

Memo

To: Rolesville Planning Board

From: Michael Elabarger, Senior Planner

Date: September 23, 2022

Re: Map Amendment (Rezoning) MA 22-06 5109 Mitchell Mill

Background

The Town of Rolesville Planning Department received a Map Amendment (Rezoning) application in March 2022 for 139.054 acres located at 5109 Mitchell Mill Road, being Wake County PINs 1757571035. The applicant, Hopper Communities, is requesting to change the zoning from Wake County R-30 District to the Town's Land Development Ordinance (LDO) Neighborhood Center – Conditional District (NC-CZ) and Residential Medium Density – Conditional District (RM-CZ). A set of Conditions of Approval and a Concept Plan are included (see Attachments 2 and 3). Associated Voluntary Annexation Petition (ANX 22-03) is being processed as the property is not currently in the Town corporate limits.

Request

The Applicant is requesting to rezone the property into two distinct Zoning Districts (which are neatly separated by Jonesville Road) to create a residential neighborhood comprising single-family detached and attached (townhomes) dwelling units along with a commercial node at the northwest corner of the Jonesville/Mitchell Mill intersection. The development would include multiple amenities both exclusively for the neighborhood residents and for the general public. The Residential Medium Density (RM) District would be wholly single-family detached dwellings, likely subdivided under the "Cluster" option (See Analysis section). The Neighborhood Center (NC) District permits both residential and non-residential uses and has a clause to ensure that non-residential development is pursued before all the residential is developed. Both Districts are requested as "Conditional Districts" which allows the Applicant to offer and commit to details that may be above and beyond minimum/maximum standards that would apply at later stages of development. The project triggers many Transportation improvements to Jonesville Road and Mitchell Mill Road per the TIA, and these are addressed in the proposed Conditions (and detailed further in this memo).

Highlights of the Proposed Conditions of Approval (Attachment 2):

- 1. Maximum dwelling unit count of 398, with maximum Attached (townhome) units of 134.
- Recreational Amenities per the Concept plan and delivery of pool/amenity center, playground, and dog park by time of issuance of 150th dwelling unit Certificate of Occupancy.
- 3. Transportation improvements per the TIA recommendations.

- 4. Single family detached foundation detail and minimum square footage; Attached (townhome) limit to 6 dwellings per building and minimum square footage.
- 5. Multi-family dwelling units restricted to upper-story location over ground floor commercial uses in NC-CZ district portion.

Applicant Justification

The Applicant provided a written justification statement for the rezoning request – please see page 11 (of 11) of Attachment 1.

Neighborhood Meeting

The Applicant held an on-line neighborhood meeting on June 20, 2022; there were no attendees. A summary memo is included as Attachment 4.

Comprehensive Plan

Land Use

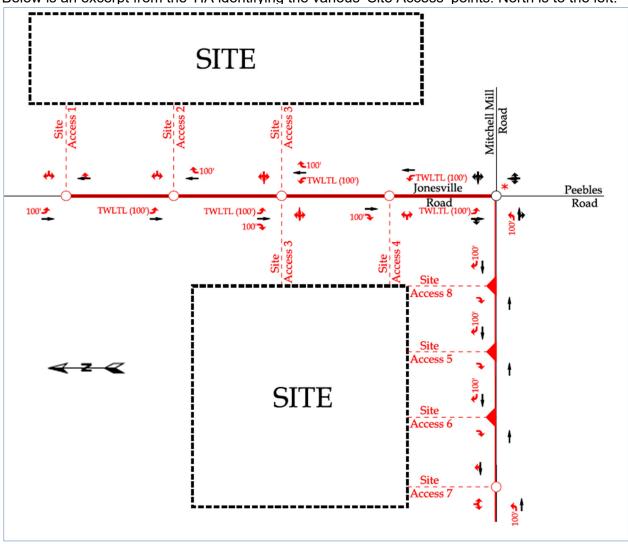
The Future Land Use Map identifies the subject parcel, and the entire general vicinity of Mitchell Mill/Jonesville Road as appropriate for <u>Medium Density Residential</u> uses and development pattern. This category is described as predominately single-family residential uses with portions of duplex, townhouse, or multifamily residential. These are lots or tracts at a density range of three to five (3-5) dwelling units per acre.

Transportation and Traffic

The project proposes development on one or both sides of two State Roads - Jonesville Road (aka State Road 226) and Mitchell Mill Road (aka State Road 2224) - that totals approximately 1.4 miles of frontage:

- Approximately 1,900 feet on the north side of Mitchell Mill;
- Approximately 2,000 feet on <u>both</u> sides of Jonesville Road, from the intersection with Mitchell Mill;
- Approximately 1,400 feet on the east side of Jonesville Road to the north.

The scope of the project – nearly 400 dwelling units and 8 acres of non-residential uses – met the LDO thresholds for requiring a Traffic Impact Analysis (TIA), and this was performed by Ramey Kemp Associates during 2022 (see Attachment 5). The study contemplated a project of 264 single-family detached lots, 129 townhomes, and 50,000 square feet of general retail space. Driveway connections studied were Four (4) full movement connections to Jonesville Road, and then one (1) full movement and three (3) right-in/right-out (RIRO) connections to Mitchell Mill Road.


Per the Town of Rolesville's Community Transportation Plan (2021), the Thoroughfare recommendations for these existing major roadways are:

- <u>Jonesville Road</u> -- a Two-lane (2) with Two-way Left Turn Lane, curb and gutter, Bike Lanes, and sidewalks.
- <u>Mitchell Mill Road</u> a Four-lane (4) divided (Raised Median Narrow) with Curb and Gutter, Bike Lanes, and Sidewalk

The TIA resulted in these general trip generations from the project (excerpted from TIA):

Table E-1: Site Trip Generation								
Land Use (ITE Code)	Intensity	Daily Traffic	AM Pea	eekday k Hour (vph)			/eekda ak Hou (vph)	
		(vpd)	Enter	Exit	Total	Enter	Exit	Total
Single-Family Home (210)	264 DU	2,540	48	144	192	163	95	258
Multi-Family Home (Low-Rise) (220)	129 DU	934	14	47	61	47	27	74
Shopping Center (820)	50 KSF	3,752	110	67	177	156	169	325
Total Trips		7,226	172	258	430	366	291	657

Below is an excerpt from the TIA identifying the various 'Site Access' points. North is to the left.

The TIA Recommended 12 distinct improvements which are generally described as:

1. Frontage Improvements:

- a. Jonesville Road widen between Mitchell Mill and Site Access 1 to ultimate Section (Two-lane + two-way left turn lane)
- b. Mitchell Mill widen along site frontage to One-Half section of ultimate Section (Four-lane median divided).

2. 401 Bypass & Jonesville Road intersection (to the north):

a. Conduct Full Signal Warrant analysis prior to full build-out / Install Traffic Signal If Warranted & Approved by Town/NCDOT.

3. 401 Bypass & Eastern U-Turn Location:

a. Conduct Full Signal Warrant analysis prior to full build-out / Install Traffic Signal If Warranted & Approved by Town/NCDOT.

4. Mitchell Mill Road and Jonesville Road/Peebles Road intersection:

- a. Construct southbound (on Jonesville) Left-turn Lane with min. 100' of storage + deceleration and taper.
- b. Construction eastbound (on Mitchell Mill Road) Left-turn Lane with min. 100' of storage + deceleration and taper.
- c. Conduct Full Signal Warrant analysis prior to full build-out / Install Traffic Signal If Warranted & Approved by Town/NCDOT.

5. Jonesville Road and Site Access 1:

- a. Construct Westbound approach (Site Access 1) w/ 1 Ingress Lane/1 Egress Lane.
- b. Provide Stop-control for westbound approach (Site Access 1).
- c. Construct Southbound (Jonesville Rd) Left-turn Lane with min. 100' of storage + deceleration and taper.

6. Jonesville Road and Site Access 2:

- a. Construct Westbound approach (Site Access 2) w/ 1 Ingress Lane/1 Egress Lane.
- b. Provide Stop-control for westbound approach (Site Access 2).
- c. Construct Northbound (Jonesville Rd) Right-turn Lane with min. 100' of storage + deceleration and taper.
- d. Construct Southbound (Jonesville Rd) Left-turn Lane with min. 100' of storage + deceleration and taper.

7. Jonesville Road and Site Access 3:

- a. Construct an Eastbound & Westbound approach (Site Access 3) w/ 1 Ingress Lane/1 Egress Lane.
- b. Provide Stop-control for Eastbound & Westbound approach (Site Access 3).
- c. Construct a Northbound (Jonesville Rd) Left-turn Lane with min. 100' of storage + deceleration and taper.
- d. Construct a Northbound (Jonesville Rd) Right-turn Lane with min. 100' of storage + deceleration and taper.
- e. Construct a Southbound (Jonesville Rd) Left-turn Lane with min. 100' of storage + deceleration and taper.
- f. Construct a Southbound (Jonesville Rd) Right-turn Lane with min. 100' of storage + deceleration and taper.

8. Jonesville Road and Site Access 4:

- a. Construct Eastbound approach (Site Access 4) w/ 1 Ingress Lane/1 Egress Lane.
- b. Provide Stop-control for the Eastbound approach (Site Access 4).
- c. Construct a Northbound (Jonesville Rd) Left-turn Lane with min. 100' of storage + deceleration and taper.

d. Construct a Southbound (Jonesville Rd) Right-turn Lane with min. 100' of storage + deceleration and taper.

9. Mitchell Mill Road and Site Access 5:

- a. Construct Southbound approach (Site access 5) with 1 Ingress Lane / 1 Egress Lane striped as an exclusive Right-Turn Lane.
- b. Provide Stop-control for Southbound approach (Site Access 5). This proposed intersection will be restricted to RIRO operations.
- c. Construct exclusive Westbound (Mitchell Mill Road) Right-turn Lane with min. 100' of storage + deceleration and taper.

10. Mitchell Mill Road and Site Access 6:

- a. Construct Southbound approach (Site Access 6) with 1 Ingress Lane / 1 Egress Lane striped as exclusive Right-Turn Lane.
- b. Provide Stop-control for Southbound approach (Site Access 6). This proposed intersection will be restricted to RIRO operations.
- c. Construct exclusive Westbound (Mitchell Mill Road) Right-turn Lane with min. 100' of storage + deceleration and taper.

11. Mitchell Mill Road and Site Access 7:

- Construct Southbound approach (Site Access 7) with 1 Ingress Lane / 1 Egress Lane
- b. Provide Stop-control for Southbound approach (Site Access 7).
- c. Construct exclusive Eastbound (Mitchell Mill Road) Left-turn Lane with min. 100' of storage + deceleration and taper.

12. Mitchell Mill Road and Site Access 8:

- a. Construct Southbound approach (Site Access 8) with 1 Ingress Lane / 1 Egress Lane striped as exclusive Right-Turn Lane.
- b. Provide Stop-control for Southbound approach (Site Access 8). This proposed intersection will be restricted to RIRO operations.
- c. Construct exclusive Westbound (Mitchell Mill Road) Right-turn Lane with min. 100' of storage + deceleration and taper.

Through the TRC Staff review, it was identified that most proposed new public streets within the project will be 50' right-of-way (typical residential streets), with the exception of the main East-West roadway through both sides of the project. This roadway would be developed as a 60' right-of-way Residential Collector – the 'stub' to the east would connect to PIN 1757770396, where an existing easement cart-way names 'Gro Peg Lane' exists; to the west it would both stub to PIN 1757367367 and continues due south to an intersection with Mitchell Mill Road (Site Access 7 per the TIA). The western stub could in the future be extended by those property owners west approximately 800 feet where it would intersect with State Road 2986 (aka Green Farm Lane).

Staff Analysis

The application seeks to 'split-zone' the subject property along the natural break created by Jonesville Road. Both requested Districts are sought to be "Conditional" districts per LDO Section 3.3, which allows an Applicant to propose, and the Town to consider, additional conditions or restrictions on the range of allowable principal uses, use standards, intensities, development standards, etc. The proposed Concept Plan (Attachment 3) is part of the Conditions and represents a conceptual layout and rendering of how the project may be built; it is <u>not</u> a preliminary subdivision plat or any form of "site plan" that has been vetted against the LDO for buildable compliance. This projects next step after attaining LDO Zoning District(s) is a Preliminary

Subdivision Plat, followed by Construction Infrastructure Plans. Non-residential development requires Site Development Plan review and approval also.

Neighborhood Center District (LDO Section 3.4.3.)

The land area for this district is approximately 55 acres and comprises the area of the property west of Jonesville Road. This would entail approximately 69 single-family detached and 119 townhomes dwelling units, and the approximately 8 acre site for non-residential development at the Jonesville/Mitchell Mill corner. This area would comprise all the townhomes contemplated. Table 3.4.3. states the maximum density of dwelling units in NC is 8 units/acre. The gross density of (all) dwelling units in the NC District is approximately 3.4 per acre; if removing the approximately 8 acres of non-residential, the density slightly increases to 4 dwelling units per acre, which is one-half of the permitted maximum.

Non-residential uses have a 'timing of development' requirement; Section 3.4.3.D.4. requires at least 25% of non-residential square footage to be achieve Building Permit issuance by the time that 50% of residential units achieve Building Permit issuance. Section 3.4.3.D.5. requires 50% of non-residential square footage to attain Building permits before remaining residential units can attain Building Permits.

Residential Medium Density District (LDO Section 3.1.2)

The land area for this district is approximately 86 acres and comprises the area of the property east of Jonesville Road. The lot development is in 3 distinct areas, with one on the far north side of the Harris Creek environmental area. The Concept Plan indicates that, at the preliminary subdivision plat point, the intention is to subdivide utilizing the Cluster options that are part of Table 3.1.2. within the RM district development standards. The Cluster option increases Density maximum (from 3 units per acre to 5), reduces minimum building setbacks, reduces lot width minimum by over half (from 85' to 40') and reduces the minimum lot area by two-thirds (from 15,000 SF to 5,000 SF). The proposed Concept Plan identifies that by exercising the Cluster option, approximately 42 of the 86 acres (49%) would be undeveloped and is generally contiguous as well. Lot density calculates to 2.2 dwelling units per acre, thus utilizing the reduced / lesser standards does not increase density, but rather equates to more undeveloped land area (ie open space).

TIA Results

Staff concurs with the recommendation improvements contained within the TIA and find that they demonstrate rational mitigation of impacts from the proposed scope and intensity of development on the area roadways.

Consistency

The applicant's request for a combination of Residential Medium (RM) and Neighborhood Center (NC) districts, conditioned to a project for up to 398 residential dwelling units and ~8 acres of non-residential development (which could include upper-story multi-family dwelling units), at calculated residential densities less than the maximums permitted by the respective proposed Zoning Districts, is consistent with the Town of Rolesville's Comprehensive Plan.

Development Review

The Technical Review Committee (TRC) reviewed three submittals of this rezoning request and associated Conditions of Approval and concept plan. There are no remaining outstanding comments to be addressed at this stage of development.

Staff Recommendation

Based on consistency with the Comprehensive Plan and mitigation of expected impacts, Staff recommends approval of MA 22-06 5109 Mitchell Mill.

Proposed Motion

Motion to recommend (approval or denial) of rezoning request of MA 22-06 5109 Mitchell Mill.

Attachments

	Description	Date
1	Application (i.e. Exhibit A, B, C)	March 2022
2	Conditions (i.e. Exhibit D)	09-23-2022
3	Concept Plan (i.e. Exhibits 1 & 2)	Revised dated 09-23-2022
4	Neighborhood Meeting documents	June 2022
5	Traffic Impact Analysis (TIA) Final report	Final version, dated August 2022
6	Vicinity Map	2022
7	Existing Zoning Map	2021
8	Future Land Use Map	2017 Comprehensive Plan

ATTACHMENT 1 - APPLICATION AND EXHIBITS A, B, C

Case No. MA 22-06

Date March 2022

Map Amendment Application

Contact Information Property Owner Please see attached Exhibit A. City/State/Zip _____ Address Phone Email **Developer Hopper Communities** Contact Name Beth Trahos, Nelson Mullins Address 4140 Parklake Avenue, Suite 200 City/State/Zip Raleigh, NC 27612 Phone 919.329.3884 Email beth.trahos@nelsonmullins.com **Property Information** Address 5109 Mitchell Mill Road, Wake Forest, North Carolina 27587-7246 Wake County PIN(s) 1757 57 103 5 Current Zoning District Wake County R-30 Requested Zoning District NC CD Total Acreage 139.054 ±acres **Owner Signature** I hereby certify that the information contained herein is true and completed. I understand that if any item is found to be otherwise after evidentiary hearing before the Town Board of Commissioners, that the action of the Board may be invalidated. Date 2-28-22 Signature STATE OF NORTH CAROLINA COUNTY OF Wake I, a Notary Public, do hereby certify that James Robert Fowler TL personally appeared before me this day and acknowledged the due execution of the foregoing instrument. This day of Februara My commission expires

Town of Rolesville Planning

Shawn E. Scarborough NOTARY PUBLIC

My Commission Expires 08-22-2023

Rolesville Genuine Community • Capital Connection Est. 1837

Case No	
Date	

Map Amendment Application

Contact Information	
Property Owner Please see attached Exhibit A.	
Address	City/State/Zip
Phone	Email
Developer Hopper Communities	
Contact Name Beth Trahos, Nelson Mullins	
Address 4140 Parklake Avenue, Suite 200	City/State/Zip Raleigh, NC 27612
Phone 919.329.3884	Email beth.trahos@nelsonmullins.com
Property Information	
Address 5109 Mitchell Mill Road, Wake Forest, North Ca	rolina 27587-7246
Wake County PIN(s) 1757 57 1035	
Current Zoning District Wake County R-30	Requested Zoning District NC CD
Total Acreage 139.054± acres	<u> </u>
Owner Signature	
I hereby certify that the information contained herein i	s true and completed. I understand that if any item is
found to be otherwise after evidentiary hearing before	the Town Board of Commissioners, that the action of the
Board may be invalidated. Signature Ezules to when	Date 4/28/2012
STATE OF NORTH CAROLINA	
COUNTY OF Wake	
I, a Notary Public, do hereby certify that Leigh	Fouler
9	edged the due execution of the foregoing instrument. This
the 28 [±] h	day of February 2022
My commission expires 8-22-2025	
Signature Shawn E Swings	Shawn E. Scarborough NOTARY PUBLIC WAKE COUNTY, N.C. My Commission Expires 08-22-2023

Rolesville Genuine Community • Capital Connection
Est. 1837

Case No.	
Date	

Map Amendment Application

Contact Information	
Property Owner Please see attached Exhibit A.	
Address	City/State/Zip
Phone	
Developer Hopper Communities	
Contact Name Beth Trahos, Nelson Mullins	
Address 4140 Parklake Avenue, Suite 200	City/State/Zip Raleigh, NC 27612
Phone 919.329.3884	Email beth.trahos@nelsonmullins.com
Property Information	
Address 5109 Mitchell Mill Road, Wake Forest, North Ca	arolina 27587-7246
Wake County PIN(s) <u>1757 57 1035</u>	
Current Zoning District Wake County R-30	Requested Zoning District NC CD
Total Acreage 139.054± acres	
Owner Signature	
I hereby certify that the information contained herein	is true and completed. I understand that if any item is
found to be otherwise after evidentiary hearing before	e the Town Board of Commissioners, that the action of the
Board may be invalidated.	
Signature Dana Gright	
7 0	
STATE OF NORTH CAROLINA	
COUNTY OF Wake	
	Bright
personally appeared before me this day and acknow	rledged the due execution of the foregoing instrument. This
the 28th	day of February 2022
My commission expires 8-22-2023	
Signature Shawr E. Sun Wough	Shawn E. Scarborough NOTARY PUBLIC WAKE COUNTY, N.C. My Commission Expires 08-22-2023

Rologyillo
Genuine Community • Capital Connection Est. 1837

Signature

Case No	
Date	

Map Amendment Application

Shawn E. Scarborough NOTARY PUBLIC

WAKE COUNTY, N.C. My Commission Expires 08-22-2023

Contact Information Property Owner Please see attached Exhibit A. Address City/State/Zip Phone Email Developer Hopper Communities Contact Name Beth Trahos, Nelson Mullins Address 4140 Parklake Avenue, Suite 200 City/State/Zip Raleigh, NC 27612 Phone 919.329.3884 Email beth.trahos@nelsonmullins.com **Property Information** Address 5109 Mitchell Mill Road, Wake Forest, North Carolina 27587-7246 Wake County PIN(s) 1757 57 1035 Current Zoning District Wake County R-30 Requested Zoning District NC CD Total Acreage 139.054± acres **Owner Signature** I hereby certify that the information contained herein is true and completed. I understand that if any item is found to be otherwise after evidentiary hearing before the Town Board of Commissioners, that the action of the Board may be invalidated. ______Date 2/28/23 STATE OF NORTH CAROLINA COUNTY OF Wake I, a Notary Public, do hereby certify that Randy Bright personally appeared before me this day and acknowledged the due execution of the foregoing instrument. This the_ 28th day of februara My commission expires March 1-22-203

Town of Rolesville Planning

Case	No.			
Date	2	128	22	_

Map Amendment Application

My Commission Expires 10/18/2026

Contact Information	
Property Owner Please see attached Exhibit A.	
	City/State/Zip
Phone	Email
Description of Communities	
Developer Hopper Communities	
Contact Name Beth Trahos, Nelson Mullins	
Address 4140 Parklake Avenue, Suite 200	City/State/Zip Raleigh, NC 27612
Phone 919.329.3884	Email_beth.trahos@nelsonmullins.com
Property Information	
Address 5109 Mitchell Mill Road, Wake Forest, North Car	olina 27587-7246
Wake County PIN(s) 1757 57 1035	
Current Zoning District Wake County R-30	Requested Zoning District NC CD
Total Acreage 139.054± acres	_
Owner Signature	
I hereby certify that the information contained herein is	s true and completed. I understand that if any item is
found to be otherwise after evidentiary hearing before	the Town Board of Commissioners, that the action of the
Board may be invalidated.	1.1/
Signature Mhel	
STATE OF NORTH CAROLINA	
COUNTY OF Wake	
I, a Notary Public, do hereby certify that	wheeler
personally appeared before me this day and acknowle	edged the due execution of the foregoing instrument. This
the 28 th	_ day of february 2022
My commission expires 10/10/207 6	
Signature Spechen M. Schmage	STEPHEN M. SCHMOEGEH NOTARY PUBLIC Seal WAKE COUNTY, N.C.

