01, 018953/00592/1757 01
CURRENT ZONING	R30
PROPOSED ZONING	RM, RH
MIN. LOT SIZE	5000 SQ FT (SINGLE FAMILY CLUSTER) 2000 SQ FT (TOWNHOMES)
LAND USE	RESIDENTIAL
PROPOSED DEVELOPMENT	149 UNITS 68 SINGLE FAMILY UNITS 81 TOWNHOUSE UNITS
TOTAL SITE AREA	93.23 ACRES
RESIDENTIAL HIGH DENSITY	32.15 ACRES (14.02 AC. + 18.12 AC (ADDITIONAL OPEN SPACE)
RESIDENTIAL MEDIUM DENSITY	61.08 ACRES

9.0 UNITS/AC(MAX) PROPOSED DENSITY 81/14.02 = 5.77 UNITS/AC (PROVIDED) SINGLE FAMILY (RM) 5.0 UNITS/AC (MAX) 68/61.08 = 1.11 UNITS/AC FLOOD PLAIN/ZONE FIRM PANEL NO WATERSHED PROTECTION 20' TOWNHOMES MINIMUM LOT WIDTH 40' SINGLE FAMILY (CLUSTER)

> 19.95 (PROVIDED) RESIDENTIAL MEDIUM DENSITY
> 9.70 (REQUIRED) 44.09 (PROVIDED) IMPROVED OPEN SPACES: REQUIRED: SMALL: I MEDIUM: 2 LARGE: 0

RESIDENTIAL HIGH DENSITY

SMALL: I MEDIUM: I 0.73 AC (TOTAL PROVIDED) I.OI AC (TOTAL PROVIDED) 13.79 AC (TOTAL PROVIDED) 2.0/DWELLING UNIT PLUS 0.25 GUEST SPACES/DWELLING UNIT 81 UNITS X 2.25 = 183 SPOTS

81 UNITS X I (DRIVEWAY) = 81 SPOTS PARKING LOTS = 116 SPOTS TOTAL PROVIDED = 197 SPOTS FRONT: 20' SETBACKS TOWNHOMES: SIDE: 10' REAR: 15' CORNER: 15'

> SINGLE FAMILY: FRONT: 20' (CLUSTER) REAR: 20' CORNER: 10' (CLUSTER)

MIN. WIDTH BETWEEN

STRUCTURES: 30'

PROJECT TEAM

THE CSC GROUP LLC 10030 GREEN LEVEL CHURCH RD STE 802 ATTN: PING CHENG

LAND PLANNERS, MORRIS & RITCHIE ASSOCIATES OF NC, PC CIVIL ENGINEER: 5605 CHAPEL HILL ROAD, SUITE 112 RALEIGH, NC 27607

919-798-0429

ATTN: MR. JEREMY M KEENY, PE, PLS MORRIS & RITCHIE ASSOCIATES OF NC, PC. 5605 CHAPEL HILL ROAD, SUITE II2 RALEIGH, NC 27607

ATTN: MR. JEREMY M KEENY, PE, PLS MORRIS & RITCHIE ASSOCIATES OF NC, PC. 5605 CHAPEL HILL ROAD, SUITE II2 RALEIGH, NC 27607 ATTN: MR. JAMIE B. GUERRERO, PE, CPSWQ

FOR SITE PLAN REVIEW ONLY NOT FOR CONSTRUCTION PLAN IS SUBJECT TO REVISIONS DURING THE CONSTRUCTION APPROVAL PROCESS

COVER - REZONING

JONESVILLE ROAD

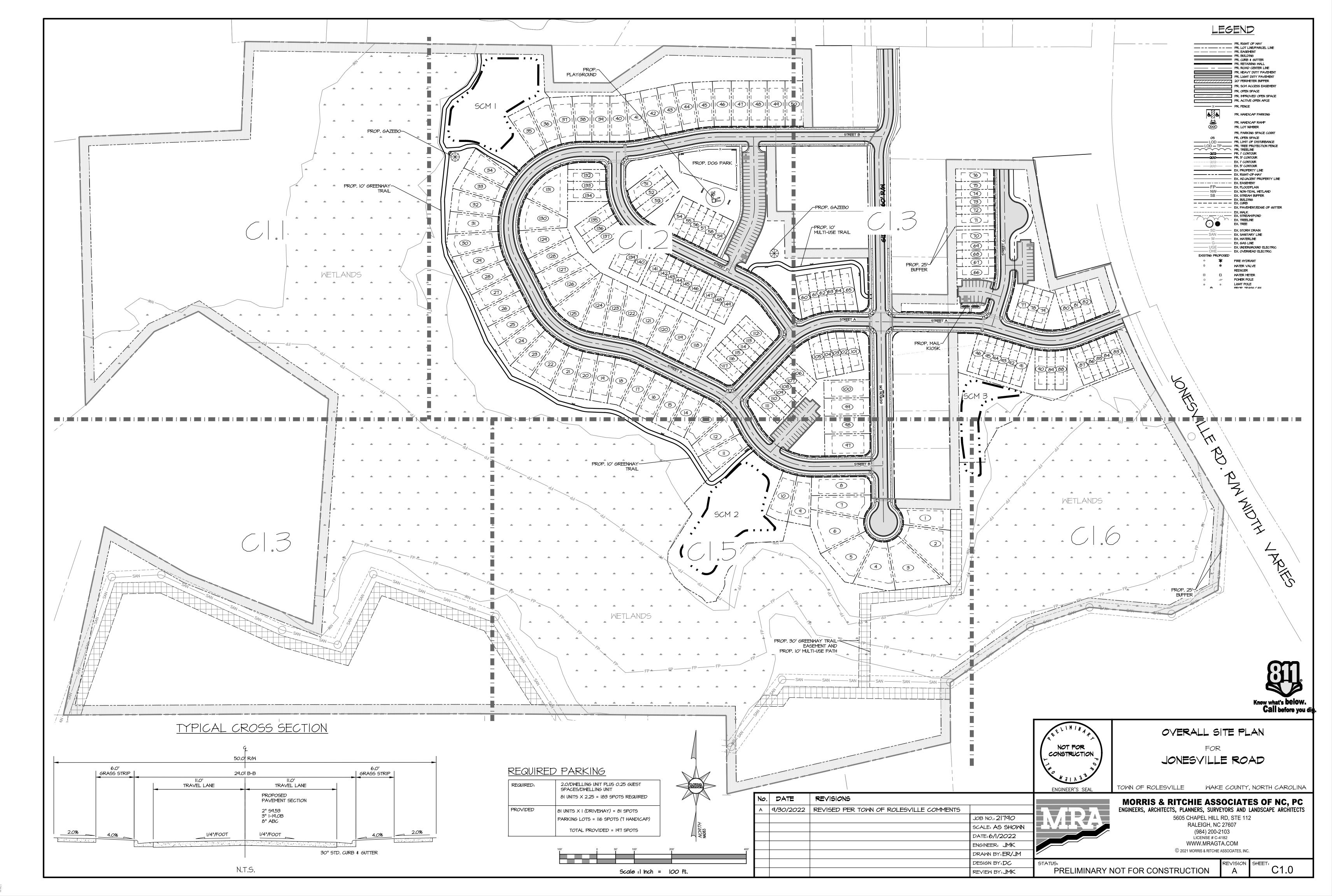
TOWN OF ROLESVILLE MAKE COUNTY, NORTH CAROLINA

JOB NO.: 21790 SCALE: AS SHOWN DATE: 6/1/2022

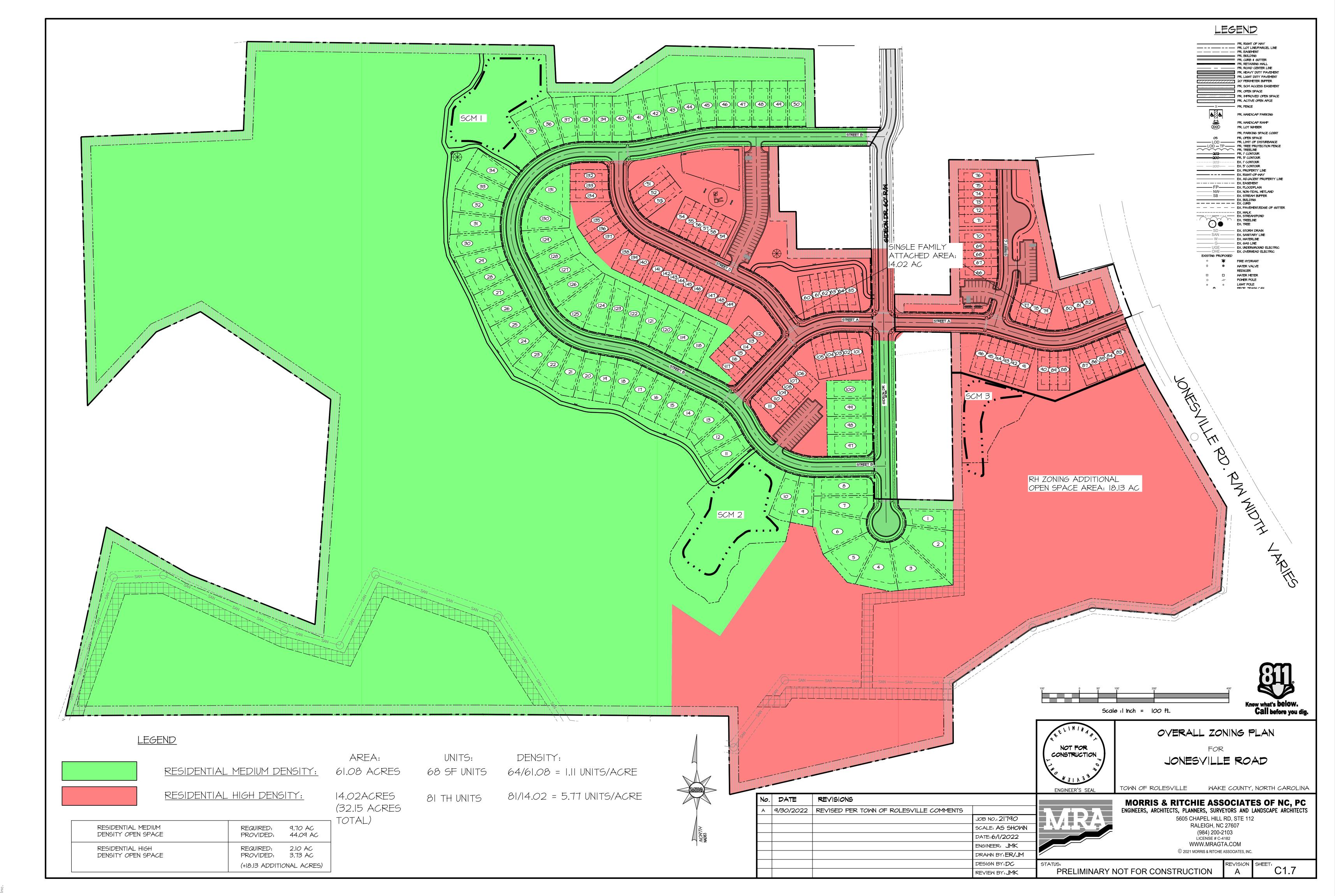
MORRIS & RITCHIE ASSOCIATES OF NC, PC ENGINEERS, ARCHITECTS, PLANNERS, SURVEYORS AND LANDSCAPE ARCHITECTS 5605 CHAPEL HILL RD, STE 112 RALEIGH, NC 27607 (984) 200-2103

LICENSE # C-4182 WWW.MRAGTA.COM © 2022 MORRIS & RITCHIE ASSOCIATES, INC.

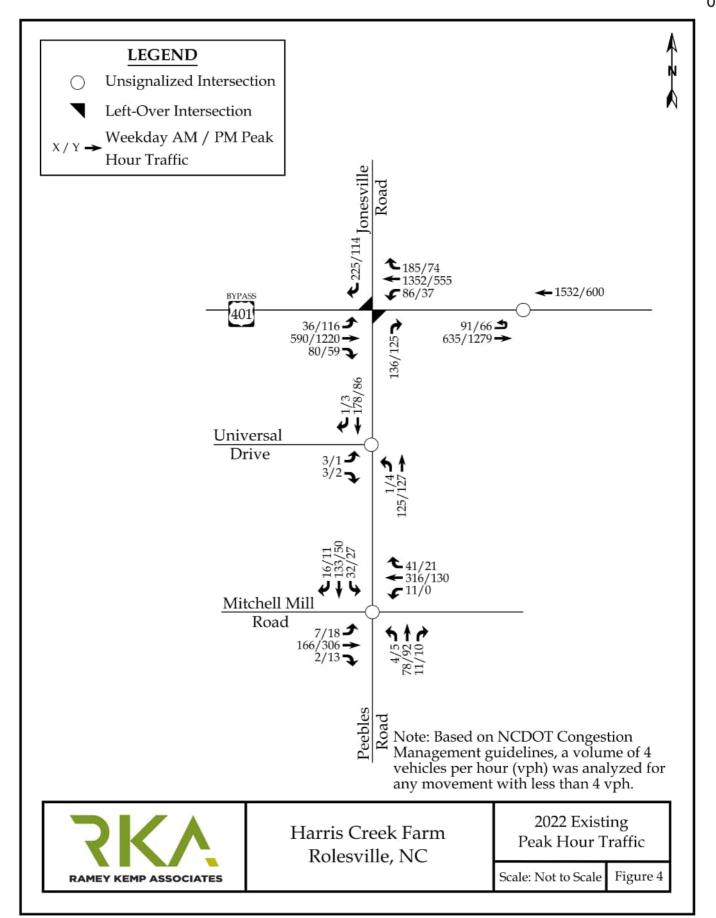
ENGINEER: JMK DRAWN BY: ER/JM DESIGN BY: DC REVIEW BY: JMK

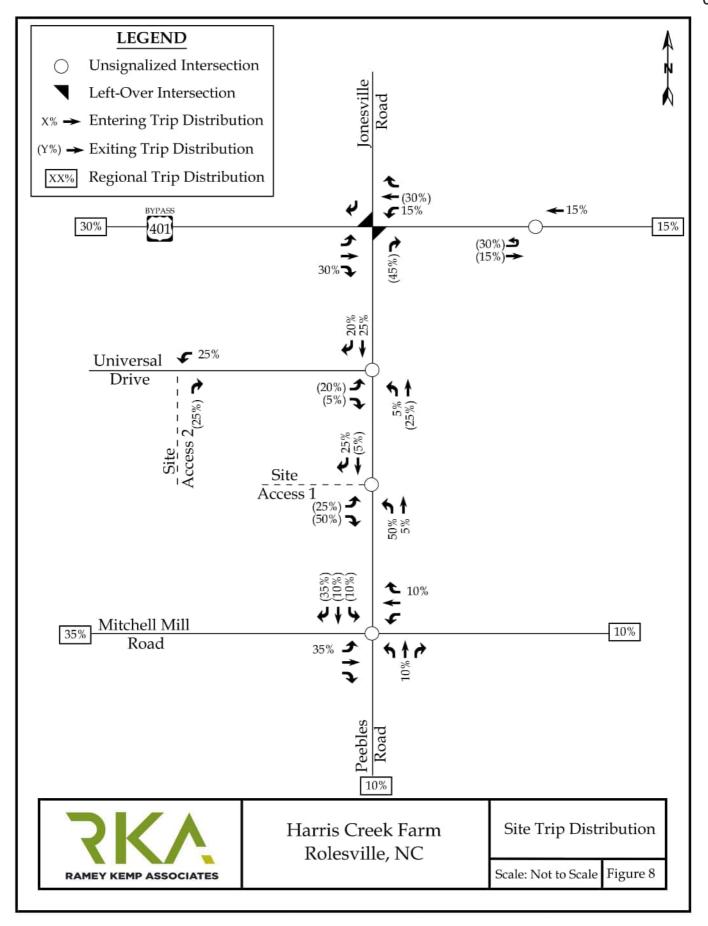

PRELIMINARY NOT FOR CONSTRUCTION

REVISIONS A 9/30/2022 REVISED PER TOWN OF ROLESVILLE COMMENTS


No. DATE

OPEN SPACE


PARKING



S:\PROJECTS\CY 2021\21790 - Jonesville Rd\20-LDE\10 Prelim\PLOT\C1-OVERALL SITE PLAN.dwg, 9/30/2022 2:46:28 PM,

S:\PROJECTS\CY 2021\21790 - Jonesville Rd\20-LDE\10 Prelim\PLOT\C1-0VERALL SITE PLAN.dwg, 9/30/2022 2:47:34 PM, Copyright 2022 h

APPENDIX B

TRAFFIC COUNTS

File Name: Rolesville(US 401 and Jonesville)AM Peak

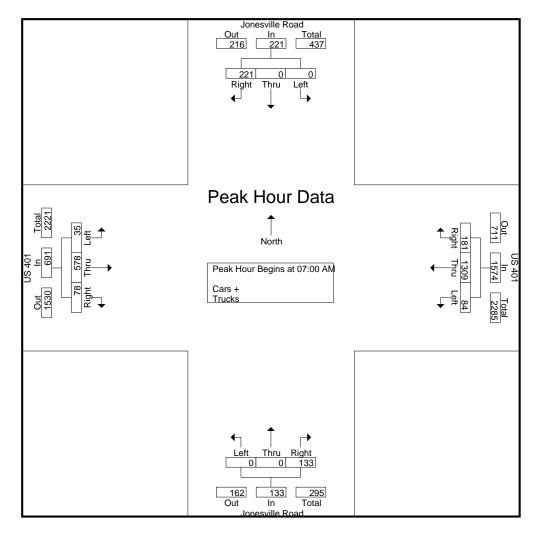
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

						<u>G</u>	roups F	<u>rinted- C</u>	ars + -	Trucks							1
		Jonesvil	lle Roa	d		US	401			Jonesvi	ille Roa	d		US	401		
		South	bound			West	bound			North	bound			Eastl	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00 AM	63	0	0	63	24	380	21	425	23	0	0	23	18	182	3	203	714
07:15 AM	42	0	0	42	39	362	24	425	37	0	0	37	11	125	7	143	647
07:30 AM	51	0	0	51	80	318	23	421	48	0	0	48	24	136	15	175	695
07:45 AM	65	0	0	65	38	249	16	303	25	0	0	25	25	135	10	170	563
Total	221	0	0	221	181	1309	84	1574	133	0	0	133	78	578	35	691	2619
08:00 AM	61	0	0	61	26	236	13	275	23	0	0	23	30	120	10	160	519
08:15 AM	36	0	0	36	12	233	9	254	16	0	0	16	13	94	9	116	422
08:30 AM	24	0	0	24	10	213	5	228	9	0	0	9	6	91	3	100	361
08:45 AM	28	0	0	28	9	145	5	159	10	0	0	10	11	85	2	98	295
Total	149	0	0	149	57	827	32	916	58	0	0	58	60	390	24	474	1597
Grand Total	370	0	0	370	238	2136	116	2490	191	0	0	191	138	968	59	1165	4216
Apprch %	100	0	0		9.6	85.8	4.7		100	0	0		11.8	83.1	5.1		
Total %	8.8	0	0	8.8	5.6	50.7	2.8	59.1	4.5	0	0	4.5	3.3	23	1.4	27.6	
Cars +	366	0	0	366	233	2094	114	2441	188	0	0	188	135	916	57	1108	4103
% Cars +	98.9	0	0	98.9	97.9	98	98.3	98	98.4	0	0	98.4	97.8	94.6	96.6	95.1	97.3
Trucks	4	0	0	4	5	42	2	49	3	0	0	3	3	52	2	57	113
% Trucks	1.1	0	0	1.1	2.1	2	1.7	2	1.6	0	0	1.6	2.2	5.4	3.4	4.9	2.7



File Name: Rolesville(US 401 and Jonesville)AM Peak

Site Code:

Start Date : 11/9/2021

		Jonesville Road				US	401			Jonesvi	lle Roa	b		US	401		
		South	bound			Westl	oound			North	bound			Eastb	ound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 07:0	0 AM t	o 08:45 A	M - Pea	k 1 of 1											
Peak Hour for I	Entire In	tersecti	on Beg	ins at 07:	00 AM												
07:00 AM	63	0	0	63	24	380	21	425	23	0	0	23	18	182	3	203	714
07:15 AM	42	0	0	42	39	362	24	425	37	0	0	37	11	125	7	143	647
07:30 AM	51	0	0	51	80	318	23	421	48	0	0	48	24	136	15	175	695
07:45 AM	65	0	0	65	38	249	16	303	25	0	0	25	25	135	10	170	563
Total Volume	221	0	0	221	181	1309	84	1574	133	0	0	133	78	578	35	691	2619
% App. Total	100	0	0		11.5	83.2	5.3		100	0	0		11.3	83.6	5.1		
PHF	.850	.000	.000	.850	.566	.861	.875	.926	.693	.000	.000	.693	.780	.794	.583	.851	.917

File Name: Rolesville(US 401 and Jonesville)PM Peak

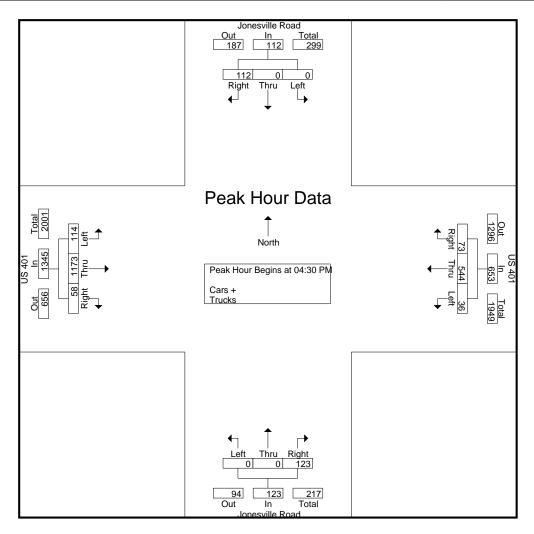
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

	Groups Printed- Cars + - Trucks																
		Jonesvi	lle Roa	ıd		US	401			Jonesvi	ille Roa	d		US	401		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	47	0	0	47	13	124	6	143	21	0	0	21	37	217	22	276	487
04:15 PM	34	0	0	34	13	119	6	138	26	0	0	26	15	231	20	266	464
04:30 PM	30	0	0	30	19	118	12	149	32	0	0	32	12	291	28	331	542
04:45 PM	15	0	0	15	22	137	6	165	32	0	0	32	8	303	30	341	553
Total	126	0	0	126	67	498	30	595	111	0	0	111	72	1042	100	1214	2046
05:00 PM	37	0	0	37	10	143	7	160	23	0	0	23	23	322	30	375	595
05:15 PM	30	0	0	30	22	146	11	179	36	0	0	36	15	257	26	298	543
05:30 PM	39	0	0	39	20	145	3	168	34	0	0	34	23	262	14	299	540
05:45 PM	24	0	0	24	10	112	9	131	22	0	0	22	11	227	21	259	436
Total	130	0	0	130	62	546	30	638	115	0	0	115	72	1068	91	1231	2114
Grand Total	256	0	0	256	129	1044	60	1233	226	0	0	226	144	2110	191	2445	4160
Apprch %	100	0	0		10.5	84.7	4.9		100	0	0		5.9	86.3	7.8		
Total %	6.2	0	0	6.2	3.1	25.1	1.4	29.6	5.4	0	0	5.4	3.5	50.7	4.6	58.8	
Cars +	252	0	0	252	127	1020	60	1207	223	0	0	223	142	2051	191	2384	4066
<u> % Cars +</u>	98.4	0	0	98.4	98.4	97.7	100	97.9	98.7	0	0	98.7	98.6	97.2	100	97.5	97.7
Trucks	4	0	0	4	2	24	0	26	3	0	0	3	2	59	0	61	94
% Trucks	1.6	0	0	1.6	1.6	2.3	0	2.1	1.3	0	0	1.3	1.4	2.8	0	2.5	2.3



File Name: Rolesville(US 401 and Jonesville)PM Peak

Site Code:

Start Date : 11/9/2021

		Jonesville Road				US	401			Jonesvi	lle Roa	d	US 401]
		South	bound		Westbound Northbound Eastbound						bound						
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 04:0	0 PM to	o 05:45 P	M - Pea	k 1 of 1			Ţ								
Peak Hour for I	Entire In	tersection	on Beg	ins at 04:	30 PM												
04:30 PM	30	0	0	30	19	118	12	149	32	0	0	32	12	291	28	331	542
04:45 PM	15	0	0	15	22	137	6	165	32	0	0	32	8	303	30	341	553
05:00 PM	37	0	0	37	10	143	7	160	23	0	0	23	23	322	30	375	595
05:15 PM	30	0	0	30	22	146	11_	179	36	0	0	36	15	257	26	298	543
Total Volume	112	0	0	112	73	544	36	653	123	0	0	123	58	1173	114	1345	2233
% App. Total	100	0	0		11.2	83.3	5.5		100	0	0		4.3	87.2	8.5		
PHF	.757	.000	.000	.757	.830	.932	.750	.912	.854	.000	.000	.854	.630	.911	.950	.897	.938

File Name: Rolesville(US 401 and Eastern U Turn)AM Peak

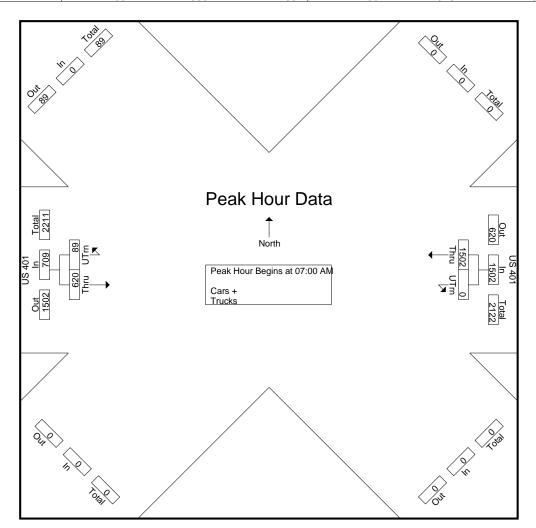
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

		Gro	oups Printed- Cars	+ - Trucks			
		US 401			US 401		
		Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
07:00 AM	421	0	421	198	12	210	631
07:15 AM	410	0	410	136	24	160	570
07:30 AM	392	0	392	149	36	185	577
07:45 AM	279	0	279	137	17	154	433
Total	1502	0	1502	620	89	709	2211
08:00 AM	253	0	253	130	20	150	403
08:15 AM	243	0	243	98	13	111	354
08:30 AM	223	0	223	94	7	101	324
08:45 AM	147	0	147	85	9	94	241
Total	866	0	866	407	49	456	1322
Grand Total	2368	0	2368	1027	138	1165	3533
Apprch %	100	0		88.2	11.8		
Total %	67	0	67	29.1	3.9	33	
Cars +	2318	0	2318	973	136	1109	3427
% Cars +	97.9	0	97.9	94.7	98.6	95.2	97
Trucks	50	0	50	54	2	56	106
% Trucks	2.1	0	2.1	5.3	1.4	4.8	3


WITTO DAWN GOLLLOTTON

File Name: Rolesville(US 401 and Eastern U Turn)AM Peak

Site Code:

Start Date : 11/9/2021

		US 401					
		Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
Peak Hour Analysis From 07:00	O AM to 08:45 AM	- Peak 1 of 1					
Peak Hour for Entire Intersection	n Begins at 07:00	AM					
07:00 AM	421	0	421	198	12	210	631
07:15 AM	410	0	410	136	24	160	570
07:30 AM	392	0	392	149	36	185	577
07:45 AM	279	0	279	137	17	154	433
Total Volume	1502	0	1502	620	89	709	2211
% App. Total	100	0		87.4	12.6		
PHF	.892	.000	.892	.783	.618	.844	.876

File Name: Rolesville(US 401 and Eastern U Turn)PM Peak

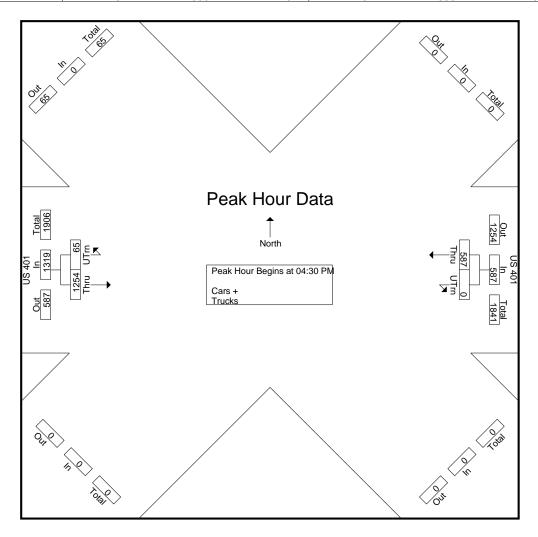
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

		Gro	<u>oups Printed- Cars</u>	+ - Trucks			
		US 401			US 401		
		Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
04:00 PM	130	0	130	240	12	252	382
04:15 PM	128	0	128	237	15	252	380
04:30 PM	129	0	129	311	19	330	459
04:45 PM	149	0	149	317	19	336	485
Total	536	0	536	1105	65	1170	1706
05:00 PM	149	0	149	342	8	350	499
05:15 PM	160	0	160	284	19	303	463
05:30 PM	161	0	161	273	22	295	456
05:45 PM	120	0	120	235	12	247	367
Total	590	0	590	1134	61	1195	1785
Grand Total	1126	0	1126	2239	126	2365	3491
Apprch %	100	0		94.7	5.3		
Total %	32.3	0	32.3	64.1	3.6	67.7	
Cars +	1101	0	1101	2175	125	2300	3401
% Cars +	97.8	0	97.8	97.1	99.2	97.3	97.4
Trucks	25	0	25	64	1	65	90
% Trucks	2.2	0	2.2	2.9	0.8	2.7	2.6


THE DATA COLLECTION

File Name: Rolesville(US 401 and Eastern U Turn)PM Peak

Site Code:

Start Date : 11/9/2021

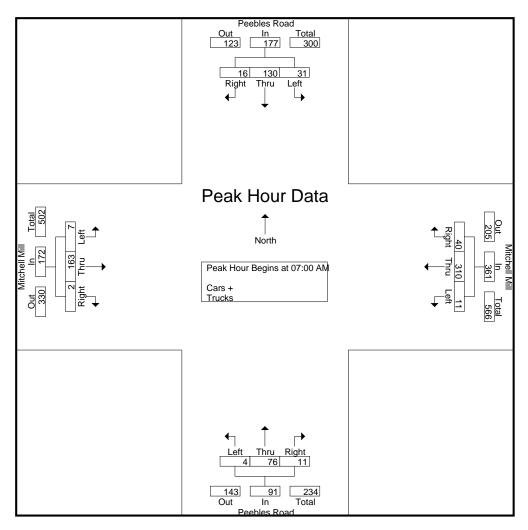
		US 401												
		Westbound												
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total							
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1														
Peak Hour for Entire Intersection	n Begins at 04:30	PM												
04:30 PM	129	0	129	311	19	330	459							
04:45 PM	149	0	149	317	19	336	485							
05:00 PM	149	0	149	342	8	350	499							
05:15 PM	160	0	160	284	19	303	463							
Total Volume	587	0	587	1254	65	1319	1906							
% App. Total	100	0		95.1	4.9									
PHF	.917	.000	.917	.917	.855	.942	.955							

File Name: Rolesville(Jonesville and Mitchell Mill)AM Peak

Site Code:

Start Date : 11/30/2021

						G	roups F	<u> Printed- C</u>	ars + -	Trucks							
		Peeble	s Road	d	Mitchell Mill					Peeble	s Road	d					
		South	bound			West	bound			North	bound						
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00 AM	4	17	13	34	8	73	5	86	6	11	3	20	0	74	1	75	215
07:15 AM	4	36	7	47	8	101	2	111	3	26	1	30	0	32	1	33	221
07:30 AM	6	34	5	45	16	87	3	106	0	24	0	24	1	33	1	35	210
07:45 AM	2	43	6	51	8	49	1	58	2	15	0	17	1	24	4	29	155
Total	16	130	31	177	40	310	11	361	11	76	4	91	2	163	7	172	801
08:00 AM	7	31	12	50	4	53	1	58	1	8	2	11	0	28	3	31	150
08:15 AM	12	17	3	32	1	37	1	39	1	7	0	8	1	24	1	26	105
08:30 AM	6	4	2	12	3	49	2	54	1	4	2	7	0	19	0	19	92
08:45 AM	1	13	3	17	4	32	1	37	1	3	1	5	1	18	2	21	80
Total	26	65	20	111	12	171	5	188	4	22	5	31	2	89	6	97	427
Grand Total	42	195	51	288	52	481	16	549	15	98	9	122	4	252	13	269	1228
Apprch %	14.6	67.7	17.7		9.5	87.6	2.9		12.3	80.3	7.4		1.5	93.7	4.8		
Total %	3.4	15.9	4.2	23.5	4.2	39.2	1.3	44.7	1.2	8	0.7	9.9	0.3	20.5	1.1	21.9	
Cars +	42	195	50	287	52	479	16	547	15	98	9	122	4	249	13	266	1222
% Cars +	100	100	98	99.7	100	99.6	100	99.6	100	100	100	100	100	98.8	100	98.9	99.5
Trucks	0	0	1	1	0	2	0	2	0	0	0	0	0	3	0	3	6
% Trucks	0	0	2	0.3	0	0.4	0	0.4	0	0	0	0	0	1.2	0	1.1	0.5


TRAFFIC DATA COLLECTION

File Name: Rolesville(Jonesville and Mitchell Mill)AM Peak

Site Code:

Start Date : 11/30/2021

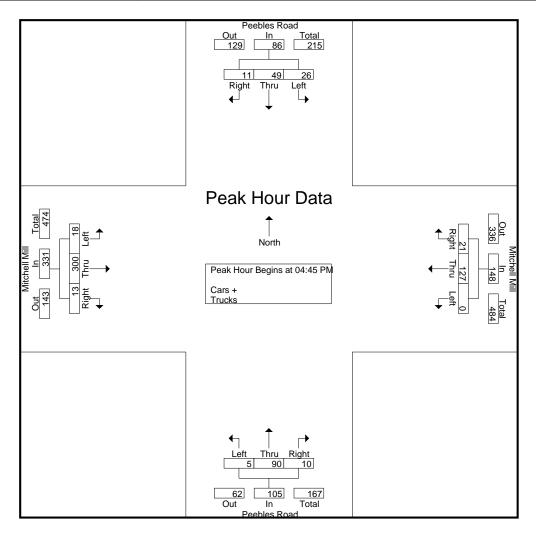
		Peeble	s Road	l	Mitchell Mill					Peeble	es Road	l					
		South	bound			Westbound				North	bound						
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																
Peak Hour for I	Entire In	tersecti	on Beg	ins at 07:	00 AM												
07:00 AM	4	17	13	34	8	73	5	86	6	11	3	20	0	74	1	75	215
07:15 AM	4	36	7	47	8	101	2	111	3	26	1	30	0	32	1	33	221
07:30 AM	6	34	5	45	16	87	3	106	0	24	0	24	1	33	1	35	210
07:45 AM	2	43	6	51	8	49	1	58	2	15	0	17	1	24	4	29	155
Total Volume	16	130	31	177	40	310	11	361	11	76	4	91	2	163	7	172	801
% App. Total	9	73.4	17.5		11.1	85.9	3		12.1	83.5	4.4		1.2	94.8	4.1		
PHF	.667	.756	.596	.868	.625	.767	.550	.813	.458	.731	.333	.758	.500	.551	.438	.573	.906

File Name: Rolesville(Jonesville and Mitchell Mill)PM Peak

Site Code:

Start Date : 11/30/2021

						G	roups F	<u> Printed- C</u>	ars + -	Trucks							
		Peeble	s Road	d		Mitch	ell Mill			Peeble	s Road	d					
		South	bound			West	bound			North	bound						
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	7	11	13	31	6	25	1	32	1	14	1	16	2	44	6	52	131
04:15 PM	6	11	4	21	2	27	2	31	1	17	3	21	1	62	4	67	140
04:30 PM	3	13	3	19	4	30	2	36	0	27	1	28	3	64	3	70	153
04:45 PM	2	8	5	15	4	37	0	41	3	18	0	21	3	71	3	77	154
Total	18	43	25	86	16	119	5	140	5	76	5	86	9	241	16	266	578
05:00 PM	1	15	6	22	5	31	0	36	3	19	2	24	1	78	5	84	166
05:15 PM	3	15	6	24	4	23	0	27	3	26	1	30	4	89	7	100	181
05:30 PM	5	11	9	25	8	36	0	44	1	27	2	30	5	62	3	70	169
05:45 PM	1	7	4	12	2	21	1	24	2	13	2	17	4	55	6	65	118
Total	10	48	25	83	19	111	1	131	9	85	7	101	14	284	21	319	634
Grand Total	28	91	50	169	35	230	6	271	14	161	12	187	23	525	37	585	1212
Apprch %	16.6	53.8	29.6		12.9	84.9	2.2		7.5	86.1	6.4		3.9	89.7	6.3		
Total %	2.3	7.5	4.1	13.9	2.9	19	0.5	22.4	1.2	13.3	1	15.4	1.9	43.3	3.1	48.3	
Cars +	28	91	50	169	35	229	6	270	14	161	12	187	23	524	37	584	1210
% Cars +	100	100	100	100	100	99.6	100	99.6	100	100	100	100	100	99.8	100	99.8	99.8
Trucks	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	2
% Trucks	0	0	0	0	0	0.4	0	0.4	0	0	0	0	0	0.2	0	0.2	0.2


TRAFFIC DATA COLLECTION

File Name: Rolesville(Jonesville and Mitchell Mill)PM Peak

Site Code:

Start Date : 11/30/2021

		Peeble	s Road	1	Mitchell Mill					Peeble	s Road						
		South	bound			Westl	oound			North	bound						
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																	
Peak Hour for I	Entire In	tersecti	on Beg	ins at 04:	45 PM												
04:45 PM	2	8	5	15	4	37	0	41	3	18	0	21	3	71	3	77	154
05:00 PM	1	15	6	22	5	31	0	36	3	19	2	24	1	78	5	84	166
05:15 PM	3	15	6	24	4	23	0	27	3	26	1	30	4	89	7	100	181
05:30 PM	5	11	9	25	8	36	0	44	1	27	2	30	5	62	3	70	169
Total Volume	11	49	26	86	21	127	0	148	10	90	5	105	13	300	18	331	670
% App. Total	12.8	57	30.2		14.2	85.8	0		9.5	85.7	4.8		3.9	90.6	5.4		
PHF	.550	.817	.722	.860	.656	.858	.000	.841	.833	.833	.625	.875	.650	.843	.643	.828	.925

APPENDIX C

ADJACENT DEVELOPMENT INFORMATION

TRAFFIC IMPACT ANALYSIS

FOR

COBBLESTONE CROSSING MIXED-USE

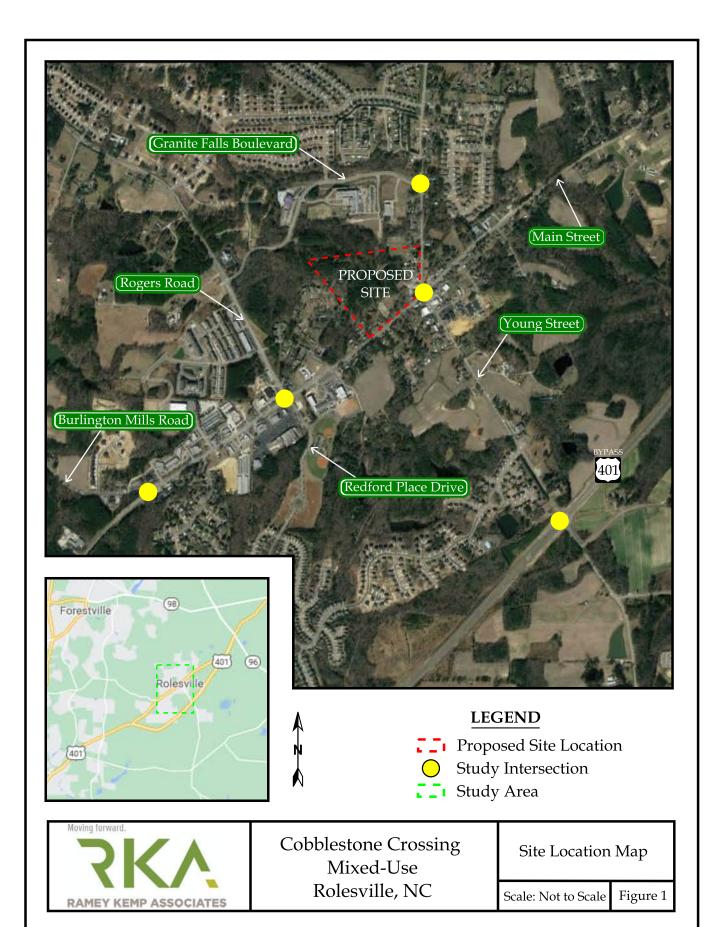
LOCATED

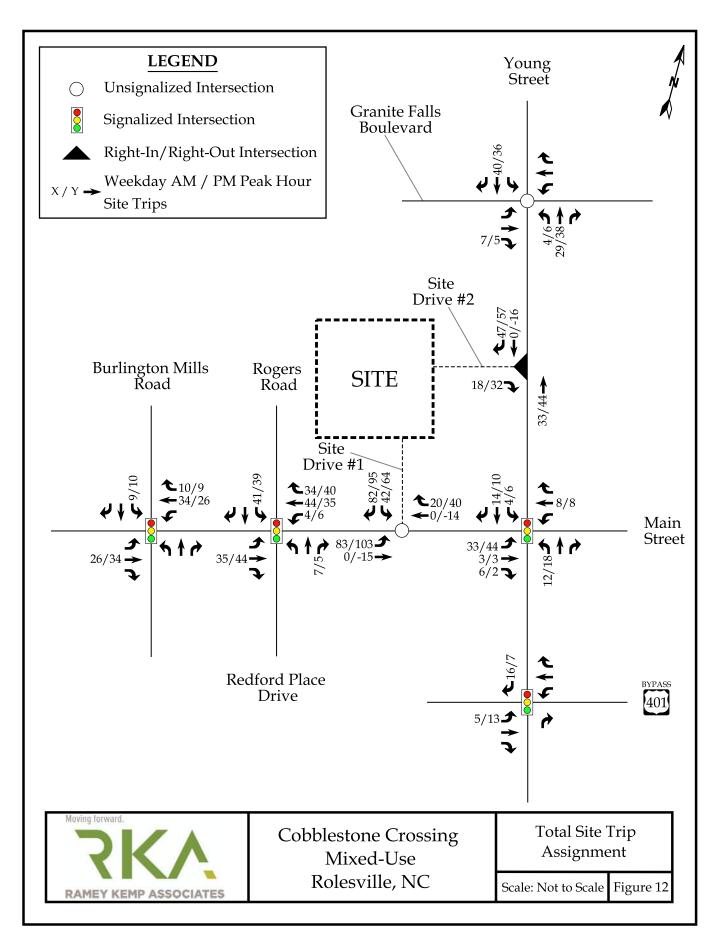
IN

ROLESVILLE, NORTH CAROLINA

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By:
Ramey Kemp & Associates, Inc.
5808 Faringdon Place, Suite 100
Raleigh, NC 27609
License #C-0910


3-15-2021


MARCH 2021

RKA Project No. 20498

Prepared By: TF

Reviewed By: MK

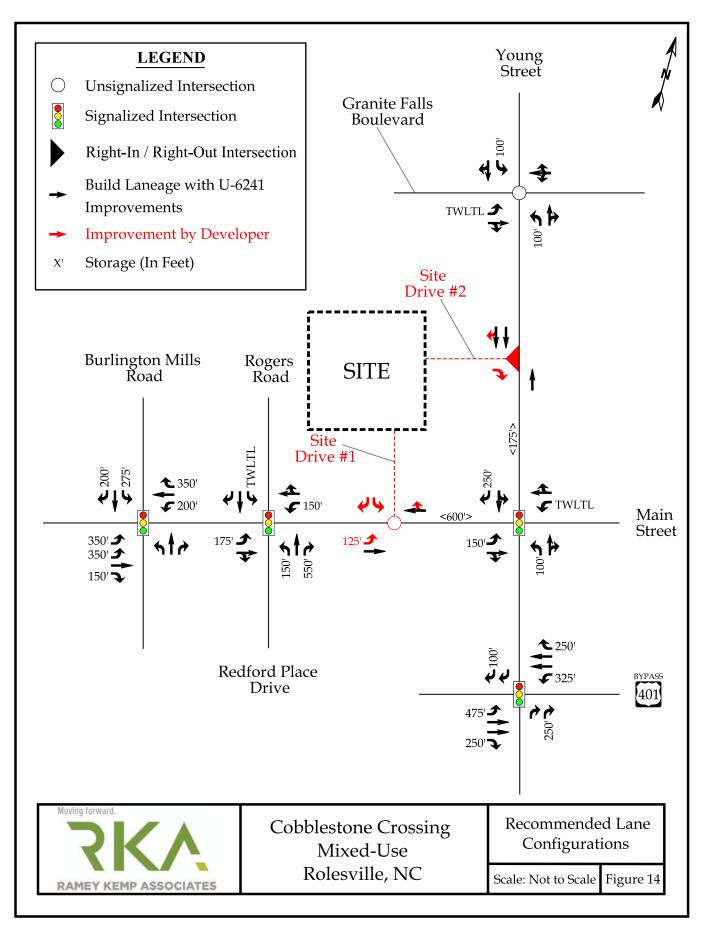
9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configuration for the proposed development.

Improvements by STIP U-6241

STIP U-6241 is expected to realign Burlington Mills Road and install a traffic signal at the relocated intersection on Main Street. STIP U-6241 is also expected to provide improvements to the pedestrian and bike facilities along Main Street and add a concrete median island along Main Street west of Rogers Road. These improvements associated with STIP U-6241 will alter the existing lane configurations at the study intersections along Main Street.

Recommended Improvements by Developer


Main Street and Site Drive 1

- Construct the southbound approach with one ingress and two egress lanes.
- Provide stop control for the southbound approach.
- Install an eastbound left-turn lane with at least 125 feet of storage and appropriate decel and taper.

Young Street and Site Drive 2

- Construct the eastbound approach with one ingress and egress lane.
- Provide stop control for the eastbound approach.

Revised Traffic Impact Analysis for

Young Street PUD

Rolesville, North Carolina

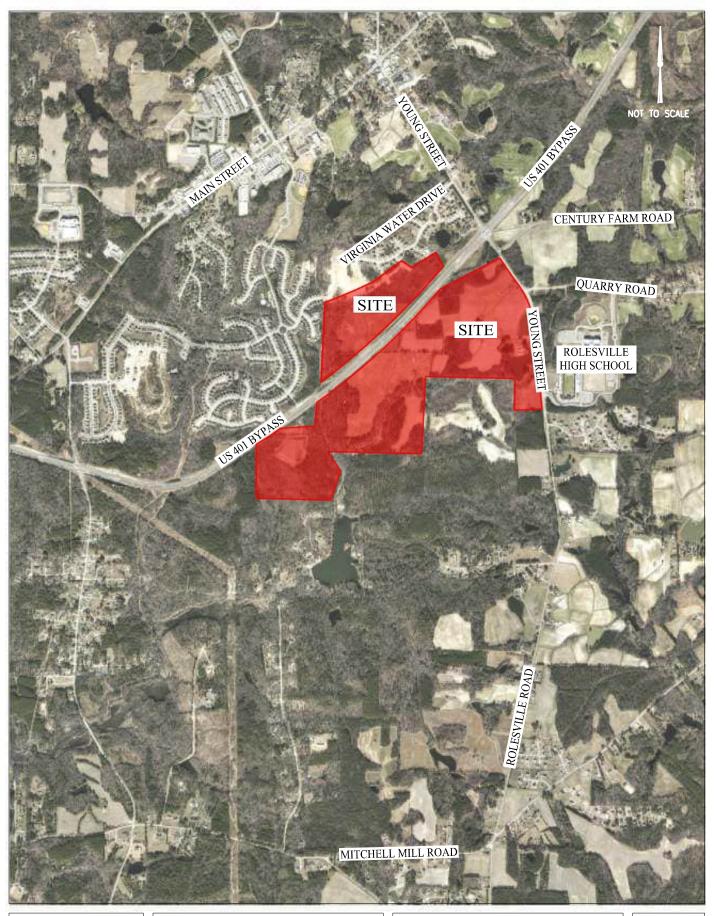
Prepared for:

Ashton Woods Raleigh, North Carolina

Prepared by:

Kimley-Horn and Associates, Inc. NC License #F-0102 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000

> June 2019 015956012

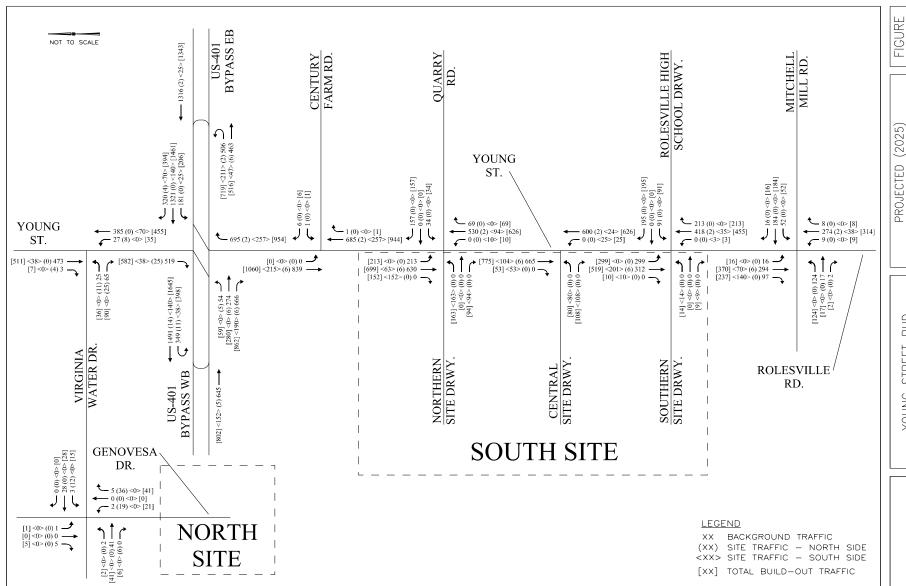

Docustinged by:

034394

VALUE

EPOS ACHNESSER29.

6/13/2019

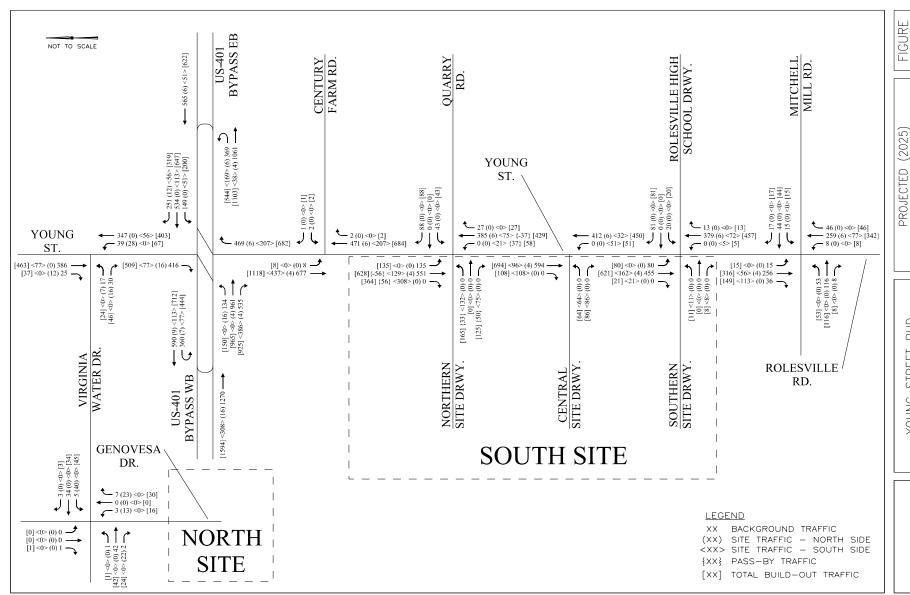


Kimley»Horn

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

SITE LOCATION

FIGURE 1


T PUD

BUILD-OUT AM PEAK HOUR
NC
TRAFFIC VOLUMES COMMERCIAL BUILD-OUT

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley.» Horn

THIS DOCUMENT, TOGETHER WITH THE CONCEPTS, AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPAR RELANCE ON THIS DOCUMENT WITHOUT WRITEN AUTHORIZATION AND ASSOCIATES, INC. SHALL BE WITHOUT LUBULITY TO KIMLEY-HORN AND ASSOCIATES, INC.

PROJECTED (2025)
BUILD-OUT PM PEAK HOUR
TRAFFIC VOLUMES COMMERCIAL BUILD-OUT

9

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley.» Horn

THIS DOCUMENT, TOGETHER WITH THE CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPAR. RELAKCE ON THIS DOCUMENT WITHOUT WRITTEN AUTHORIZATION AND ASSOCIATES, INC. SHALL BE WITHOUT LUBGLITY TO KIMLEY-HORN AND ASSOCIATES, INC.

7.0 Recommendations

Residential Build-out

The following improvements are recommended to be performed to accommodate projected site traffic volumes at build-out of the residential portion of the development:

US 401 Bypass:

 Coordinate the traffic signals at the intersections of US 401 at Young Street and the Superstreet U-turns

Young Street at Quarry Road/North Site Driveway:

- Construct a northbound left-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Construct a southbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Restripe the existing westbound left-turn lane on Quarry Road to a shared left/through lane
- Provide an exclusive left-turn lane with 275 feet of storage and appropriate tapers and a shared through/right lane on the North Site Driveway
- Install a traffic signal when warranted

Young Street at Central Site Driveway:

- Construct a northbound left-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Construct a southbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Provide exclusive left and right-turn lanes on the Central Site Driveway with 125 feet of storage and appropriate tapers for the left-turn lane

Young Street at Rolesville High School Driveway/South Site Driveway:

- Construct a northbound left-turn lane on Young Street with 50 feet of storage and appropriate tapers
- Provide one egress lane on the South Site Driveway

Rolesville Road at Mitchell Mill Road:

• Install a traffic signal when warranted

Analyses indicate that with the recommended improvements in place, all of the study intersections except for Young Street at Century Farm Road and Young Street at Rolesville High School Driveway/South Site Driveway are expected to operate at an acceptable LOS at build-out of the residential-only phase of the development.