Case	No	
Date	2/28	122

Map Amendment Application

Contact Information	
Property Owner Please see attached Exhibit A.	
Address	City/State/Zip
Phone	_Email
Developer Hopper Communities	
Contact Name Beth Trahos, Nelson Mullins	
Address 4140 Parklake Avenue, Suite 200	City/State/Zip Raleigh, NC 27612
Phone 919.329.3884	Email_beth.trahos@nelsonmullins.com
Property Information	
Address 5109 Mitchell Mill Road, Wake Forest, North Caro	lina 27587-7246
Wake County PIN(s) 1757 57 1035	
Current Zoning District Wake County R-30	Requested Zoning District NC CD
Total Acreage 139.054± acres	-
Owner Signature	
I hereby certify that the information contained herein is	true and completed. I understand that if any item is
found to be otherwise after evidentiary hearing before to	he Town Board of Commissioners, that the action of the
Board may be invalidated. Signature Shysh While	
STATE OF NORTH CAROLINA	
COUNTY OF Wake	
I, a Notary Public, do hereby certify that Septen	wheeler
personally appeared before me this day and acknowled	lged the due execution of the foregoing instrument. This
the 28th	day of February 2022
My commission expires 10 (18/2026) Signature Stephen M. Schmaget	STEPHEN M. SCHMOEGER NOTARY PUBLIC WAKE COUNTY, N.C. My Commission Expires 10/19/2026

EXHIBIT A

	PIN: 1767 57 1035
Contact Information:	Dana and Randy Bright
	Giny and Stephen Wheeler
	Leigh and James Robert Fowler III
	7928 Sutterton Court
	Raleigh, NC 27615
Property Address:	5109 Mitchell Mill Road
Current Zoning District:	R-30
Requested Zoning	NC CD
District:	
Total Acreage:	139.054

EXHIBIT B

LEGAL DESCRIPTION

146,812 GROSS ACRES

POINT OF BEGINNING BEING NEW PK NAIL IN CENTERLINE OF JONESVILLE ROAD LOCATED SOUTH 03 DEGREES 39 MINUTUES 27 SECONDS EAST 6691.07' FROM NCGS MONUMENT "SCARBORO" NAD 83 NC GRID COORDINATES N = 785291.32 E = 2153832.22

THENCE South 81 degrees 13 minutes 36 seconds East for a distance of 581.67 feet to a new iron pipe

THENCE South 84 degrees 14 minutes 11 seconds East for a distance of 254.17 feet to an eip;

THENCE South 81 degrees 44 minutes 51 seconds East for a distance of 203.47 feet to an eip;

THENCE South 81 degrees 50 minutes 46 seconds East for a distance of 221.49 feet to an eip;

THENCE South 79 degrees 18 minutes 42 seconds East for a distance of 440.70 feet to an eip;

THENCE North 25 degrees 12 minutes 36 seconds East for a distance of 0.99 feet to a new iron pipe;

THENCE South 80 degrees 54 minutes 24 seconds East for a distance of 467.97 feet to an eip;

THENCE South 08 degrees 18 minutes 30 seconds West for a distance of 692.28 feet to an eip;

THENCE South 08 degrees 17 minutes 36 seconds West for a distance of 259.85 feet to an eip;

THENCE South 79 degrees 39 minutes 38 seconds East for a distance of 298.45 feet to an eip;

THENCE South 08 degrees 28 minutes 21 seconds West for a distance of 557.14 feet to an eip;

THENCE North 78 degrees 03 minutes 15 seconds West for a distance of 473.68 feet to an eip;

THENCE North 67 degrees 03 minutes 12 seconds West for a distance of 535.05 feet to an eip;

THENCE South 06 degrees 26 minutes 42 seconds West for a distance of 1705.50 feet to a new pk nail in centerline of Mitchell Mill Rd.;

THENCE North 83 degrees 37 minutes 41 seconds West for a distance of 100.67 feet to a new mag nail in cl rd;

THENCE North 85 degrees 33 minutes 48 seconds West for a distance of 96.77 feet to a new mag nail in cl rd;

THENCE North 87 degrees 17 minutes 52 seconds West for a distance of 60.47 feet to a new mag cl intersection of Jonesville Rd. and Mitchell Mill Rd.;

THENCE North 89 degrees 20 minutes 37 seconds West for a distance of 99.85 feet to a new mag nail in cl rd;

THENCE South 86 degrees 08 minutes 11 seconds West for a distance of 100.39 feet to a new mag nail in cl rd;

THENCE South 81 degrees 56 minutes 47 seconds West for a distance of 105.02 feet to a new mag nail in cl rd;

THENCE South 78 degrees 57 minutes 50 seconds West for a distance of 103.53 feet to a new mag nail in cl rd;

THENCE South 77 degrees 26 minutes 26 seconds West for a distance of 102.89 feet to a new mag nail in cl rd;

THENCE South 79 degrees 32 minutes 41 seconds West for a distance of 77.32 feet to a new mag cl rd;

THENCE South 85 degrees 34 minutes 24 seconds West for a distance of 67.43 feet to a new mag nail;

THENCE North 07 degrees 04 minutes 28 seconds East for a distance of 19.75 feet to an eip;

THENCE South 88 degrees 31 minutes 32 seconds West for a distance of 563.89 feet to an eip;

THENCE South 83 degrees 02 minutes 24 seconds West for a distance of 446.06 feet to an eip;

THENCE North 07 degrees 09 minutes 19 seconds East for a distance of 160.38 feet to an eip;

THENCE North 06 degrees 58 minutes 12 seconds East for a distance of 1599.62 feet to a new iron pipe;

THENCE South 81 degrees 18 minutes 24 seconds East for a distance of 4.60 feet to a point;

THENCE North 62 degrees 11 minutes 46 seconds East for a distance of 259.13 feet to a point;

THENCE North 79 degrees 20 minutes 16 seconds East for a distance of 165.95 feet to a point;

THENCE South 77 degrees 22 minutes 09 seconds East for a distance of 220.98 feet to a point;

THENCE North 69 degrees 21 minutes 06 seconds East for a distance of 141.50 feet to a point;

THENCE North 11 degrees 29 minutes 46 seconds East for a distance of 308.82 feet to a new mag nail in c/l of Jonesville Rd.;

THENCE North 22 degrees 16 minutes 48 seconds West for a distance of 76.10 feet to a new mag nail in cl bridge;

THENCE North 21 degrees 58 minutes 57 seconds West for a distance of 253.76 feet to a new mag nail in cl rd;

THENCE North 18 degrees 49 minutes 53 seconds West for a distance of 116.90 feet to a new mag nail in cl rd;

THENCE North 14 degrees 15 minutes 58 seconds West for a distance of 104.69 feet to a new mag cl rd;

THENCE North 09 degrees 44 minutes 06 seconds West for a distance of 111.66 feet to a new mag nail in cl rd;

THENCE North 05 degrees 39 minutes 55 seconds West for a distance of 103.00 feet to a new mag cl rd;

THENCE North 01 degrees 56 minutes 23 seconds West for a distance of 102.51 feet to a new mag nail in cl rd;

THENCE North 02 degrees 41 minutes 02 seconds East for a distance of 106.93 feet to a new mag nail in cl rd;

THENCE North 07 degrees 04 minutes 34 seconds East for a distance of 108.26 feet to a new mag nail in cl rd;

THENCE North 09 degrees 32 minutes 21 seconds East for a distance of 126.39 feet to point of beginning;

Together with and subject to covenants, easements, and restrictions of record.

Said property contains 146.812 acres more or less as shown of map by Williams-Pearce & Associates, PA entitled "Property survey for James Robert Fowler III and Jill F. Bright", dated 02-11-2022.

EXHIBIT C

STATE OF NORTH CAROLINA

BEFORE THE TOWN OF ROLESVILLE BOARD OF COMMISSIONERS AND PLANNING BOARD

COUNTY OF WAKE

ZONING MAP AMENDMENT

In support of a petition to zone the subject property Mixed Use Neighborhood Center Conditional Zoning District, the applicant offers the following information:

The subject property is approximately 139± acres located on both sides of Jonesville Road north of its intersection with Mitchell Mill Road. The property is currently zoned R-30 by Wake County, a rural holding district. The subject property is planned to come into the Town of Rolesville and to be development as a part of the town. It is located on the southern edge of Rolesville in close proximity to the more urban areas of east Raleigh.

The proposed zoning is Mixed Use Neighborhood Center Conditional District. The Future Land Use Map designates the subject property for Medium Density Residential. Medium Density Residential is described as "[p]redominanty single family residential uses with portions of duplex, townhouse or multifamily residential. These are lots or tracts at a density range of three to five dwelling units per gross acre including preserved open spaces areas along with limited non-residential uses under planned unit development or form base code provisions." The proposed community includes a mix of housing types (single-family detached homes and townhomes) and is within the density levels recommended by the Comprehensive Plan.

The Town Board of Commissioners has indicated a desire to include more commercial uses within Rolesville. The proposed zoning includes $8.27\pm$ acres in the northwest quadrant of the intersection of Mitchell Mill Road and Jonesville Roads as a neighborhood center. In addition this site is approximately one-mile from the Wallbrook mixed-use development with 265,000 square feet of commercial space, including a Publix grocery store

The zoning includes commitments for a community pool, playground, dog park, a public greenway connection as shown on the Town's Open Space and Greenway Plan. Harris Creek will be preserved as a part of approximately 60 acres of open space on the subject property.

The proposed rezoning is in accordance with the Comprehensive Plan and reasonable and in the public interest. We request your support for the proposed zoning.

ATTACHMENT 2 - PROPOSED CONDITIONS OF APPROVAL

Exhibit D

Mixed-Use Neighborhood Center Conditional Zoning District (NC-CZ) and Residential Medium Density Conditional Zoning District (RM-CZ) Zoning Conditions

Conditions Applicable to the entire property:

- 1. The subject property shall be developed generally in accordance with the sketch plan attached hereto as Exhibit 1 and incorporated herein as if fully set out. The approximately 55± acre portion of the subject property located west of Jonesville Road and further described as Parcel 1 on the attached Exhibit 2 attached hereto shall be zoned NC-CZ and the approximately 86± acre portion of the property located east of Jonesville Road and further described as Parcel 2 on Exhibit 2 attached hereto shall be zoned RM-CZ.
- 2. The total number of dwellings on the subject property shall not exceed 398 dwelling units and no more than 134 of these dwellings shall be permitted to be Dwellings, Single Family, Attached (townhomes.)
- 3. Recreational Amenities: The following recreational amenities shall be provided generally as shown on the attached Exhibit 1 as a part of the development of the subject property and dedicated to the Homeowner's Association except for the public greenway which shall be dedicated as such to the Town of Rolesville:
 - a. A swimming pool and cabana, including changing rooms and restrooms shall be constructed prior to the issuance of the 150th certificate of occupancy for a dwelling unit;

Signature:	Print Name: Dana Bright
Date:	
Signature:	Print Name: Randy Bright
Date:	
Signature:	Print Name: Giny Wheeler
Date:	
Signature:	Print Name: Stephen Wheeler
Date:	
Signature:	Print Name: Leigh Fowler
Date:	
Signature:	Print Name: James Robert Fowler III
Date:	

- b. At least one fenced playground shall be constructed prior to the issuance of the 150th certificate of occupancy for a dwelling unit;
- c. At least one fenced dog park shall be constructed prior to the issuance of the 150th certificate of occupancy for a dwelling unit; and
- d. Public greenway on a greenway easement at least 25' wide with paved trails at least ten feet wide (10') shall be constructed generally as shown on the attached Exhibit 1.
- 4. Transportation Improvements: To address transportation impacts reasonably expected to be generated by the development, the following road improvements shall be installed as recommended by the 5109 Mitchell Mill Road Traffic Impact Analysis, prepared by Ramey Kemp & Associates for the Town of Rolesville, a copy of which is on file with the Town of Rolesville.

a. Jonesville Road:

- i. Widen Jonesville Road along the site frontage between Site Access 1 and Site Access 2 to the roadways ultimate cross section per Rolesville Community Transportation Plan, 2 lanes with two-way left turn lanes; and
- ii. Widen Jonesville Road along the site frontage between Site Access 3 and Mitchell Mill Road to the roadways ultimate cross section per Rolesville Community Transportation Plan, 2 lanes with two-way left turn lanes.

b. Mitchell Mill Road:

i. Widen one-half section along the site frontage to this roadway's ultimate cross-section per the Rolesville Community Transportation Plan, 4-lane median divided.

Signature:	Print Name: Dana Bright
Date:	
Signature:	Print Name: Randy Bright
Date:	
Signature:	Print Name: Giny Wheeler
Date:	
Signature:	Print Name: Stephen Wheeler
Date:	
Signature:	Print Name: Leigh Fowler
Date:	
Signature:	Print Name: James Robert Fowler III
Date:	

c. Mitchell Mill Road and Jonesville Road/Peebles Road:

- i. Provide a southbound (Jonesville Road) left turn lane with at least 100 feet of storage and appropriate decel and taper; and
- ii. Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

d. Jonesville Road and Site Access 1:

- i. Construct the westbound approach (Site Access 1) with one ingress lane and one egress lane;
- ii. Provide stop-control for westbound approach (Site Access 1); and
- iii. Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

e. Jonesville Road and Site Access 2:

- i. Construct the westbound approach (Site Access 2) with one ingress lane and one egress lane;
- ii. Provide stop-control for westbound approach (Site Access 2); and
- iii. Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

f. Jonesville Road and Site Access 3:

- i. Construct the eastbound and westbound approaches (Site Access 3) with one ingress lane and one egress lane;
- ii. Provide stop-control for eastbound and westbound approach (Site Access 3);
- iii. Construct northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper;

Signature:	Print Name: Dana Bright
Date:	
Signature:	Print Name: Randy Bright
Date:	
Signature:	Print Name: Giny Wheeler
Date:	
Signature:	Print Name: Stephen Wheeler
Date:	
Signature:	Print Name: Leigh Fowler
Date:	
Signature:	Print Name: James Robert Fowler III
Date:	

- iv. Construct northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper;
- v. Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper; and
- vi. Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

g. Jonesville Road and Site Access 4:

- i. Construct the eastbound approach (Site Access 4) with one ingress lane and one egress lane;
- ii. Provide stop-control for eastbound approach (Site Access 4);
- iii. Provide a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper; and
- iv. Provide a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

h. Michell Mill and Site Access 5:

- i. Construct the southbound approach (Site Access 5) with one ingress lane and one egress lane striped as an exclusive right-turn lane;
- ii. Provide stop-control for southbound approach (Site Access 5) restricted to right-in, right-out operations; and
- iii. Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

i. Mitchell Mill and Site Access 6:

i. Construct the southbound approach (Site Access 6) with one ingress lane and one egress lane striped as an exclusive right-turn lane; and

Signature:	Print Name: Dana Bright
Date:	
Signature:	Print Name: Randy Bright
Date:	
Signature:	Print Name: Giny Wheeler
Date:	
Signature:	Print Name: Stephen Wheeler
Date:	
Signature:	Print Name: Leigh Fowler
Date:	
Signature:	Print Name: James Robert Fowler III
Date:	

ii. Provide stop-control for southbound approach (Site Access 6) restricted to right-in, right-out operations.

j. Mitchell Mill and Site Access 7:

- i. Construct the southbound approach (Site Access 7) with one ingress lane and one egress lane;
- ii. Provide stop-control for southbound approach (Site Access 7); and
- iii. Construct an exclusive eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

k. Mitchell Mill Road and Site Access 8:

- i. Construct the southbound approach (Site Access 8) with one ingress lane and one egress lane striped as an exclusive right-turn lane;
- ii. Provide stop-control for southbound approach (Site Access 8). This proposed intersection will be restricted to right-in/right-out operations; and
- iii. Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Conditions Applicable to Dwelling, Single Family, Detached only:

- 5. All homes shall include either crawl space foundations or stem wall foundations. Any stem wall foundations shall have a brick or stone veneer on all sides facing a public street.
- 6. The minimum building square footage shall be 2,000 square feet.

Conditions Applicable to Dwellings, Single Family, Attached (townhomes) only:

7. No Dwelling, Single Family, Attached (townhome) building shall exceed six (6) dwellings.

Signature:	Print Name: Dana Bright
Date:	
Signature:	Print Name: Randy Bright
Date:	
Signature:	Print Name: Giny Wheeler
Date:	
Signature:	Print Name: Stephen Wheeler
Date:	
Signature:	Print Name: Leigh Fowler
Dațe:	
Signature:	Print Name: James Robert Fowler III
Date:	

Revision Date: September 23, 2022	
8. The minimum building square footage for townho	omes shall be 1,200 square feet.
Conditions Applicable to the NC-CZ District only:	
9. All uses permitted in the Neighborhood Center Mixed-except Dwellings, Multiple Family (apartments) shall only located on the ground floor.	•
These zoning conditions have been voluntarily offered by sign each condition page. This page may be photocopied i	
Signature: P	Print Name: Dana Bright
Date:	
Signature: P	Print Name: Randy Bright
Date:	
Signature: P	Print Name: Giny Wheeler
Date:	
Signature: P	Print Name: Stephen Wheeler
Date:	
Signature: P	Print Name: Leigh Fowler
Date:	

Print Name: James Robert Fowler III

Signature:

Date:

COVER SHEET CUNED CHEEL
2706 WILCHERT WITH BD
0081H CVBOTINV FICENCE NO'C-T025

ONE CONTROL OF CONTR STITE LAYOUT FOR REZONING
REVISIONS PER TOWN OF ROLESVILLE REVIEW COMMENTS

ATTACHMENT 3 - CONCEPT PLAN (3 SHEETS)

ROLESVILLE, NORTH CAROLINA 27587 **REZONING PLAN** WAKE COUNTY

5109 MITCHELL MILL RD

DEVELOPER:

HOPPER COMMUNITIES, INC 1616 CLEVELAND AVE CHARLOTTE, NC 28203

JAMES FOWLER, JILL BRIGHT 7400 FOWLER RD ZEBULON, NC 27597 OWNER:

CIVIL ENGINEER:

RALEIGH, NC 27607 PH: (919) 866-4512 PATRICK.BARBEAU@TIMMONS.COM TIMMONS GROUP PATRICK BARBEAU, P.E. 5410 TRINITY ROAD; SUITE 102

BUFFER/WETLAND:

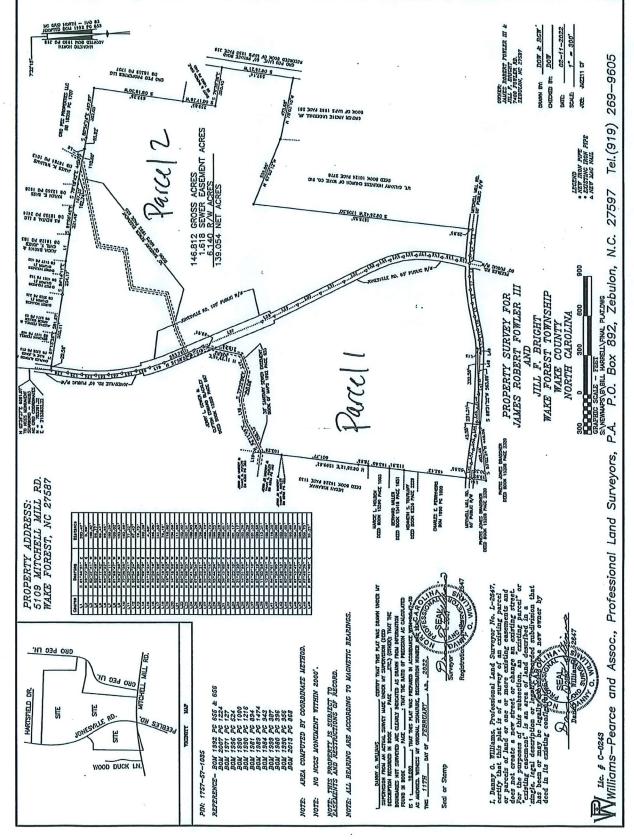
SOIL AND ENVIRONMENTAL CONSULTANTS, PA STEVEN BALL, RF, PWS 8412 FALLS OF NEUSE RD SUITE 104 RALEIGH, NC 27615 PH: (919) 846-5900 SBALL@SANDEC.COM

VICINITY MAP

JOB NO. 47342 SHEET NO. CO.0

PRELIMINARY - NOT RELEASED FOR CONSTRUCTION

KNOW WHAT'S BELOW. CALL 811 BEFORE YOU DIG.