Kimley » Horn

Analyses indicate that the intersection of Young Street at Century Farm Road is expected to operate with long delays on the minor street approach (Century Farm Road) in the AM peak hour at project build-out. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic traffic simulations indicate that no queuing issues are expected at this intersection.

Analyses indicate that the intersection of Young Street at the Rolesville High School Driveway/South Site Driveway is expected to operate with long delays on the minor street approach (Rolesville High School Driveway) in the AM peak hour and school PM peak hour with or without the proposed project in place in the study year 2025. SimTraffic traffic simulations also indicate the possibility of long queues on the westbound left-turn movement at this intersection in the AM peak hour and school PM peak hour. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. This intersection is not expected to meet 4-hour or 8-hour MUTCD traffic signal warrants.

Commercial Build-out

The following additional improvements are recommended to be performed in addition to those recommended above for the residential phase to accommodate projected site traffic volumes when the retail portion of the site is developed:

US 401 Bypass Eastbound at Young Street:

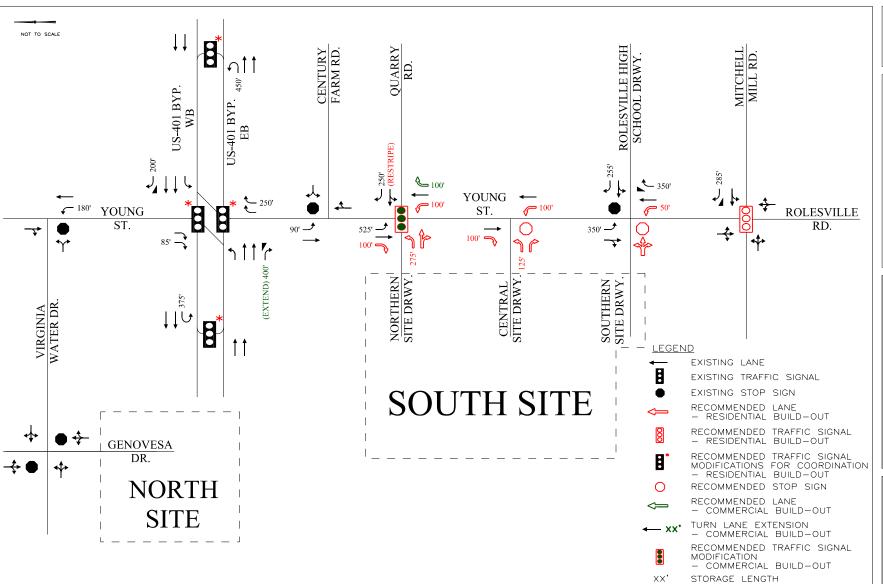
• Extend the storage of the existing eastbound right-turn lane on US 401 Bypass by approximately 175 feet to provide 400 feet of storage and appropriate tapers

Young Street at Quarry Road/North Site Driveway:

- Construct a northbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Modify the traffic signal to accommodate the additional laneage

Analyses indicate that with the recommended improvements in place, all of the study intersections except for Young Street at Century Farm Road, Young Street at the Central Site Driveway, and Young Street at Rolesville High School Driveway/South Site Driveway are expected to operate at acceptable LOS at commercial build-out of the development.

Analyses indicate that the intersection of Young Street at Century Farm Road is expected to operate with long delays on the minor street approach (Century Farm Road) in the AM peak hour at project build-out. It is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic


traffic simulations indicate that short queues are likely on the minor street approach in the AM peak hour at commercial build-out.

Analyses indicate that the intersection of Young Street at the Central Site Driveway is expected to operate with long delays on the minor street approach (Central Site Driveway) in the AM peak hour in the commercial build-out traffic condition. It is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic traffic simulations indicate the possibility of long queues on the eastbound left-turn movement at this intersection in the AM peak hour in the commercial build-out condition.

Analyses indicate that the intersection of Young Street at the Rolesville High School Driveway/South Site Driveway is expected to operate with long delays on the minor street approach (Rolesville High School Driveway) in the AM peak hour and school PM peak hour with or without the proposed project in place in the study year 2025. SimTraffic traffic simulations also indicate the possibility of long queues on the westbound left-turn movement at this intersection in the AM peak hour and school PM peak hour. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. This intersection is not expected to meet 4-hour or 8-hour MUTCD traffic signal warrants.

As shown in the analysis, the impact of site traffic associated with the commercial build-out of this proposed PUD is generally consistent with the currently-approved PUD for the site. The proposed PUD is expected to generate no more than 50 additional peak hour trips in each of the studied peak hours compared to the approved PUD, and delays at commercial build-out of both plans are generally consistent at each of the study intersections.

The recommended laneage for the development is shown on **Figure 17**.

FIGURE

RECOMMENDED ROADWAY LANEAGE

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley.» Horn

AND DESIGNS PRESENTED HERBIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE, AND CLIENT FOR WHICH IT AUTHORIZATION AND ADAPTATION BY KMALEY-HORN AND ASSOCIATES, INC. SHALL BE WITHOUT LABILITY TO KMALEY-HORN AND ASSOCIATES, INC. THIS DOCUMENT, TOGETHER WITH THE CONCEPTS RELIANCE ON THIS DOCUMENT WITHOUT WRITTEN

TRAFFIC IMPACT ANALYSIS

FOR

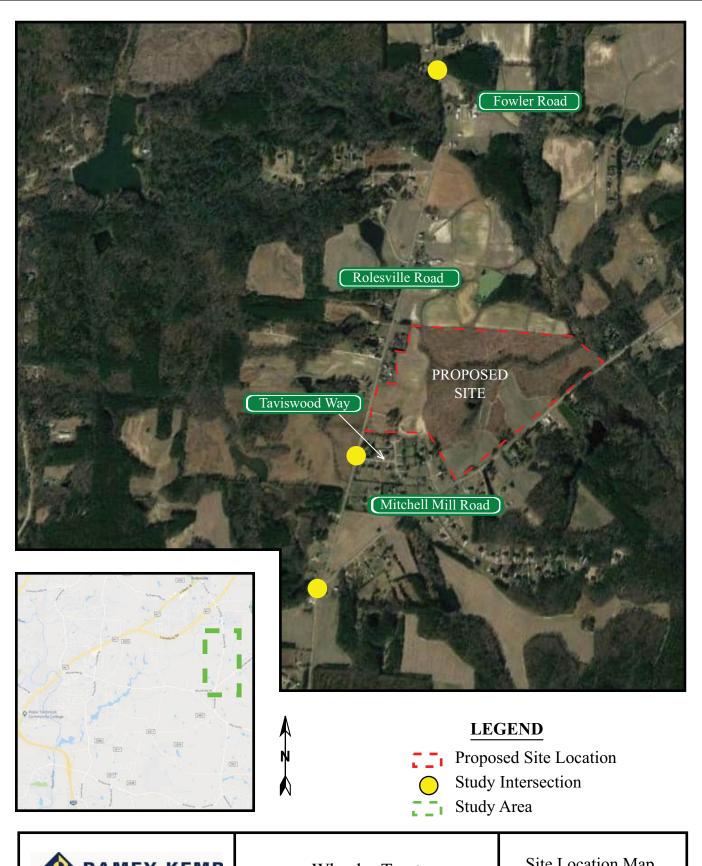
WHEELER TRACT

LOCATED

IN

ROLESVILLE, NC

Prepared For: Hopper Communities 173 Paraggi Court Clayton, NC 27527

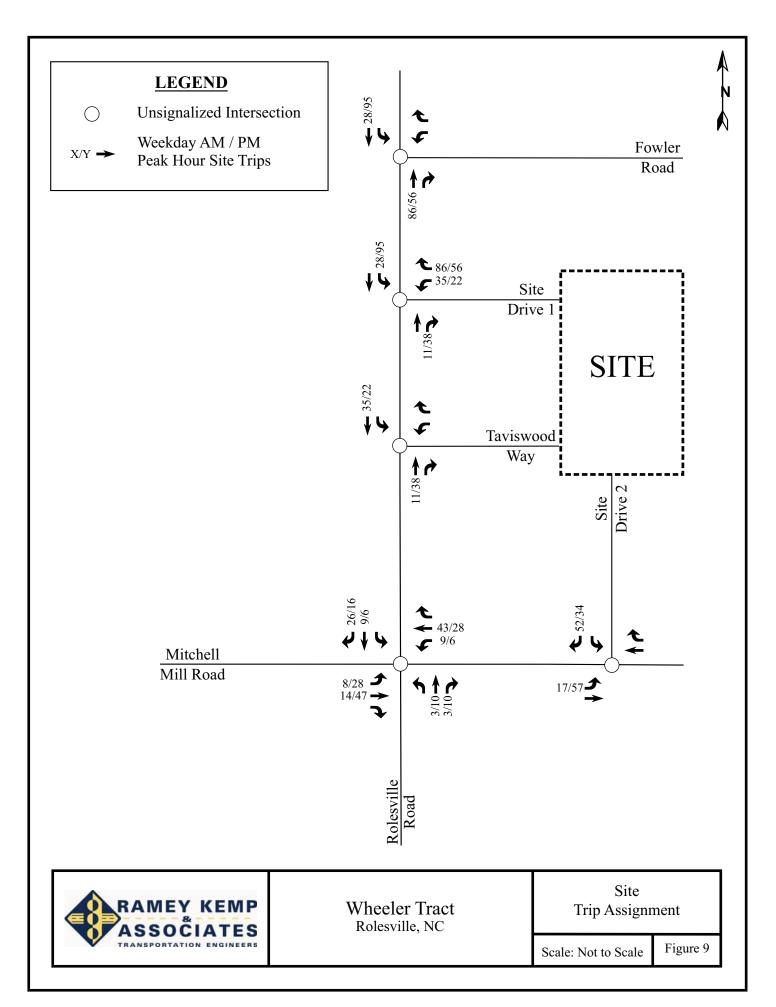

Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910

June 2019

SEAL POR SEAL PROPERTY OF THE STORY OF THE S

Prepared By: CAB

Reviewed By: JTR



Wheeler Tract Rolesville, NC

Site Location Map

Scale: Not to Scale

Figure 1

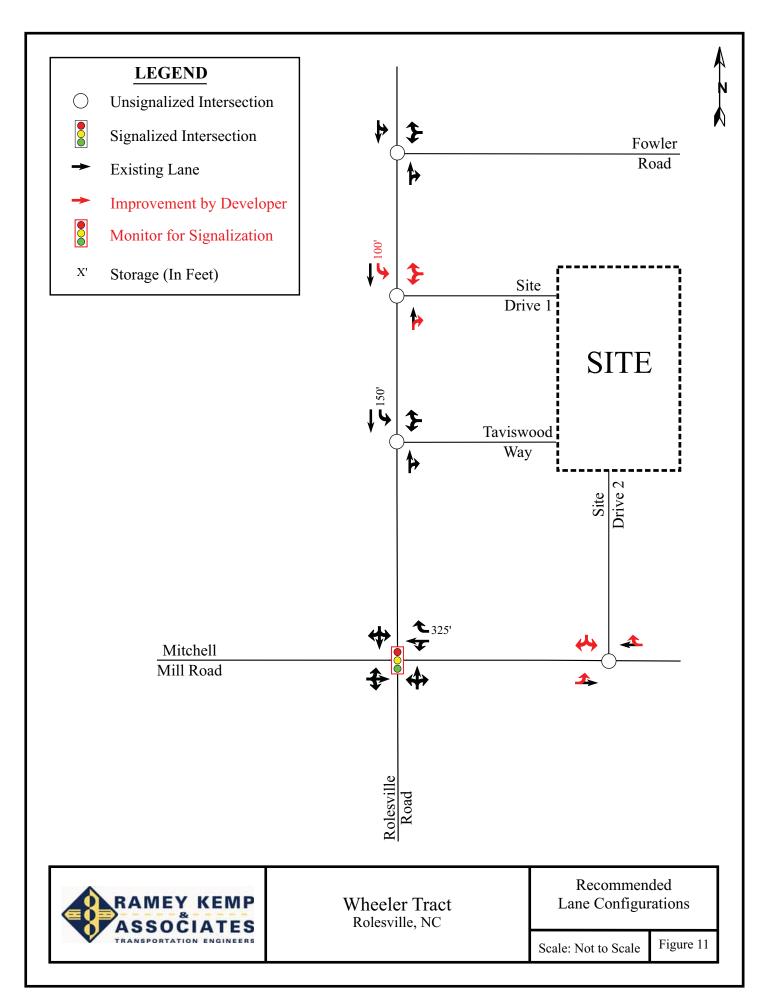
9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 11 for an illustration of the recommended lane configuration for the proposed development.

Recommended Improvements by Developer

Rolesville Road and Mitchell Mill Road

• Monitor intersection for signalization.


Rolesville Road and Site Drive 1

- Provide site access via a full movement intersection with one ingress lane and one egress lane.
- Provide stop control for westbound Site Drive 1 approach.
- Provide a designated southbound left-turn lane with at least 100 feet of storage and appropriate deceleration and taper.

Mitchell Mill Road and Site Drive 2

- Provide site access via a full movement intersection with one ingress lane and one egress lane.
- Provide stop control for southbound Site Drive 2 approach.

TRAFFIC IMPACT ANALYSIS

FOR

LOUISBURY ROAD ASSEMBLAGE

LOCATED

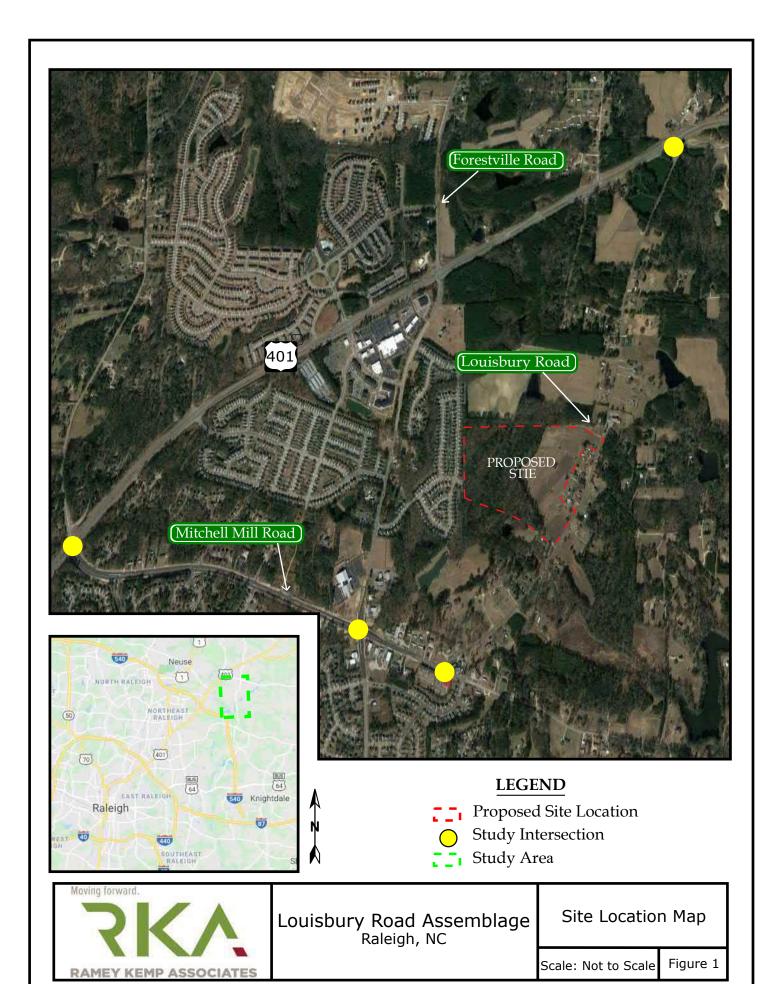
IN

RALEIGH, NC

Prepared For: McAdams Company 2905 Meridian Parkway Durham, NC 27713

Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910

May 2020


Prepared By: <u>DT</u>

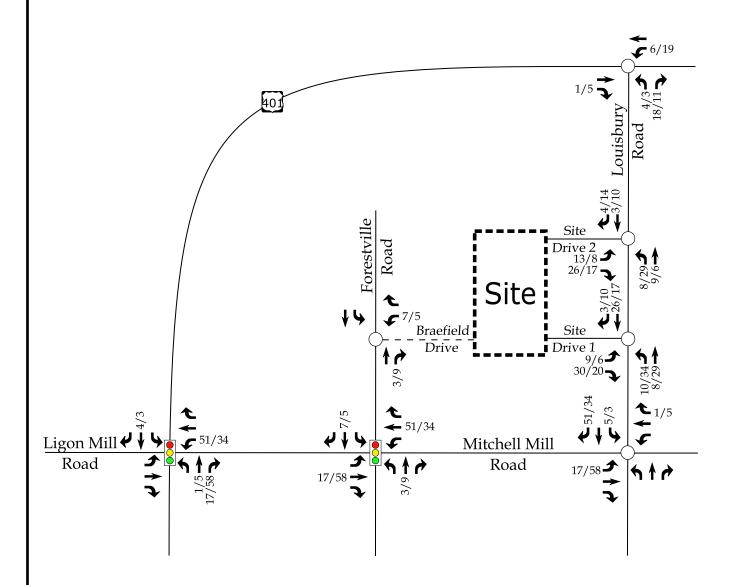
andrew Kyle Ritta

047058

5/8/2020

Reviewed By: DR

LEGEND


Unsignalized Intersection

Signalized Intersection

X / Y → Weekday AM / PM Peak Hour Site Trips

RAMEY KEMP ASSOCIATES

Louisbury Road Assemblage Raleigh, NC Site Trip Assignment

Scale: Not to Scale

Figure 7

12. RECOMMENDATIONS

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 9 for an illustration of the recommended lane configuration for the proposed development.

Recommended Improvements by Developer

Mitchell Mill Road and Louisbury Road

• Monitor for signalization after site is constructed.

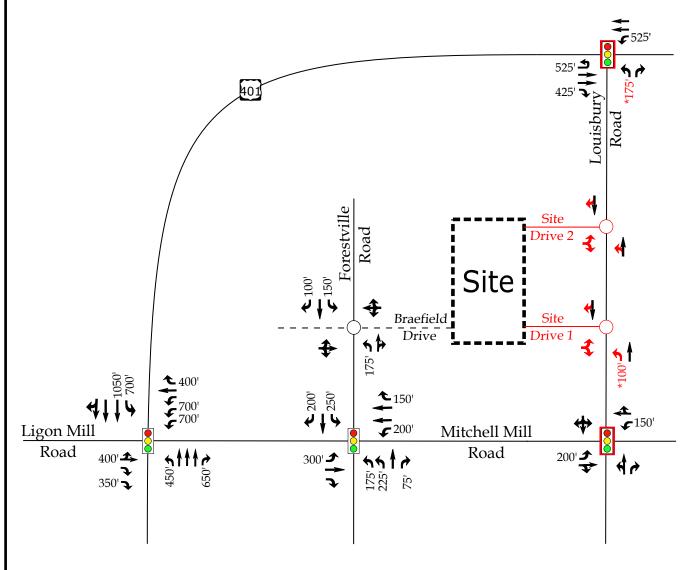
US 401 and Louisbury Road

- Per NCDOT, extend northbound left turn lane to 175' of storage.
- Monitor for signalization after site is constructed.

Louisbury Road and Site Drive 1

- Provide site access via full movement intersection with one (1) ingress lane and one (1) egress lane.
- Per NCDOT, provide northbound left turn lane with 100' of storage.
- Provide stop control for eastbound approach.

Louisbury Road and Site Drive 2


- Provide site access via full movement intersection with one (1) ingress lane and one (1) egress lane.
- Provide stop control for eastbound approach.

LEGEND

- Unsignalized Intersection
- Signalized Intersection
- Monitor for Signalization at Full Build-Out
- → Existing Lane
- → Improvement by Developer
- X' Storage (In Feet)

^{*}Based on NCDOT Review

RAMEY KEMP ASSOCIATES

Louisbury Road Assemblage Raleigh, NC Recommended Lane Configurations

Scale: Not to Scale

Figure 9

Kalas / Watkins Family Property Traffic Impact Analysis

Rolesville Road, Rolesville, North Carolina

August 24, 2019

Prepared for:

Mitchell Mill Road Investors LLC PO Box 3557 Cary, NC 27519

Prepared by:

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606

Sign-off Sheet

This document entitled Kalas / Watkins Family Property Traffic Impact Analysis was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Mitchell Mill Road Investors LLC (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Maggie Rogers

Reviewed by _

(signature)

Matt Peach, PE, PTOE

Approved by

(signature)

Christa Greene, PE

SEAL 039265

SEAL 039265

SEAL 039265

SEAL 039265

SEAL 039265

Introduction August 24, 2019

1.0 INTRODUCTION

The purpose of this report is to evaluate the transportation impacts of the proposed Kalas / Watkins Family Property development located on the west side of Rolesville Road just north of Mitchell Mill Road in Rolesville, NC. The project location is shown below in Figure 1.

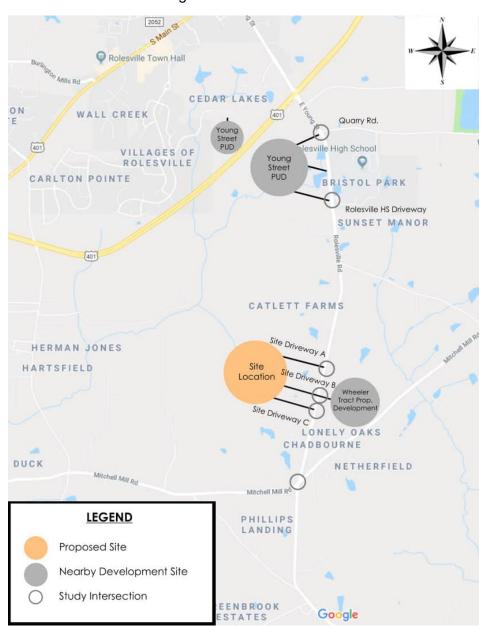
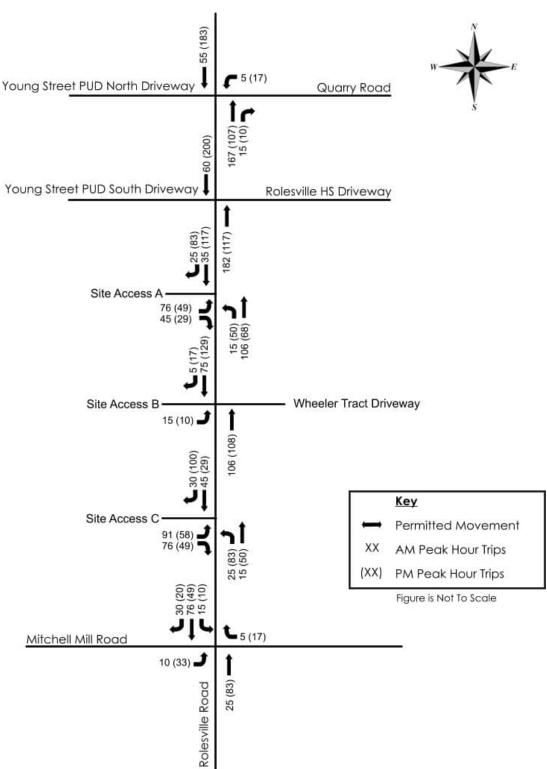



Figure 1: Site Location

Trip Generation and Distribution August 24, 2019

Figure 6: Site Trip Assignment

Traffic Analysis August 24, 2019

5.4 2025 BUILD WITH IMPROVEMENTS

Geometric improvements such as the installation of turn-lanes are recommended and therefore analyzed in this scenario. These items are listed below as well as in the recommendations section.

Rolesville Road at Site Driveway A

- Construct Driveway A as a full-movement access point onto Rolesville Road with one ingress lane and one
 egress lane.
- Construct an exclusive eastbound right-turn lane with 100 feet of full-width storage and appropriate taper on Driveway A.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.

Rolesville Road at Site Driveway B / Wheeler Tract Driveway

- Construct Driveway B as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 50 feet of full-width storage and appropriate taper on Rolesville Road.

Rolesville Road at Site Driveway C

- Construct Driveway C as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive eastbound right-turn lane with 100 feet of full-width storage and appropriate taper on Driveway C.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road
- Construct an exclusive southbound right-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.

Accordingly, all study area intersections and approaches operate at acceptable levels of service with the following exceptions:

- The east and westbound approaches to the intersection of Rolesville Road at Rolesville High School Driveway / Young Street PUD Southern Driveway operates at LOS F in the AM peak hour. This causes high overall delays at the intersection. Furthermore, the eastbound approach operates at LOS F and westbound approach operates at LOS E in the PM peak hour.
- The east and westbound approaches at the intersection of Rolesville Road at Site Driveway B / Wheeler Tract Driveway operate at LOS E in the AM peak hour.

The east and westbound approaches to the intersection of Rolesville Road at Rolesville High School Driveway / Young Street PUD Southern Driveway performs unacceptably across analysis scenarios. These delays can be

KALAS / WATKINS FAMILY PROPERTY TRAFFIC IMPACT ANALYSIS

Traffic Analysis August 24, 2019

attributed to both the Young Street PUD and High School traffic on the side street approaches. The Kalas / Watkins development is projected to only add through volumes to the intersection and are anticipated to have a minimal impact on overall delays at this intersection.

Delays on the eastbound approach of Site Driveway B at Rolesville Road can be attributed to high thru volumes on Rolesville Road during the AM peak hour. Traffic volumes using this approach are anticipated to be minor (i.e. 15 vehicles in the AM peak hour and 10 vehicles in the PM peak hour) and side street delays should dissipate after High School Traffic passes through the network. Table 8 lists the results of the capacity analysis under the 2025 build-improved traffic conditions. The recommended improvements are illustrated in figure 14.