THIS DRAWING WEINSED HTTE RALEIGH OFFICE TONEY NOW, SALE OFFICE TONEY NAME OF SECULO SECUE SECULO SECULO

Exhable (PJ 2082)

ATTACHMENT 2 - NEIGHBORHOOD MEETING DOCUMENTS

OWNER JONES, CHARLES ALFONSO JONES, ALLIE V WALKER, ALESHIA FERRELL WALKER, AARON	ADDR1 3800 JONESVILLE RD 5012 HARTSFIELD DR	ADDR2 WAKE FOREST NC 27587-8180 WAKE FOREST NC 27587-9638
JONES, ALICIA BROWN JONES, CARL T	5028 HARTSFIELD DR	WAKE FOREST NC 27587-9638
HONEYCUTT, CURTIS L HONEYCUTT, CHARITY M	5100 MITCHELL MILL RD	WAKE FOREST NC 27587-7247
CARLE, SCOTT CARLE, THERESA	PO BOX 371	WAKE FOREST NC 27588-0371
CHRIST HOLINESS CHURCH NUMBER 1 C/O WILIAM WHITFIELD	5016 HARTSFIELD DR	WAKE FOREST NC 27587-9638
HARTSFIELD, ROZELIA J HEIRS C/O HATTIE SMITH	2450 MINERAL SPRINGS RD	BOYDTON VA 23917-4404
BASS, KAREN E	1601 BASS RD	WENDELL NC 27591-6403
CHEN, PING	10030 GREEN LEVEL CHURCH RD STE 802	CARY NC 27519-8195
BRADSHER, PHETIS JONES	PO BOX 203	ROLESVILLE NC 27571-0203
MILLER, BERNARD	3516 WOOD DUCK LN	WAKE FOREST NC 27587-6873
TOUTLOFF, KENNETH S TOUTLOFF, BILLIE ANNE	3512 WOOD DUCK LN	WAKE FOREST NC 27587-6873
CHRIST HOLINESS CHURCH	5016 HARTSFIELD DR	WAKE FOREST NC 27587-9638
FERRELL, BENJAMIN C/O JESSE FERRELL	248 CALIFORNIA AVE	PROVIDENCE RI 02905-2815
ALSTON, HENRY ALSTON, MARIE F	3741 JONESVILLE RD	WAKE FOREST NC 27587-8179
MT CALVARY HOLINESS CHURCH OF WAKE CO INC	3921 JONESVILLE RD	WAKE FOREST NC 27587-8183
GOODNIGHT, CECIL L GOODNIGHT, JUDY J	1201 ROLESVILLE RD	WAKE FOREST NC 27587-6957
CHRIST HOLINESS CHURCH # 1 C/O WILIAM WHITFIELD	5016 HARTSFIELD DR	WAKE FOREST NC 27587-9638
FOWLER, JAMES ROBERT III BRIGHT, JILL F	7400 FOWLER RD	ZEBULON NC 27597-8318
HOLDEN, MARCIE L	3524 WOOD DUCK LN	WAKE FOREST NC 27587-6873
KULAWIAK, MEGAN	3533 WOOD DUCK LN	WAKE FOREST NC 27587-6874
GREENE, JOE L	6415 HAWTHORNE ST	HYATTSVILLE MD 20785-1711
WILLIAMS, JAMES K	5044 HARTSFIELD DR	WAKE FOREST NC 27587-9638
PERRY, HEATHER MARIE	3500 WOOD DUCK LN	WAKE FOREST NC 27587-6873
ELIAS, ABAHOR ELIAS, SUSAN	5918 BIG NANCE DR	RALEIGH NC 27616-5795
GHOLSON, CHRISTOPHER GHOLSON, KELLY GAITHER	3440 PEEBLES RD	RALEIGH NC 27616-8802
BEACHUM, JONATHAN ADAM	3803 JONESVILLE RD	WAKE FOREST NC 27587-8181
GRO PEG PROPERTIES LLC	481 AIRPORT RD	LOUISBURG NC 27549-6806
UNDERHILL, GROVER ARCHIE JR	5229 MITCHELL MILL RD	WAKE FOREST NC 27587-7249
RS RENTAL II LLC	31 HUDSON YARDS	NEW YORK NY 10001-2170
UNIVERSAL CHURCH OF PRAYER &	4912 UNIVERSAL DR	WAKE FOREST NC 27587-6356

beth.trahos@nelsonmullins.com

NELSON MULLINS RILEY & SCARBOROUGH LLP ATTORNEYS AND COUNSELORS AT LAW

4140 Parklake Ave, Suite 200
Raleigh, NC 27612
T: 919.329.3800 F: 919.329.3799
nelsonmullins.com

June 6, 2022

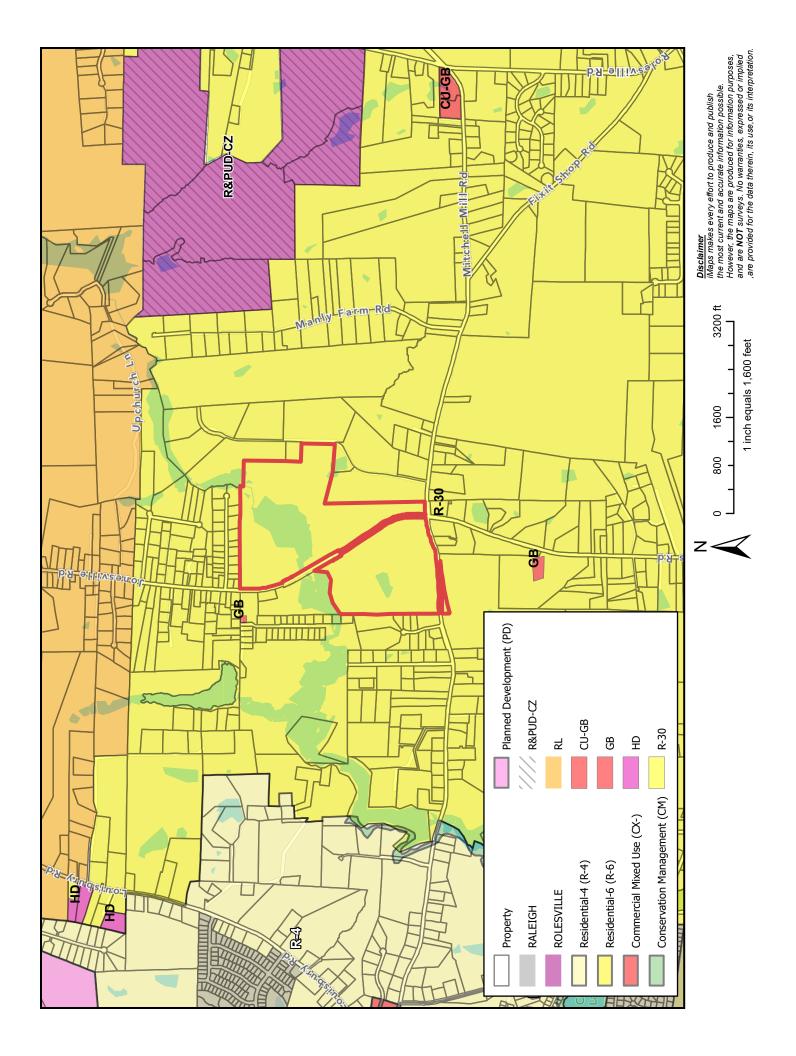
Dear Sir or Madam:

Elizabeth C. Trahos

T: 919.329.3884

You are invited to attend a virtual neighborhood information meeting on Monday, June 20th at 6:00 p.m. The purpose of this meeting is to discuss the proposed zoning of the approximately 55± acres of property located west of Jonesville Road and the approximately 86± acres of property located east of Jonesville Road in Rolesville, North Carolina. Attached please find a map of the subject properties.

The subject property is currently zoned R-30 by Wake County. We propose to bring the properties into the Town of Rolesville and zone them NC-CZ and RM-CZ to allow for the construction of mixed-use residential neighborhood. The Town of Rolesville Planning Board and the Board of Commissioners will discuss the proposed zoning at a future date for public hearing.


You can access the meeting from your computer, tablet or smartphone at: https://www.zoom.us/join The Meeting ID is 872 7589 3223 and the passcode is 150583.

Alternatively, you can also dial in using your telephone to United States: 1-646-558-8656 and entering Meeting ID: 87275893223# and entering the Passcode 150583# when prompted to do so.

Please join us to discuss the proposal in more detail. In the interim, please do not hesitate to contact me with questions at 919.329.3884 or at beth.trahos@nelsonmullins.com.

Very truly yours,

Elizabeth C. Trahos

Neighborhood Meeting

A neighborhood meeting was held virtually on June 20, 2022 beginning at 6:00 p.m. Attached as **Exhibit A** is a copy of the neighborhood meeting notice, including the attachments. A copy of the mailing list for the meeting notice is attached as **Exhibit B**. The following members of the applicant team and attendees were present, as identified in the virtual meeting sign in process:

Applicant Team:

Beth Trahos, Nelson Mullins
Bill Harrell, Hopper Communities
Patrick Barbeau, Timmons
Steve and Giny Wheeler, Landowners

Attendees:

None

Ms. Trahos opened the meeting at 6. There was no one from the public in attendance. Ms. Trahos kept the meeting line open until 7:15. No one else joined the meeting. As a result, no presentation was made.

The meeting was adjourned at 7:15 p.m.

EXHIBIT A

Elizabeth C. Trahos T: 919.329.3884 beth.trahos@nelsonmullins.com NELSON MULLINS RILEY & SCARBOROUGH LLP ATTORNEYS AND COUNSELORS AT LAW

4140 Parklake Ave, Suite 200
Raleigh, NC 27612
T: 919.329.3800 F: 919.329.3799
nelsonmullins.com

June 6, 2022

Dear Sir or Madam:

You are invited to attend a virtual neighborhood information meeting on Monday, June 20th at 6:00 p.m. The purpose of this meeting is to discuss the proposed zoning of the approximately 55± acres of property located west of Jonesville Road and the approximately 86± acres of property located east of Jonesville Road in Rolesville, North Carolina. Attached please find a map of the subject properties.

The subject property is currently zoned R-30 by Wake County. We propose to bring the properties into the Town of Rolesville and zone them NC-CZ and RM-CZ to allow for the construction of mixed-use residential neighborhood. The Town of Rolesville Planning Board and the Board of Commissioners will discuss the proposed zoning at a future date for public hearing.

You can access the meeting from your computer, tablet or smartphone at: https://www.zoom.us/join The Meeting ID is 872 7589 3223 and the passcode is 150583.

Alternatively, you can also dial in using your telephone to United States: 1-646-558-8656 and entering Meeting ID: 87275893223# and entering the Passcode 150583# when prompted to do so.

Please join us to discuss the proposal in more detail. In the interim, please do not hesitate to contact me with questions at 919.329.3884 or at beth.trahos@nelsonmullins.com.

Very truly yours,

Elizabeth C. Trahos

EXHIBIT B

OWNER ADDR1 ADDR2 JONES, CHARLES ALFONSO JONES, ALLIE V 3800 JONESVILLE RD **WAKE FOREST NC 27587-8180** WALKER, ALESHIA FERRELL WALKER, AARON 5012 HARTSFIELD DR WAKE FOREST NC 27587-9638 JONES, ALICIA BROWN JONES, CARL T 5028 HARTSFIELD DR **WAKE FOREST NC 27587-9638** HONEYCUTT, CURTIS L HONEYCUTT, CHARITY M 5100 MITCHELL MILL RD **WAKE FOREST NC 27587-7247** HONEYCUTT, TODD KENDALL 5104 MITCHELL MILL RD WAKE FOREST NC 27587-7247 CARLE, SCOTT CARLE, THERESA PO BOX 371 WAKE FOREST NC 27588-0371 CHRIST HOLINESS CHURCH NUMBER 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR **WAKE FOREST NC 27587-9638** HARTSFIELD, ROZELIA J HEIRS C/O HATTIE SMITH 2450 MINERAL SPRINGS RD BOYDTON VA 23917-4404 1601 BASS RD WENDELL NC 27591-6403 BASS, KAREN E CHEN, PING 10030 GREEN LEVEL CHURCH RD STE 802 CARY NC 27519-8195 **BRADSHER, PHETIS JONES** PO BOX 203 ROLESVILLE NC 27571-0203 MILLER, BERNARD 3516 WOOD DUCK LN **WAKE FOREST NC 27587-6873** TOUTLOFF, KENNETH S TOUTLOFF, BILLIE ANNE 3512 WOOD DUCK LN **WAKE FOREST NC 27587-6873 CHRIST HOLINESS CHURCH** 5016 HARTSFIELD DR **WAKE FOREST NC 27587-9638** FERRELL, BENJAMIN C/O JESSE FERRELL 248 CALIFORNIA AVE **PROVIDENCE RI 02905-2815** ALSTON, HENRY ALSTON, MARIE F **WAKE FOREST NC 27587-8179** 3741 JONESVILLE RD MT CALVARY HOLINESS CHURCH OF WAKE CO INC 3921 JONESVILLE RD **WAKE FOREST NC 27587-8183** GOODNIGHT, CECIL L GOODNIGHT, JUDY J 1201 ROLESVILLE RD **WAKE FOREST NC 27587-6957** CHRIST HOLINESS CHURCH # 1 C/O WILIAM WHITFIELD 5016 HARTSFIELD DR WAKE FOREST NC 27587-9638 FOWLER, JAMES ROBERT III BRIGHT, JILL F 7400 FOWLER RD **ZEBULON NC 27597-8318** HOLDEN, MARCIE L 3524 WOOD DUCK LN **WAKE FOREST NC 27587-6873** KULAWIAK, MEGAN 3533 WOOD DUCK LN **WAKE FOREST NC 27587-6874** GREENE, JOE L 6415 HAWTHORNE ST HYATTSVILLE MD 20785-1711 WILLIAMS, JAMES K 5044 HARTSFIELD DR WAKE FOREST NC 27587-9638 PERRY, HEATHER MARIE 3500 WOOD DUCK LN **WAKE FOREST NC 27587-6873** ELIAS, ABAHOR ELIAS, SUSAN 5918 BIG NANCE DR RAI FIGH NC 27616-5795 GHOLSON, CHRISTOPHER GHOLSON, KELLY GAITHER 3440 PEEBLES RD RALEIGH NC 27616-8802 BEACHUM, JONATHAN ADAM 3803 JONESVILLE RD **WAKE FOREST NC 27587-8181 GRO PEG PROPERTIES LLC** 481 AIRPORT RD LOUISBURG NC 27549-6806

5229 MITCHELL MILL RD

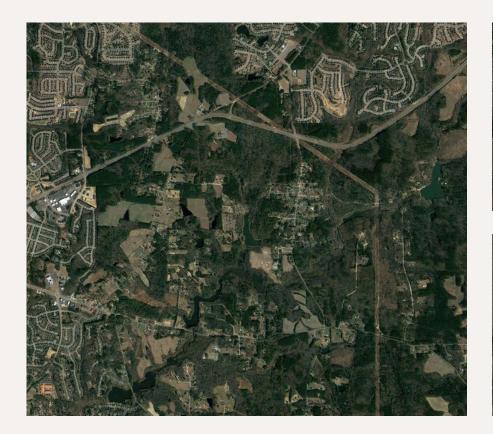
31 HUDSON YARDS

4912 UNIVERSAL DR

WAKE FOREST NC 27587-7249

WAKE FOREST NC 27587-6356

NFW YORK NY 10001-2170


UNDERHILL, GROVER ARCHIE JR

UNIVERSAL CHURCH OF PRAYER &

RS RENTAL II LLC

RAMEY KEMP ASSOCIATES

TOGETHER WE ARE LIMITLESS

5109 Mitchell Mill Road Traffic Impact Analysis Rolesville, North Carolina

TRAFFIC IMPACT ANALYSIS

FOR

5109 MITCHELL MILL ROAD

LOCATED

IN

ROLESVILLE, NORTH CAROLINA

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By: Infrastructure Consulting Services, Inc. *dba*

Ramey Kemp Associates 5808 Faringdon Place Raleigh, NC 27609

License #F-1489

AUGUST 2022

RKA Project No. 20498 - 004

Prepared By: <u>TF</u>

Reviewed By: CH

TRAFFIC IMPACT ANALYSIS 5109 MITCHELL MILL ROAD ROLESVILLE, NORTH CAROLINA

EXECUTIVE SUMMARY

1. Development Overview

A Traffic Impact Analysis (TIA) was conducted for the proposed 5109 Mitchell Mill Road development in accordance with the Town of Rolesville (Town) Land Development Ordinance (LDO) and North Carolina Department of Transportation (NCDOT) capacity analysis guidelines. The proposed development is expected to be completed in 2028 and is to be separated into two (2) tracts on both sides of Jonesville Road, north of Mitchell Mill Road in Rolesville, North Carolina. The eastern tract is expected to consist of 195 single-family homes and the western tract of development is expected to consist of 69 single-family homes, 129 townhomes, and 50,000 square feet (sq. ft.) of general retail space. Site access is proposed via four (4) full-movement driveway connections along Jonesville Road, three (3) right-in/right-out (RIRO) driveway connections along Mitchell Mill Road, and one (1) full-movement driveway connection along Mitchell Mill Road. One of the site driveway connections along Jonesville Road will be aligned to provide access to both the eastern and western tracts of the proposed development.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2021 Existing Traffic Conditions
- 2028 No-Build Traffic Conditions
- 2028 Build Traffic Conditions

2. Existing Traffic Conditions

The study area for the TIA was determined through coordination with the Town of Rolesville (Town) and NCDOT and consists of the following existing intersections:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Mitchell Mill Road and Jonesville Road / Peebles Road

Existing peak hour traffic volumes were determined based on traffic counts conducted at the study intersections listed above, in November of 2021 during typical weekday AM (7:00 AM -9:00 AM) and PM (4:00 PM - 6:00 PM) peak periods, while schools were in session for in-person learning:

Weekday AM and PM traffic volumes were balanced between study intersections, where appropriate.

3. **Site Trip Generation**

The proposed development is assumed to consist of 264 single-family homes, 129 townhomes, and 50,000 sq. ft. of general retail space. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE Trip Generation Manual, 10th Edition. Table E-1, on the following page, provides a summary of the trip generation potential for the site.