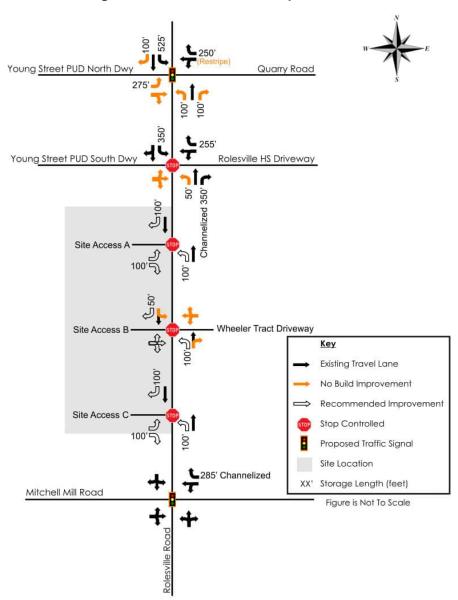


Figure 14: Recommended Improvements

TRAFFIC IMPACT ANALYSIS

FOR

5109 MITCHELL MILL ROAD

LOCATED

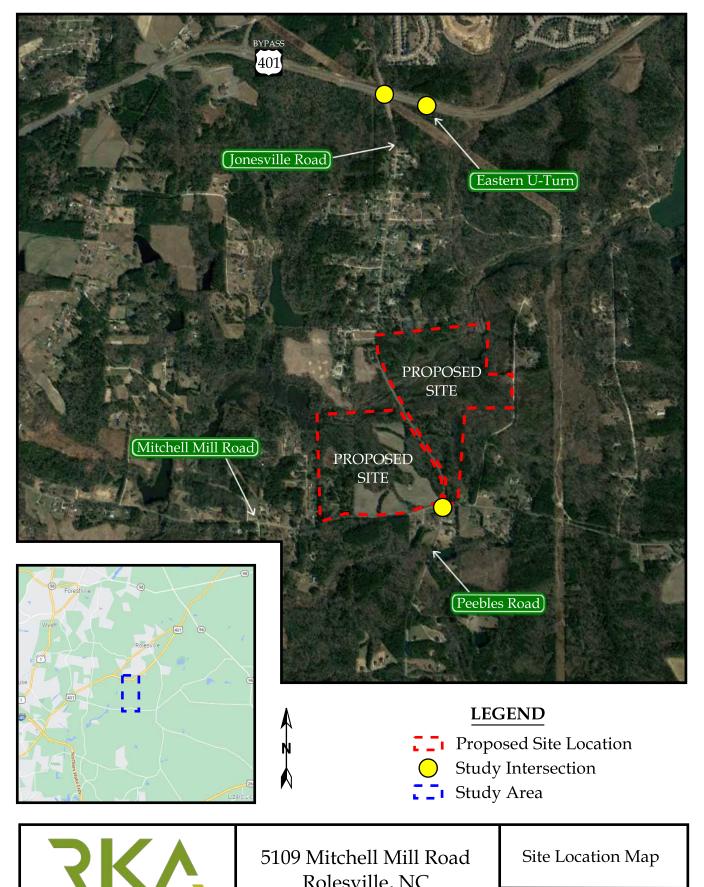
IN

ROLESVILLE, NORTH CAROLINA

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By: Infrastructure Consulting Services, Inc.

Ramey Kemp Associates

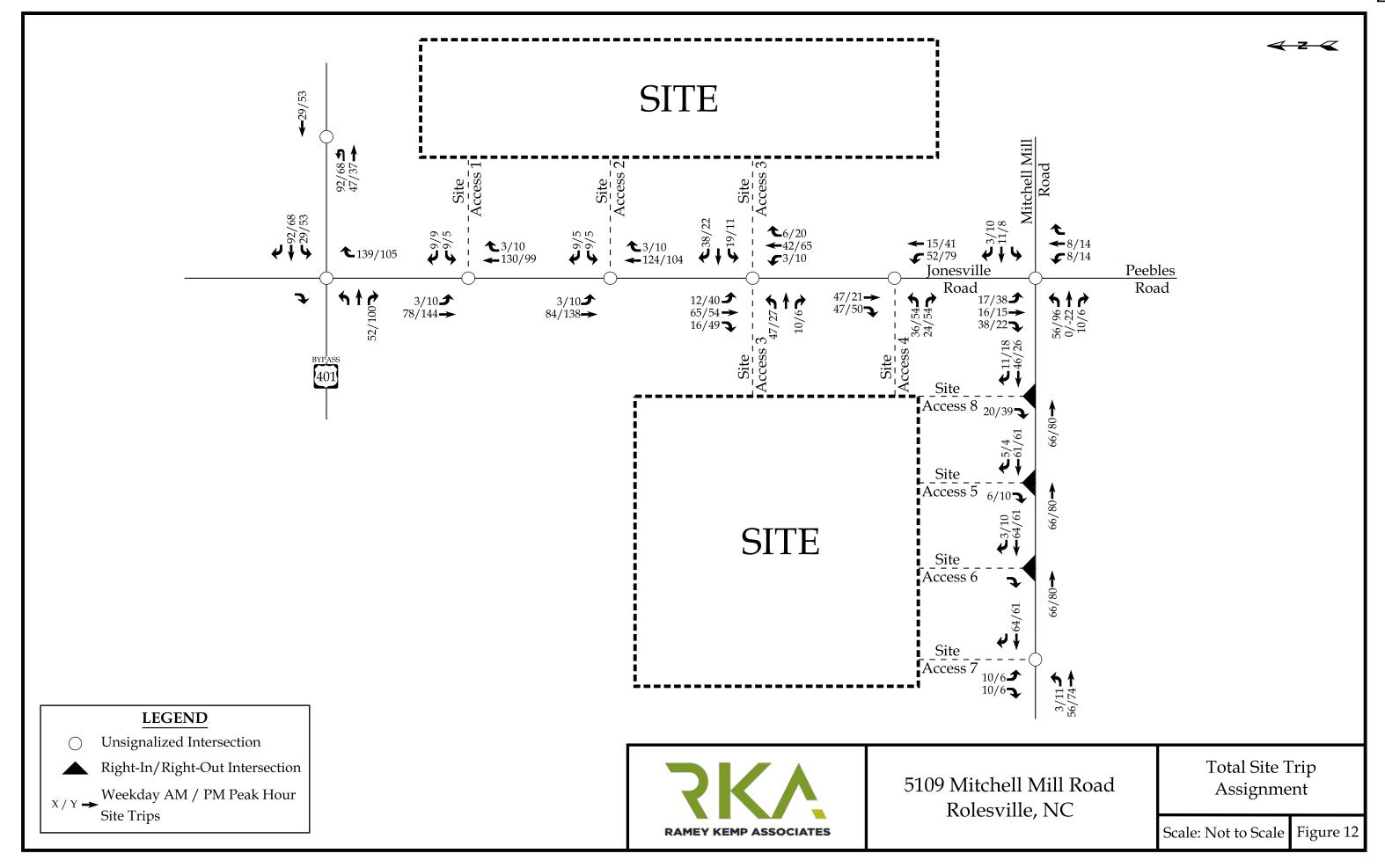

5808 Faringdon Place Raleigh, NC 27609 License #F-1489

AUGUST 2022

RKA Project No. 20498 - 004

Prepared By: TF

Reviewed By: CH



RAMEY KEMP ASSOCIATES

Rolesville, NC

Scale: Not to Scale

Figure 1

9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configurations for the proposed development.

Recommended Improvements by Developer

Required Frontage Improvements per Rolesville Community Transportation Plan

- Widen Jonesville Road along the site frontage between Site Access 1 and Mitchell Mill Road to this roadway's ultimate section (2-lane w/ TWLTL).
- Widen one-half section of Mitchell Mill Road along the site frontage to this roadway's ultimate section (4-lane median divided).

US 401 Bypass and Jonesville Road

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Jonesville Road and Site Access 1

- Construct the westbound approach (Site Access 1) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 1).
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 2

- Construct the westbound approach (Site Access 2) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 2).
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 3

- Construct the eastbound and westbound approaches (Site Access 3) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound and westbound approaches (Site Access 3).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 4

- Construct the eastbound approach (Site Access 4) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Access 4).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

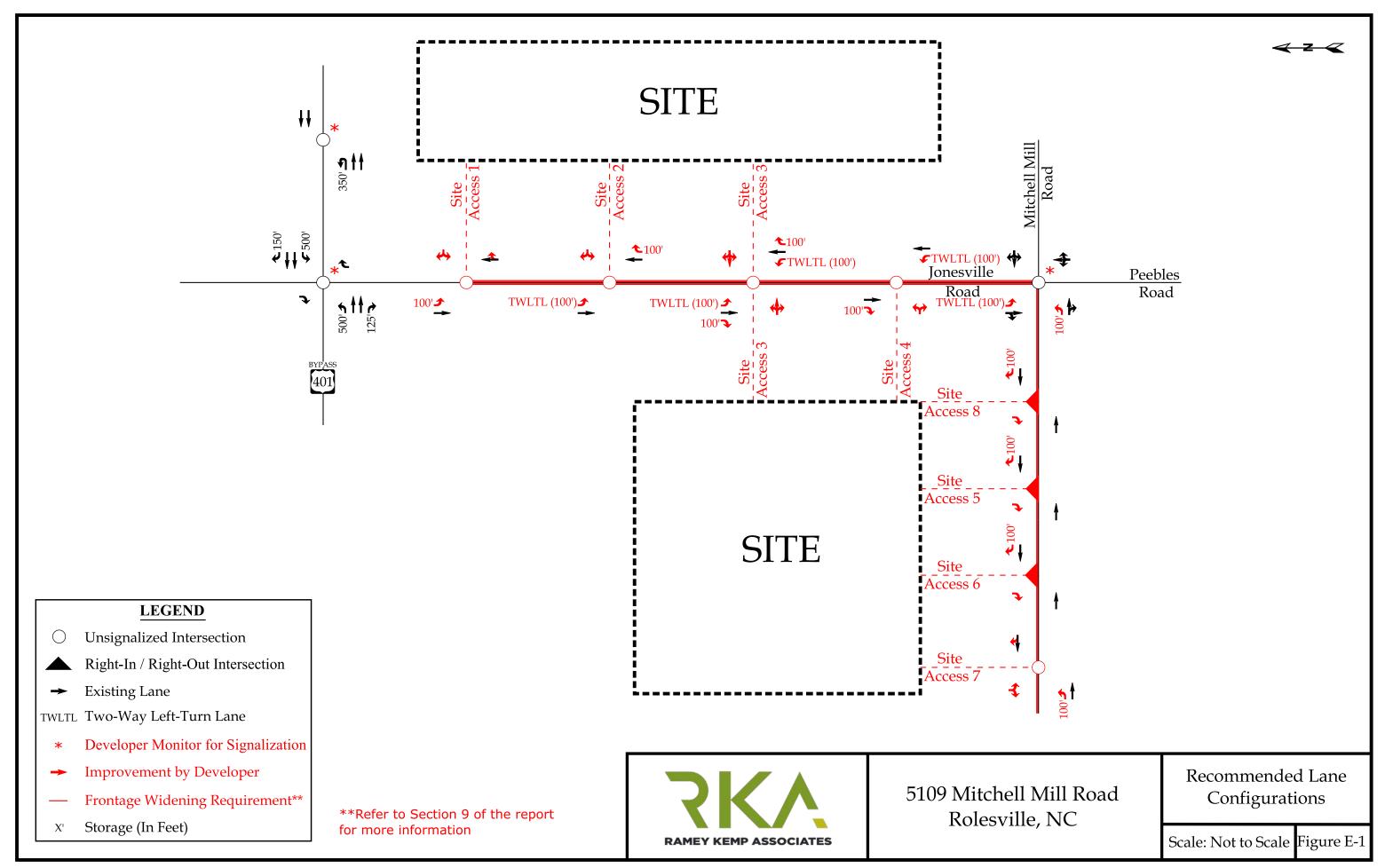
Mitchell Mill Road and Site Access 5

- Construct the southbound approach (Site Access 5) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 5). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 6

- Construct the southbound approach (Site Access 6) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 6). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 7


- Construct the southbound approach (Site Access 7) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 7)
- Construct an exclusive eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 8

- Construct the southbound approach (Site Access 8) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 8). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

TRAFFIC IMPACT ANALYSIS

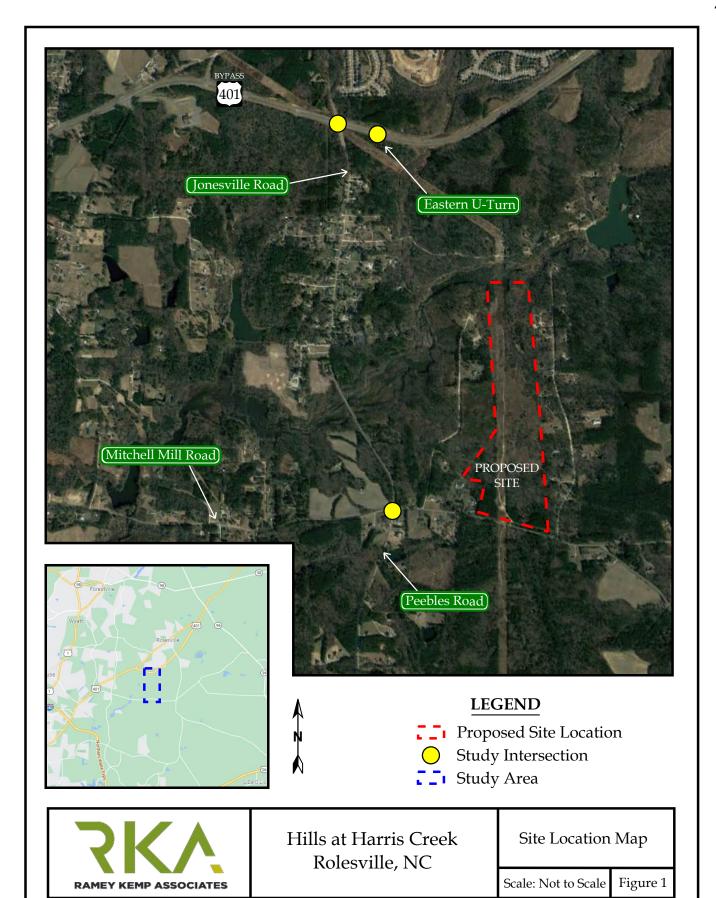
FOR

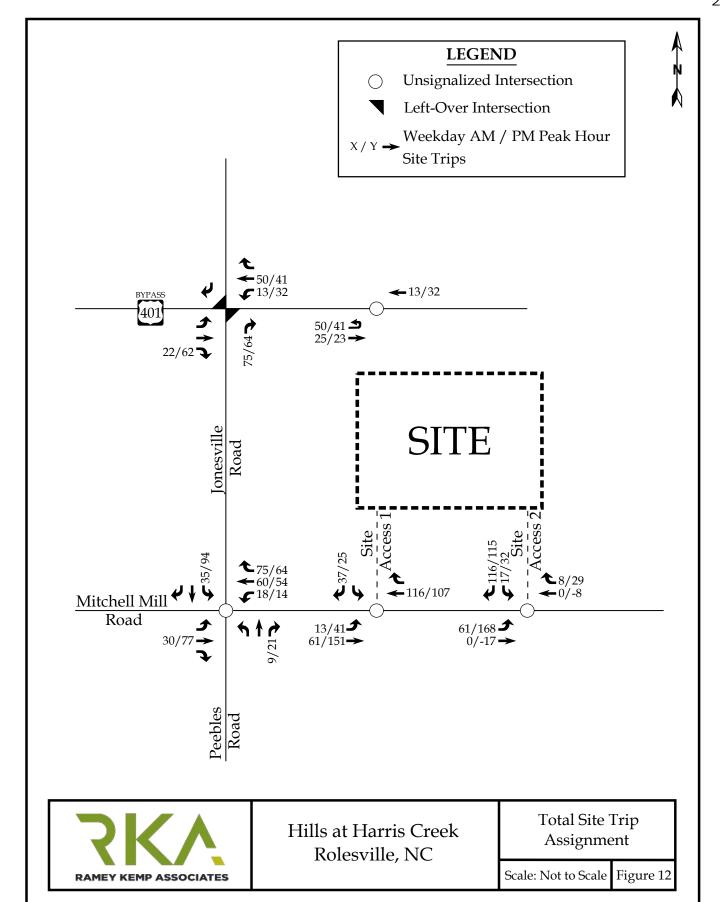
HILLS AT HARIS CREEK

LOCATED

IN

ROLESVILLE, NORTH CAROLINA


Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571


Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910 SEAL PIESSION SINGLE MICHIGANIAN CAROLINA CAROLI

MAY 2022

Prepared By: TF

Reviewed By: JMC

9. RECOMMENDATIONS

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configurations for the proposed development.

Recommended Improvements by Developer

Required Frontage Improvements per Rolesville Community Transportation Plan

 Widen one-half section of Mitchell Mill Road along the site frontage to this roadway's ultimate section (4-lane median divided).

US 401 Bypass and Jonesville Road

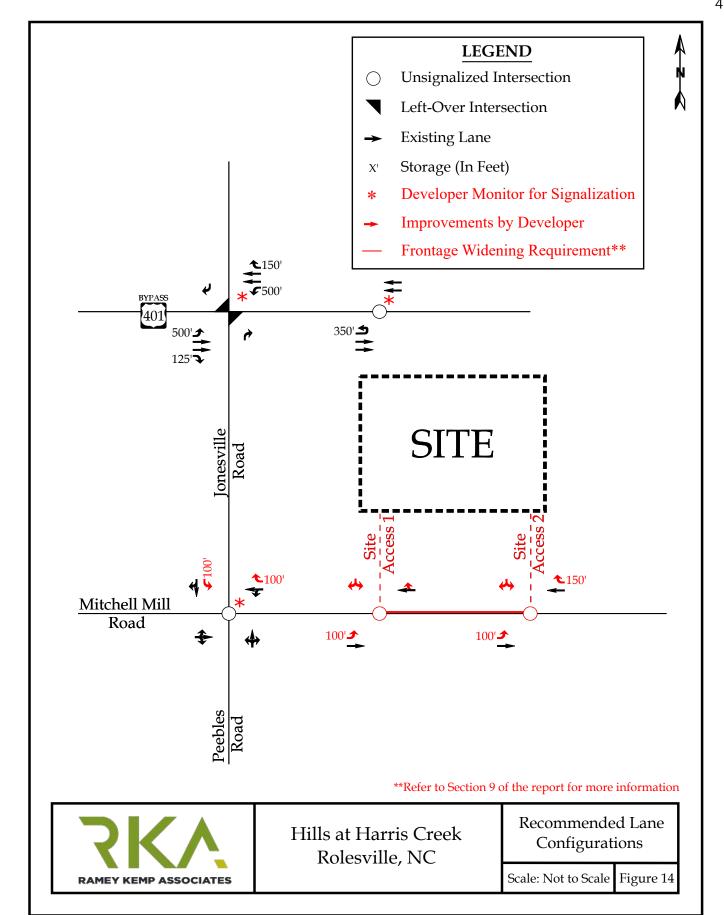
 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
 - It should be noted that this improvement was also identified by the 5109
 Mitchell Mill Road TIA.
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.


Mitchell Mill Road and Site Access 1

- Construct the southbound approach (Site Access 1) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 1).
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 2

- Construct the southbound approach (Site Access 2) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 2).
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 150 feet of storage and appropriate decel and taper.
- Construct a westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

APPENDIX D

CAPACITY ANALYSIS CALCULATIONS US 401 BYPASS

&

JONESVILLE ROAD

HCM 6th TWSC 2022 Existing Timing Plan: AM Peak Hour

Intersection												
Int Delay, s/veh	3.5											
		EST	ED 5)A/DI	MAIDT	14/55	NE	NET	NES	051	057	055
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		1	7						F		1	
Traffic Vol, veh/h	0	590	80	0	0	0	0	0	136	0	86	0
Future Vol, veh/h	0	590	80	0	0	0	0	0	136	0	86	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	656	89	0	0	0	0	0	151	0	96	0
Major/Minor M	lajor1					N	/linor1		N	Minor2		
		^	0			- 1					GEO	
Conflicting Flow All	-	0	0				-	-	328	-	656	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	6.04	-	656	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	668	0	384	0
Stage 1	0	-	-				0	0	-	0	400	0
Stage 2	0	-	-				0	0	-	0	460	0
Platoon blocked, %		-	-						000		001	
Mov Cap-1 Maneuver	-	-	-				-	-	668	-	384	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	384	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	460	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						12			17.5		
HCM LOS	- 0						В			C		
TIOW LOO							J					
Minor Lang/Major Mumb		NBLn1	EDT	EBR S	CDI n1							
Minor Lane/Major Mvmt	. r		EBT									
Capacity (veh/h)		668	-	-	•••							
HCM Lane V/C Ratio		0.226	-		0.249							
HCM Control Delay (s)		12	-	-								
HCM Lane LOS		В	-	-	C							
HCM 95th %tile Q(veh)		0.9	-	-	1							

HCM 6th TWSC 2022 Existing Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	2.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	^	T T	VVDL	1101	44DI\	NDL	וטוו	T T	ODL	1001	ODIN
Traffic Vol, veh/h	0	1220	59	0	0	0	0	0	125	0	T 37	0
Future Vol, veh/h	0	1220	59	0	0	0	0	0	125	0	37	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	_	0	-
Grade, %	-	0	-	_	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1356	66	0	0	0	0	0	139	0	41	0
Major/Minor N	1ajor1					N	Minor1		N	/linor2		
Conflicting Flow All	-	0	0				-	-	678	-	1356	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	1356	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	395	0	148	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	216	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuver	-	-	-				-	-	395	-	148	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	148	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	216	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						19			38.4		
HCM LOS							С			Е		
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		395	-	-	148							
HCM Lane V/C Ratio		0.352	-	-	0.278							
HCM Control Delay (s)		19	-	-								
HCM Lane LOS		С	-	-	Е							
HCM 95th %tile Q(veh)		1.6	-	-	1.1							

Intersection												
Int Delay, s/veh	8.9											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LUL	^	T T	TTDL	1101	אופייי	HUL	1101	T T	UDL	<u>OD1</u>	ODIN
Traffic Vol, veh/h	0	812	154	0	0	0	0	0	350	0	128	0
Future Vol, veh/h	0	812	154	0	0	0	0	0	350	0	128	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	000	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	_	Yield	-	-	None	_	-	None	-	_	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	902	171	0	0	0	0	0	389	0	142	0
Major/Minor M	lajor1					N	/linor1		N	Minor2		
Conflicting Flow All	-	0	0				-	-	451	-	902	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	902	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	556	0	276	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	355	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuver	-	-	-				-	-	556	-	276	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	276	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	355	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						25.2			31.1		
HCM LOS							D			D		
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		556	-	-	276							
HCM Lane V/C Ratio		0.699	-	-	0.515							
HCM Control Delay (s)		25.2	-	-	31.1							
HCM Lane LOS		D	-	-	D							
HCM 95th %tile Q(veh)		5.5	-	-	2.7							

HCM 6th TWSC 2027 No-Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	52.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7						7		↑	
Traffic Vol, veh/h	0		221	0	0	0	0	0	294	0	122	0
Future Vol, veh/h	0	1708	221	0	0	0	0	0	294	0	122	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized		-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	_	_	125	_	_	-	_	_	0	_	_	-
Veh in Median Storage	e.# -	0	-	_	0	_	_	0	_	_	0	_
Grade, %	-	0	_	_	0	_	_	0	_	-	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1898	246	0	0	0	0	0	327	0	136	0
									V =.			
Major/Minor	Major1					N	/linor1		ı	Minor2		
	Major1					ľ					4000	
Conflicting Flow All	-	0	0				-	-	949	-	1898	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	1898	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0		~ 261	0	~ 69	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	~ 116	0
Platoon blocked, %		-	-						004		20	
Mov Cap-1 Maneuver		-	-				-	-	~ 261	-	~ 69	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	~ 69	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	~ 116	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						180.2		\$	579.5		
HCM LOS							F			F		
Minor Lane/Major Mvn	nt I	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		261			69							
HCM Lane V/C Ratio		1.252	_	_	1.965							
HCM Control Delay (s)	180.2			579.5							
HCM Lane LOS	1	F	_	-Ψ -	57 5.5 F							
HCM 95th %tile Q(veh	1)	15.9										
	'/	10.0			14.7							
Notes												
~: Volume exceeds ca	pacity	\$: De	lay exc	eeds 30	00s	+: Comp	outation	Not De	efined	*: All	major v	olume i

HCM 2010 TWSC 2027 Build Timing Plan: AM Peak Hour

Int Delay, s/veh 10.2 Movement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR S
Movement EBL EBT EBR WBL WBT WBR NBL NBR SBL SBT SBR Lane Configurations Image: Configuration of the co
Lane Configurations Image: Configuration of the confi
Traffic Vol, veh/h 0 812 161 0 0 0 0 380 0 131 0 Future Vol, veh/h 0 812 161 0 0 0 0 0 380 0 131 0 Conflicting Peds, #/hr 0
Future Vol, veh/h 0 812 161 0 0 0 0 380 0 131 0 Conflicting Peds, #/hr 0<
Conflicting Peds, #/hr 0
Sign Control Free Free Stop Stop Stop Stop Stop Stop Stop Stop
RT Channelized - - Yield - - None - - None Storage Length - - 125 - - - 0 - -
Storage Length 125 0
Van in Madian Storaga π . II
Grade, % - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -
Peak Hour Factor 90 90 90 90 90 90 90 90 90 90 90 90 90
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Mvmt Flow 0 902 179 0 0 0 0 422 0 146 0
Major/Minor Major1 Minor1 Minor2
Conflicting Flow All - 0 0 451 - 902 -
Stage 1 0 -
Stage 2 902 -
Critical Hdwy 6.94 - 6.54 -
Critical Hdwy Stg 1
Critical Hdwy Stg 2 5.54 -
Follow-up Hdwy 3.32 - 4.02 -
Pot Cap-1 Maneuver 0 0 0 556 0 276 0
Stage 1 0 0 - 0
Stage 2 0 0 355 0
Platoon blocked, %
Mov Cap-1 Maneuver 556 - 276 -
Mov Cap-2 Maneuver 276 -
Stage 1
Stage 2 355 -
Approach EB NB SB
HCM Control Delay, s 0 29.1 31.7
HCM LOS D D
TIOM LOC
Minor Lane/Major Mvmt NBLn1 EBT EBR SBLn1
Capacity (veh/h) 556 276
HCM Lane V/C Ratio 0.759 0.527
HCM Control Delay (s) 29.1 31.7
HCM Lane LOS D D
HCM 95th %tile Q(veh) 6.7 2.9

HCM 2010 TWSC 2027 Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	64.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7						7		†	
Traffic Vol, veh/h	0	1708	242	0	0	0	0	0	314	0	133	0
Future Vol, veh/h	0	1708	242	0	0	0	0	0	314	0	133	0
Conflicting Peds, #/h		0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	_	_	125	_	_	-	_	_	0	_	_	-
Veh in Median Storag		0	-	_	_	_	_	0	-	_	0	_
Grade, %	go, <i>n</i>	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1898	269	0	0	0	0	0	349	0	148	0
WWITCHIOW	U	1000	200	U	U	U	U	U	0-10	U	170	U
						-						
Major/Minor	Major1						Minor1			Minor2		
Conflicting Flow All	-	0	0				-	-	949	-	1898	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	1898	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	. 0	-	-				0	0	~ 261	0	~ 69	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	~ 116	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuve	er -	-	-				-	-	~ 261	-	~ 69	-
Mov Cap-2 Maneuve	er -	-	-				-	-	-	-	~ 69	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	~ 116	-
Approach	EB						NB			SB		
HCM Control Delay,							213			\$ 655		
HCM LOS	3 0						213 F			\$ 000		
TIOIVI LOG							Г			Г		
Minor Lane/Major My	/mt	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		261	-	-	69							
HCM Lane V/C Ratio)	1.337	-		2.142							
HCM Control Delay ((s)	213	-	-	\$ 655							
HCM Lane LOS		F	-	-	F							
HCM 95th %tile Q(ve	eh)	18.2	-	-	13.8							
Notes												
	onesit:	ф. D-	lov sv-	oods 20)Oc	Com	outotion	Not D	ofinad	*. AU	meler	olum a
~: Volume exceeds of	apacity	\$: D6	lay exc	eeds 30	JUS -	+: Com	outation	NOT DO	eimea	: All	major v	olume i