Table E-1: Site Trip Generation

Wooldey Wooldey								
Land Use (ITE Code)	Intensity	Daily Traffic (vpd)	Weekday AM Peak Hour Trips (vph)			Weekday PM Peak Hour Trips (vph)		
			Enter	Exit	Total	Enter	Exit	Total
Single-Family Home (210)	264 DU	2,540	48	144	192	163	95	258
Multi-Family Home (Low-Rise) (220)	129 DU	934	14	47	61	47	27	74
Shopping Center (820)	50 KSF	3,752	110	67	177	156	169	325
Total Trips 7,226		172	258	430	366	291	657	
Internal Capture (1% AM, 15% PM)*			-2	-2	-4	-35	-35	-70
Total External Trips			170	256	426	331	256	587
Pass-By Trips: Shopping Center (34% PM)			~	-	-	-47	-47	-94
Total Primary Trips			170	256	426	284	209	493

^{**}Utilizing methodology contained in the NCHRP Report 684.

4. Future Traffic Conditions

Through coordination with the Town and NCDOT, it was determined that an annual growth rate of 2% would be used to generate 2028 projected weekday AM and PM peak hour traffic volumes. The following adjacent developments were identified to be considered under future conditions:

- Cobblestone Crossing Mixed-Use
- Young Street PUD
- Wheeler Tract
- Louisbury Road Assemblage
- Kalas / Watkins Family Property

5. Capacity Analysis Summary

The analysis considered weekday AM and PM peak hour traffic for 2021 existing, 2028 no-build, and 2028 build conditions. Refer to Section 7 of the TIA for the capacity analysis summary performed at each study intersection.

6. Recommendations

Based on the findings of this study, specific geometric and traffic control improvements have been identified at the study intersections. The improvements are summarized below and are illustrated in Figure E-1.

Recommended Improvements by Developer

Required Frontage Improvements per Rolesville Community Transportation Plan

- Widen Jonesville Road along the site frontage between Site Access 1 and Mitchell Mill Road to this roadway's ultimate section (2-lane w/ TWLTL).
- Widen one-half section of Mitchell Mill Road along the site frontage to this roadway's ultimate section (4-lane median divided).

US 401 Bypass and Jonesville Road

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Jonesville Road and Site Access 1

- Construct the westbound approach (Site Access 1) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 1).
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 2

- Construct the westbound approach (Site Access 2) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 2).
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 3

- Construct the eastbound and westbound approaches (Site Access 3) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound and westbound approaches (Site Access 3).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 4

- Construct the eastbound approach (Site Access 4) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Access 4).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

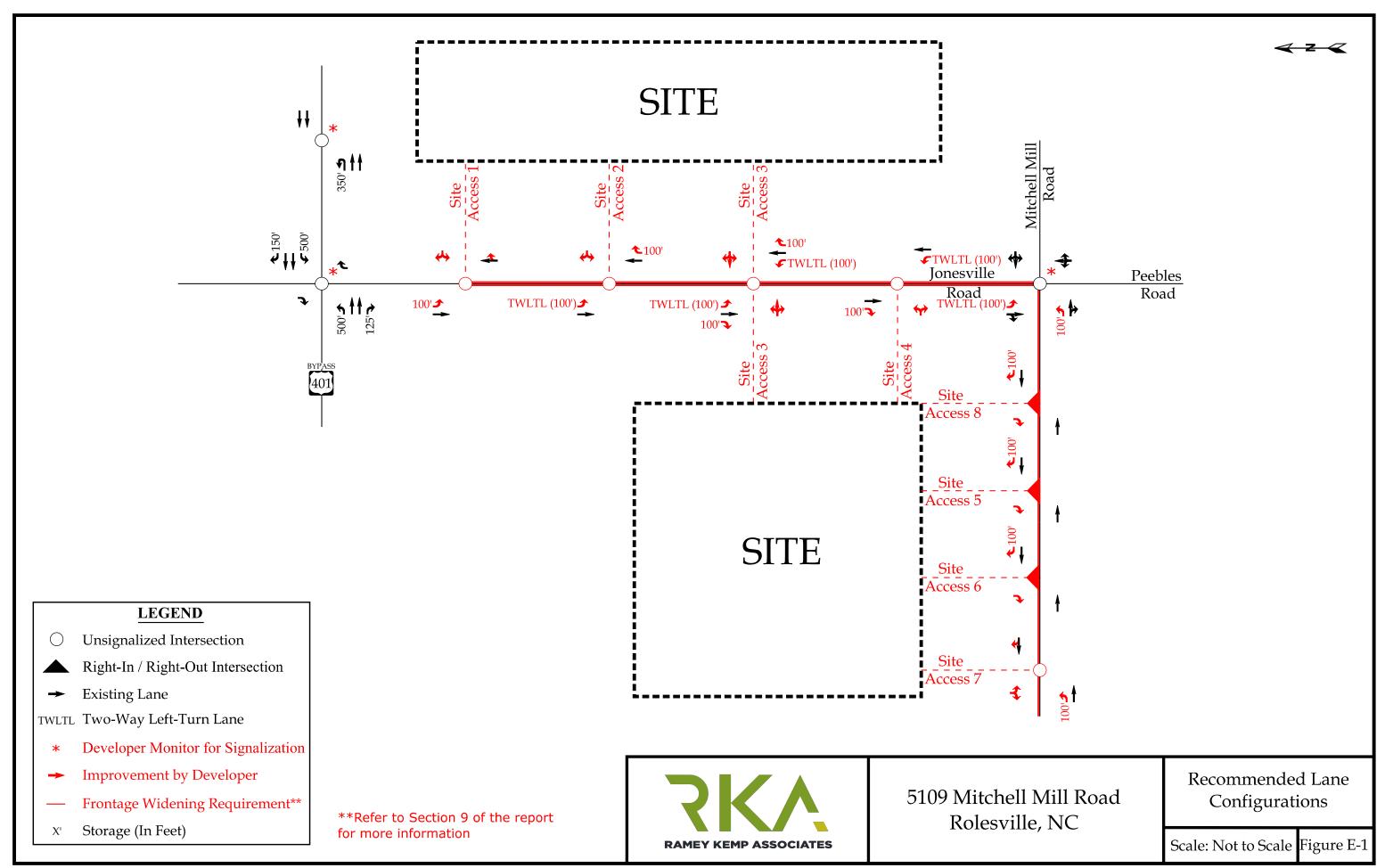
Mitchell Mill Road and Site Access 5

- Construct the southbound approach (Site Access 5) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 5). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 6

- Construct the southbound approach (Site Access 6) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 6). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 7


- Construct the southbound approach (Site Access 7) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 7)
- Construct an exclusive eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 8

- Construct the southbound approach (Site Access 8) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 8). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

TABLE OF CONTENTS

1. I	NTRODUCTION	1
1.1.	Site Location and Study Area	1
1.2.	Proposed Land Use and Site Access	2
1.3.	Adjacent Land Uses	2
1.4.	Existing Roadways	2
2. 2	2021 EXISTING PEAK HOUR CONDITIONS	7
2.1.	2021 Existing Peak Hour Traffic Volumes	7
2.2.	Analysis of 2021 Existing Peak Hour Traffic Conditions	7
3. 2	2028 NO-BUILD PEAK HOUR CONDITIONS	
3.1.	Ambient Traffic Growth	9
3.2.	Adjacent Development Traffic	9
3.3.	Future Roadway Improvements	10
3.4.	2028 No-Build Peak Hour Traffic Volumes	11
3.5.	Analysis of 2028 No-Build Peak Hour Traffic Conditions	11
4. S	SITE TRIP GENERATION AND DISTRIBUTION	15
4.1.	Trip Generation	15
4.2.	Site Trip Distribution and Assignment	16
5. 2	2028 BUILD TRAFFIC CONDITIONS	25
5.1.	2028 Build Peak Hour Traffic Volumes	25
5.2.	Analysis of 2028 Build Peak Hour Traffic Conditions	25
6. T	RAFFIC ANALYSIS PROCEDURE	27
<i>C</i> 1		
0.1.	Adjustments to Analysis Guidelines	27
	Adjustments to Analysis Guidelines	
		28
7. C	CAPACITY ANALYSIS	28 28
7. C	US 401 Bypass and Jonesville Road	28 28 31
7. C 7.1. 7.2.	US 401 Bypass and Jonesville Road	28 28 31 33

RAMEY KEMP ASSOCIATES

7.6.	Jonesville Road and Site Access 3	38
7.7.	Jonesville Road and Site Access 4	39
7.8.	Mitchell Mill Road and Site Access 5	40
7.9.	Mitchell Mill Road and Site Access 6	41
7.10.	Mitchell Mill Road and Site Access 7	42
7.11.	Mitchell Mill Road and Site Access 8	43
8. C	ONCLUSIONS	44
9. R	ECOMMENDATIONS	50
	LIST OF FIGURES	
Figur	e 1 – Site Location Map	4
Figure	e 2 – Preliminary Site Plan	5
Figure	e 3 – Existing Lane Configurations	6
Figure	e 4 – 2021 Existing Peak Hour Traffic	8
Figure	e 5 – 2028 Projected Peak Hour Traffic	12
Figure	e 6 – Adjacent Development Trips	13
Figure	e 7 – 2028 No-Build Peak Hour Traffic	14
Figure	e 8A – Residential Site Trip Distribution	18
Figure	e 8B – Commercial Site Trip Distribution	19
Figure	e 9A – Residential Site Trip Assignment	20
Figure	e 9B – Commercial Site Trip Assignment	21
Figure	e 10 – Pass-By Site Trip Distribution	22
Figure	e 11 – Pass-by Site Trip Assignment	23
Figure	e 12 – Total Site Trip Assignment	24
Figure	e 13 – 2028 Build Peak Hour Traffic	26
Figure	e 14 - Recommended Lane Configurations	54

LIST OF TABLES

Table 1: Existing Roadway Inventory3
Table 2: Adjacent Development Information
Table 3: Trip Generation Summary
Table 4: Highway Capacity Manual – Levels-of-Service and Delay 27
Table 5: Analysis Summary of US 401 Bypass and Jonesville Road 28
Table 6: Analysis Summary of US 401 Bypass and Eastern U-Turn Location
31
Table 7: Analysis Summary of Mitchell Mill Road and Jonesville Road /
Peebles Road33
Table 8: Analysis Summary of Jonesville Road and Site Access 1 36
Table 9: Analysis Summary of Jonesville Road and Site Access 2 37
Table 10: Analysis Summary of Jonesville Road and Site Access 3 38
Table 11: Analysis Summary of Jonesville Road and Site Access 4 39
Table 12: Analysis Summary of Mitchell Mill Road and Site Access 5 40
Table 13: Analysis Summary of Mitchell Mill Road and Site Access 6 41
Table 14: Analysis Summary of Mitchell Mill Road and Site Access 7 42
Table 15: Analysis Summary of Jonesville Road and Site Access 8 43

TECHNICAL APPENDIX

Appendix A: Scoping Documentation

Appendix B: Traffic Counts

Appendix C: Adjacent Development Information

Appendix D: Capacity Calculations – US 401 Bypass & Jonesville Road

Appendix E: Capacity Calculations - US 401 Bypass & Eastern U-Turn

Location

Appendix F: Capacity Calculations – Mitchell Mill Road & Jonesville Road /

Peebles Road

Appendix G: Capacity Calculations – Jonesville Road & Site Access 1

Appendix H: Capacity Calculations – Jonesville Road & Site Access 2

Appendix I: Capacity Calculations – Jonesville Road & Site Access 3

Appendix J: Capacity Calculations – Jonesville Road & Site Access 4

Appendix K: Capacity Calculations – Mitchell Mill Road & Site Access 5

Appendix L: Capacity Calculations – Mitchell Mill Road & Site Access 6

Appendix M: Capacity Calculations – Mitchell Mill Road & Site Access 7

Appendix N: Capacity Calculations – Mitchell Mill Road & Site Access 8

Appendix O: Turn Lane Warrants

Appendix P: MUTCD / ITRE Signal Warrant Analysis

TRAFFIC IMPACT ANALYSIS 5109 MITCHELL MILL ROAD ROLESVILLE, NORTH CAROLINA

1. INTRODUCTION

The contents of this report present the findings of the Traffic Impact Analysis (TIA) conducted for the proposed 5109 Mitchell Mill Road development in Rolesville, North Carolina. The proposed development, anticipated to be completed in 2028, is separated into two (2) tracts on both sides of Jonesville Road, north of Mitchell Mill Road. The purpose of this study is to determine the potential impacts to the surrounding transportation system created by traffic generated by the proposed development, as well as recommend improvements to mitigate the impacts.

The eastern tract is expected to consist of 195 single-family homes and the western tract of development is expected to consist of 69 single-family homes, 129 townhomes, and 50,000 square feet (sq. ft.) of general retail.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2021 Existing Traffic Conditions
- 2028 No-Build Traffic Conditions
- 2028 Build Traffic Conditions

1.1. Site Location and Study Area

The development is proposed to be located along both sides of Jonesville Road, north of Mitchell Mill Road in Rolesville, North Carolina. Refer to Figure 1 for the site location map.

The study area for the TIA was determined through coordination with the North Carolina Department of Transportation (NCDOT) and the Town of Rolesville (Town) and consists of the following existing intersections:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location

• Mitchell Mill Road and Jonesville Road / Peebles Road

Refer to Appendix A for the approved scoping documentation.

1.2. Proposed Land Use and Site Access

The site is to be located along both sides of Jonesville Road, north of Mitchell Mill Road. The proposed development, anticipated to be completed in 2028, is assumed to consist of the following uses:

- 264 single-family homes
- 129 townhomes
- 50,000 sq. ft. of general retail

Site access is proposed via four (4) full-movement driveway connections along Jonesville Road, three (3) right-in/right-out (RIRO) driveway connections along Mitchell Mill Road, and one (1) full-movement driveway connection along Mitchell Mill Road. One of the site driveway connections along Jonesville Road will be aligned to provide access to both the eastern and western tracts of the proposed development. Refer to Figure 2 for a copy of the preliminary site plan.

1.3. Adjacent Land Uses

The proposed development is located in an area consisting primarily of undeveloped land and residential development.

1.4. Existing Roadways

Existing lane configurations (number of traffic lanes on each intersection approach), lane widths, storage capacities, and other intersection and roadway information within the study area are shown in Figure 3. Table 1 provides a summary of this information, as well.

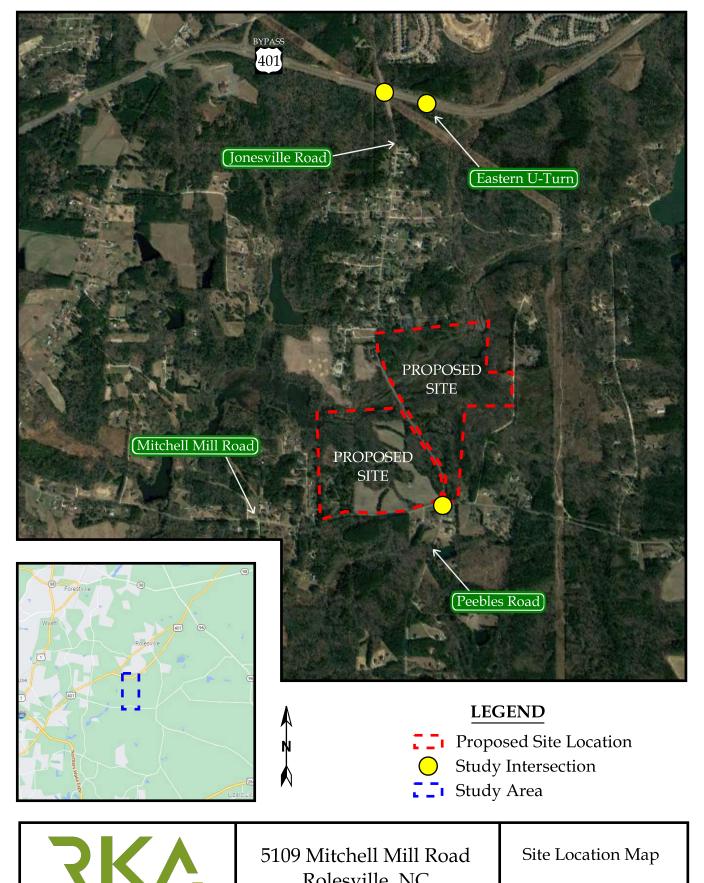
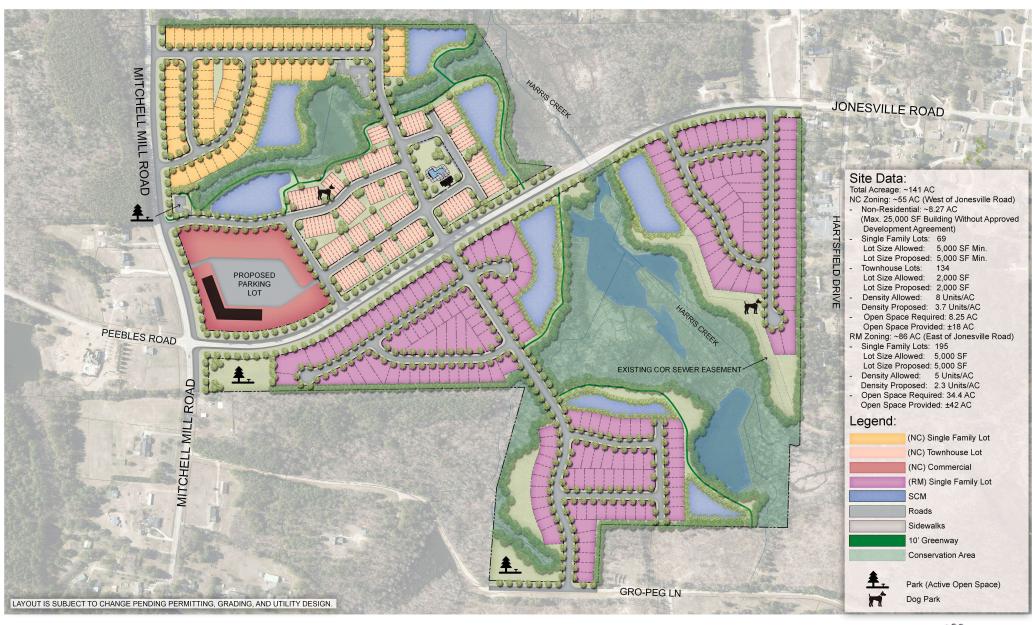


Table 1: Existing Roadway Inventory

Road Name	Route Number	Typical Cross- Section	Speed Limit	Maintained By	2019 AADT (vpd)	
US 401 Bypass		4-lane divided	55 mph	NCDOT	17,500	
Jonesville Road	SR 2226	2-lane undivided	35 mph / 45 mph	NCDOT	2,170*	
Mitchell Mill Road	SR 2224	2-lane undivided	45 mph	NCDOT	4,000	
Peebles Road SR 2929		2-lane undivided	45 mph	NCDOT	1,670*	

^{*}ADT based on 2021 existing traffic volumes and assuming the weekday PM peak hour volume is 10% of the average daily traffic.

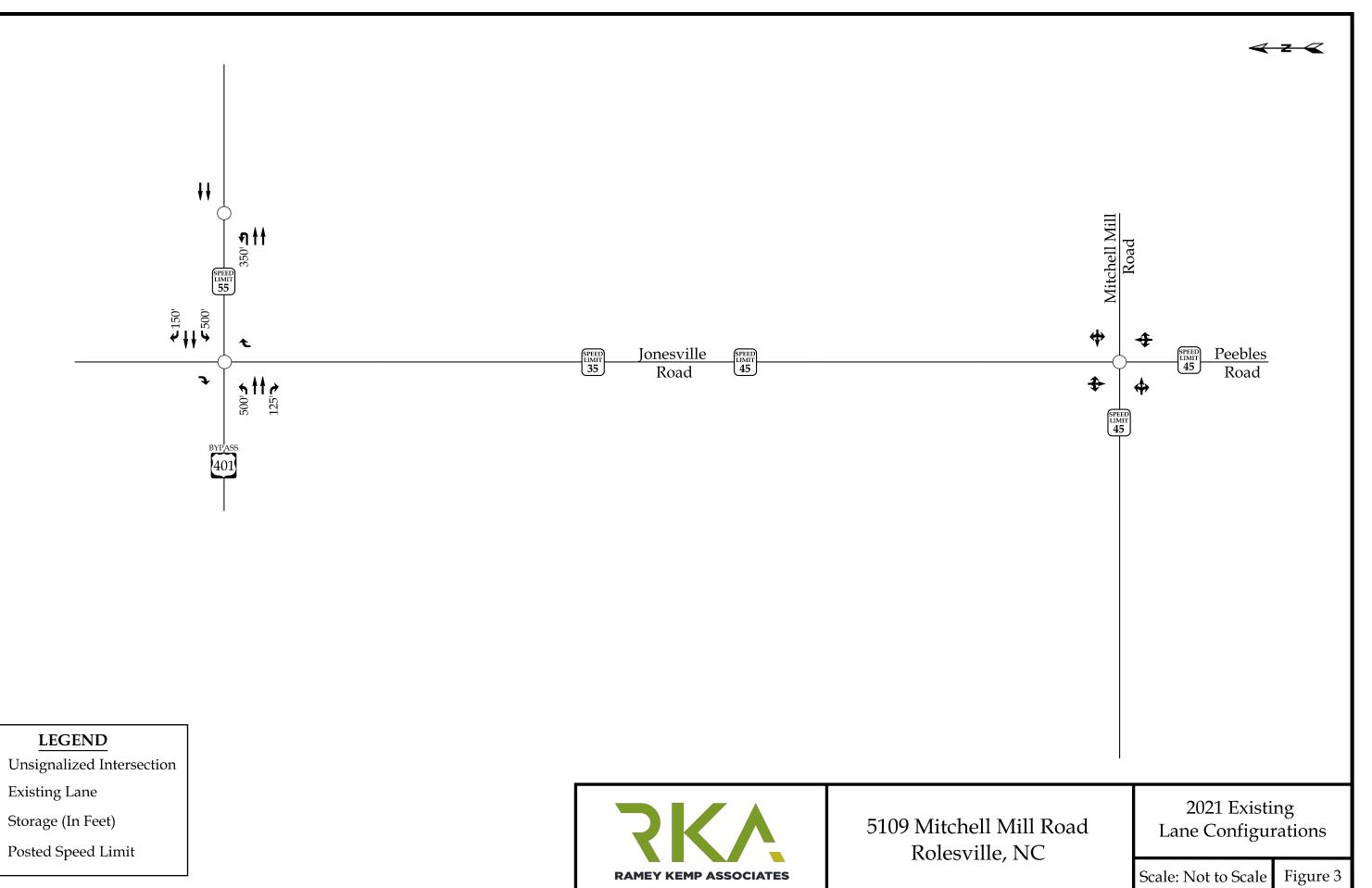


RAMEY KEMP ASSOCIATES

Rolesville, NC

Scale: Not to Scale

Figure 1


5109 MITCHELL MILL ROAD - ROLESVILLE, NC Conceptual Master Plan - February 23, 2022

SPEED LIMIT XX

2. 2021 EXISTING PEAK HOUR CONDITIONS

2.1. 2021 Existing Peak Hour Traffic Volumes

Existing peak hour traffic volumes were determined based on traffic counts conducted at the study intersections listed below, in November of 2021 during typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools were in session for inperson learning:

- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location
- Mitchell Mill Road and Jonesville Road / Peebles Road

Weekday AM and PM traffic volumes were balanced between study intersections, where appropriate. Refer to Figure 4 for 2021 existing weekday AM and PM peak hour traffic volumes. A copy of the count data is located in Appendix B of this report.

2.2. Analysis of 2021 Existing Peak Hour Traffic Conditions

The 2021 existing weekday AM and PM peak hour traffic volumes were analyzed to determine the current levels of service at the study intersections under existing roadway conditions. The results of the analysis are presented in Section 7 of this report.

3. 2028 NO-BUILD PEAK HOUR CONDITIONS

In order to account for growth of traffic and subsequent traffic conditions at a future year, no-build traffic projections are needed. No-build traffic is the component of traffic due to the growth of the community and surrounding area that is anticipated to occur regardless of whether or not the proposed development is constructed. No-build traffic is comprised of existing traffic growth within the study area and additional traffic created as a result of adjacent approved developments.

3.1. Ambient Traffic Growth

Through coordination with the Town and NCDOT, it was determined that an annual growth rate of 2% would be used to generate 2028 projected weekday AM and PM peak hour traffic volumes. Refer to Figure 5 for 2028 projected peak hour traffic.

3.2. Adjacent Development Traffic

Through coordination with the Town and NCDOT, the following adjacent developments were identified to be included as an approved adjacent development in this study:

- Cobblestone Crossing Mixed-Use
- Young Street PUD
- Wheeler Tract
- Louisbury Road Assemblage
- Kalas / Watkins Family Property

Table 2, on the following page, provides a summary of the adjacent developments.

Development TIA Build-Land Use / Location Name **Out Year Performed Intensity** 180 multi-family homes Northwest quadrant 18,200 sq. ft. municipal Cobblestone of the intersection of March 2021 flex space Crossing Mixed-2023 Main Street and by RKA 50,000 sq. ft. general Use Young Street retail 96 single-family homes Along both sides of 525 single-family homes June 2019 Young Street 320 multi-family homes US 401 Bypass west 2025 by Kimley **PUD** 122,800 sq. ft. general of Young Street Horn retail Northeast quadrant of the intersection of 233 single-family homes June 2019 Wheeler Tract 2026 Rolesville Road and 125 multi-family homes by RKA Mitchell Mill Road West of Louisbury May 2020 Louisbury Road Road and south of 2025 152 single-family homes Assemblage by RKA Stells Road Along the west side of Rolesville Road, Kalas / Watkins 439 single-family homes August 2019 2025 Family Property north of Mitchell Mill 96 multi-family homes by Stantec

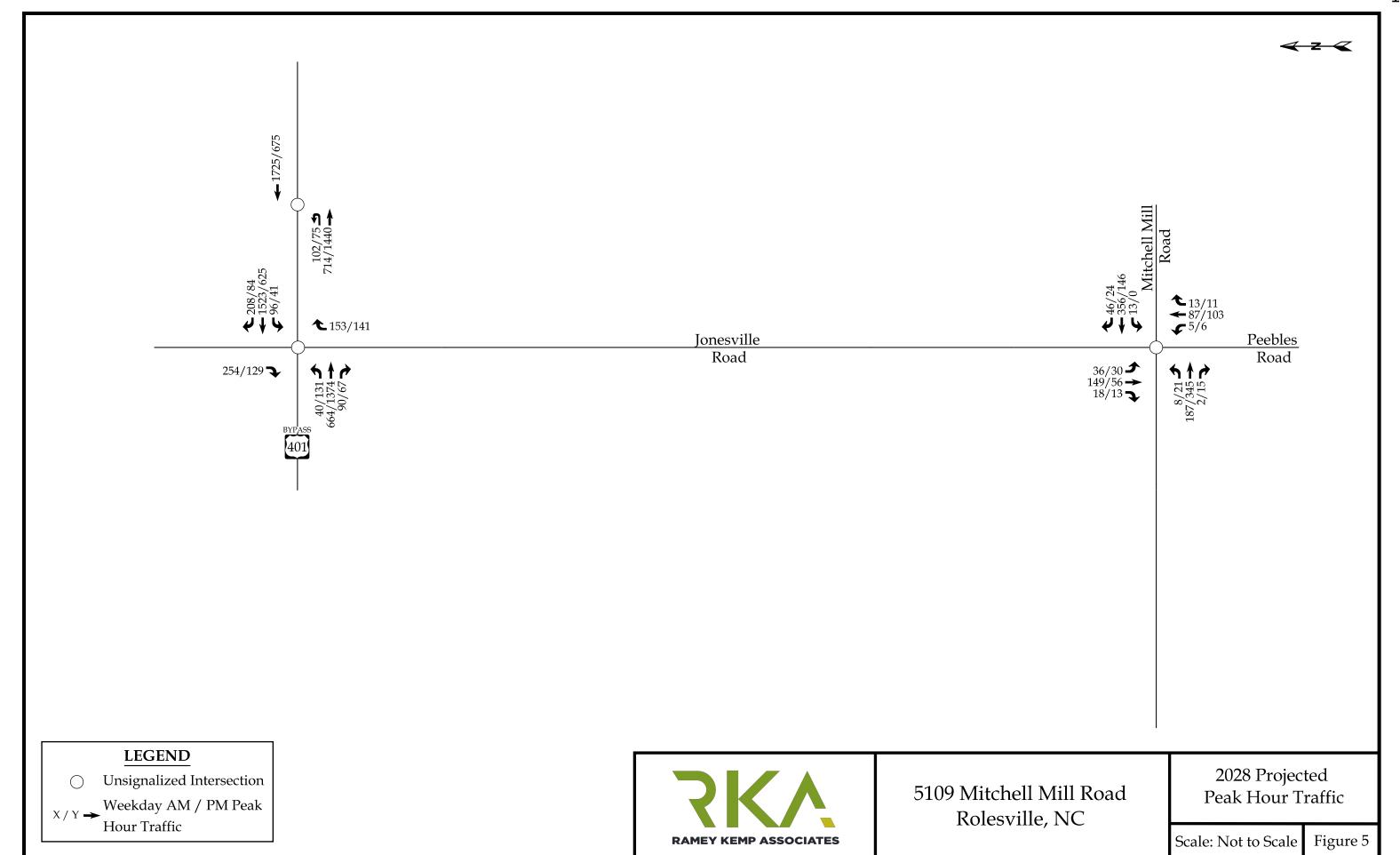
Table 2: Adjacent Development Information

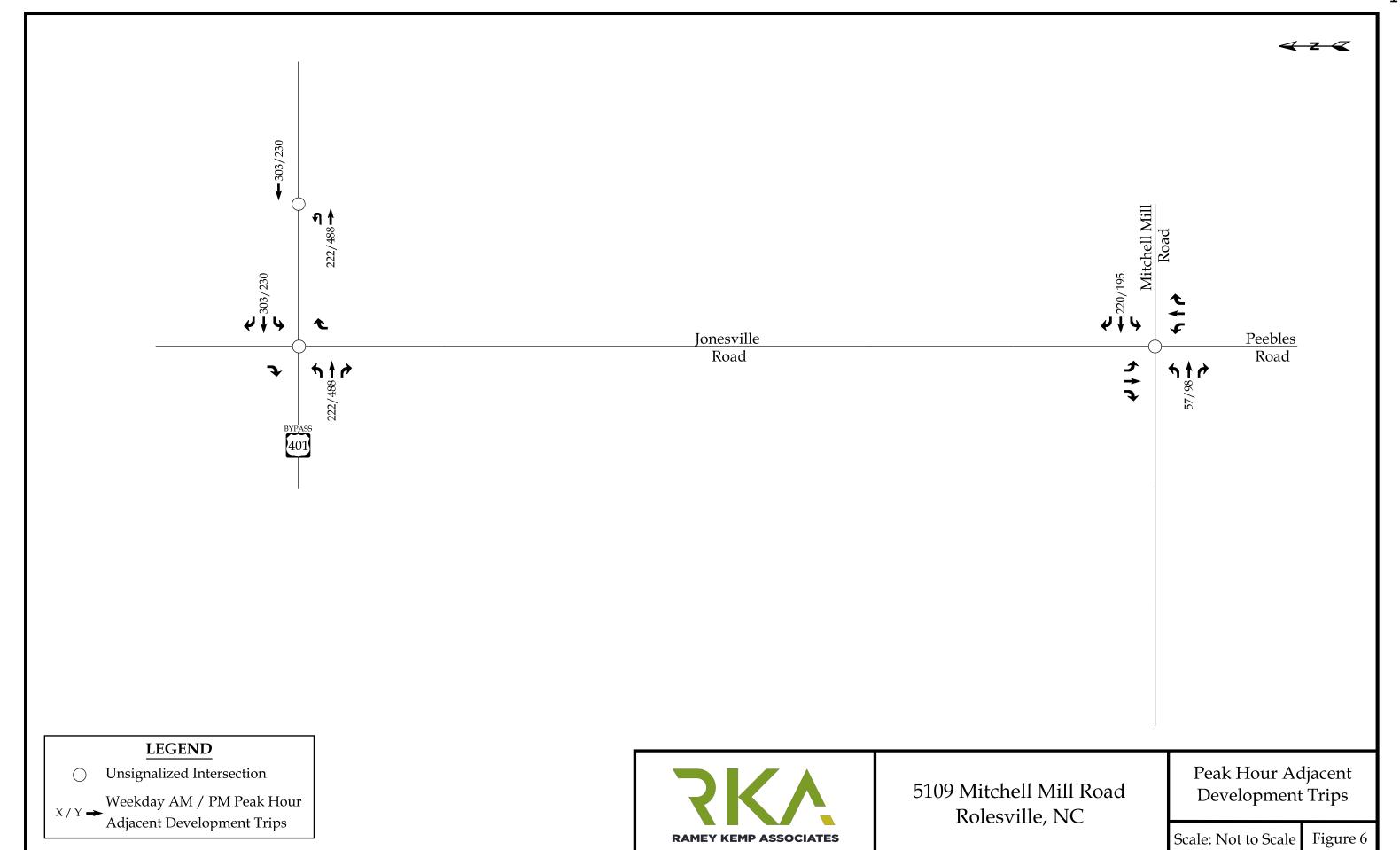
It should be noted that the adjacent developments were approved, during scoping, by the Town and NCDOT. Adjacent development trips are shown in Figure 6. Adjacent development information can be found in Appendix C.

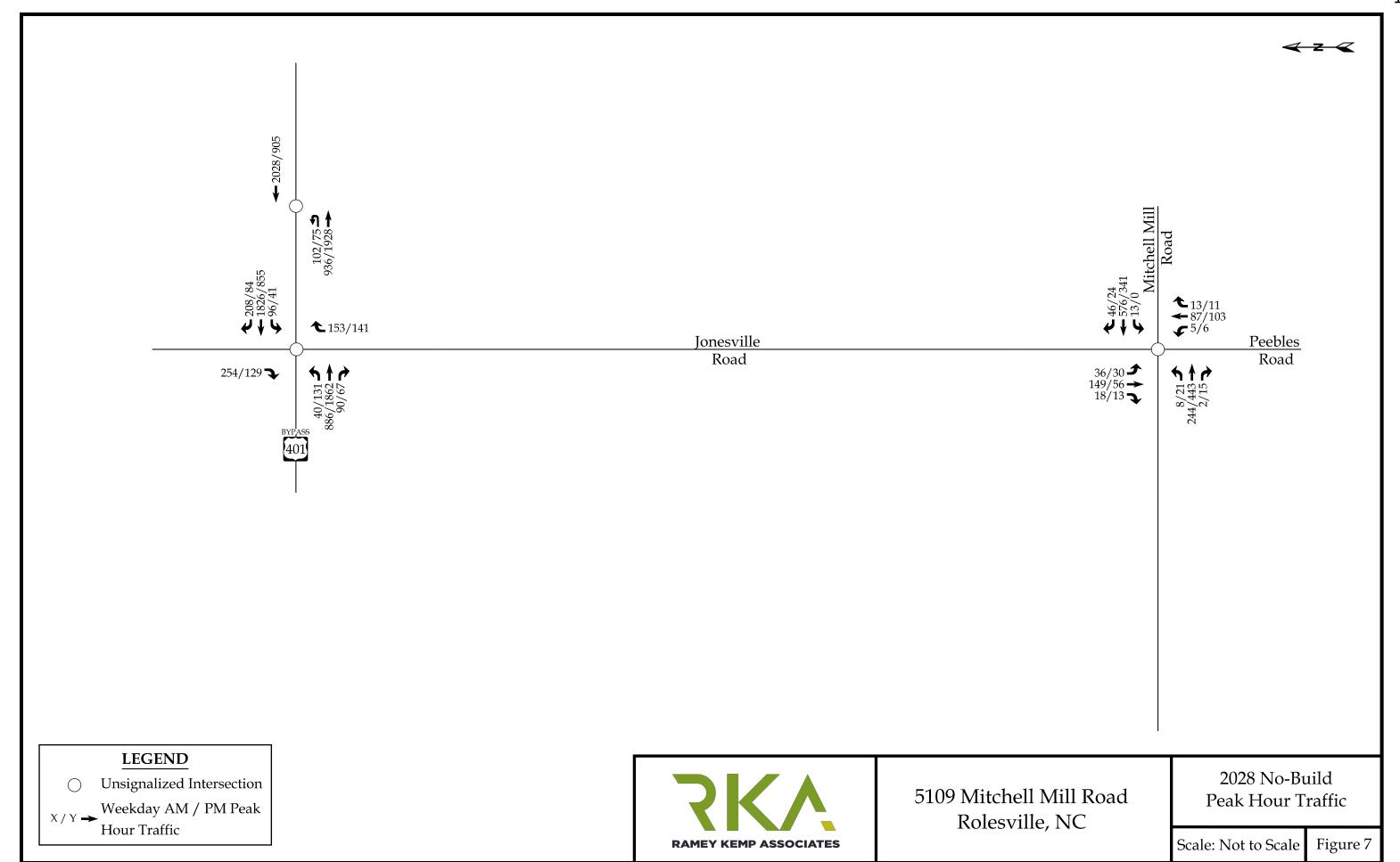
3.3. Future Roadway Improvements

Road

Based on coordination with the NCDOT and the Town, it was determined there were no future roadway improvements to consider under future conditions with this study. It should be noted that per the Rolesville Community Transportation Plan (dated May 2021), the ultimate cross-section of Jonesville Road is identified as a 2-lane roadway with a center two-way-left-turn-lane (TWLTL) and Mitchell Mill Road is identified as a 4-lane median-divided roadway.


3.4. 2028 No-Build Peak Hour Traffic Volumes


The 2028 no-build traffic volumes were determined by projecting the 2021 existing peak hour traffic to the year 2028, and adding the adjacent development trips. Refer to Figure 7 for an illustration of the 2028 no-build peak hour traffic volumes at the study intersections.


3.5. Analysis of 2028 No-Build Peak Hour Traffic Conditions

The 2028 no-build AM and PM peak hour traffic volumes at the study intersections were analyzed with existing geometric roadway conditions and traffic control. The analysis results are presented in Section 7 of this report.

4. SITE TRIP GENERATION AND DISTRIBUTION

4.1. Trip Generation

The proposed development is assumed to consist of 264 single-family homes, 129 townhomes, and 50,000 sq. ft. of general retail space. Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 10th Edition. Table 3 provides a summary of the trip generation potential for the site.

Weekday Weekday Daily **AM Peak Hour Trips** PM Peak Hour Trips **Land Use Intensity** Traffic (vph) (vph) (ITE Code) (vpd) **Exit Exit Enter Enter Total** Total Single-Family Home 192 95 264 DU 2,540 48 144 163 258 (210)Multi-Family Home (Low-Rise) 129 DU 934 47 47 27 74 14 61 (220)**Shopping Center** 50 KSF 3,752 110 67 177 156 169 325 (820)7,226 172 258 430 291 657 **Total Trips** 366 Internal Capture -35 -70 -2 -2 -4 -35 (1% AM, 15% PM)* **Total External Trips** 170 256 426 331 256 587 Pass-By Trips: Shopping Center -94 -47 -47 (34% PM)

Table 3: Trip Generation Summary

Total Primary Trips

It is estimated that the proposed development will generate approximately 7,226 total site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 430 trips (172 entering and 258 exiting) will occur during the weekday AM peak hour and 657 trips (366 entering and 291 exiting) will occur during the weekday PM peak hour.

170

426

256

209

284

493

Internal capture of trips between the retail and residential land uses was considered in this study. Internal capture is the consideration for trips that will be made within the site between

^{*}Utilizing methodology contained in the NCHRP Report 684.

different land uses, so the vehicle technically never leaves the internal site but can still be considered as a trip to that specific land use. However, since the site is split into two (2) tracts on either side of Jonesville Road, internal capture was only considered for the land uses in the western tract. Based on NCHRP Report 684 methodology, weekday AM and PM peak hour internal capture rates of 1% and 15%, respectively, were applied to the trips generated from the western tract only. The internal capture reductions are expected to account for approximately 4 trips (2 entering and 2 exiting) during the weekday AM peak hour and 70 trips (35 entering and 35 exiting) during the weekday PM peak hour.

Pass-by trips were also be taken into consideration in this study. Pass-by trips are made by the traffic already using the adjacent roadway, entering the site as an intermediate stop on their way to another destination. Pass-by percentages are applied to site trips after adjustments for internal capture. Pass-by trips are expected to account for approximately 94 trips (47 entering and 47 exiting) during the weekday PM peak hour. It should be noted that the pass-by trips were balanced, as it is likely that these trips would enter and exit in the same hour.