	٠	-	•	•	•	•	1	1	~	/	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		11	ř						7		^	
Traffic Volume (vph)	0	812	161	0	0	0	0	0	380	0	131	0
Future Volume (vph)	0	812	161	0	0	0	0	0	380	0	131	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0	,,,,,	125	0		0	0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0	0		0
Storage Lanes	0		1	0		0	0		1	0		0
Taper Length (ft)	100		•	100			100		•	100		
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.00	0.850						0.865			
Flt Protected			0.000						0.000			
Satd. Flow (prot)	0	3539	1583	0	0	0	0	0	1611	0	1863	0
Flt Permitted		0000	1000						.0		.000	
Satd. Flow (perm)	0	3539	1583	0	0	0	0	0	1611	0	1863	0
Right Turn on Red		0000	No			No			No	No	1000	No
Satd. Flow (RTOR)			140			140			110	140		140
Link Speed (mph)		55			55			35			45	
Link Distance (ft)		278			727			1295			275	
Travel Time (s)		3.4			9.0			25.2			4.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.50	902	179	0.50	0.00	0.50	0.50	0.30	422	0.00	146	0.50
Shared Lane Traffic (%)	U	302	175	U	U	U	U	U	722	U	140	U
Lane Group Flow (vph)	0	902	179	0	0	0	0	0	422	0	146	0
Turn Type	•	NA	Perm		· ·			•	Prot	Ū	NA	J
Protected Phases		2							4		4	
Permitted Phases		_	2						•		•	
Detector Phase		2	2						4		4	
Switch Phase												
Minimum Initial (s)		14.0	14.0						7.0		7.0	
Minimum Split (s)		21.0	21.0						14.0		14.0	
Total Split (s)		28.0	28.0						32.0		32.0	
Total Split (%)		46.7%	46.7%						53.3%		53.3%	
Maximum Green (s)		21.0	21.0						25.0		25.0	
Yellow Time (s)		5.0	5.0						5.0		5.0	
All-Red Time (s)		2.0	2.0						2.0		2.0	
Lost Time Adjust (s)		-2.0	-2.0						-2.0		-2.0	
Total Lost Time (s)		5.0	5.0						5.0		5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0	3.0						3.0		3.0	
Recall Mode		None	None						Min		Min	
Act Effct Green (s)		20.8	20.8						20.4		20.4	
Actuated g/C Ratio		0.40	0.40						0.40		0.40	
v/c Ratio		0.63	0.28						0.66		0.20	
Control Delay		15.5	13.2						18.6		11.0	
Queue Delay		0.0	0.0						0.0		0.0	
Total Delay		15.5	13.2						18.6		11.0	
LOS		В	В						В		В	
Approach Delay		15.1						18.6			11.0	
Approach LOS		В						В			В	

1: Jonesville Road/WB Left-Over & US 401 Bypass EB

	٠.	→	•	•	•	•	1	1	*	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)		114	36						107		30	
Queue Length 95th (ft)		194	84						187		59	
Internal Link Dist (ft)		198			647			1215			195	
Turn Bay Length (ft)			125									
Base Capacity (vph)	1	1629	728						870		1006	
Starvation Cap Reductn		0	0						0		0	
Spillback Cap Reductn		0	0						0		0	
Storage Cap Reductn		0	0						0		0	
Reduced v/c Ratio		0.55	0.25						0.49		0.15	
Intersection Summary												
Area Type:	Other											
Cycle Length: 60												
Actuated Cycle Length: 51.4												
Natural Cycle: 40												
Control Type: Actuated-Unco	oordinated											
Maximum v/c Ratio: 0.66												
Intersection Signal Delay: 15	5.6			In	tersection	LOS: B						
Intersection Capacity Utilizat	ion 58.7%			IC	U Level o	of Service	В					
Analysis Period (min) 15												
Splits and Phases: 1: Jone	esville Road/V	VB Left	-Over &	US 401 B	ypass EB							

	١	-	•	1	•	•	1	1	~	/	ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	7						7		↑	
Traffic Volume (vph)	0	1708	242	0	0	0	0	0	314	0	133	0
Future Volume (vph)	0	1708	242	0	0	0	0	0	314	0	133	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	0		125	0		0	0		0	0		0
Storage Lanes	0		1	0		0	0		1	0		0
Taper Length (ft)	100			100			100			100		
Lane Util. Factor	1.00	0.95	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt			0.850						0.865			
Flt Protected												
Satd. Flow (prot)	0	3539	1583	0	0	0	0	0	1611	0	1863	0
Flt Permitted												
Satd. Flow (perm)	0	3539	1583	0	0	0	0	0	1611	0	1863	0
Right Turn on Red			No			No			No	No		No
Satd. Flow (RTOR)												
Link Speed (mph)		55			55			35			45	
Link Distance (ft)		278			727			1295			275	
Travel Time (s)		3.4			9.0			25.2			4.2	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	1898	269	0	0	0	0	0	349	0	148	0
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	1898	269	0	0	0	0	0	349	0	148	0
Turn Type		NA	Perm						Prot		NA	
Protected Phases		2							4		4	
Permitted Phases			2									
Detector Phase		2	2						4		4	
Switch Phase												
Minimum Initial (s)		14.0	14.0						7.0		7.0	
Minimum Split (s)		21.0	21.0						14.0		14.0	
Total Split (s)		40.0	40.0						20.0		20.0	
Total Split (%)		66.7%	66.7%						33.3%		33.3%	
Maximum Green (s)		33.0	33.0						13.0		13.0	
Yellow Time (s)		5.0	5.0						5.0		5.0	
All-Red Time (s)		2.0	2.0						2.0		2.0	
Lost Time Adjust (s)		-2.0	-2.0						-2.0		-2.0	
Total Lost Time (s)		5.0	5.0						5.0		5.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)		3.0	3.0						3.0		3.0	
Recall Mode		None	None						Min		Min	
Act Effct Green (s)		35.0	35.0						15.0		15.0	
Actuated g/C Ratio		0.58	0.58						0.25		0.25	
v/c Ratio		0.92	0.29						0.87		0.32	
Control Delay		20.8	7.3						46.6		20.6	
Queue Delay		0.0	0.0						0.0		0.0	
Total Delay		20.8	7.3						46.6		20.6	
LOS		C	A						D		C	
Approach Delay		19.1						46.6			20.6	
Approach LOS		В						D			С	

1: Jonesville Road/WB Left-Over & US 401 Bypass EB

	٠	-	•	1	←	•	4	Ť	-	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)		285	43						121		44	
Queue Length 95th (ft)		#481	78						#254		87	
Internal Link Dist (ft)		198			647			1215			195	
Turn Bay Length (ft)			125									
Base Capacity (vph)		2064	923						402		465	
Starvation Cap Reductn		0	0						0		0	
Spillback Cap Reductn		0	0						0		0	
Storage Cap Reductn		0	0						0		0	
Reduced v/c Ratio		0.92	0.29						0.87		0.32	
Intersection Summary												
Area Type: C	Other											
Cycle Length: 60												
Actuated Cycle Length: 60												
Natural Cycle: 60												
Control Type: Actuated-Unco	ordinated											
Maximum v/c Ratio: 0.92												
Intersection Signal Delay: 22.				ln	tersection	LOS: C						
Intersection Capacity Utilizati	on 75.0%			IC	U Level c	of Service	D					
Analysis Period (min) 15												
# 95th percentile volume ex	ceeds cap	acity, qu	eue may	be longer								

Splits and Phases: 1: Jonesville Road/WB Left-Over & US 401 Bypass EB

Queue shown is maximum after two cycles.

Intersection												
Int Delay, s/veh	6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	7		^				7
Traffic Vol, veh/h	0	0	0	0	1352	185	0	36	0	0	0	225
Future Vol, veh/h	0	0	0	0	1352	185	0	36	0	0	0	225
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0
Veh in Median Storage,	,# -	1	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	1502	206	0	40	0	0	0	250
Major/Minor				Major2		<u> </u>	Minor1		<u> </u>	/linor2		
Conflicting Flow All				-	-	0	-	1708	-	-	-	751
Stage 1				-	-	-	-	0	-	-	-	-
Stage 2				-	-	-	-	1708	-	-	-	-
Critical Hdwy				-	-	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	-	0	90	0	0	0	353
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	-	-	0	145	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	-	-	-	90	-	-	-	353
Mov Cap-2 Maneuver				-	-	-	-	90	-	-	-	-
Stage 1				-	-	-	-	-	-	-	-	-
Stage 2				-	-	-	-	145	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				0			73.7			36.5		
HCM LOS							F			Е		
Minor Lane/Major Mvmt	t N	NBLn1	WBT	WBR S	SBLn1							
Capacity (veh/h)		90	-	-								
HCM Lane V/C Ratio		0.444	-	-	0.708							
HCM Control Delay (s)		73.7	-	-								
HCM Lane LOS		F	-	-	Е							
HCM 95th %tile Q(veh)		1.9	-	-	5.2							

Intersection												
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	7		^				7
Traffic Vol, veh/h	0	0	0	0	555	74	0	116	0	0	0	114
Future Vol, veh/h	0	0	0	0	555	74	0	116	0	0	0	114
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0
Veh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	617	82	0	129	0	0	0	127
Major/Minor			1	Major2		N	Minor1		N	Minor2		
Conflicting Flow All					-	0	-	699	_	-	-	309
Stage 1				-	_	-	-	0	-	-	-	_
Stage 2				-	-	-	-	699	-	-	-	-
Critical Hdwy				-	_	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	_	-	-	_	-	-	_
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	-	0	362	0	0	0	687
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	-	-	0	440	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	-	-	-	362	-	-	-	687
Mov Cap-2 Maneuver				-	-	-	-	362	-	-	-	-
Stage 1				-	-	-	-	-	-	-	-	-
Stage 2				-	-	-	-	440	-	-	-	-
_												
Approach				WB			NB			SB		
HCM Control Delay, s				0			20.3			11.4		
HCM LOS							С			В		
Minor Lane/Major Mvm	t N	NBLn1	WBT	WBR :	SBLn1							
Capacity (veh/h)		362	_	_	687							
HCM Lane V/C Ratio		0.356	-	-	0.184							
HCM Control Delay (s)		20.3	_	_								
HCM Lane LOS		С	-	-	В							
HCM 95th %tile Q(veh)		1.6	_	_	0.7							

Intersection													
Int Delay, s/veh	15.1												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
ane Configurations					^	Ť		1				7	
raffic Vol, veh/h	0	0	0	0	1797	185	0	36	0	0	0	225	
uture Vol, veh/h	0	0	0	0	1797	185	0	36	0	0	0	225	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0	
eh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-	
irade, %	-	0	-	-	0	-	-	0	-	-	0	-	
eak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
eavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
vmt Flow	0	0	0	0	1997	206	0	40	0	0	0	250	
lajor/Minor			-	Major2		N	Minor1		N	/linor2			
Conflicting Flow All						0	_	2203	_	_	_	999	
Stage 1				_	_	-	_	0	_	_	_	-	
Stage 2				_	_	_	_	2203	_	_	_	_	
ritical Hdwy				-	-	_	-	6.54	-	-	_	6.94	
ritical Hdwy Stg 1				_	-	_	-	-	_	_	-	-	
ritical Hdwy Stg 2				_	_	_	_	5.54	_	_	_	-	
ollow-up Hdwy				-	-	_	-	4.02	_	-	_	3.32	
ot Cap-1 Maneuver				0	-	-	0	44	0	0	0	~ 242	
Stage 1				0	-	-	0	-	0	0	0	-	
Stage 2				0	-	-	0	81	0	0	0	-	
atoon blocked, %					-	-							
lov Cap-1 Maneuver				-	-	-	-	44	-	-	-	~ 242	
lov Cap-2 Maneuver				-	-	-	-	44	-	-	-	-	
Stage 1				-	-	-	-	-	-	-	-	-	
Stage 2				-	-	-	-	81	-	-	-	-	
pproach				WB			NB			SB			
ICM Control Delay, s				0			250.5			110.8			
ICM LOS				J			F			F			
							•			•			
linar Lana/Major Missat		JDI 51	WDT	WBR S	DI -1								
linor Lane/Major Mvmt		NBLn1	WBT	WBK									
apacity (veh/h)		0.000	-	-	242								
CM Control Dolay (s)		0.909	-		1.033								
CM Control Delay (s) CM Lane LOS		250.5 F	-	-	110.8 F								
ICM 95th %tile Q(veh)		3.6	_	-	10.2								
,		3.0	-	-	10.2								
lotes													
: Volume exceeds capa	acity	\$: De	lay exc	eeds 30)0s	+: Comp	outation	Not De	efined	*: All ı	major v	olume ir	n platoon

Intersection												
Int Delay, s/veh	5.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations				1,02	^	7	1100	1	TI DIX	UDL	<u> </u>	₹ P
Traffic Vol, veh/h	0	0	0	0	894	74	0	116	0	0	0	114
Future Vol, veh/h	0	0	0	0	894	74	0	116	0	0	0	114
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0
Veh in Median Storage,	# -	1	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	993	82	0	129	0	0	0	127
Major/Minor			ı	Major2		N	/linor1		N	Minor2		
Conflicting Flow All				-	-	0	-	1075	-	-	-	497
Stage 1				-	-	-	-	0	-	-	-	_
Stage 2				-	-	-	-	1075	-	-	-	-
Critical Hdwy				-	-	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	-	0	218	0	0	0	519
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	-	-	0	294	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	-	-	-	218	-	-	-	519
Mov Cap-2 Maneuver				-	-	-	-	218	-	-	-	-
Stage 1				-	-	-	-	-	-	-	-	-
Stage 2				-	-	-	-	294	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				0			42.9			14.2		
HCM LOS							Е			В		
Minor Lane/Major Mvmt	: N	NBLn1	WBT	WBR :	SBLn1							
Capacity (veh/h)		218	-	-	0.0							
HCM Lane V/C Ratio		0.591	-	-	0.244							
HCM Control Delay (s)		42.9	-	-								
HCM Lane LOS		Е	-	-	В							
HCM 95th %tile Q(veh)		3.3	-	-	0.9							

HCM 2010 TWSC 2027 Build Timing Plan: AM Peak Hour

Intersection													
Int Delay, s/veh	15.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations	LDL	LDI	LDIX	VVDL	↑ ↑	VVDIX	NDL	_	NDIN	ODL	וטט	JDIN #	
Traffic Vol, veh/h	0	0	0	0	1817	185	0	↑ 36	0	0	0	225	
Future Vol, veh/h	0	0	0	0	1817	185	0	36	0	0	0	225	
<u> </u>	0	0	0	0	0	0	0	0	0	0	0	0	
Conflicting Peds, #/hr													
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop -	Stop	Stop	Stop	Stop	
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None	
Storage Length	- 4 117	45000	-	-	-	150	-	_	-	-	-	0	
eh in Median Storage,			-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
/Ivmt Flow	0	0	0	0	2019	206	0	40	0	0	0	250	
/lajor/Minor				Major2		N	/linor1		N	Minor2			
Conflicting Flow All				-	_	0	_	2225	_	-	_	1010	
Stage 1				_	_	-	_	0	_	_	_	-	
Stage 2				_	_	_	_	2225	_	_	_	_	
Critical Hdwy					_	_	_	6.54	_	_	_	6.94	
Critical Hdwy Stg 1				<u>-</u>	_	<u>-</u>	_	0.04	_	_	<u>-</u>	0.54	
Critical Hdwy Stg 2				_	_	_	_	5.54		_		_	
Follow-up Hdwy				_	_	-	_	4.02	<u> </u>	-	_	3.32	
Pot Cap-1 Maneuver				0	_	_	0	4.02	0	0	0	~ 238	
Stage 1				0	_	_	0	40	0	0	0	~ 230	
Stage 2				0	-		0	79	0	0	0	_	
Platoon blocked, %				U	_	-	U	19	U	U	U	-	
								43				~ 238	
Mov Cap-1 Maneuver				-	-	-	-	43	-	-	-	~ 230	
Mov Cap-2 Maneuver				-	-	-	-		-	-	-	-	
Stage 1				-	-	-	-	70	-	-	-	-	
Stage 2				-	-	-	-	79	-	-	-	-	
Approach				WB			NB			SB			
HCM Control Delay, s				0			260.9			116.8			
HCM LOS							F			F			
Airenter - (NA-: NA -		UDL 4	MOT	M/DD /	ייים ב								
Minor Lane/Major Mvmt		NBLn1	WBT	WBR S									
Capacity (veh/h)		43	-	-	238								
ICM Lane V/C Ratio		0.93	-	-	1.05								
HCM Control Delay (s)		260.9	-		116.8								
ICM Lane LOS		F	-	-	F								
HCM 95th %tile Q(veh)		3.7	-	-	10.5								
Notes													
: Volume exceeds capa	acity	\$. Do	lav ovo	eeds 30	ηne	+: Comp	nutation	Not Da	ofined	*· \(\)	majory	oluma i	n platoon
. volume exceeds capa	acity	φ. De	ay exc	cc u5 3(005	r. Comp	JulaliUH	NOL DE	Sillieu	. All	najui V	olullie II	η μιαιυυπ

HCM 2010 TWSC 2027 Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	5.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	7		↑				7
Traffic Vol, veh/h	0	0	0	0	907	74	0	116	0	0	0	114
Future Vol, veh/h	0	0	0	0	907	74	0	116	0	0	0	114
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	_	-	_	_	150	_	_	-	-	-	0
Veh in Median Storage,	# 747	71104	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	_	0	_	_	0	_	-	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	1008	82	0	129	0	0	0	127
	-											
Major/Minor			ı	Major2		ı	Minor1		N	/linor2		
Conflicting Flow All					-	0	-	1090	-	-	-	504
Stage 1				_	_	-	-	0	-	-	_	-
Stage 2				-	-	-	-	1090	-	-	-	_
Critical Hdwy				_	-	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2				_	_	_	-	5.54	-	-	-	_
Follow-up Hdwy				_	_	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	_	_	0	214	0	0	0	513
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	_	_	0	289	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	-	-	-	214	-	-	-	513
Mov Cap-2 Maneuver				-	-	-	-	214	-	-	-	-
Stage 1				-	-	-	-	-	-	-	-	-
Stage 2				-	-	-	-	289	-	-	-	-
J												
Approach				WB			NB			SB		
HCM Control Delay, s				0			44.4			14.3		
HCM LOS							Е			В		
Minor Lane/Major Mvmt	<u> </u>	IBLn1	WBT	WBR :	SBLn1							
Capacity (veh/h)		214	-	-	513							
HCM Lane V/C Ratio		0.602	-	-	0.247							
HCM Control Delay (s)		44.4	-	-	14.3							
HCM Lane LOS		Ε	-	-	В							
HCM 95th %tile Q(veh)		3.4	-	-	1							

APPENDIX E

CAPACITY ANALYSIS CALCULATIONS US 401 BYPASS

&

EASTERN U-TURN LOCATION

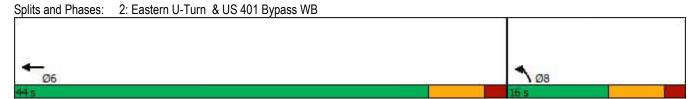
Intersection						
Int Delay, s/veh	1.3					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations			1,00	^	7	11211
Traffic Vol, veh/h	0	0	0	1532	91	0
Future Vol, veh/h	0	0	0	1532	91	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length		-	_	-	0	-
Veh in Median Storage,	# 2		_	0	0	_
Grade, %	0	_	_	0	0	_
Peak Hour Factor	90	90	90	90	90	90
					2	
Heavy Vehicles, %	2	2	2	2		2
Mvmt Flow	0	0	0	1702	101	0
Major/Minor		N	Major2	N	/linor1	
Conflicting Flow All				_	851	-
Stage 1			_	_	0	-
Stage 2			_	_	851	_
Critical Hdwy			_	_	6.84	_
Critical Hdwy Stg 1			_	_	- 0.0	_
Critical Hdwy Stg 2				_	5.84	_
Follow-up Hdwy			_	<u>-</u>	3.52	_
Pot Cap-1 Maneuver			0		299	0
Stage 1			0	-	270	0
Stage 2			0	-	379	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	-	299	-
Mov Cap-2 Maneuver			-	-	299	-
Stage 1			-	-	-	-
Stage 2			-	-	379	-
Annragah			WD		ND	
Approach			WB		NB	
HCM Control Delay, s			0		23.1	
HCM LOS					С	
Minor Lane/Major Mvmt		NBLn1	WBT			
Capacity (veh/h)		299	-			
HCM Lane V/C Ratio		0.338	_			
HCM Control Delay (s)		23.1	_			
HCM Lane LOS		23.1 C	_			
HCM 95th %tile Q(veh)		1.4	_			
HOW SOUT WHILE CLANE		1.4	-			

Intersection						
Int Delay, s/veh	1.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	LUI	LDIX	VVDL		TABL	NDIX
Traffic Vol, veh/h	0	0	0	1 600	66	0
Future Vol, veh/h	0	0	0	600	66	0
	0	0	0	000	00	0
Conflicting Peds, #/hr						
Sign Control RT Channelized	Stop	Stop	Free	Free None	Stop	Stop
	-	None	-		-	None
Storage Length	- 4 0	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	667	73	0
Major/Minor		N	Major2	N	Minor1	
Conflicting Flow All			- -		334	_
Stage 1			-		0	_
Stage 2					334	_
Critical Hdwy			-	_	6.84	_
Critical Hdwy Stg 1			-	_	0.04	-
Critical Hdwy Stg 2			-	-	5.84	-
			-	-	3.52	-
Follow-up Hdwy			-	-		-
Pot Cap-1 Maneuver			0	-	636	0
Stage 1			0	-	-	0
Stage 2			0	-	697	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	-	636	-
Mov Cap-2 Maneuver			-	-	636	-
Stage 1			-	-	-	-
Stage 2			-	-	697	-
Annroach			WB		NB	
Approach						
HCM Control Delay, s			0		11.4	
HCM LOS					В	
Minor Lane/Major Mvmt	1	NBLn1	WBT			
Capacity (veh/h)		636	-			
HCM Lane V/C Ratio		0.115	_			
HCM Control Delay (s)		11.4	_			
HCM Lane LOS		В	_			
HCM 95th %tile Q(veh)		0.4	_			
		J. 1				

ntersection									
nt Delay, s/veh	16.8								
<u> </u>		EDD	MDI	MOT	NDI	NDD			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
ane Configurations	^	^	^	^	200	^			
raffic Vol, veh/h	0	0	0	1877	233	0			
uture Vol, veh/h	0	0	0	1877	233	0			
onflicting Peds, #/hr	0	0	0	0	0	0			
ign Control	Stop	Stop	Free	Free	Stop	Stop			
T Channelized	-	None	-	None	-	None			
torage Length	-	-	-	-	0	-			
eh in Median Storage,	# 2	-	-	0	0	-			
rade, %	0	-	-	0	0	-			
eak Hour Factor	90	90	90	90	90	90			
leavy Vehicles, %	2	2	2	2	2	2			
lvmt Flow	0	0	0	2086	259	0			
ajor/Minor		N	Major2	N	/linor1				
onflicting Flow All				-	1043	-			
Stage 1			-	-	0	-			
Stage 2			_	-	1043	_			
ritical Hdwy			-	_	6.84	-			
itical Hdwy Stg 1			-	_	-	_			
ritical Hdwy Stg 2			_	_	5.84	_			
ollow-up Hdwy			_	_	3.52	_			
ot Cap-1 Maneuver			0	_	~ 225	0			
Stage 1			0	_	-	0			
Stage 2			0	_	300	0			
latoon blocked, %				_	000	v			
lov Cap-1 Maneuver			_	_	~ 225	_			
ov Cap 1 Maneuver			_		~ 225	_			
Stage 1			_		-	_			
Stage 2			_	_	300	_			
Olago Z					500				
oproach			WB		NB				
			0 0		152				
ICM Control Delay, s ICM LOS			U		152 F				
ICIVI LOS					Г				
linor Lane/Major Mvmt		NBLn1	WBT						
		225							
apacity (veh/h) CM Lane V/C Ratio			-						
		1.151 152	-						
CM Control Delay (s)			-						
CM Lane LOS		F	-						
ICM 95th %tile Q(veh)		12.2	-						
otes									
Volume exceeds capa	acity	\$: De	lay exc	eeds 30)0s	+: Com	outation Not Defined	*: All major volum	e in platoon

Intersection						
Int Delay, s/veh	2.7					
<u> </u>		EDD	WDI	WDT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	^	_		^	7	_
Traffic Vol, veh/h	0	0	0	915	175	0
Future Vol, veh/h	0	0	0	915	175	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 2	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	1017	194	0
	-					
Major/Minor			Major2		/linor1	
Conflicting Flow All			-	-	509	-
Stage 1			-	-	0	-
Stage 2			-	-	509	-
Critical Hdwy			-	-	6.84	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	5.84	-
Follow-up Hdwy			-	-	3.52	-
Pot Cap-1 Maneuver			0	-	494	0
Stage 1			0	-	-	0
Stage 2			0	-	569	0
Platoon blocked, %				_	- 500	
Mov Cap-1 Maneuver			_	_	494	_
Mov Cap-1 Maneuver				_	494	_
Stage 1			-	-	494	
			-	-	569	
Stage 2			-	-	509	-
Approach			WB		NB	
HCM Control Delay, s			0		16.9	
HCM LOS					C	
1.5111 2.00					<u> </u>	
Minor Lane/Major Mvmt	1	NBLn1	WBT			
Capacity (veh/h)		494	-			
HCM Lane V/C Ratio		0.394	-			
HCM Control Delay (s)		16.9	-			
HCM Lane LOS		С	-			
HCM 95th %tile Q(veh)		1.9	-			
, ,						