The total primary site trips are the calculated site trips after the reduction for internal capture and pass-by trips. Primary site trips are expected to generate approximately 426 trips (170 entering and 256 exiting) during the weekday AM peak hour and 493 trips (284 entering and 209 exiting) during the weekday PM peak hour.

4.2. Site Trip Distribution and Assignment

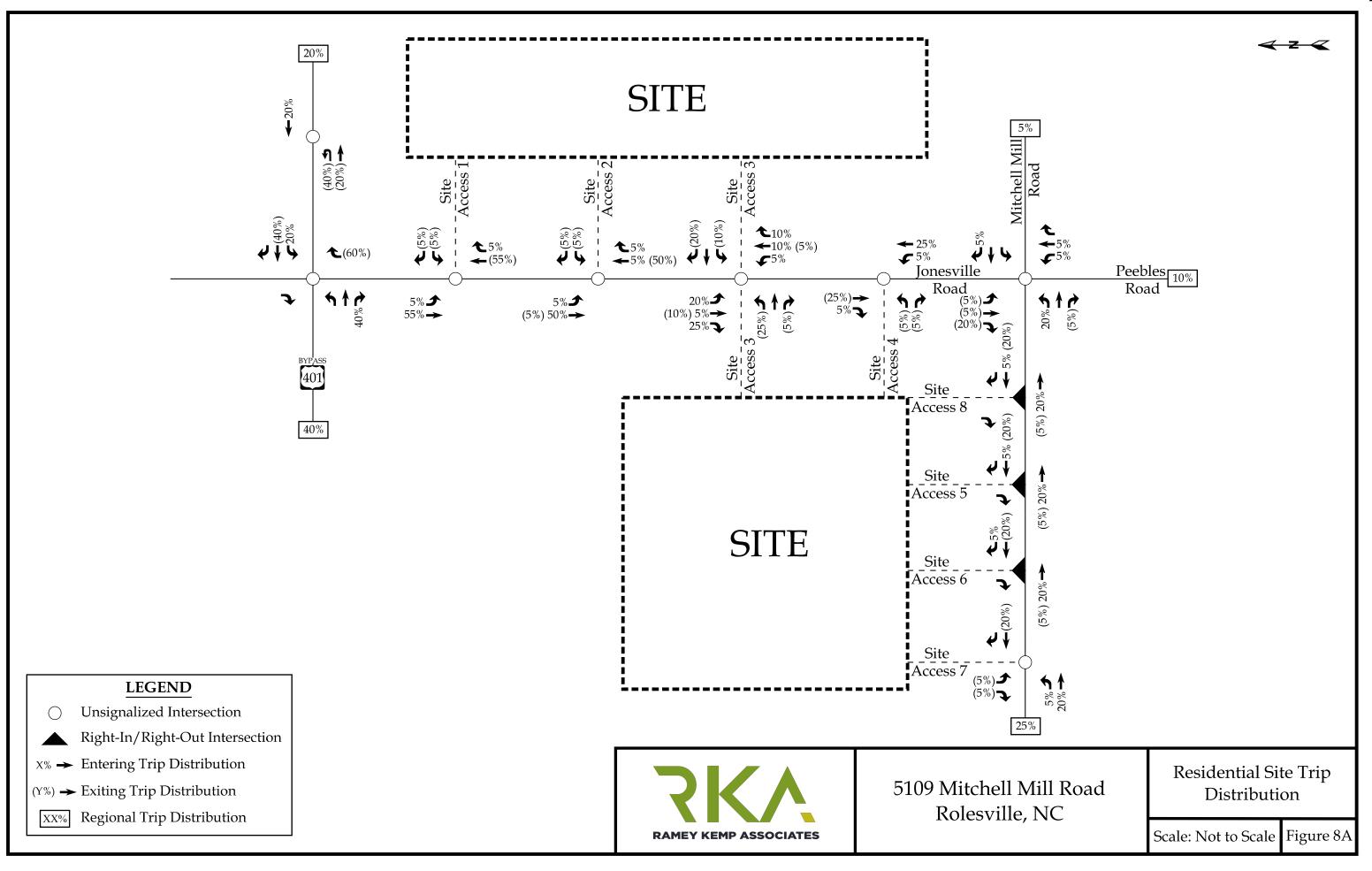
Trip distribution percentages used in assigning site traffic for this development were estimated based on a combination of existing traffic patterns, population centers adjacent to the study area, and engineering judgment.

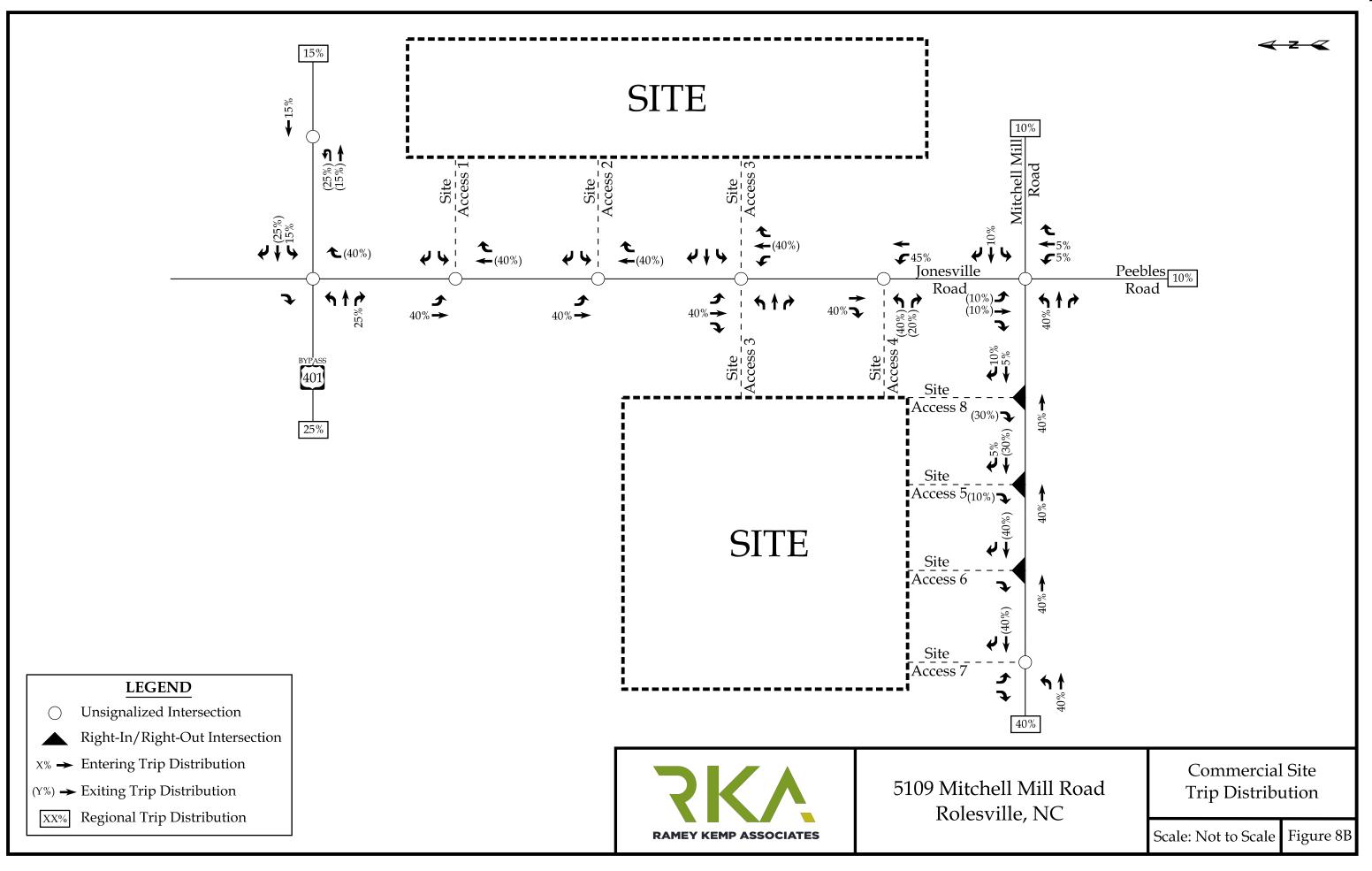
It is estimated that the residential site trips will be regionally distributed as follows:

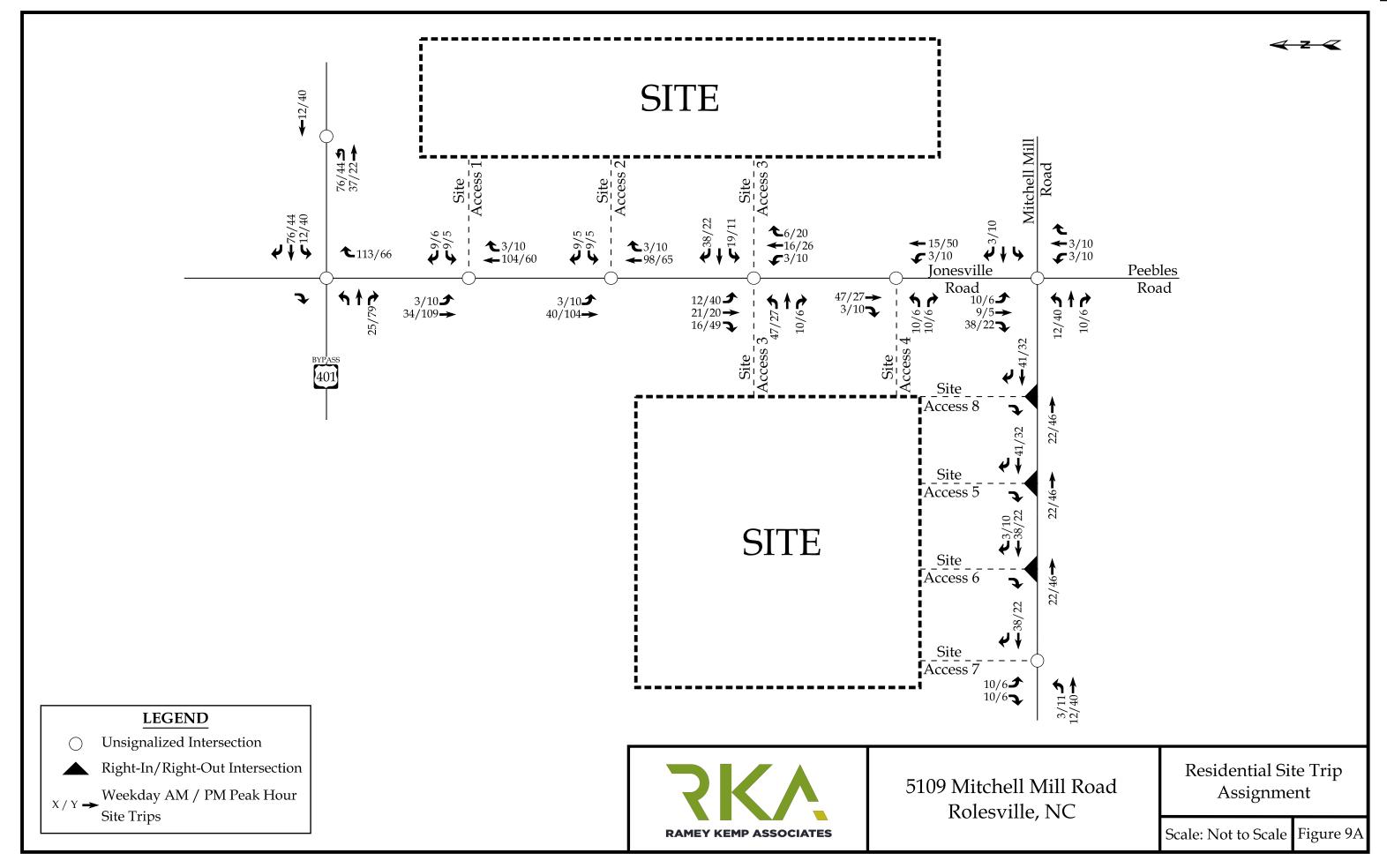
- 40% to/from the west via US 401 Bypass
- 20% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road

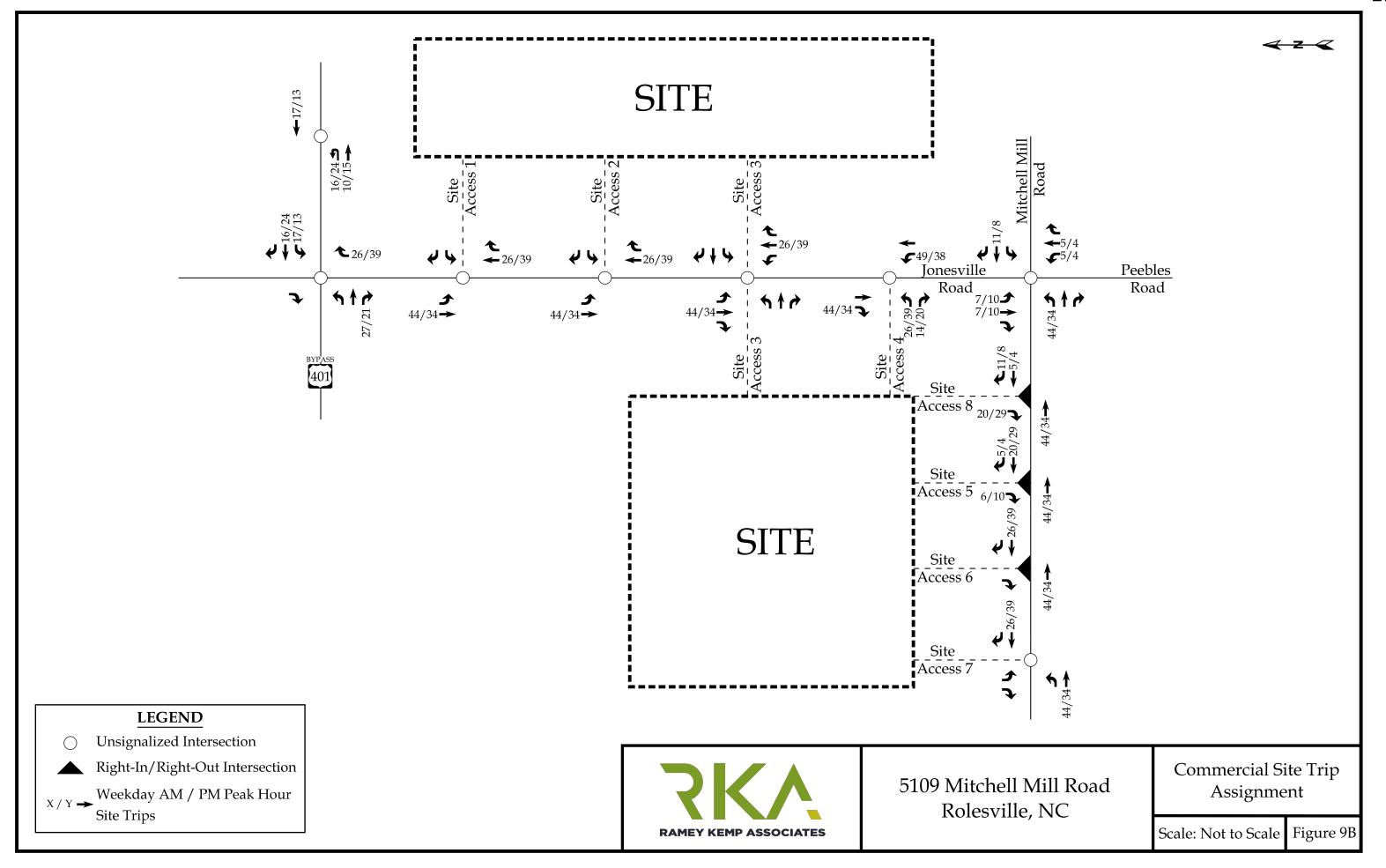
- 25% to/from the west via Mitchell Mill Road
- 5% to/from the east via Mitchell Mill Road

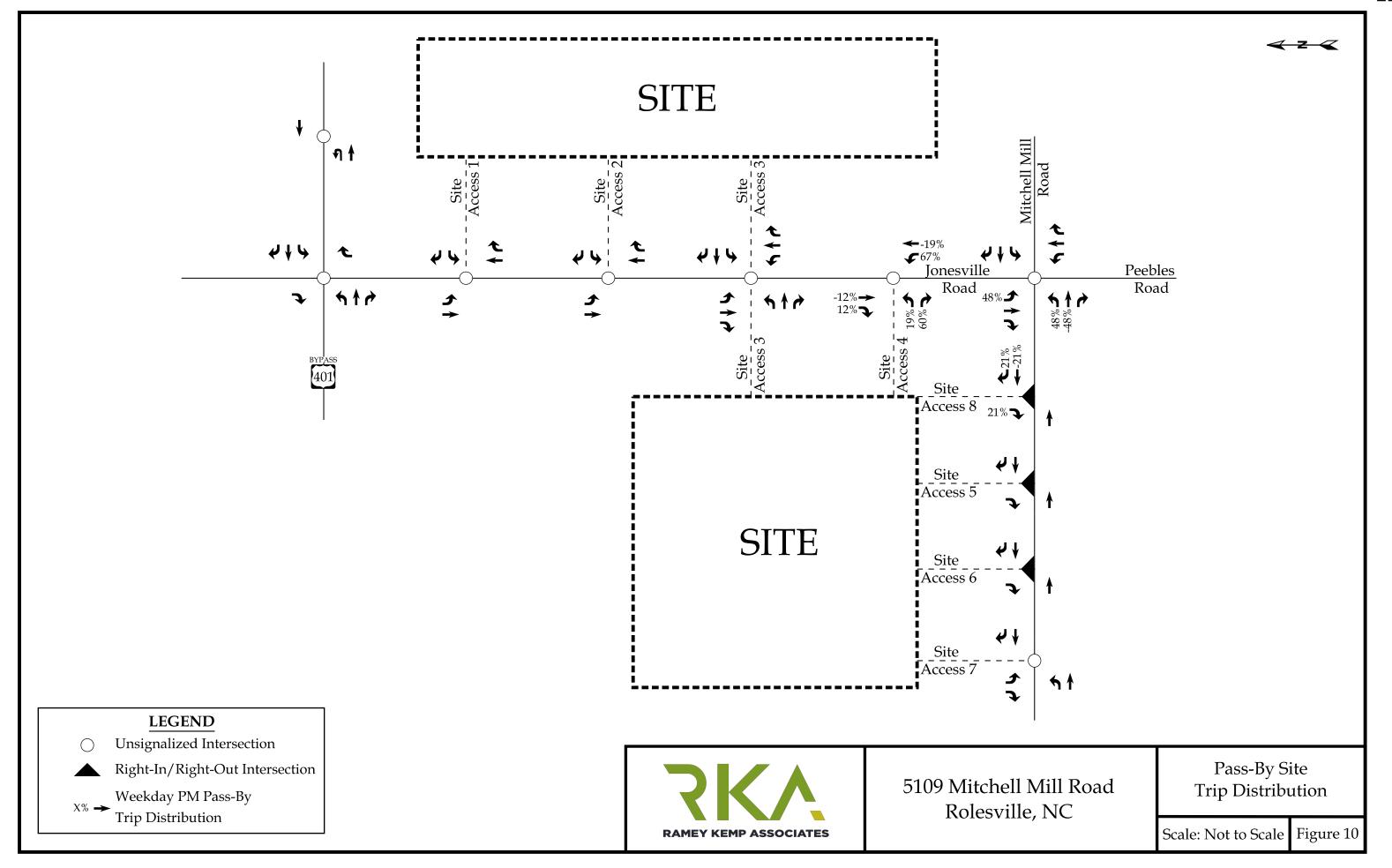
It is estimated that the commercial site trips will be regionally distributed as follows:

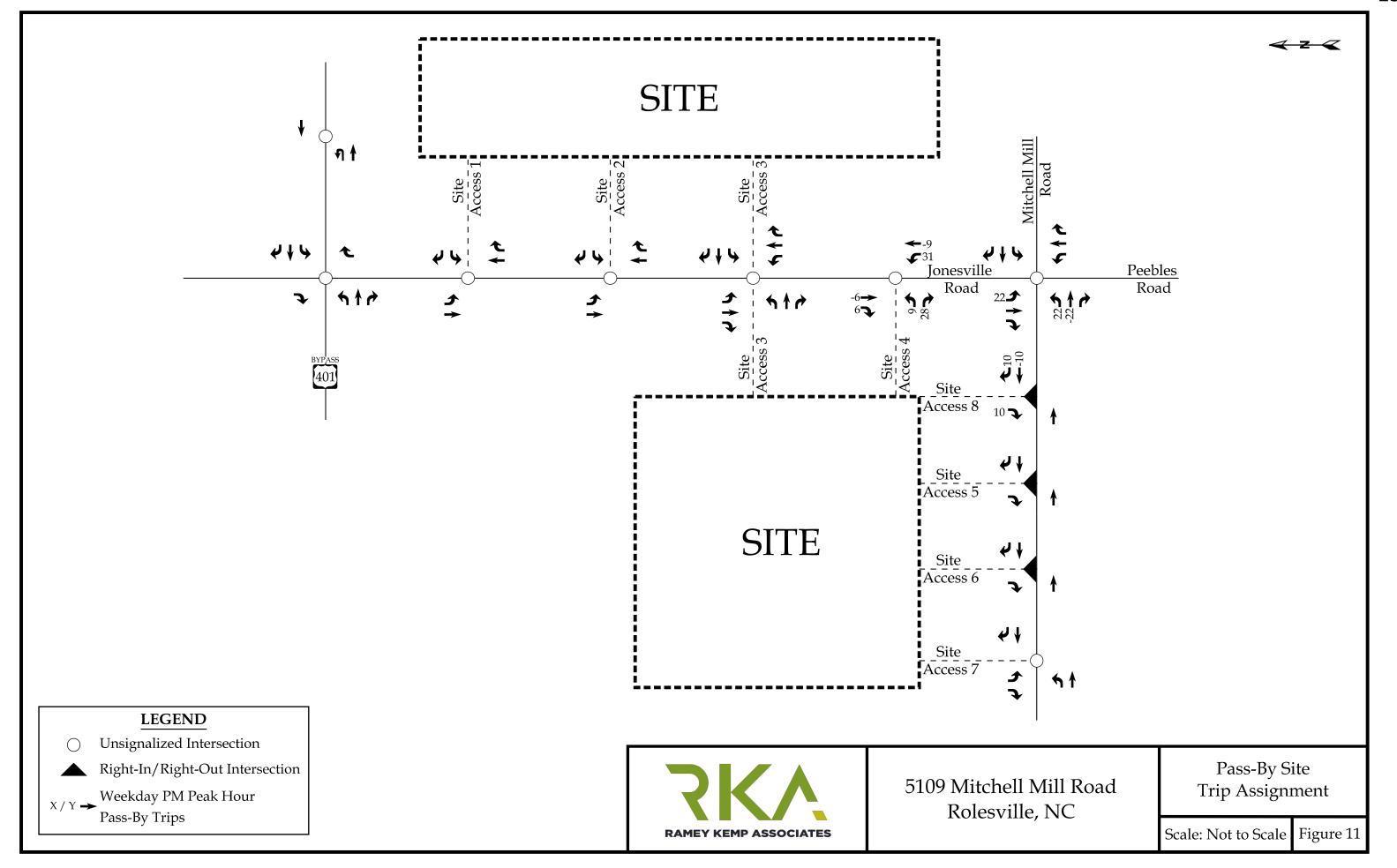

- 25% to/from the west via US 401 Bypass
- 15% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 40% to/from the west via Mitchell Mill Road
- 10% to/from the east via Mitchell Mill Road

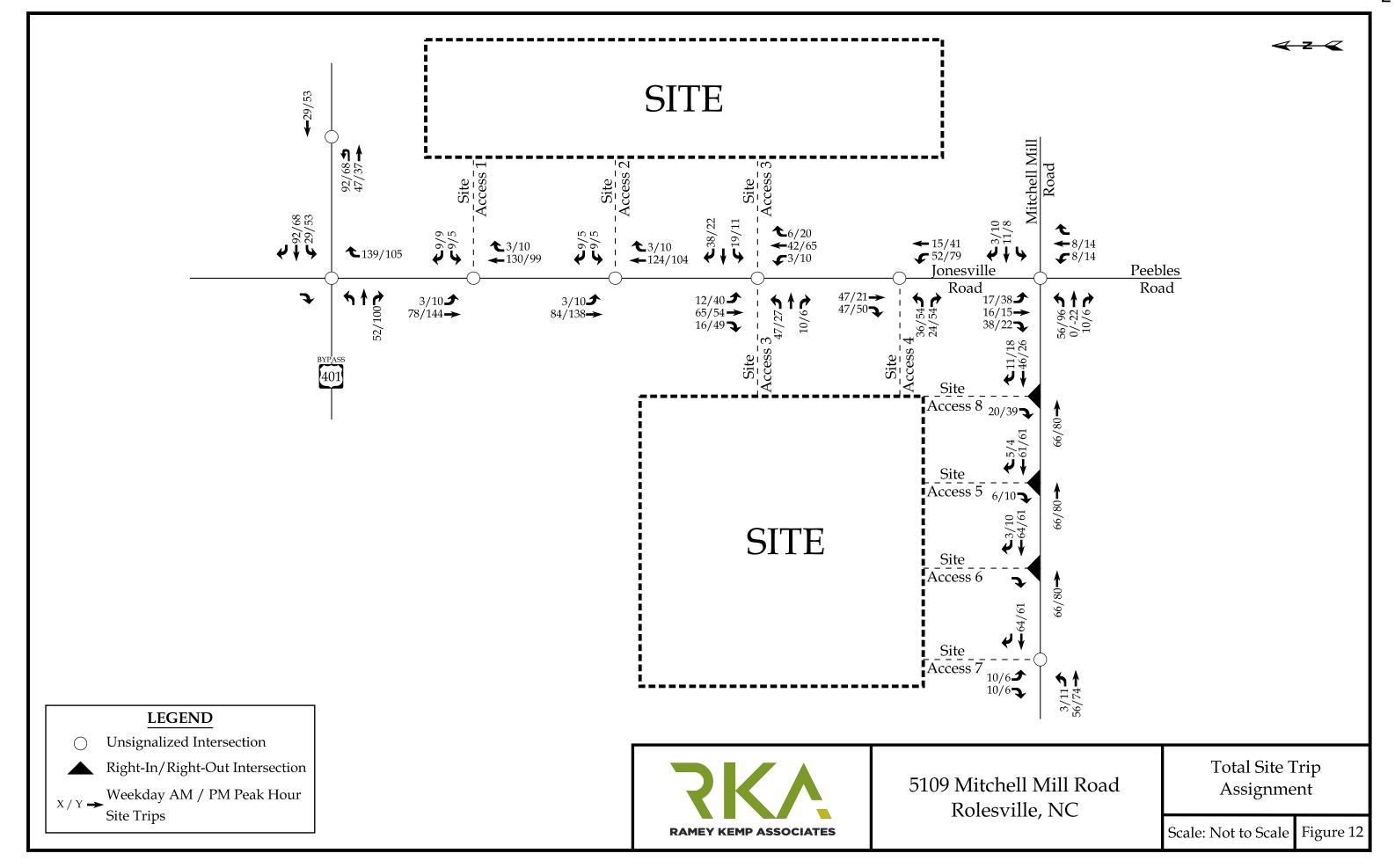

The residential site trip distribution is shown in Figure 8A and the commercial site trip distribution is shown in Figure 8B. Refer to Figures 9A and 9B for the residential site trip assignment and commercial site trip assignment, respectively.


The pass-by site trips were distributed based on existing traffic patterns with consideration given to the proposed driveway access and site layout. Refer to Figure 10 for the pass-by site trip distribution. Pass-by site trips are shown in Figure 11.

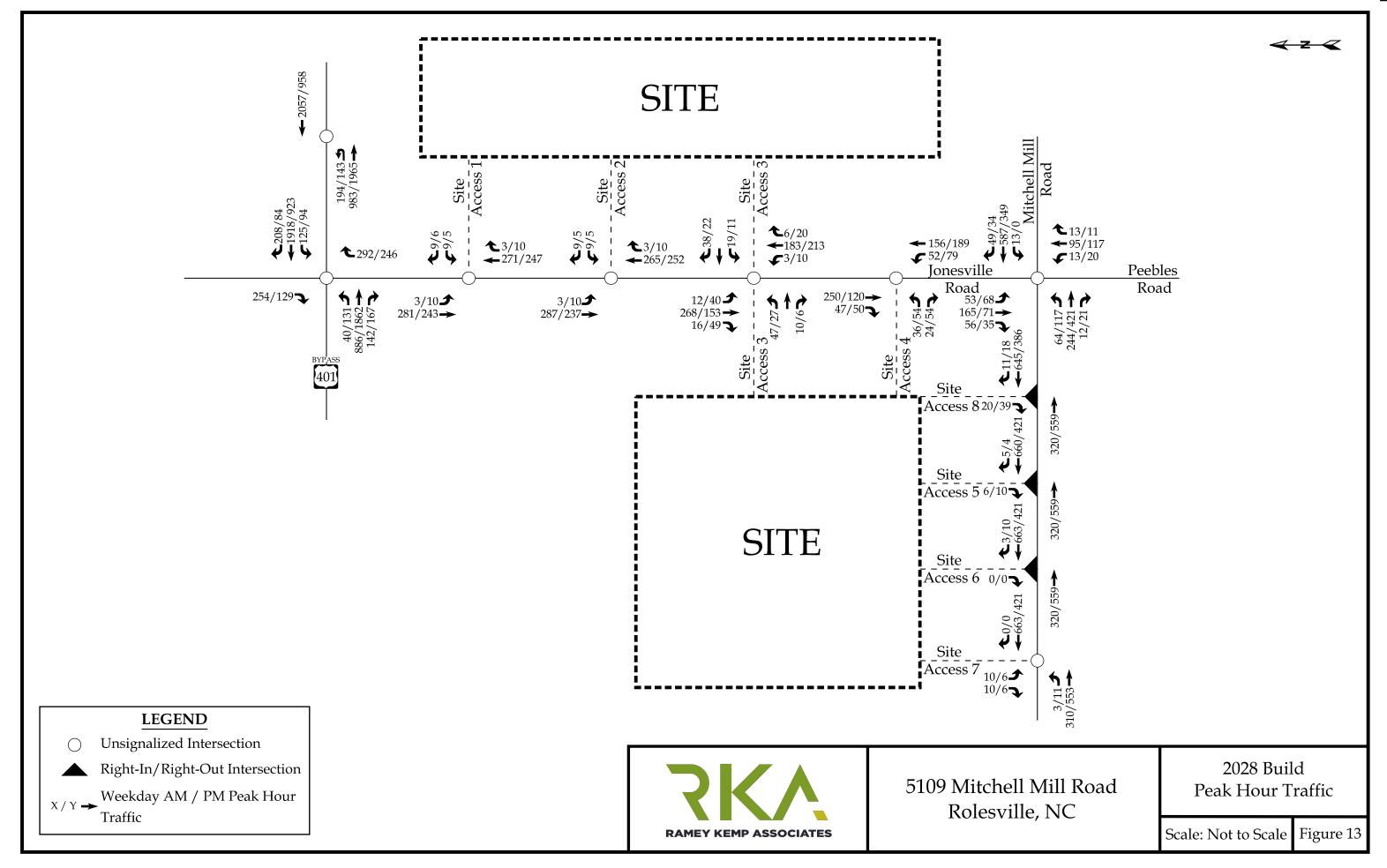

The total site trips were determined by adding the primary site trips and the pass-by site trips. Refer to Figure 12 for the total peak hour site trips at the study intersections.







5. 2028 BUILD TRAFFIC CONDITIONS


5.1. 2028 Build Peak Hour Traffic Volumes

To estimate traffic conditions with the site fully built-out, the total site trips were added to the 2028 no-build traffic volumes to determine the 2028 build traffic volumes. Refer to Figure 13 for an illustration of the 2028 build peak hour traffic volumes with the proposed site fully developed.

5.2. Analysis of 2028 Build Peak Hour Traffic Conditions

Study intersections were analyzed with the 2028 build traffic volumes using the same methodology previously discussed for existing and no-build traffic conditions. Intersections were analyzed with improvements necessary to accommodate future traffic volumes. The results of the capacity analysis for each intersection are presented in Section 7 of this report.

6. TRAFFIC ANALYSIS PROCEDURE

Study intersections were analyzed using the methodology outlined in the *Highway Capacity Manual* (HCM), 6th Edition published by the Transportation Research Board. Capacity and level of service are the design criteria for this traffic study. A computer software package, Synchro (Version 10.3), was used to complete the analyses for most of the study area intersections. Please note that the unsignalized capacity analysis does not provide an overall level of service for an intersection; only delay for an approach with a conflicting movement.

The HCM defines capacity as "the maximum hourly rate at which persons or vehicles can reasonably be expected to traverse a point or uniform section of a lane or roadway during a given time period under prevailing roadway, traffic, and control conditions." Level of service (LOS) is a term used to represent different driving conditions, and is defined as a "qualitative measure describing operational conditions within a traffic stream, and their perception by motorists and/or passengers." Level of service varies from Level "A" representing free flow, to Level "F" where breakdown conditions are evident. Refer to Table 4 for HCM levels of service and related average control delay per vehicle for both signalized and unsignalized intersections. Control delay as defined by the HCM includes "initial deceleration delay, queue move-up time, stopped delay, and final acceleration delay". An average control delay of 50 seconds at a signalized intersection results in LOS "D" operation at the intersection.

Table 4: Highway Capacity Manual – Levels-of-Service and Delay

UNSIGNA	ALIZED INTERSECTION	SIGNALIZED INTERSECTION		
LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)	LEVEL OF SERVICE	AVERAGE CONTROL DELAY PER VEHICLE (SECONDS)	
A	0-10	A	0-10	
В	10-15	В	10-20	
С	15-25	С	20-35	
D	25-35	D	35-55	
Е	35-50	E	55-80	
F	>50	F	>80	

6.1. Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to Town LDO and NCDOT Congestions Management Guidelines.

7. CAPACITY ANALYSIS

7.1. US 401 Bypass and Jonesville Road

The existing unsignalized intersection of US 401 Bypass Road and Jonesville Road was analyzed under 2021 existing, 2028 no-build, and 2028 build traffic conditions with the lane configurations and traffic control shown in Table 5. Refer to Table 5 for a summary of the analysis results. Refer to Appendix D for the Synchro capacity analysis reports.

Table 5: Analysis Summary of US 401 Bypass and Jonesville Road

ANALYSIS	A P P R	LANE	PEAK	DAY AM HOUR F SERVICE	PEAK	DAY PM (HOUR F SERVICE
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
	EB	2 TH, 1 RT		NT / A	 F1	DT / A
	WB* NB	1 LT 1 RT	C^1 B^2	N/A	E^1 C^2	N/A
2021 Existing	EB**	1 LT	F^1		C ¹	
	WB	2 TH, 1 RT		N/A		N/A
	SB	1 RT	D^2		B ²	-
	EB	2 TH, 1 RT		_		_
	WB*	1 LT	D^1	N/A	\mathbf{F}^1	N/A
2028 No-Build	NB	1 RT	C ²		E ²	
	EB**	1 LT	F^1	B.T. / A	E^1	B.T. / A
	WB	2 TH, 1 RT	 F2	N/A	 D2	N/A
	SB EB	1 RT	F ²		B ²	
	WB*	2 TH, 1 RT 1 LT	 E ¹	NT / A	 F1	NT / A
	NB	1 RT	C^2	N/A	\mathbf{F}^2	N/A
2028 Build	EB**	1 LT	F^1		F^1	
	WB	2 TH, 1 RT		N/A		N/A
	SB	1 RT	F^2	•	B ²	

^{*}Synchro analyzed the WB left-turns as SB through movements due to the nature of the superstreet and synchro limitations.

Capacity analysis of 2021 existing traffic conditions indicates that the major-street left-turn movements and minor-street approaches are expected to operate at LOS D or better with the

^{**}Synchro analyzed the EB left-turns as NB through movements due to the nature of the superstreet and synchro limitations.

^{1.} Level of service for major-street left-turn movement.

^{2.} Level of service for minor-street approach.

exception of the eastbound left-turn movement during the weekday AM peak hour (LOS F) and the westbound left-turn movement during the weekday PM peak hour (LOS E).

Under 2028 no-build and 2028 build traffic conditions, the major-street left-turn movements are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the westbound left-turn movement during the weekday AM peak hour (LOS D) under 2028 no-build traffic conditions. The minor-street approaches are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the northbound approach during the weekday AM peak hour (LOS C) and the southbound approach during the weekday PM peak hour (LOS B) under 2028 no-build and 2028 build traffic conditions. It should be noted that the proposed development is expected to account for approximately 15% and 11% of the overall traffic at the southern portion of this intersection during the weekday AM and PM peak hours, respectively.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2028 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the Manual on Uniform Traffic Control Devices (MUTCD) and within the Guidelines for Signalization of Intersections with Two or Three Approaches Final Report, published by ITRE. Based on a review of signal warrants at this intersection, the peak hour warrant (warrant 3) from the MUTCD is expected to be met for both the weekday AM and PM peak hours under 2028 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the northbound right-turn movement demand is expected to exceed capacity during the weekday PM peak hour under 2028 no-build and 2028 build traffic conditions. Refer to Appendix P for a copy of the MUTCD warrants and the ITRE 95th percentile queue length calculations.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-of-service under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the northbound right-turn and westbound left-turn movements at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.2. US 401 Bypass and Eastern U-Turn Location

The existing unsignalized intersection of US 401 Bypass and Eastern U-Turn Location was analyzed under 2021 existing, 2028 no-build, and 2028 build traffic conditions with the lane configurations and traffic control shown in Table 6. Refer to Table 6 for a summary of the analysis results. Refer to Appendix E for the Synchro capacity analysis reports.

Table 6: Analysis Summary of US 401 Bypass and Eastern U-Turn Location

A P P P ANALYSIS R SCENARIO O A C H		LANE	PEAK	DAY AM HOUR SERVICE	PEAK	DAY PM (HOUR F SERVICE
		CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
2021 Existing	EB* WB	1 UT 2 TH	C ¹	N/A	B1 	N/A
2028 No-Build	EB* WB	1 UT 2 TH	E ¹	N/A	B¹	N/A
2028 Build	EB* WB	1 UT 2 TH	F1	N/A	C ¹	N/A

^{*}Synchro analyzed the EB left-turns as NB left-turn movements due to the nature of the superstreet and synchro limitations.

Capacity analysis of 2021 existing and 2028 no-build traffic conditions indicates that the major-street u-turn movement is expected to operate at LOS C or better during the weekday AM and PM peak hours, with the exception of the weekday AM peak hour under 2028 no-build conditions (LOS E).

Under 2028 build traffic conditions, the major-street u-turn movement is expected to operate at LOS F during the weekday AM peak hour and at LOS C during the weekday PM peak hour. It should be noted that the proposed development is expected to account for approximately 5% and 11% of the overall traffic at this intersection during the weekday AM and PM peak hours, respectively. These levels-of-service are not uncommon for stop-controlled u-turn movements with heavy mainline traffic volumes.

^{1.} Level of service for major-street u-turn movement.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2028 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the Manual on Uniform Traffic Control Devices (MUTCD) and within the Guidelines for Signalization of Intersections with Two or Three Approaches Final Report, published by ITRE. Based on a review of signal warrants at this intersection, the peak hour warrant (warrant 3) from the MUTCD is expected to be met for both the weekday AM and PM peak hours under 2028 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the eastbound u-turn movement demand is expected to exceed capacity during the weekday AM peak hour under 2028 no-build and 2028 build traffic conditions. Refer to Appendix P for a copy of the MUTCD warrants and the ITRE 95th percentile queue length calculations.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-of-service under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the eastbound u-turn movement at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.3. Mitchell Mill Road and Jonesville Road / Peebles Road

The existing unsignalized intersection of Mitchell Mill Road and Jonesville Road / Peebles Road was analyzed under 2021 existing, 2028 no-build, and 2028 build traffic conditions with the lane configurations and traffic control shown in Table 7. Refer to Table 7 for a summary of the analysis results. Refer to Appendix F for the Synchro capacity analysis reports.