HCM 2010 TWSC 2027 Build Timing Plan: AM Peak Hour


th Delay, s/veh 22.5	Intersection									
Dovement	Int Delay, s/veh	22.5								
ane Configurations raffic Vol, veh/h 0 0 0 0 1880 253 0 outliture Vol, veh/h 0 0 0 0 1880 253 0 outlitre Vol, veh/h 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			EDD	WDI	WDT	NDI	NDD			
raffic Vol., veh/h		ERI	ERK	WARL			NRK			
uture Vol, veh/h officiting Peds, #/hr offi		0	^							
onflicting Peds, #hr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Stop Stop Stop Free Free Stop Stop T Channelized None										
T Channelized - None - None - None torage Length 0 - 0 - e hin Median Storage, # 0 0 0 - rade, % 0 0 0 0 - eak Hour Factor 90 90 90 90 90 90 90 90 eavy Vehicles, % 2 2 2 2 2 2 2 2 vmt Flow 0 0 0 0 2089 281 0 ajor/Minor										
torage Length 0 0 - eh in Median Storage, # 0 0 0 - rade, % 0 0 0 0 - rade, % 0 0 0 0 - rade, % 0 0 0 0 0 0 - rade, % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
eh in Median Storage, # 0 0 0 - rade, % 0 0 0 0 - eak Hour Factor 90 90 90 90 90 90 eavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		-		-						
rrade, % 0 0 0 - eak Hour Factor 90 90 90 90 90 90 90 eak Hour Factor 90 90 90 90 90 90 eavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				-						
eak Hour Factor 90 90 90 90 90 90 90 90 eavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			-	-			-			
eavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2										
Internation										
Bajor/Minor	Heavy Vehicles, %									
onflicting Flow All - - 1045 - Stage 1 - 0 - Stage 2 - - 1045 - ritical Hdwy - - 6.84 - ritical Hdwy Stg 1 - - - ritical Hdwy Stg 2 - - 5.84 - ollow-up Hdwy - - 3.52 - ot Cap-1 Maneuver 0 - - 0 Stage 1 0 - 0 0 - lov Cap-1 Maneuver - - - 224 - lov Cap-2 Maneuver - - - - - lov Cap-2 Maneuver - <	Mvmt Flow	0	0	0	2089	281	0			
Onflicting Flow All										
onflicting Flow All - - 1045 - Stage 1 - 0 - Stage 2 - - 1045 - ritical Hdwy - - 6.84 - ritical Hdwy Stg 1 - - - ritical Hdwy Stg 2 - - 5.84 - ollow-up Hdwy - - 3.52 - ot Cap-1 Maneuver 0 - - 0 Stage 1 0 - 0 0 - lov Cap-1 Maneuver - - - 224 - lov Cap-2 Maneuver - - - - - lov Cap-2 Maneuver - <	Major/Minor			Major2	1	Minor1				
Stage 2							_			
Stage 2					-					
ritical Hdwy Stg 1					-					
ritical Hdwy Stg 1				_	-					
ritical Hdwy Stg 2				_	_	J.J.7				
ollow-up Hdwy 3.52				_	_	5 84				
ot Cap-1 Maneuver				_	_					
Stage 1 0 - - 0 Stage 2 0 - 300 0 latoon blocked, % - - - - lov Cap-1 Maneuver - - - - - lov Cap-2 Maneuver - <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td>					_					
Stage 2 0 - 300 0 latoon blocked, % - - lov Cap-1 Maneuver - - 224 - lov Cap-2 Maneuver - - - Stage 1 - - - Stage 2 - - 300 - pproach WB NB CM Control Delay, s 0 189.6 - CM LoS F - - Ilinor Lane/Major Mvmt NBLn1 WBT apacity (veh/h) 224 - CM Lane V/C Ratio 1.255 - CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes	•				_					
Identify					_					
Iov Cap-1 Maneuver - - ~ 224 - Iov Cap-2 Maneuver - - ~ 224 - Stage 1 - - - - Stage 2 - 300 -					_	000				
Stage 1				_		~ 224	_			
Stage 1 - </td <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				_						
Stage 2				_	_					
pproach					_					
CM Control Delay, s 0 189.6 CM LOS F Innor Lane/Major Mvmt NBLn1 WBT apacity (veh/h) 224 - CM Lane V/C Ratio 1.255 - CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes	Olago Z					300	_			
CM Control Delay, s										
CM LOS F Innor Lane/Major Mvmt NBLn1 WBT apacity (veh/h) 224 - CM Lane V/C Ratio 1.255 - CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes	Approach									
Sinor Lane/Major Mvmt NBLn1 WBT Sinor Lane/Major Mvmt NBLn1 WBT Sinor Lane V/C Ratio 1.255 - CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - Sinor Lane LOS CM Lane LOS The control Delay (s) 14.4 - CM 95th %tile Q(veh) - C	HCM Control Delay, s			0						
apacity (veh/h) 224 - CM Lane V/C Ratio 1.255 - CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes	HCM LOS					F				
apacity (veh/h) 224 - CM Lane V/C Ratio 1.255 - CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes										
apacity (veh/h) 224 - CM Lane V/C Ratio 1.255 - CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes	Minor Lane/Maior Mymt	1	NBLn1	WBT						
CM Lane V/C Ratio 1.255 - CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes - -										
CM Control Delay (s) 189.6 - CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes										
CM Lane LOS F - CM 95th %tile Q(veh) 14.4 - otes										
CM 95th %tile Q(veh) 14.4 - otes										
otes										
	` ′		1 1.7							
: Volume exceeds capacity \$: Delay exceeds 300s +: Computation Not Defined *: All major volume in platoon	Notes									
	~: Volume exceeds capa	acity	\$: De	elay exc	eeds 30)0s	+: Com	outation Not Defined	*: All major volume	in platoon

Int Delay, s/veh Movement Lane Configurations	3						
Lane Configurations							
Lane Configurations	EBT	EBR	BR V	WBL	WBT	NBL	NBR
					^	7	
Traffic Vol, veh/h	0	0	0	0	926	188	0
Future Vol, veh/h	0			0	926	188	0
Conflicting Peds, #/hr				0	0	0	0
Sign Control	Stop			Free	Free	Stop	Stop
RT Channelized	Olop -			-	None	- -	None
Storage Length	_	110110	-	_	-	0	-
Veh in Median Storag	e.# -	_	_		0	0	
Grade, %	e, # - 0			_	0	0	-
Peak Hour Factor	90			90	90	90	90
						2	
Heavy Vehicles, %	2			2	2		2
Mvmt Flow	0	0	U	0	1029	209	0
Major/Minor			Ma	ajor2	N	/linor1	
Conflicting Flow All				-	-	515	-
Stage 1				-	-	0	-
Stage 2				_	_	515	-
Critical Hdwy				_	_	6.84	_
Critical Hdwy Stg 1				_	_	-	_
Critical Hdwy Stg 2					_	5.84	_
Follow-up Hdwy				_	<u> </u>	3.52	-
						489	
Pot Cap-1 Maneuver				0	-		0
Stage 1				0	-	-	0
Stage 2				0	-	565	0
Platoon blocked, %					-		
Mov Cap-1 Maneuver				-	-	489	-
Mov Cap-2 Maneuver	•			-	-	489	-
Stage 1				-	-	-	-
Stage 2				-	-	565	-
A				WD		ND	
Approach				WB		NB	
HCM Control Delay, s				0		17.7	
HCM LOS						С	
Minor Lane/Major Mvi	mt	NBLn1	_n1 V	WBT			
Capacity (veh/h)		489		-			
HCM Lane V/C Ratio		0.427					
HCM Control Delay (s	.\	17.7		-			
	9)			-			
HCM Lane LOS		C		-			
HCM 95th %tile Q(vel	1)	2.1	2.1	-			

	-	•	1	•	4	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		LDIT	.,,,,,	^	T	HOIT
Traffic Volume (vph)	0	0	0	1880	253	0
Future Volume (vph)	0	0	0	1880	253	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00
Frt	1.00	1.00	1.00	0.50	1.00	1.00
Flt Protected					0.950	
Satd. Flow (prot)	0	0	0	3539	1770	0
Flt Permitted	U	U	U	0000	0.950	U
Satd. Flow (perm)	0	0	0	3539	1770	0
	U	No	U	5559	No	No
Right Turn on Red		INO			INO	INO
Satd. Flow (RTOR)	rr				AF	
Link Speed (mph)	55			55	45	
Link Distance (ft)	520			1076	100	
Travel Time (s)	6.4	0.00	0.00	13.3	1.5	0.00
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	0	0	2089	281	0
Shared Lane Traffic (%)						
Lane Group Flow (vph)	0	0	0	2089	281	0
Turn Type				NA	Prot	
Protected Phases				6	8	
Permitted Phases						
Detector Phase				6	8	
Switch Phase						
Minimum Initial (s)				14.0	7.0	
Minimum Split (s)				21.0	14.0	
Total Split (s)				44.0	16.0	
Total Split (%)				73.3%	26.7%	
Maximum Green (s)				37.0	9.0	
Yellow Time (s)				5.0	5.0	
All-Red Time (s)				2.0	2.0	
Lost Time Adjust (s)				-2.0	-2.0	
Total Lost Time (s)				5.0	5.0	
Lead/Lag				0.0	0.0	
Lead-Lag Optimize?						
Vehicle Extension (s)				3.0	3.0	
Recall Mode				None	Min	
Act Effct Green (s)				39.0	11.0	
Actuated g/C Ratio				0.65	0.18	
v/c Ratio				0.91	0.87	
Control Delay				16.9	53.0	
Queue Delay				0.0	0.0	
Total Delay				16.9	53.0	
LOS				В	D	
Approach Delay				16.9	53.0	
Approach LOS				В	D	
Queue Length 50th (ft)				280	100	
Queue Length 95th (ft)				#513	#221	
Internal Link Dist (ft)	440			996	20	

2: Eastern U-Turn & US 401 Bypass WB

	-	•	1	←	4	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Turn Bay Length (ft)						
Base Capacity (vph)				2300	324	
Starvation Cap Reductn				0	0	
Spillback Cap Reductn				0	0	
Storage Cap Reductn				0	0	
Reduced v/c Ratio				0.91	0.87	
Intersection Summary						
Area Type:	Other					
Cycle Length: 60						
Actuated Cycle Length: 60						
Natural Cycle: 60						
Control Type: Actuated-Un	coordinated					
Maximum v/c Ratio: 0.91						
Intersection Signal Delay: 2				In	tersection	LOS: C
Intersection Capacity Utiliz	ation 74.3%			IC	U Level o	f Service D
Analysis Period (min) 15						
# 95th percentile volume	exceeds cap	acity, qu	eue may	be longer	•	
Queue shown is maxim	um after two	cycles.				

	-	•	1	←	4	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations			.,,,,,	^	7	. 1011
Traffic Volume (vph)	0	0	0	926	188	0
Future Volume (vph)	0	0	0	926	188	0
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	0.95	1.00	1.00
Frt				3.00		
Flt Protected					0.950	
Satd. Flow (prot)	0	0	0	3539	1770	0
Flt Permitted				- 5500	0.950	
Satd. Flow (perm)	0	0	0	3539	1770	0
Right Turn on Red		No		0000	No	No
Satd. Flow (RTOR)		140			140	140
Link Speed (mph)	55			55	45	
Link Distance (ft)	520			1076	100	
Travel Time (s)	6.4			13.3	1.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0.90	0.90	0.90	1029	209	0.90
Shared Lane Traffic (%)	U	U	U	1023	203	U
Lane Group Flow (vph)	0	0	0	1029	209	0
Turn Type	U	U	U	NA	Prot	U
Protected Phases				6	8	
Permitted Phases				U	U	
Detector Phase				6	8	
Switch Phase				U	U	
Minimum Initial (s)				14.0	7.0	
Minimum Split (s)				21.0	14.0	
Total Split (s)				38.0	22.0	
Total Split (%)				63.3%	36.7%	
Maximum Green (s)				31.0	15.0	
Yellow Time (s)				5.0	5.0	
All-Red Time (s)				2.0	2.0	
Lost Time Adjust (s)				-2.0	-2.0	
				-2.0 5.0	-2.0 5.0	
Total Lost Time (s) Lead/Lag				5.0	5.0	
Lead-Lag Optimize? Vehicle Extension (s)				3.0	3.0	
Recall Mode						
				None 22.7	Min	
Act Effet Green (s)					12.7	
Actuated g/C Ratio				0.50	0.28	
v/c Ratio				0.59	0.42	
Control Delay				9.9	17.9	
Queue Delay				0.0	0.0	
Total Delay				9.9	17.9	
LOS				A	B	
Approach Delay				9.9	17.9	
Approach LOS				Α	В	
Queue Length 50th (ft)				87	43	
Queue Length 95th (ft)				157	111	
Internal Link Dist (ft)	440			996	20	

2: Eastern U-Turn & US 401 Bypass WB

	-	•	1	•	4	-
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Turn Bay Length (ft)						
Base Capacity (vph)				2642	680	
Starvation Cap Reductn				0	0	
Spillback Cap Reductn				0	0	
Storage Cap Reductn				0	0	
Reduced v/c Ratio				0.39	0.31	
Intersection Summary						
Area Type:	Other					
Cycle Length: 60						
Actuated Cycle Length: 45.7	•					
Natural Cycle: 40						
Control Type: Actuated-Unc	oordinated					
Maximum v/c Ratio: 0.59						
Intersection Signal Delay: 11	1.2			In	tersection	LOS: B
Intersection Capacity Utilizat	tion 44.3%			IC	U Level o	f Service A
Analysis Period (min) 15						
Splits and Phases: 2: Eas	tern U-Turr	& US 4	01 Bypas	s WB		
T-1						
2						

APPENDIX F

CAPACITY ANALYSIS CALCULATIONS MITCHELL MILL ROAD

&

JONESVILLE ROAD / PEEBLES ROAD

HCM 6th AWSC 2022 Existing Timing Plan: AM Peak Hour

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	7	166	2	11	316	41	4	78	11	32	133	16
Future Vol, veh/h	7	166	2	11	316	41	4	78	11	32	133	16
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	184	2	12	351	46	4	87	12	36	148	18
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.8			14.8			10.1			11.4		
HCM LOS	В			В			В			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	4%	3%	18%	
Vol Thru, %	84%	95%	86%	73%	
Vol Right, %	12%	1%	11%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	93	175	368	181	
LT Vol	4	7	11	32	
Through Vol	78	166	316	133	
RT Vol	11	2	41	16	
Lane Flow Rate	103	194	409	201	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.168	0.294	0.576	0.318	
Departure Headway (Hd)	5.843	5.438	5.074	5.691	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	612	659	711	631	
Service Time	3.897	3.483	3.111	3.736	
HCM Lane V/C Ratio	0.168	0.294	0.575	0.319	
HCM Control Delay	10.1	10.8	14.8	11.4	
HCM Lane LOS	В	В	В	В	
HCM 95th-tile Q	0.6	1.2	3.7	1.4	

HCM 6th AWSC 2022 Existing Timing Plan: PM Peak Hour

intersection												
Intersection Delay, s/veh	10.8											
Intersection LOS	В											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	18	306	13	0	130	21	5	92	10	27	50	11
Future Vol, veh/h	18	306	13	0	130	21	5	92	10	27	50	11
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90

Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	20	340	14	0	144	23	6	102	11	30	56	12
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB			SB		
Opposing Approach	WB				EB		SB			NB		
Opposing Lanes	1				1		1			1		
Conflicting Approach Left	SB				NB		EB			WB		
Conflicting Lanes Left	1				1		1			1		
Conflicting Approach Right	NB				SB		WB			EB		
Conflicting Lanes Right	1				1		1			1		
HCM Control Delay	12.2				9.4		9.5			9.4		
HCM LOS	В				Α		Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	5%	5%	0%	31%	
Vol Thru, %	86%	91%	86%	57%	
Vol Right, %	9%	4%	14%	12%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	107	337	151	88	
LT Vol	5	18	0	27	
Through Vol	92	306	130	50	
RT Vol	10	13	21	11	
Lane Flow Rate	119	374	168	98	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.175	0.488	0.227	0.146	
Departure Headway (Hd)	5.3	4.694	4.868	5.368	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	669	760	730	660	
Service Time	3.395	2.76	2.948	3.464	
HCM Lane V/C Ratio	0.178	0.492	0.23	0.148	
HCM Control Delay	9.5	12.2	9.4	9.4	
HCM Lane LOS	Α	В	Α	Α	
HCM 95th-tile Q	0.6	2.7	0.9	0.5	

HCM 6th AWSC 2027 No-Build Timing Plan: AM Peak Hour

Intersection												
Intersection Delay, s/veh	95.4											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	To			4	T.		4		7	1-	
Traffic Vol, veh/h	63	253	12	29	607	119	12	86	20	84	149	54
Future Vol, veh/h	63	253	12	29	607	119	12	86	20	84	149	54
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	70	281	13	32	674	132	13	96	22	93	166	60
Number of Lanes	1	1	0	0	1	1	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			2			2		
HCM Control Delay	19.9			170.3			16.1			17.2		
HCM LOS	С			F			С			С		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2				
Vol Left, %		10%	100%	0%	5%	0%	100%	0%				
Vol Thru, %		73%	0%	95%	95%	0%	0%	73%				
Vol Right, %		17%	0%	5%	0%	100%	0%	27%				
Sign Control		Stop										
Traffic Vol by Lane		118	63	265	636	119	84	203				
LT Vol		12	63	0	29	0	84	0				
Through Vol		86	0	253	607	0	0	149				
RT Vol		20	0	12	0	119	0	54				
Lane Flow Rate		131	70	294	707	132	93	226				
Geometry Grp		6	7	7	7	7	7	7				
Degree of Util (X)		0.302	0.152	0.597	1.372	0.229	0.215	0.476				
Departure Headway (Hd)		9.162	8.438	7.887	6.988	6.248	9.036	8.326				
Convergence, Y/N		Yes										
Cap		395	428	462	516	570	399	435				
Service Time		7.162	6.138	5.587	4.777	4.036	6.736	6.026				

0.332

16.1

С

1.3

0.164

12.6

В

0.5

0.636

21.6

С

3.8

1.37

200.1

31.9

F

0.232

10.9

В

0.9

0.233

14.2

В

0.8

0.52

18.4

С

2.5

HCM Lane V/C Ratio

HCM Control Delay

HCM Lane LOS

HCM 95th-tile Q

HCM 6th AWSC 2027 No-Build Timing Plan: PM Peak Hour

Intersection												
Intersection Delay, s/veh	57.2											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1.			4	7		4		*	1	
Traffic Vol, veh/h	114	459	19	14	387	95	19	106	31	159	65	33
Future Vol, veh/h	114	459	19	14	387	95	19	106	31	159	65	33
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	127	510	21	16	430	106	21	118	34	177	72	37
Number of Lanes	1	1	0	0	1	1	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		_
Opposing Lanes	2			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			2			2		
HCM Control Delay	90.6			50			19.2			17.4		
HOW CONTION DETAY	50.0			• •								
HCM LOS	F			E			С			С		
		NBLn1	EBLn1		WBLn1	WBLn2		SBLn2				
HCM LOS		NBLn1 12%	EBLn1 100%	E	WBLn1	WBLn2	С	SBLn2				
HCM LOS Lane				E EBLn2			C SBLn1					
Lane Vol Left, %		12%	100%	EBLn2	3%	0%	SBLn1 100%	0%				
Lane Vol Left, % Vol Thru, %		12% 68%	100% 0%	EBLn2 0% 96%	3% 97%	0% 0%	SBLn1 100% 0%	0% 66%				
Lane Vol Left, % Vol Thru, % Vol Right, %		12% 68% 20%	100% 0% 0%	EBLn2 0% 96% 4%	3% 97% 0%	0% 0% 100%	SBLn1 100% 0% 0%	0% 66% 34%				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control		12% 68% 20% Stop	100% 0% 0% Stop	EBLn2 0% 96% 4% Stop	3% 97% 0% Stop 401 14	0% 0% 100% Stop	SBLn1 100% 0% 0% Stop	0% 66% 34% Stop				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane		12% 68% 20% Stop 156 19	100% 0% 0% Stop 114	EBLn2 0% 96% 4% Stop 478	3% 97% 0% Stop 401	0% 0% 100% Stop 95 0	SBLn1 100% 0% 0% Stop 159	0% 66% 34% Stop 98 0 65				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		12% 68% 20% Stop 156 19 106 31	100% 0% 0% Stop 114 114 0	EBLn2 0% 96% 4% Stop 478 0 459	3% 97% 0% Stop 401 14 387	0% 0% 100% Stop 95 0	SBLn1 100% 0% 0% Stop 159 159 0	0% 66% 34% Stop 98 0 65 33				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate		12% 68% 20% Stop 156 19 106 31	100% 0% 0% Stop 114 114 0	EBLn2 0% 96% 4% Stop 478 0 459 19 531	3% 97% 0% Stop 401 14 387 0 446	0% 0% 100% Stop 95 0 0 95	SBLn1 100% 0% 0% Stop 159 0 0 177	0% 66% 34% Stop 98 0 65				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol		12% 68% 20% Stop 156 19 106 31 173 6	100% 0% 0% Stop 114 114 0 0 127	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7	3% 97% 0% Stop 401 14 387 0 446	0% 0% 100% Stop 95 0 0 95 106	SBLn1 100% 0% 0% Stop 159 0 0 177 7	0% 66% 34% Stop 98 0 65 33 109				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		12% 68% 20% Stop 156 19 106 31 173 6	100% 0% 0% Stop 114 114 0 0 127 7	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13	3% 97% 0% Stop 401 14 387 0 446 7	0% 0% 100% Stop 95 0 0 95 106 7	SBLn1 100% 0% 0% Stop 159 0 0 177 7 0.443	0% 66% 34% Stop 98 0 65 33 109 7				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp		12% 68% 20% Stop 156 19 106 31 173 6	100% 0% 0% Stop 114 114 0 0 127	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7	3% 97% 0% Stop 401 14 387 0 446	0% 0% 100% Stop 95 0 0 95 106	SBLn1 100% 0% 0% Stop 159 0 0 177 7	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X)		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes	SBLn1 100% 0% 0% Stop 159 0 07 177 7 0.443 9.428 Yes	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes 388	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes 438	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes 473	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes 459	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes 498	SBLn1 100% 0% 0% Stop 159 0 0 177 7 0.443 9.428 Yes 385	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes 417				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes 388 7.353	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes 438 5.959	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes 473 5.414	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes 459 5.694	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes 498 4.951	SBLn1 100% 0% 0% Stop 159 0 07 177 7 0.443 9.428 Yes 385 7.128	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes 417 6.362				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time HCM Lane V/C Ratio		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes 388 7.353 0.446	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes 438 5.959 0.29	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes 473 5.414 1.123	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes 459 5.694 0.972	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes 498 4.951 0.213	SBLn1 100% 0% 0% Stop 159 0 0 177 7 0.443 9.428 Yes 385 7.128 0.46	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes 417 6.362 0.261				
Lane Vol Left, % Vol Thru, % Vol Right, % Sign Control Traffic Vol by Lane LT Vol Through Vol RT Vol Lane Flow Rate Geometry Grp Degree of Util (X) Departure Headway (Hd) Convergence, Y/N Cap Service Time		12% 68% 20% Stop 156 19 106 31 173 6 0.429 9.353 Yes 388 7.353	100% 0% 0% Stop 114 114 0 0 127 7 0.289 8.206 Yes 438 5.959	EBLn2 0% 96% 4% Stop 478 0 459 19 531 7 1.13 7.661 Yes 473 5.414	3% 97% 0% Stop 401 14 387 0 446 7 0.95 7.994 Yes 459 5.694	0% 0% 100% Stop 95 0 0 95 106 7 0.204 7.251 Yes 498 4.951	SBLn1 100% 0% 0% Stop 159 0 07 177 7 0.443 9.428 Yes 385 7.128	0% 66% 34% Stop 98 0 65 33 109 7 0.251 8.662 Yes 417 6.362				

2.1

1.2

18.4

11.3

8.0

2.2

1

HCM 95th-tile Q

HCM 2010 AWSC 2027 Build Timing Plan: AM Peak Hour

Intersection												
Intersection Delay, s/veh	104											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	To.			4	7		4		7	1.	
Traffic Vol. veh/h	71	253	12	29	607	121	12	88	20	91	156	76

ranic voi, ven/n	7.1	203	12	29	007	121	12	00	20	91	100	70
Future Vol, veh/h	71	253	12	29	607	121	12	88	20	91	156	76
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	79	281	13	32	674	134	13	98	22	101	173	84
Number of Lanes	1	1	0	0	1	1	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			2			2		
HCM Control Delay	20.8			191.1			16.7			19		
HCM LOS	С			F			С			С		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2	
Vol Left, %	10%	100%	0%	5%	0%	100%	0%	
Vol Thru, %	73%	0%	95%	95%	0%	0%	67%	
Vol Right, %	17%	0%	5%	0%	100%	0%	33%	
Sign Control	Stop							
Traffic Vol by Lane	120	71	265	636	121	91	232	
LT Vol	12	71	0	29	0	91	0	
Through Vol	88	0	253	607	0	0	156	
RT Vol	20	0	12	0	121	0	76	
Lane Flow Rate	133	79	294	707	134	101	258	
Geometry Grp	6	7	7	7	7	7	7	
Degree of Util (X)	0.313	0.176	0.611	1.43	0.244	0.234	0.545	
Departure Headway (Hd)	9.455	8.699	8.147	7.283	6.541	9.17	8.414	
Convergence, Y/N	Yes							
Cap	383	415	448	502	553	394	430	
Service Time	7.455	6.399	5.847	4.983	4.241	6.87	6.114	
HCM Lane V/C Ratio	0.347	0.19	0.656	1.408	0.242	0.256	0.6	
HCM Control Delay	16.7	13.2	22.8	225.3	11.3	14.6	20.7	
HCM Lane LOS	С	В	С	F	В	В	С	
HCM 95th-tile Q	1.3	0.6	4	34.3	1	0.9	3.2	

HCM 2010 AWSC 2027 Build Timing Plan: PM Peak Hour

Intersection												
Intersection Delay, s/veh	60.9											
Intersection LOS	F											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4	7		4		7	7.	
Traffic Vol, veh/h	138	459	19	14	387	102	19	113	31	163	69	49
Future Vol, veh/h	138	459	19	14	387	102	19	113	31	163	69	49
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	153	510	21	16	430	113	21	126	34	181	77	54
Number of Lanes	1	1	0	0	1	1	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	2			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			2		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			2			2		
HCM Control Delay	96.6			54.4			20.2			18		
HCM LOS	F			F			С			С		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	WBLn2	SBLn1	SBLn2				
Vol Left, %		12%	100%	0%	3%	0%	100%	0%				
Vol Thru, %		69%	0%	96%	97%	0%	0%	58%				
Vol Right, %		19%	0%	4%	0%	100%	0%	42%				
Sign Control		Stop										
Traffic Vol by Lane		163	138	478	401	102	163	118				
LT Vol		19	138	0	14	0	163	0				
Through Vol		113	0	459	387	0	0	69				
RT Vol		31	0	19	0	102	0	49				
Lane Flow Rate		181	153	531	446	113	181	131				
Geometry Grp		6	7	7	7	7	7	7				
Degree of Util (X)		0.455	0.358	1.159	0.973	0.225	0.459	0.304				
Departure Headway (Hd)		9.533	8.403	7.857	8.211	7.466	9.559	8.735				
Convergence, Y/N		Yes										
Сар		380	428	462	446	484	379	414				
Service Time		7.533	6.158	5.612	5.911	5.166	7.259	6.435				
HCM Lane V/C Ratio		0.476	0.357	1.149	1	0.233	0.478	0.316				
HCM Control Delay		20.2	15.8	119.9	65.1	12.3	20.1	15.2				
HCM Lane LOS		С	C	F	F	В	С	C				
LICAL OF HE FILE O		0 0	4 ^	400	440	^ ^	0 0	4 2				

2.3

1.6

19.3

11.9

0.9

2.3

1.3

HCM 95th-tile Q

Lane Configurations		١	→	•	•	•	•	4	Î	~	/	ţ	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations	*	T.			4	ř		4		*	T.	
Future Volume (vph)				12	29	607		12		20	91		76
Ideal Flow (rphpin)	· · /	71									91		
Storage Length (fft) 100	` ' '		1900	1900	1900	1900		1900		1900		1900	1900
Storage Lanes					0					0			
Taper Length (ff)					0					0	1		0
Lane Util. Factor		100			100			100			100		
Fith		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Satd Flow (proft) 1770	Frt		0.993				0.850		0.978			0.951	
Satd Flow (proft) 1770	Flt Protected	0.950				0.998					0.950		
Fit Permitted	Satd. Flow (prot)		1850	0	0		1583	0		0		1771	0
Right Turn on Red Satul Flow (RTOR) Satu	,	0.247				0.976			0.946		0.785		
Right Turn on Red Satul. Flow (RTOR) Satul. Flo	Satd. Flow (perm)	460	1850	0	0	1818	1583	0	1723	0	1462	1771	0
Satd. Flow (RTOR) Link Speed (mph)	. ,			No						No			No
Link Speed (mph)													
Link Distance (ft) 1536 1126 1017 1092 Travel Time (s) 23.3 17.1 15.4 16.5 Peak Hour Factor 0.90			45			45			45			45	
Travel Time (s)													
Peak Hour Factor Quantification Qu													
Adj. Flow (vph) 79 281 13 32 674 134 13 98 22 101 173 84 Shared Lane Traffic (%) 2 0 0 776 134 0 133 0 101 257 0 Turn Type Perm NA A A A Detector Phase 2 2 6 6 6 8 8 4 4 </td <td>. ,</td> <td>0.90</td> <td></td> <td>0.90</td> <td>0.90</td> <td></td> <td>0.90</td> <td>0.90</td> <td></td> <td>0.90</td> <td>0.90</td> <td></td> <td>0.90</td>	. ,	0.90		0.90	0.90		0.90	0.90		0.90	0.90		0.90
Shared Lane Traffic (%) Lane Group Flow (vph) 79 294 0 0 706 134 0 133 0 101 257 0 1717 Type Perm NA NA Perm N													
Lane Group Flow (vph) 79 294 0 0 706 134 0 133 0 101 257 0 Turn Type	, , ,												
Turn Type Perm NA Perm NA Perm Perm NA Mina 1		79	294	0	0	706	134	0	133	0	101	257	0
Protected Phases 2	,			-						-			
Permitted Phases 2													
Detector Phase 2 2 6 6 6 8 8 8 4 4		2			6		6	8			4		
Switch Phase Minimum Initial (s) 12.0 12.0 12.0 12.0 12.0 12.0 7.0 7.0 7.0 7.0 Minimum Split (s) 19.0 19.0 19.0 19.0 14.0	Detector Phase		2			6			8			4	
Minimum Initial (s) 12.0 12.0 12.0 12.0 12.0 12.0 7.0 7.0 7.0 7.0 Minimum Split (s) 19.0 19.0 19.0 19.0 19.0 14.0													
Minimum Split (s) 19.0 19.0 19.0 19.0 19.0 14.0 <td></td> <td>12.0</td> <td>12.0</td> <td></td> <td>12.0</td> <td>12.0</td> <td>12.0</td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td>		12.0	12.0		12.0	12.0	12.0	7.0	7.0		7.0	7.0	
Total Split (s) 40.0 40.0 40.0 40.0 20.0 20.0 20.0 20.0 Total Split (%) 66.7% 66.7% 66.7% 66.7% 66.7% 33.3% 33.0 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <	. ,		19.0									14.0	
Total Split (%) 66.7% 66.7% 66.7% 66.7% 66.7% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.3% 33.0 33.0			40.0		40.0							20.0	
Maximum Green (s) 33.0 33.0 33.0 33.0 33.0 13.0 13.0 13.0 Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0						66.7%	66.7%						
Yellow Time (s) 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 2.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0			33.0		33.0	33.0	33.0					13.0	
All-Red Time (s) 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0	Yellow Time (s)		5.0		5.0	5.0	5.0	5.0	5.0		5.0		
Lost Time Adjust (s) -2.0<		2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
Total Lost Time (s) 5.0 2.0 5.0 6.0 8.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0	()												
Lead/Lag Lead-Lag Optimize? Vehicle Extension (s) 3.0													
Lead-Lag Optimize? Vehicle Extension (s) 3.0	. ,												
Vehicle Extension (s) 3.0 Min													
Recall Mode None None None None Min Min Min Min Act Effct Green (s) 26.5 26.5 26.5 26.5 13.3 13.3 13.3 Actuated g/C Ratio 0.53 0.53 0.53 0.53 0.26 0.26 0.26 v/c Ratio 0.33 0.30 0.74 0.16 0.29 0.26 0.55 Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B B C Approach Delay 8.2 13.2 19.1 21.9 21.9		3.0	3.0		3.0	3.0	3.0	3.0	3.0		3.0	3.0	
Act Effct Green (s) 26.5 26.5 26.5 26.5 13.3 13.3 13.3 13.3 Actuated g/C Ratio 0.53 0.53 0.53 0.53 0.26 0.26 0.26 v/c Ratio 0.33 0.30 0.74 0.16 0.29 0.26 0.55 Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B B C Approach Delay 8.2 13.2 19.1 21.9													
Actuated g/C Ratio 0.53 0.53 0.53 0.26 0.26 0.26 v/c Ratio 0.33 0.30 0.74 0.16 0.29 0.26 0.55 Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B B C Approach Delay 8.2 13.2 19.1 21.9													
v/c Ratio 0.33 0.30 0.74 0.16 0.29 0.26 0.55 Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B C Approach Delay 8.2 13.2 19.1 21.9													
Control Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 Queue Delay 0.0 <													
Queue Delay 0.0													
Total Delay 10.9 7.4 14.4 6.5 19.1 19.1 23.0 LOS B A B A B B C Approach Delay 8.2 13.2 19.1 21.9	•												
LOS B A B A B C Approach Delay 8.2 13.2 19.1 21.9													
Approach Delay 8.2 13.2 19.1 21.9													
							, ,						
	Approach LOS		Α			В			В			C	

3: Peebles Road/Jonesville Road & Mitchell Mill Road

	•	-	*	1	•	•	1	Ť	~	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	12	45			150	19		32		24	67	
Queue Length 95th (ft)	37	81			258	40		80		65	147	
Internal Link Dist (ft)		1456			1046			937			1012	
Turn Bay Length (ft)	100					100				100		
Base Capacity (vph)	333	1342			1319	1148		536		455	552	
Starvation Cap Reductn	0	0			0	0		0		0	0	
Spillback Cap Reductn	0	0			0	0		0		0	0	
Storage Cap Reductn	0	0			0	0		0		0	0	
Reduced v/c Ratio	0.24	0.22			0.54	0.12		0.25		0.22	0.47	

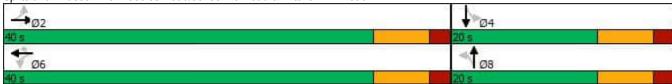
Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 50.2

Natural Cycle: 50


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.74

Intersection Signal Delay: 14.4 Intersection LOS: B
Intersection Capacity Utilization 76.2% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Peebles Road/Jonesville Road & Mitchell Mill Road

	٠	-	•	•	•	•	4	Ť	~	/	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	7	1			4	ř		4		*	1	
Traffic Volume (vph)	138	459	19	14	387	102	19	113	31	163	69	49
Future Volume (vph)	138	459	19	14	387	102	19	113	31	163	69	49
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (ft)	100		0	0		100	0		0	100		0
Storage Lanes	1		0	0		1	0		0	1		0
Taper Length (ft)	100		•	100			100		-	100		-
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt		0.994				0.850		0.975			0.938	1100
Flt Protected	0.950	0.00			0.998	0.000		0.994		0.950	0.000	
Satd. Flow (prot)	1770	1852	0	0	1859	1583	0	1805	0	1770	1747	0
Flt Permitted	0.436	1002			0.973	1000		0.951		0.728		
Satd. Flow (perm)	812	1852	0	0	1812	1583	0	1727	0	1356	1747	0
Right Turn on Red	012	1002	No		1012	No			No	1000	., .,	No
Satd. Flow (RTOR)			140			110			110			140
Link Speed (mph)		45			45			45			45	
Link Opeca (mph) Link Distance (ft)		1536			1126			1017			1092	
Travel Time (s)		23.3			17.1			15.4			16.5	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	153	510	21	16	430	113	21	126	34	181	77	54
Shared Lane Traffic (%)	100	310	۷ ۱	10	400	110	21	120	J -1	101	11	J T
Lane Group Flow (vph)	153	531	0	0	446	113	0	181	0	181	131	0
Turn Type	Perm	NA	U	Perm	NA	Perm	Perm	NA	U	Perm	NA	U
Protected Phases	r C illi	2		r Cilli	6	r Giiii	r c iiii	8		r C illi	4	
Permitted Phases	2	2		6	U	6	8	U		4	7	
Detector Phase	2	2		6	6	6	8	8		4	4	
Switch Phase	2			U	U	U	U	U		7	7	
Minimum Initial (s)	12.0	12.0		12.0	12.0	12.0	7.0	7.0		7.0	7.0	
Minimum Split (s)	19.0	19.0		19.0	19.0	19.0	14.0	14.0		14.0	14.0	
Total Split (s)	36.0	36.0		36.0	36.0	36.0	24.0	24.0		24.0	24.0	
Total Split (%)	60.0%	60.0%		60.0%	60.0%	60.0%	40.0%	40.0%		40.0%	40.0%	
Maximum Green (s)	29.0	29.0		29.0	29.0	29.0	17.0	17.0		17.0	17.0	
Yellow Time (s)	5.0	5.0		5.0	5.0	5.0	5.0	5.0		5.0	5.0	
All-Red Time (s)	2.0	2.0		2.0	2.0	2.0	2.0	2.0		2.0	2.0	
	-2.0	-2.0		2.0	-2.0	-2.0	2.0	-2.0		-2.0	-2.0	
Lost Time Adjust (s) Total Lost Time (s)	5.0	5.0			5.0	5.0		5.0		5.0	5.0	
	5.0	5.0			5.0	5.0		5.0		5.0	5.0	
Lead/Lag												
Lead-Lag Optimize?	2.0	2.0		2.0	2.0	2.0	2.0	3.0		2.0	2.0	
Vehicle Extension (s)	3.0	3.0		3.0	3.0	3.0	3.0			3.0	3.0	
Recall Mode	None	None		None	None	None	Min	Min		Min	Min	
Act Effet Green (s)	21.1	21.1			21.1	21.1		13.9		13.9	13.9	
Actuated g/C Ratio	0.46	0.46			0.46	0.46		0.31		0.31	0.31	
v/c Ratio	0.41	0.62			0.53	0.15		0.34		0.44	0.25	
Control Delay	12.4	13.1			11.6	8.0		15.8		18.1	14.8	
Queue Delay	0.0	0.0			0.0	0.0		0.0		0.0	0.0	
Total Delay	12.4	13.1			11.6	8.0		15.8		18.1	14.8	
LOS	В	В			В	Α		В		В	В	
Approach Delay		12.9			10.9			15.8			16.7	
Approach LOS		В			В			В			В	

3: Peebles Road/Jonesville Road & Mitchell Mill Road

	•	-	*	1	←	•	1	1	-	/	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Queue Length 50th (ft)	23	92			73	15		34		35	24	
Queue Length 95th (ft)	68	198			160	41		95		101	71	
Internal Link Dist (ft)		1456			1046			937			1012	
Turn Bay Length (ft)	100					100				100		
Base Capacity (vph)	581	1326			1297	1133		758		595	766	
Starvation Cap Reductn	0	0			0	0		0		0	0	
Spillback Cap Reductn	0	0			0	0		0		0	0	
Storage Cap Reductn	0	0			0	0		0		0	0	
Reduced v/c Ratio	0.26	0.40			0.34	0.10		0.24		0.30	0.17	

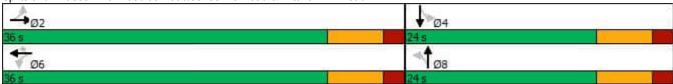
Intersection Summary

Area Type: Other

Cycle Length: 60

Actuated Cycle Length: 45.5

Natural Cycle: 40


Control Type: Actuated-Uncoordinated

Maximum v/c Ratio: 0.62

Intersection Signal Delay: 13.2 Intersection LOS: B
Intersection Capacity Utilization 81.0% ICU Level of Service D

Analysis Period (min) 15

Splits and Phases: 3: Peebles Road/Jonesville Road & Mitchell Mill Road

APPENDIX G

CAPACITY ANALYSIS CALCULATIONS Jonesville Road

&

Universal Drive

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W	LUIX	HUL	4	1 €	אופט
Traffic Vol, veh/h	3	3	1	125	178	1
Future Vol, veh/h	3	3	1	125	178	1
Conflicting Peds, #/hr	0	0	0	0	0	0
			Free	Free	Free	Free
Sign Control RT Channelized	Stop -	Stop None				None
			-		-	
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	3	3	1	139	198	1
Major/Minor I	Minor2	ı	Major1	N	//ajor2	
Conflicting Flow All	340	199	199	0	-	0
Stage 1	199	-	100	-	_	-
Stage 2	141	_	_		_	_
Critical Hdwy	6.42	6.22	4.12		_	
Critical Hdwy Stg 1	5.42	0.22	4.12	_	_	_
	5.42	_		-		-
Critical Hdwy Stg 2		2 240	0.040	-	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	656	842	1373	-	-	-
Stage 1	835	-	_	-	-	-
Stage 2	886	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	655	842	1373	-	-	-
Mov Cap-2 Maneuver	655	-	-	-	-	-
Stage 1	834	-	-	-	-	-
Stage 2	886	-	-	-	-	-
Annroach	ED		NID		CD	
Approach	EB		NB		SB	
HCM Control Delay, s	9.9		0.1		0	
HCM LOS	Α					
Minor Lane/Major Mvm	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1373	-		-	
HCM Lane V/C Ratio		0.001		0.009	_	_
HCM Control Delay (s)		7.6	0	9.9	_	_
HCM Lane LOS		Α.	A	3.5 A	_	_
LIVINI LAHE LUU						
HCM 95th %tile Q(veh)	١	0	_	0	_	_

Intersection						
Int Delay, s/veh	0.2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	N/	LDIX	NDL	IND I	\$ 1 to	אומט
Traffic Vol, veh/h	1	2	1		89	3
•	•	2	4	127		3
Future Vol, veh/h	1	2	4	127	89	
Conflicting Peds, #/hr	0		0	0		0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	2	4	141	99	3
Major/Minor I	Minor2	N	Major1	,	//ajor2	
						^
Conflicting Flow All	250	101	102	0	-	0
Stage 1	101	-	-	-	-	-
Stage 2	149	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		2.218	-	-	-
Pot Cap-1 Maneuver	739	954	1490	-	-	-
Stage 1	923	-	-	-	-	-
Stage 2	879	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	737	954	1490	-	-	-
Mov Cap-2 Maneuver	737	-	_	-	-	-
Stage 1	920	_	_	_	_	_
Stage 2	879	_	_	_	_	_
0.030 2	0.0					
Approach	EB		NB		SB	
HCM Control Delay, s	9.2		0.2		0	
HCM LOS	Α					
Minor Lane/Major Mvm	nt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1490		869		
HCM Lane V/C Ratio		0.003		0.004	-	_
HCM Control Delay (s)		7.4	0	9.2	_	_
HCM Lane LOS		7.4 A	A	9.2 A		
HCM 95th %tile Q(veh)	١	0	- -	0	-	-
LICIVI SOILI MILLE CILVELL	1	U	_	U	-	_

Interception						
Intersection	0.1					
Int Delay, s/veh						
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	MA			4	1	
Traffic Vol, veh/h	3	3	1	339	294	1
Future Vol, veh/h	3	3	1	339	294	1
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	3	3	1	377	327	1
WWW	U	U		011	ULI	•
Major/Minor I	Minor2		Major1	Λ	/lajor2	
Conflicting Flow All	707	328	328	0	-	0
Stage 1	328	-	-	-	-	-
Stage 2	379	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	_	-	-
Critical Hdwy Stg 2	5.42	-	_	_	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuver	402	713	1232	_	-	-
Stage 1	730			_	_	_
Stage 2	692	_	_	_	_	_
Platoon blocked, %	UUZ		_	_	_	_
Mov Cap-1 Maneuver	402	713	1232	-	_	-
	402			-	-	-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	729	-	-	-	-	-
Stage 2	692	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	12.1		0		0	
HCM LOS	В				•	
N.C. 1 (0.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		NE	NET	-DI 4	00-	000
Minor Lane/Major Mvm	nt	NBL		EBLn1	SBT	SBR
Capacity (veh/h)	nt	1232	-	514	SBT -	SBR -
Capacity (veh/h) HCM Lane V/C Ratio		1232 0.001	- -	514 0.013		SBR - -
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		1232	- - 0	514 0.013 12.1	-	-
Capacity (veh/h) HCM Lane V/C Ratio		1232 0.001	- -	514 0.013	-	-

Intersection						
Int Delay, s/veh	0.1					
		E55	ND	NDT	ODT	000
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	A			4	1	
Traffic Vol, veh/h	1	2	4	296	336	3
Future Vol, veh/h	1	2	4	296	336	3
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	e,# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	1	2	4	329	373	3
manife low			- 7	OLU	010	
Major/Minor	Minor2		Major1	N	/lajor2	
Conflicting Flow All	712	375	376	0	-	0
Stage 1	375	-	-	-	-	-
Stage 2	337	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	_	-
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy		3.318	2.218	_	_	_
Pot Cap-1 Maneuver	399	671	1182	_	_	_
Stage 1	695			_	_	_
Stage 2	723	_	_	_	_	_
Platoon blocked, %	123		_		_	
Mov Cap-1 Maneuver	397	671	1182	_		-
		0/1	1102	-		-
Mov Cap-2 Maneuver		-	-	-	-	-
Stage 1	692	-	-	-	-	-
Stage 2	723	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.6		0.1		0	
HCM LOS	В		0.1		U	
I IOWI LOO	ט					
Minor Lane/Major Mvr	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1182	-	546	-	-
HCM Lane V/C Ratio		0.004	_	0.006	-	-
HCM Control Delay (s)	8.1	0	11.6	-	-
HCM Lane LOS	,	Α	A	В	_	_
HCM 95th %tile Q(veh	1)	0	-	0	_	_
TION COUT TOUTO Q VOI	'/	J		U		

Intersection						
Int Delay, s/veh	0.4					
-		EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	**	^	0	4	100	-
Traffic Vol, veh/h	16	6	2	356	300	5
Future Vol, veh/h	16	6	2	356	300	5
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage	-	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	18	7	2	396	333	6
Major/Minor I	Minor2	ı	Major1	N	/lajor2	
Conflicting Flow All	736	336	339	0	- -	0
	336					
Stage 1		-	-	-	-	-
Stage 2	400	-	4.40	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518		2.218	-	-	-
Pot Cap-1 Maneuver	386	706	1220	-	-	-
Stage 1	724	-	-	-	-	-
Stage 2	677	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	385	706	1220	-	-	-
Mov Cap-2 Maneuver	385	-	-	-	-	-
Stage 1	723	-	-	-	-	-
Stage 2	677	-	-	-	-	-
Approach	EB		NB		SB	
ADDIOACH						
			0		0	
HCM Control Delay, s	13.7					
	13.7 B					
HCM Control Delay, s						
HCM Control Delay, s HCM LOS	В	NBL	NBT	EBLn1	SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm	В	NBL 1220	NBT I	EBLn1 439	SBT	SBR
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h)	В	1220	-	439		SBR - -
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	B nt	1220 0.002	-	439 0.056	-	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	B nt	1220 0.002 8	- - 0	439 0.056 13.7	-	-
HCM Control Delay, s HCM LOS Minor Lane/Major Mvm Capacity (veh/h) HCM Lane V/C Ratio	B nt	1220 0.002	-	439 0.056	- - -	- - -

Intersection						
Int Delay, s/veh	0.4					
		EDD	NDI	NDT	CDT	CDD
Movement Configurations	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	10	1	0	207	254	17
Traffic Vol, veh/h	10	4	8	307	354	17
Future Vol, veh/h	10	4	8	307	354	17
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-		-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	11	4	9	341	393	19
Major/Minor	Minor2		Major1	N	//ajor2	
Conflicting Flow All	762	403	412	0	-	0
	403					
Stage 1		-	-	-	-	-
Stage 2	359	-	4.40	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	373	647	1147	-	-	-
Stage 1	675	-	-	-	-	-
Stage 2	707	-	-	-	-	-
Platoon blocked, %				-	-	-
Mov Cap-1 Maneuver	369	647	1147	-	-	-
Mov Cap-2 Maneuver	369	-	-	-	-	-
Stage 1	668	_	-	-	-	_
Stage 2	707	-	-	-	-	-
, and the second						
			N.D.		0.5	
Approach	EB		NB		SB	
HCM Control Delay, s	13.9		0.2		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	NRT	EBLn1	SBT	SBR
Capacity (veh/h)		1147	-		-	
HCM Lane V/C Ratio		0.008		0.037		_
		8.2	0	13.9	-	-
HCM Control Delay (s) HCM Lane LOS			-	13.9 B		-
HCM 95th %tile Q(veh	١	A 0	Α	0.1	-	-
HOW SOUL WILLE CALAGE	1	U	-	U. I	-	-

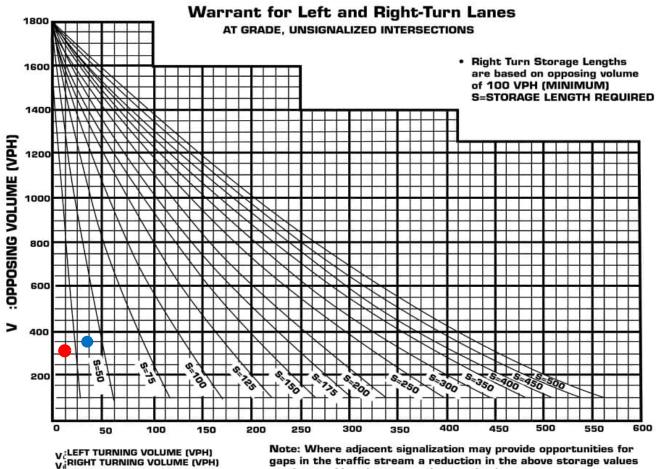
APPENDIX H

CAPACITY ANALYSIS CALCULATIONS Jonesville Road

&

Site Drive

Intersection						
Int Delay, s/veh	1					
	EDI	EDD	NDI	NDT	CDT	CDD
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	À	00	7	•	1	•
Traffic Vol, veh/h	17	33	11	335	306	6
Future Vol, veh/h	17	33	11	335	306	6
Conflicting Peds, #/hr	0	0	_ 0	0	0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	50	-	-	-
Veh in Median Storage		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	19	37	12	372	340	7
Major/Minor	Minor2		Major1	, A	Major2	
Conflicting Flow All	740	344	347	0	-	0
Stage 1	344	-	-	-	-	-
Stage 2	396	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	_	-	-
Follow-up Hdwy		3.318		-	-	-
Pot Cap-1 Maneuver	384	699	1212	-	-	-
Stage 1	718	-	-	-		-
Stage 2	680	-	-	-	-	-
Platoon blocked, %				-	_	-
Mov Cap-1 Maneuver	380	699	1212	-	-	-
Mov Cap-2 Maneuver	380	-	-	-	-	-
Stage 1	711	_	-	-	_	_
Stage 2	680	-	_	-	-	-
A						
Approach	EB		NB		SB	
HCM Control Delay, s	12.4		0.3		0	
HCM LOS	В					
Minor Lane/Major Mvm	nt	NBL	MRT	EBLn1	SBT	SBR
		1212	-		001	ODIC
Capacity (veh/h) HCM Lane V/C Ratio						
		0.01		0.102	-	-
HCM Control Delay (s) HCM Lane LOS		8	-		-	-
		Α	-	В	-	-
HCM 95th %tile Q(veh)	١	0	_	0.3	_	_


Int Delay, s/veh Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/r Sign Control		EBR	NBL	NBT	ODT	
Movement Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/r	NA.	EBR	NBL	NRT	CDT	
Lane Configurations Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/r	NA.	LDIX	INDL		SRI	SBR
Traffic Vol, veh/h Future Vol, veh/h Conflicting Peds, #/h			-		SBT	אמט
Future Vol, veh/h Conflicting Peds, #/r		00	74	200	125	40
Conflicting Peds, #/h	11	22	34	308	335	18
	11	22	34	308	335	18
Sian Control		0	0	0	0	0
	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	50	-	-	-
Veh in Median Stora	ige, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	24	38	342	372	20
Major/Minor	Minor2		Major1		Major2	
Conflicting Flow All	800	382	392	0	-	0
Stage 1	382	-	-	-	-	-
Stage 2	418	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	2.218	-	-	-
Pot Cap-1 Maneuve		665	1167	-	_	-
Stage 1	690	-	-	_	_	_
Stage 2	664	_	_	_	_	_
Platoon blocked, %	00-1			_	_	_
Mov Cap-1 Maneuve	er 342	665	1167		_	_
		- 003	1107	_		_
Mov Cap-2 Maneuve			-			-
Stage 1	667	-	-	-	-	-
Stage 2	664	-	-			-
Approach	EB		NB		SB	
HCM Control Delay,			0.8		0	
HCM LOS	5 12.7 B		0.0		U	
TIOWI LOG	٥					
Minor Lane/Major M	vmt	NBL	NBT I	EBLn1	SBT	SBR
Capacity (veh/h)		1167	-		-	-
HCM Lane V/C Ratio	0	0.032	-	0.072	-	-
HCM Control Delay		8.2	_	12.7	_	_
	(-)	Α	_	В	_	_
HCM Lane LOS HCM 95th %tile Q(v	ah)	0.1	_	0.2	_	_

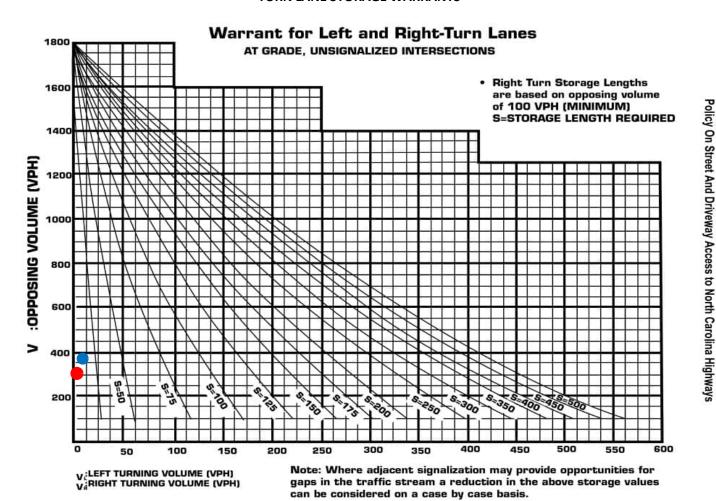
APPENDIX I

TURN LANE WARRANTS

HARRIS CREEK FARM

TURN LANE STORAGE WARRANTS

Note: Where adjacent signalization may provide opportunities for gaps in the traffic stream a reduction in the above storage values can be considered on a case by case basis.

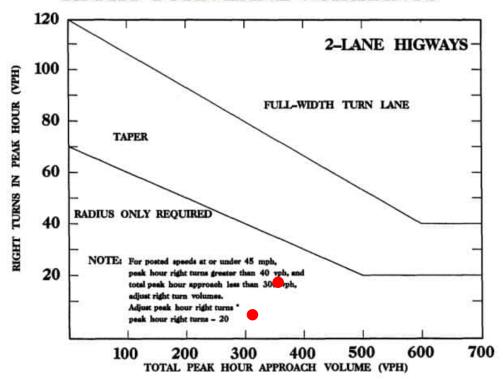

INTERSECTION: Jonesville Road & Site Drive

SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _^ /V ₀)	Symbol
AM Build	NBL	Left	11	312	
PM Build	NBL	Left	34	353	

HARRIS CREEK FARM

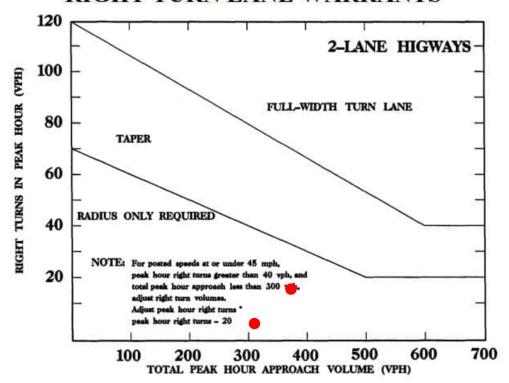
TURN LANE STORAGE WARRANTS

INTERSECTION: Jonesville Road & Univeral Drive


SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	NBL	Left	2	305	•
PM Build	NBL	Left	8	371	

Jonesville Road and Site Drive

2027 Build				
Peak Hour Approach Volume Approach Volume Warranted?				
AM	Southbound	6	312	No
PM	Southbound	18	353	No


RIGHT TURN LANE WARRANTS

Jonesville Road and Universal Drive

2027 Build				
Peak Hour Approach Volume Approach Volume Warranted?				
AM	Southbound	5	305	No
PM	Southbound	17	371	No

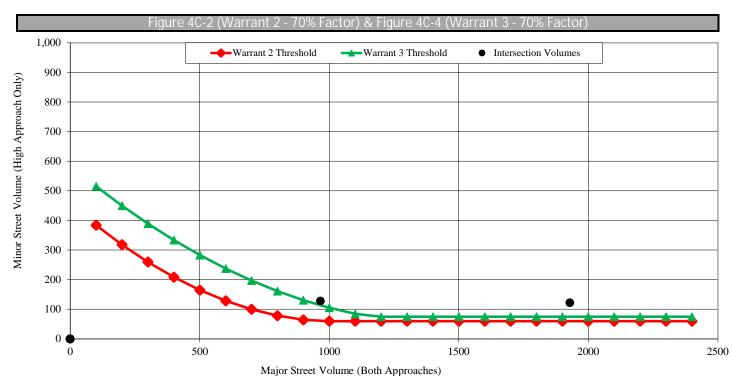
RIGHT TURN LANE WARRANTS

APPENDIX J

MUTCD / ITRE SIGNAL WARRANT ANALYSIS

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2027 No-Build


Intersection Information				
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Jonesville Road / WB Left-Over	
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane	
Total Approach Volume	2895 vehicles	Total Approach Volume	894 vehicles	
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings	
Right turn reduction of	0 percent applied	Right turn reduction of	100 percent applied	

Warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied	
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

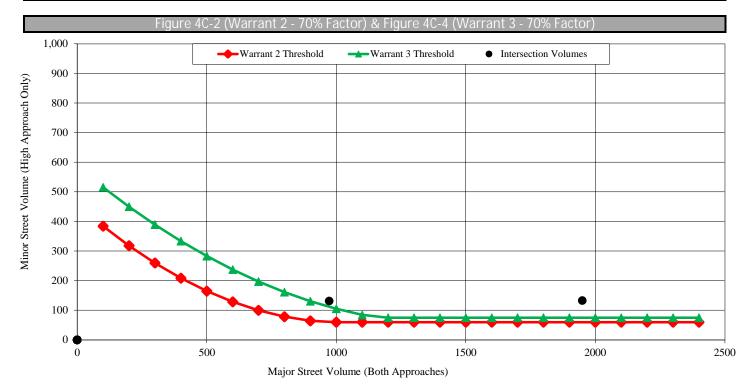
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume				
Condition Satisfied?	Not Satisfied			
Required values reached for	2 hours			
Criteria	See Figure Below			

Warrant 3, Peak Hour Vehicular Volume				
	Condition A	Condition B		
Condition Satisfied?	Not Satisfied	Satisfied		
Required values reached for	2051 total, 122 minor, 0 delay	2 hours		
Criteria - Total Approach Volume (veh in one hour)	800			
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below		
Criteria - Minor Street High Side Delay (veh-hrs)	4			

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2027 Build


Intersection Information				
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Jonesville Road / WB Left-Over	
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane	
Total Approach Volume	2923 vehicles	Total Approach Volume	958 vehicles	
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings	
Right turn reduction of	0 percent applied	Right turn reduction of	100 percent applied	

Warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied	
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

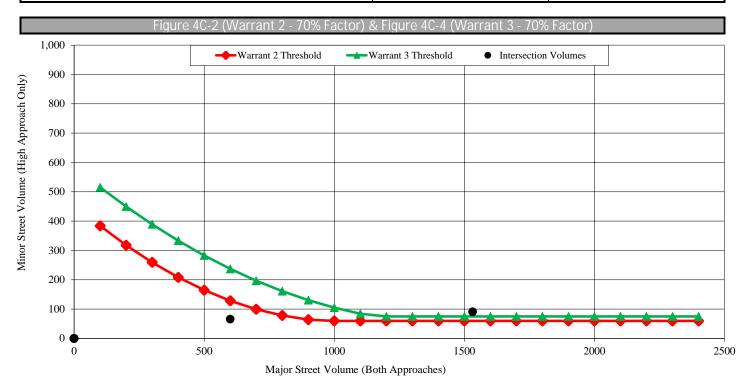
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume				
Condition Satisfied? Not Satisfied				
Required values reached for 2 hours				
Criteria	See Figure Below			

Warrant 3, Peak Hour Vehicular Volume			
	Condition A	Condition B	
Condition Satisfied?	Not Satisfied	Satisfied	
Required values reached for	2083 total, 133 minor, 0 delay	2 hours	
Criteria - Total Approach Volume (veh in one hour)	800		
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below	
Criteria - Minor Street High Side Delay (veh-hrs)	4		

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2022 Existing


Intersection Information			
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Eastern U-Turn Location
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	2132 vehicles	Total Approach Volume	157 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied	
Required values reached for	0 hours	1 hour	1 (Cond. A) & 2 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

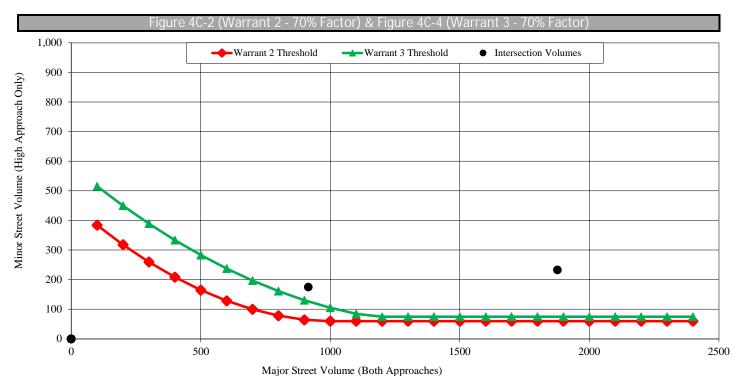
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume			
Condition Satisfied? Not Satisfied			
Required values reached for 1 hour			
Criteria	See Figure Below		

warrant 3, Peak Hour Venicular Volume			
Condition A Condition B			
Condition Satisfied?	Not Satisfied	Satisfied	
Required values reached for	1623 total, 91 minor, 0 delay	1 hour	
Criteria - Total Approach Volume (veh in one hour)	650		
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below	
Criteria - Minor Street High Side Delay (veh-hrs)	4		

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2027 No-Build


Intersection Information			
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Eastern U-Turn Location
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	2792 vehicles	Total Approach Volume	408 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied	
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

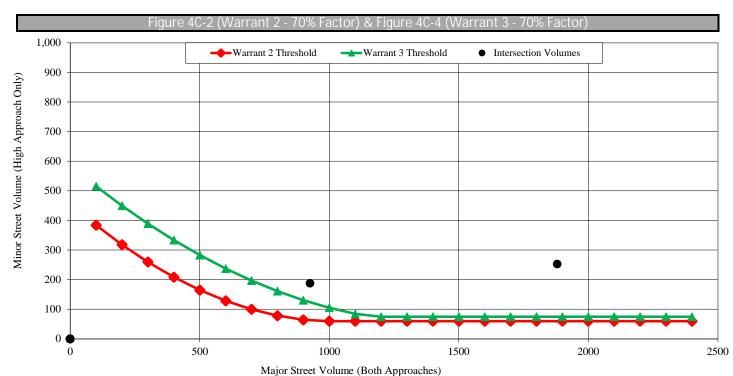
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume				
Condition Satisfied? Not Satisfied				
Required values reached for 2 hours				
Criteria	See Figure Below			

Warrant 3, Peak Hour Vehicular Volume			
	Condition A	Condition B	
Condition Satisfied?	Not Satisfied	Satisfied	
Required values reached for	2110 total, 233 minor, 0 delay	2 hours	
Criteria - Total Approach Volume (veh in one hour)	650		
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below	
Criteria - Minor Street High Side Delay (veh-hrs)	4		

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm	
Project/File #	20498 - 09	
Scenario	2027 Build	


Intersection Information			
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Eastern U-Turn Location
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane
Total Approach Volume	2806 vehicles	Total Approach Volume	441 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied	
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)	
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

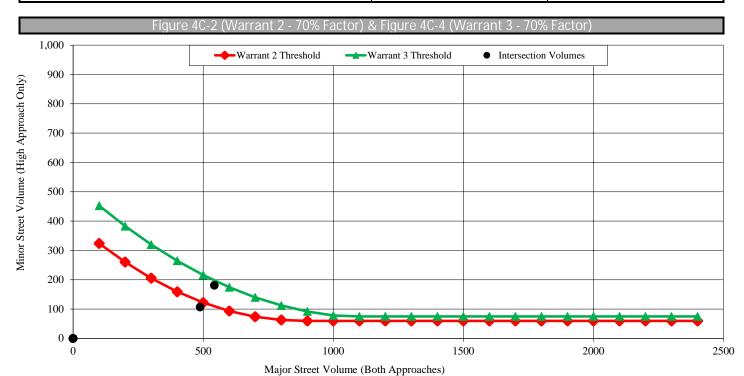
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume				
Condition Satisfied?	Not Satisfied			
Required values reached for 2 hours				
Criteria	See Figure Below			

Warrant 3, Peak Hour Vehicular Volume			
	Condition A	Condition B	
Condition Satisfied?	Not Satisfied	Satisfied	
Required values reached for	2133 total, 253 minor, 0 delay	2 hours	
Criteria - Total Approach Volume (veh in one hour)	650		
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below	
Criteria - Minor Street High Side Delay (veh-hrs)	4		

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm		
Project/File #	20498 - 09		
Scenario	2022 Existing		


Intersection Information			
Major Street (E/W Road)	Mitchell Mill Road	Minor Street (N/S Road)	Jonesville Road
Analyzed with	1 approach lane	Analyzed with	1 Approach Lane
Total Approach Volume	1031 vehicles	Total Approach Volume	469 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

warrant 1, Eight Hour Vehicular Volume				
Condition A Condition B Condition A+B*				
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied	
Required values reached for	2 hours	1 hour	2 (Cond. A) & 2 (Cond. B)	
Criteria - Major Street (veh/hr)	350	525	280 (Cond. A) & 420 (Cond. B)	
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)	

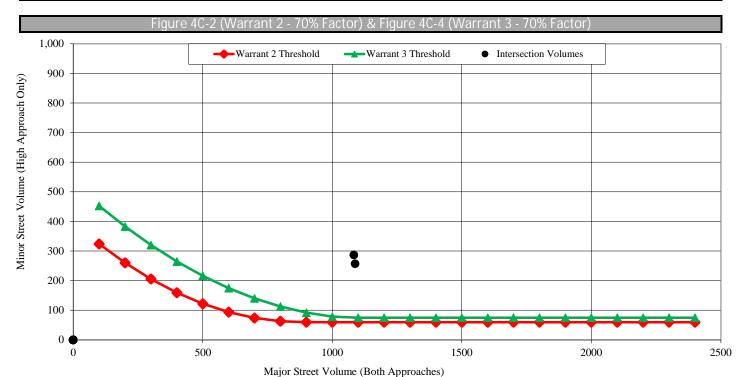
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume				
Condition Satisfied?	Not Satisfied			
Required values reached for	1 hour			
Criteria	See Figure Below			

warrant 3, Peak Hour Venicular Volume			
	Condition A	Condition B	
Condition Satisfied?	Not Satisfied	Not Satisfied	
Required values reached for	817 total, 181 minor, 0 delay	0 hours	
Criteria - Total Approach Volume (veh in one hour)	800		
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below	
Criteria - Minor Street High Side Delay (veh-hrs)	4		

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm	
Project/File #	20498 - 09	
Scenario	2027 No-Build	


Intersection Information			
Major Street (E/W Road)	Mitchell Mill Road	Minor Street (N/S Road)	Jonesville Road
Analyzed with	1 approach lane	Analyzed with	1 Approach Lane
Total Approach Volume	2171 vehicles	Total Approach Volume	818 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied

Warrant 1, Eight Hour Vehicular Volume					
Condition A Condition B Condition A+B*					
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied		
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)		
Criteria - Major Street (veh/hr)	350	525	280 (Cond. A) & 420 (Cond. B)		
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)		

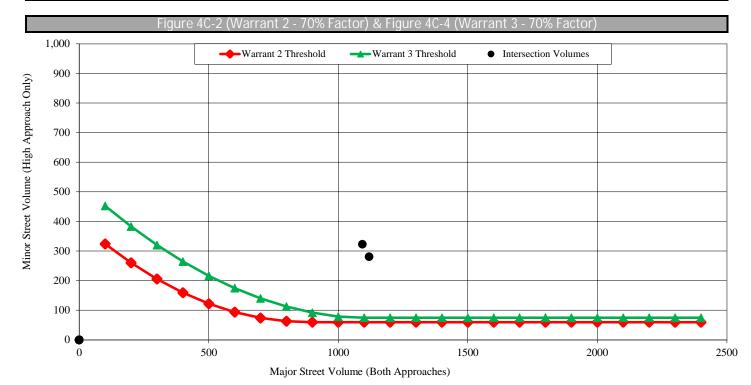
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume				
Condition Satisfied?	Not Satisfied			
Required values reached for 2 hours				
Criteria	See Figure Below			

Warrant 3, Peak Hour Vehicular Volume				
	Condition A	Condition B		
Condition Satisfied?	Not Satisfied	Satisfied		
Required values reached for	1488 total, 287 minor, 0 delay	2 hours		
Criteria - Total Approach Volume (veh in one hour)	800			
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below		
Criteria - Minor Street High Side Delay (veh-hrs)	4			

Warrants 1 - 3 (Volume Warrants)

Project Name	Harris Creek Farm
Project/File #	20498 - 09
Scenario	2027 Build


Intersection Information				
Major Street (E/W Road)	Mitchell Mill Road	Minor Street (N/S Road)	Jonesville Road	
Analyzed with	1 approach lane	Analyzed with	1 Approach Lane	
Total Approach Volume	2212 vehicles	Total Approach Volume	887 vehicles	
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings	
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied	

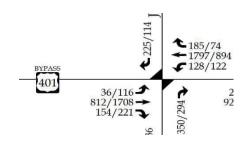
Warrant 1, Eight Hour Vehicular Volume					
Condition A Condition B Condition A+B*					
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied		
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)		
Criteria - Major Street (veh/hr)	350	525	280 (Cond. A) & 420 (Cond. B)		
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)		

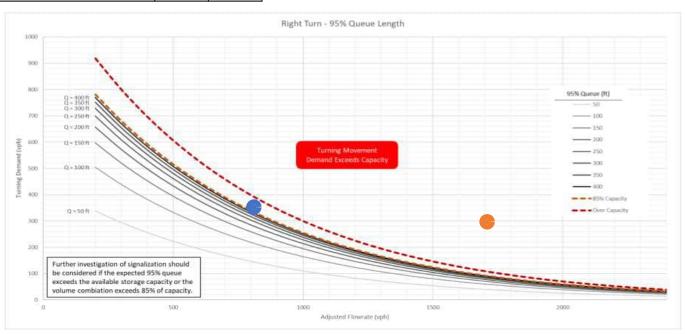
^{*} Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume				
Condition Satisfied?	Not Satisfied			
Required values reached for 2 hours				
Criteria	See Figure Below			

Warrant 3, Peak Hour Vehicular Volume				
	Condition A	Condition B		
Condition Satisfied?	Not Satisfied	Satisfied		
Required values reached for	1536 total, 323 minor, 0 delay	2 hours		
Criteria - Total Approach Volume (veh in one hour)	800			
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below		
Criteria - Minor Street High Side Delay (veh-hrs)	4			

US 401 Bypass & Jonesville Road [Minor-Street Right-Turn] [No-Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
720	0.7	0.00004	0.0108	0.2587
812	0.7	3.5E-05	0.010033	0.310936
900	0.7	0.00003	0.0093	0.3609

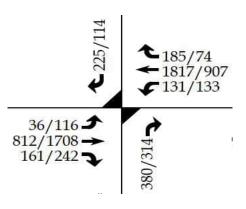

PM Pea	ak Hour			
vph	g/c	a	b	С
1620	0.7	0.00004	0.0108	0.2587
1708	0.7	3.5E-05	0.010067	0.308664
1800	0.7	0.00003	0.0093	0.3609

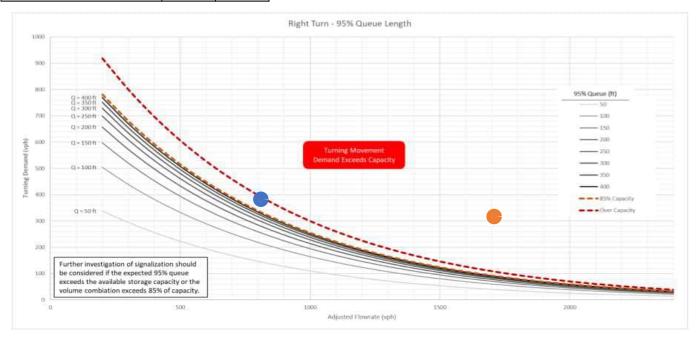
Distance to Upstream Signal	8800	ft
Posted Speed Limit	55	mph
Travel Time	109.09	S

CVAF	1
Conflicting Volume (vph)	812
Adjusted Conflicting (vph)	812
Turning Volume (vph)	350

CVAF	1
Conflicting Volume (vph)	1708
Adjusted Conflicting (vph)	1708
Turning Volume (vph)	294

US 401 Bypass & Jonesville Road [Minor-Street Right-Turn] [Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
720	0.7	0.00004	0.0108	0.2587
812	0.7	3.5E-05	0.010033	0.310936
900	0.7	0.00003	0.0093	0.3609

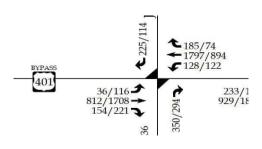

PM Pea	ak Hour			
vph	g/c	а	b	С
1620	0.7	0.00004	0.0108	0.2587
1708	0.7	3.5E-05	0.010067	0.308664
1800	0.7	0.00003	0.0093	0.3609

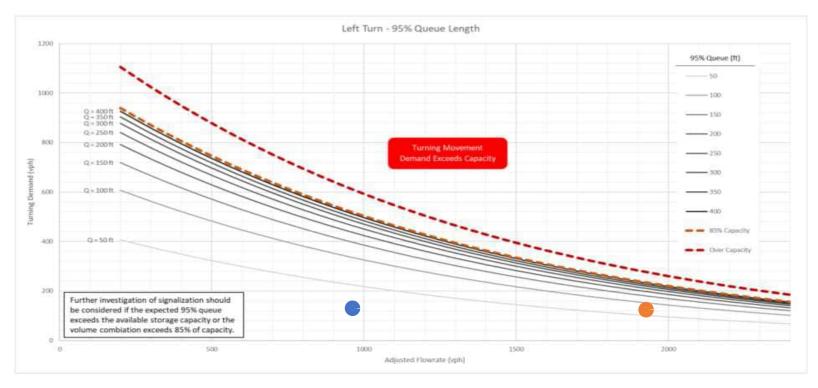
Distance to Upstream Signal	8800	ft
Posted Speed Limit	55	mph
Travel Time	109.09	S

CVAF	1
Conflicting Volume (vph)	812
Adjusted Conflicting (vph)	812
Turning Volume (vph)	380

CVAF	1
Conflicting Volume (vph)	1708
Adjusted Conflicting (vph)	1708
Turning Volume (vph)	314

US 401 Bypass & Jonesville Road [Major-Street Left-Turn] [No-Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
900	0.7	0.00004	0.0097	0.4284
966	0.7	4.0E-05	0.00915	0.46261
1080	0.7	0.00004	0.0082	0.5217

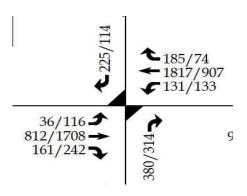

PM Pea	ak Hour			
vph	g/c	a	b	С
1800	0.7	0.00004	0.0097	0.4284
1929	0.7	4.0E-05	0.008625	0.495265
1980	0.7	0.00004	0.0082	0.5217

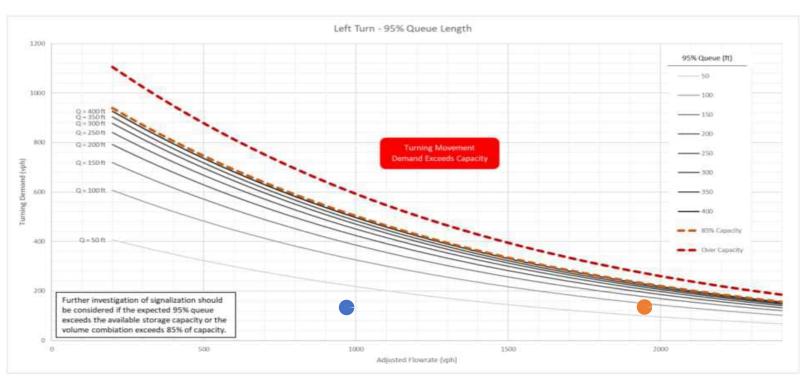
Distance to Upstream Signal	8800	ft
Posted Speed Limit	55	mph
Travel Time	109.09	S

CVAF	1
Conflicting Volume (vph)	966
Adjusted Conflicting (vph)	966
Turning Volume (vph)	128

CVAF	1
Conflicting Volume (vph)	1929
Adjusted Conflicting (vph)	1929
Turning Volume (vph)	122

US 401 Bypass & Jonesville Road [Major-Street Left-Turn] [Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
900	0.7	0.00004	0.0097	0.4284
973	0.7	4.0E-05	0.009092	0.466238
1080	0.7	0.00004	0.0082	0.5217

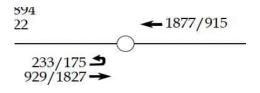

PM Pea	ak Hour			
vph	g/c	a	b	С
1800	0.7	0.00004	0.0097	0.4284
1950	0.7	4.0E-05	0.00845	0.50615
1980	0.7	0.00004	0.0082	0.5217

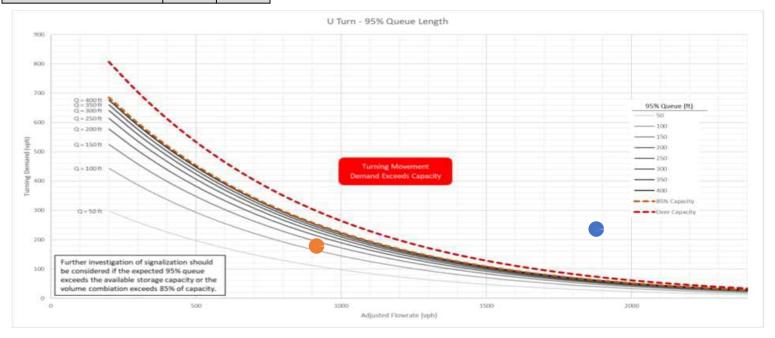
Distance to Upstream Signal	8800	ft
Posted Speed Limit	55	mph
Travel Time	109.09	S

CVAF	1
Conflicting Volume (vph)	973
Adjusted Conflicting (vph)	973
Turning Volume (vph)	131

CVAF	1
Conflicting Volume (vph)	1950
Adjusted Conflicting (vph)	1950
Turning Volume (vph)	133

US 401 Bypass & Eastern U-Turn Location [Major-Street U-Turn] [No-Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
1800	0.7	0.00003	0.0072	0.5106
1877	0.7	3.0E-05	0.007114	0.522064
1980	0.7	0.00003	0.007	0.5374

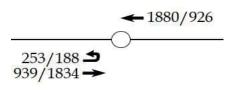

PM Pea	ak Hour			
vph	g/c	а	b	С
900	0.7	0.00003	0.0072	0.5106
915	0.7	3.0E-05	0.007183	0.512833
1080	0.7	0.00003	0.007	0.5374

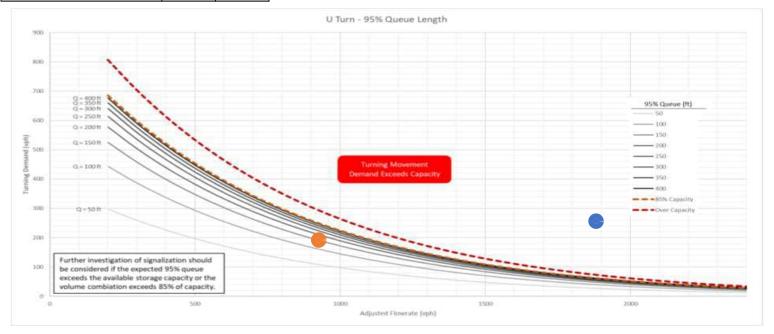
Distance to Upstream Signal	10000	ft
Posted Speed Limit	55	mph
Travel Time	123.97	s

CVAF	1
Conflicting Volume (vph)	1877
Adjusted Conflicting (vph)	1877
Turning Volume (vph)	233
	•

CVAF	1
Conflicting Volume (vph)	915
Adjusted Conflicting (vph)	915
Turning Volume (vph)	175

US 401 Bypass & Eastern U-Turn Location [Major-Street U-Turn] [Build]


AM Pea	ak Hour			
vph	g/c	a	b	С
1800	0.7	0.00003	0.0072	0.5106
1880	0.7	3.0E-05	0.007111	0.522511
1980	0.7	0.00003	0.007	0.5374


PM Pea	ak Hour			
vph	g/c	а	b	С
900	0.7	0.00003	0.0072	0.5106
926	0.7	3.0E-05	0.007171	0.514471
1080	0.7	0.00003	0.007	0.5374

Distance to Upstream Signal	10000	ft
Posted Speed Limit	55	mph
Travel Time	123.97	S

CVAF	1	
Conflicting Volume (vph)	1880	
Adjusted Conflicting (vph)	1880	
Turning Volume (vph)	253	

CVAF	1
Conflicting Volume (vph)	926
Adjusted Conflicting (vph)	926
Turning Volume (vph)	188