Table 7: Analysis Summary of Mitchell Mill Road and Jonesville Road /
Peebles Road

ANALYSIS	A P P R	LANE	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
2021 Existing	EB WB NB SB	1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT	$egin{array}{c} B^1 \ B^1 \ A^1 \ B^1 \end{array}$	B (12)	$egin{array}{c} B^1 \ A^1 \ A^1 \ A^1 \end{array}$	B (11)
2028 No-Build	EB WB NB SB	1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT	C ¹ F ¹ C ¹	F (55)	D ¹ C ¹ B ¹	C (20)
2028 Build	EB WB NB SB	1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT 1 LT-TH-RT	C ₁ C ₁ C ₁	F (86)	F ¹ D ¹ C ¹	F (52)
2028 Build - Improved	EB WB NB SB	1 LT, 1 TH-RT 1 LT-TH-RT 1 LT-TH-RT 1 LT, 1 TH-RT	C ¹ F ¹ C ¹	F (107)	B ₁ C ₁ E ₁	D (35)

Improvements by the developer are shown in bold.

Capacity analysis of 2021 existing and 2028 no-build traffic conditions indicates that the intersection is expected to operate at an overall LOS C or better during the weekday AM and PM peak hours, with the exception of the weekday AM peak hour under 2028 no-build traffic conditions (LOS F). Under 2028 build traffic conditions, this intersection is expected to operate at an overall LOS F during the weekday AM and PM peak hours. It should be noted that the

^{1.} Level of service for all-way stop controlled approach.

proposed development is expected to account for approximately 12% and 16% of the overall traffic at this intersection during the weekday AM and PM peak hours, respectively.

Turn lanes were considered at this intersection in order to mitigate the proportional impact that the proposed site traffic is expected to have at this intersection and to improve overall operations. Exclusive left-turn lanes are recommended by the developer on the eastbound and southbound approaches. With these improvements, the intersection is expected to operate at an overall LOS F during the weekday AM peak hour and at an overall LOS D during the weekday PM peak hour.

It should be noted that the westbound approach and overall intersection delays are expected to increase during the weekday AM peak hour as a result of the recommended improvements to the southbound and eastbound approaches. Mitigation was considered for the westbound approach due to the anticipated impact traffic on this approach is expected to have on the overall intersection operations under future traffic conditions. However, due to the vast majority of traffic on the westbound approach continuing through this intersection on Mitchell Mill Road, no feasible improvements other than signalization would be expected to decrease delays for the westbound approach.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2028 build traffic conditions to achieve acceptable levels-of-service. The peak hour warrant (warrant 3) from the *Manual on Uniform Traffic Control Devices* (MUTCD) was considered. Based on a review of the peak hour signal warrant at this intersection, the intersection is expected to meet the peak hour warrant for both the weekday AM and PM peak hours under 2028 no-build and 2028 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Refer to Appendix P for a copy of the MUTCD warrants.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

7.4. Jonesville Road and Site Access 1

The proposed unsignalized intersection of Jonesville Road and Site Access 1 was analyzed under 2028 build traffic conditions with the lane configurations and traffic control shown in Table 8. Refer to Table 8 for a summary of the analysis results. Refer to Appendix G for the synchro capacity analysis reports.

Table 8: Analysis Summary of Jonesville Road and Site Access 1

A P P ANALYSIS R		LANE	PEAK	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)	
2020 P. II.I	WB	1 LT-RT	B ²	D.T. / A	B ²	D.T. / A	
2028 Build	NB SB	1 TH-RT 1 LT , 1 TH	 A ¹	N/A	 A ¹	N/A	

Improvements to lane configurations by the developer are shown in bold.

- 1. Level of service for major-street left-turn movement.
- 2. Level of service for minor-street approach.

Capacity analysis of 2028 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways* and a left-turn lane is recommended on the southbound approach (Jonesville Road). Based on the estimated low volume of right-turn movements into the proposed development at this intersection, an exclusive right-turn lane is not recommended. Refer to Appendix O for a copy of the turn lane warrants.

7.5. Jonesville Road and Site Access 2

The proposed unsignalized intersection of Jonesville Road and Site Access 2 was analyzed under 2028 build traffic conditions with the lane configurations and traffic control shown in Table 9. Refer to Table 9 for a summary of the analysis results. Refer to Appendix H for the synchro capacity analysis reports.

Table 9: Analysis Summary of Jonesville Road and Site Access 2

A P P ANALYSIS R		LANE	PEAK	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)	
	WB	1 LT-RT	B ²		B ²		
2028 Build	NB	1 TH , 1 RT		N/A		N/A	
	SB	1 LT, 1 TH	A^1	-	A^1	-	

Improvements to lane configurations by the developer are shown in bold.

- 1. Level of service for major-street left-turn movement.
- 2. Level of service for minor-street approach.

Capacity analysis of 2028 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways* and a left-turn lane is recommended on the southbound approach (Jonesville Road). Based on coordination with NCDOT a right-turn lane is also recommended on the northbound approach (Jonesville Road). Refer to Appendix O for a copy of the turn lane warrants.

7.6. Jonesville Road and Site Access 3

The proposed unsignalized intersection of Jonesville Road and Site Access 3 was analyzed under 2028 build traffic conditions with the lane configurations and traffic control shown in Table 10. Refer to Table 10 for a summary of the analysis results. Refer to Appendix I for the synchro capacity analysis reports.

Table 10: Analysis Summary of Jonesville Road and Site Access 3

A P P P ANALYSIS R SCENARIO O A C H		LANE	PEAK	DAY AM HOUR SERVICE	PEAK	DAY PM HOUR SERVICE
		CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
	EB WB	1 LT-TH-RT 1 LT-TH-RT	B ² B ²	37/1	B ² B ²	27/1
2028 Build	NB SB	1 LT, 1 TH, 1 RT 1 LT, 1 TH, 1 RT	$egin{array}{c} A^1 \ A^1 \end{array}$	N/A	$egin{array}{c} A^1 \ A^1 \end{array}$	N/A

Improvements to lane configurations by the developer are shown in bold.

- 1. Level of service for major-street left-turn movement.
- 2. Level of service for minor-street approach.

Capacity analysis of 2028 build traffic conditions indicates that the major-street left-turn movements are expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approaches are expected to operate at LOS B during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways* and both are recommended on the southbound and northbound approaches (Jonesville Road). Refer to Appendix O for a copy of the turn lane warrants.

7.7. Jonesville Road and Site Access 4

The proposed unsignalized intersection of Jonesville Road and Site Access 4 was analyzed under 2028 build traffic conditions with the lane configurations and traffic control shown in Table 11. Refer to Table 11 for a summary of the analysis results. Refer to Appendix J for the synchro capacity analysis reports.

Table 11: Analysis Summary of Jonesville Road and Site Access 4

A P P ANALYSIS R		LANE	PEAK	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)	
2020 P :1.1	EB	1 LT-RT	B ²	D.T. / A	B ²	DT / A	
2028 Build	NB SB	1 LT, 1 TH 1 TH , 1 RT	A ¹ 	N/A	A ¹ 	N/A	

Improvements to lane configurations by the developer are shown in bold.

- 1. Level of service for major-street left-turn movement.
- 2. Level of service for minor-street approach.

Capacity analysis of 2028 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS B during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways* and are recommended on the southbound and northbound approaches (Jonesville Road), respectively. Refer to Appendix O for a copy of the turn lane warrants.

7.8. Mitchell Mill Road and Site Access 5

The proposed unsignalized intersection of Mitchell Mill Road and Site Access 5 was analyzed under 2028 build traffic conditions with the lane configurations and traffic control shown in Table 12. Refer to Table 12 for a summary of the analysis results. Refer to Appendix K for the synchro capacity analysis reports.

Table 12: Analysis Summary of Mitchell Mill Road and Site Access 5

A P P P ANALYSIS R		LANE	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
2028 Build	EB WB	1 TH 1 TH, 1 RT		N/A		N/A
	SB	1 RT	B^1	11/11	B^1	11/11

Improvements to lane configurations by the developer are shown in bold.

Capacity analysis of 2028 build traffic conditions indicates that the minor-street approach is expected to operate at LOS B during the weekday AM and PM peak hours.

A right-turn lane was considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways* and is recommended on the westbound approach (Mitchell Mill Road). Refer to Appendix O for a copy of the turn lane warrants.

^{1.} Level of service for minor-street approach.

7.9. Mitchell Mill Road and Site Access 6

The proposed unsignalized intersection of Mitchell Mill Road and Site Access 6 was analyzed under 2028 build traffic conditions with the lane configurations and traffic control shown in Table 13. Refer to Table 13 for a summary of the analysis results. Refer to Appendix L for the synchro capacity analysis reports.

Table 13: Analysis Summary of Mitchell Mill Road and Site Access 6

A P P ANALYSIS R		LANE	PEAK	WEEKDAY AM PEAK HOUR LEVEL OF SERVICE		WEEKDAY PM PEAK HOUR LEVEL OF SERVICE	
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)	
	EB	1 TH					
2028 Build	WB	1 TH- RT		N/A		N/A	
	SB	1 RT	B^1		B^1		

Improvements to lane configurations by the developer are shown in bold.

Capacity analysis of 2028 build traffic conditions indicates that the minor-street approach is expected to operate at LOS B during the weekday AM and PM peak hours.

A right-turn lane was considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways*. Based on coordination with NCDOT, an exclusive right-turn lane is recommended on the westbound approach (Mitchell Mill Road). Refer to Appendix O for a copy of the turn lane warrants.

^{1.} Level of service for minor-street approach.

7.10. Mitchell Mill Road and Site Access 7

The proposed unsignalized intersection of Mitchell Mill Road and Site Access 7 was analyzed under 2028 build traffic conditions with the lane configurations and traffic control shown in Table 14. Refer to Table 14 for a summary of the analysis results. Refer to Appendix M for the synchro capacity analysis reports.

Table 14: Analysis Summary of Mitchell Mill Road and Site Access 7

A P P ANALYSIS R		LANE	PEAK	DAY AM HOUR SERVICE	PEAK	DAY PM HOUR SERVICE
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
	EB	1 LT , 1 TH	A^1		A^1	
2028 Build	WB	1 TH- RT		N/A		N/A
	SB	1 LT-RT	C^2		C^2	

Improvements to lane configurations by the developer are shown in bold.

- 1. Level of service for major-street left-turn movement.
- 2. Level of service for minor-street approach.

Capacity analysis of 2028 build traffic conditions indicates that the major-street left-turn movement is expected to operate at LOS A during the weekday AM and PM peak hours. The minor-street approach is expected to operate at LOS C during the weekday AM and PM peak hours.

Right and left-turn lanes were considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways* and an exclusive left-turn lane is recommended on eastbound approach (Mitchell Mill Road). Based on the estimated low volume of right-turn movements into the proposed development at this intersection, an exclusive right-turn lane is not recommended. Refer to Appendix O for a copy of the turn lane warrants.

7.11. Mitchell Mill Road and Site Access 8

The proposed unsignalized intersection of Mitchell Mill Road and Site Access 8 was analyzed under 2028 build traffic conditions with the lane configurations and traffic control shown in Table 15. Refer to Table 15 for a summary of the analysis results. Refer to Appendix N for the synchro capacity analysis reports.

Table 15: Analysis Summary of Jonesville Road and Site Access 8

A P P ANALYSIS R		LANE	PEAK	DAY AM HOUR SERVICE	PEAK	DAY PM HOUR SERVICE
SCENARIO	O A C H	CONFIGURATIONS	Approach	Overall (seconds)	Approach	Overall (seconds)
2028 Build	EB WB	1 TH 1 TH, 1 RT		N/A		N/A
	SB	1 RT	B^1		B^1	

Improvements to lane configurations by the developer are shown in bold.

- 1. Level of service for major-street left-turn movement.
- 2. Level of service for minor-street approach.

Capacity analysis of 2028 build traffic conditions indicates that the minor-street approach is expected to operate at LOS B during the weekday AM and PM peak hours.

A right-turn lane was considered based on the NCDOT *Policy on Street and Driveway Access to North Carolina Highways*. Based on coordination with NCDOT, an exclusive right-turn lane is recommended on the westbound approach (Mitchell Mill Road). Refer to Appendix O for a copy of the turn lane warrants.

8. CONCLUSIONS

This Traffic Impact Analysis was conducted to determine the potential traffic impacts of the proposed 5109 Mitchell Mill Road development located along both sides of Jonesville Road, north of Mitchell Mill Road in Rolesville, North Carolina. The proposed development is separated into two (2) tracts on both sides of Jonesville Road. The eastern tract is expected to consist of 195 single-family homes and the western tract of development is expected to consist of 69 single-family homes, 129 townhomes, and 50,000 square feet (sq. ft) of general retail. Site access is proposed via four (4) full-movement driveway connections along Jonesville Road, three (3) RIRO driveway connections along Mitchell Mill Road, and one (1) full-movement driveway connection along Mitchell Mill Road. One of the site driveway connections along Jonesville Road will be aligned to provide access to both the eastern and western tracts of the proposed development.

The study analyzes traffic conditions during the weekday AM and PM peak hours for the following scenarios:

- 2021 Existing Traffic Conditions
- 2028 No-Build Traffic Conditions
- 2028 Build Traffic Conditions

Trip Generation

It is estimated that the proposed development will generate approximately 426 primary trips (170 entering and 256 exiting) during the weekday AM peak hour and 493 primary trips (284 entering and 209 exiting) during the weekday PM peak hour.

Rolesville Community Transportation Plan

Per the Rolesville Community Transportation Plan (CTP), the ultimate cross-section of Jonesville Road is identified as a 2-lane roadway with a center two-way-left-turn-lane (TWLTL) and Mitchell Mill Road is identified as a 4-lane median-divided roadway. It is recommended that the proposed development widen Jonesville Road and one-half section of Mitchell Mill Road along the site frontage in accordance with the Town's CTP.

Adjustments to Analysis Guidelines

Capacity analysis at all study intersections was completed according to NCDOT Congestion Management Guidelines. Refer to section 6.1 of this report for a detailed description of any adjustments to these guidelines made throughout the analysis.

Intersection Capacity Analysis Summary

All the study area intersections (including the proposed site driveways) are expected to operate at acceptable levels-of-service under existing and future year conditions with the exception of the intersections listed below. A summary of the study area intersections that are expected to need improvements are as follows:

US 401 Bypass and Jonesville Road

Under 2028 no-build and 2028 build traffic conditions, the major-street left-turn movements are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the westbound left-turn movement during the weekday AM peak hour (LOS D) under 2028 no-build traffic conditions. The minor-street approaches are expected to operate at LOS E/F during the weekday AM and PM peak hours with the exception of the northbound approach during the weekday AM peak hour (LOS C) and the southbound approach during the weekday PM peak hour (LOS B) under 2028 no-build and 2028 build traffic conditions. It should be noted that the proposed development is expected to account for approximately 15% and 11% of the overall traffic at the southern portion of this intersection during the weekday AM and PM peak hours, respectively.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2028 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the *Manual on Uniform Traffic Control Devices* (MUTCD) and within the *Guidelines for Signalization of Intersections with Two or Three Approaches Final Report*, published by ITRE. Based on a review of signal warrants at this intersection, the peak hour warrant (warrant 3) from the MUTCD is expected to be met for both the weekday AM and PM peak hours under 2028 build traffic conditions. It is not

expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the northbound right-turn movement demand is expected to exceed capacity during the weekday PM peak hour under 2028 no-build and 2028 build traffic conditions.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-of-service under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the northbound right-turn and westbound left-turn movements at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

US 401 Bypass and Eastern U-Turn Location

Under 2028 build traffic conditions, the major-street u-turn movement is expected to operate at LOS F during the weekday AM peak. It should be noted that the proposed development is expected to account for approximately 5% and 11% of the overall traffic at this intersection during the weekday AM and PM peak hours, respectively. These levels-of-service are not uncommon for stop-controlled u-turn movements with heavy mainline traffic volumes.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2028 build traffic conditions to achieve acceptable levels of service. Weekday AM and PM peak hour traffic volumes were utilized in evaluating the potential need for signalization based on the guidelines contained within the *Manual on Uniform Traffic Control Devices* (MUTCD) and within the *Guidelines for Signalization of Intersections with Two or Three Approaches Final Report,* published by ITRE. Based on a review of signal warrants at this intersection, the peak hour warrant (warrant 3) from the MUTCD is expected to be met for both the weekday AM and PM peak hours under 2028 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not typically met for residential areas due to the distinct peak traffic periods for these types of development. Based on a review of ITRE 95th percentile queue length calculations, the eastbound u-turn movement demand is expected to exceed capacity during the weekday AM peak hour under 2028 no-build and 2028 build traffic conditions.

Based on the Town's LDO, improvements must be identified to maintain no-build levels-of-service under build traffic conditions or to limit the degradation to less than a five percent increase in total delay on any approach for those operating at failing levels-of-service under no-build traffic conditions. Therefore, additional turn-lanes were considered for the eastbound u-turn movement at this intersection to achieve acceptable operation per the Town's LDO. However, additional turn-lanes are not a realistic or practical improvement at an unsignalized intersection operating with superstreet configurations.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

Mitchell Mill Road and Jonesville Road / Peebles Road

Under 2028 build traffic conditions, this intersection is expected to operate at an overall LOS F during the weekday AM and PM peak hours. It should be noted that the proposed development is expected to account for approximately 12% and 16% of the overall traffic at this intersection during the weekday AM and PM peak hours, respectively.

Turn lanes were considered at this intersection in order to mitigate the proportional impact that the proposed site traffic is expected to have at this intersection and to improve overall operations. Exclusive left-turn lanes are recommended by the developer on the eastbound and southbound approaches. With these improvements, the intersection is expected to operate at an overall LOS F during the weekday AM peak hour and at an overall LOS D during the weekday PM peak hour.

It should be noted that the westbound approach and overall intersection delays are expected to increase during the weekday AM peak hour as a result of the recommended improvements to the southbound and eastbound approaches. Mitigation was considered for the westbound approach due to the anticipated impact traffic on this approach is expected to have on the overall intersection operations under future traffic conditions. However, due to the vast majority of traffic on the westbound approach continuing through this intersection on Mitchell Mill Road, no feasible improvements other than signalization would be expected to decrease delays for the westbound approach.

Due to the poor levels-of-service expected at this intersection, a traffic signal was considered under 2028 build traffic conditions to achieve acceptable levels-of-service. The peak hour warrant (warrant 3) from the *Manual on Uniform Traffic Control Devices* (MUTCD) was considered. Based on a review of the peak hour signal warrant at this intersection, the intersection is expected to meet the peak hour warrant for both the weekday AM and PM peak hours under 2028 no-build and 2028 build traffic conditions. It is not expected that this intersection would satisfy the MUTCD 8-hour (warrant 1) or 4-hour (warrant 2) warrants, which NCDOT favors for installation of a traffic signal. These longer period warrants are not

typically met for residential areas due to the distinct peak traffic periods for these types of development.

Based on the Town's LDO, it is recommended that this intersection be monitored for signalization and a full signal warrant analysis be conducted prior to the full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT. With signalization, it is expected that this intersection will operate at acceptable levels-of-service during the weekday AM and PM peak hours.

9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configurations for the proposed development.

Recommended Improvements by Developer

Required Frontage Improvements per Rolesville Community Transportation Plan

- Widen Jonesville Road along the site frontage between Site Access 1 and Mitchell Mill Road to this roadway's ultimate section (2-lane w/ TWLTL).
- Widen one-half section of Mitchell Mill Road along the site frontage to this roadway's ultimate section (4-lane median divided).

US 401 Bypass and Jonesville Road

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

US 401 Bypass and Eastern U-Turn Location

 Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Mitchell Mill Road and Jonesville Road / Peebles Road

- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct an eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Conduct a full signal warrant analysis prior to full build-out of the proposed development and install a traffic signal if warranted and approved by the Town and NCDOT.

Jonesville Road and Site Access 1

- Construct the westbound approach (Site Access 1) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 1).
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 2

- Construct the westbound approach (Site Access 2) with one ingress lane and one egress lane.
- Provide stop-control for the westbound approach (Site Access 2).
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 3

- Construct the eastbound and westbound approaches (Site Access 3) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound and westbound approaches (Site Access 3).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a northbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Jonesville Road and Site Access 4

- Construct the eastbound approach (Site Access 4) with one ingress lane and one egress lane.
- Provide stop-control for the eastbound approach (Site Access 4).
- Construct a northbound (Jonesville Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.
- Construct a southbound (Jonesville Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

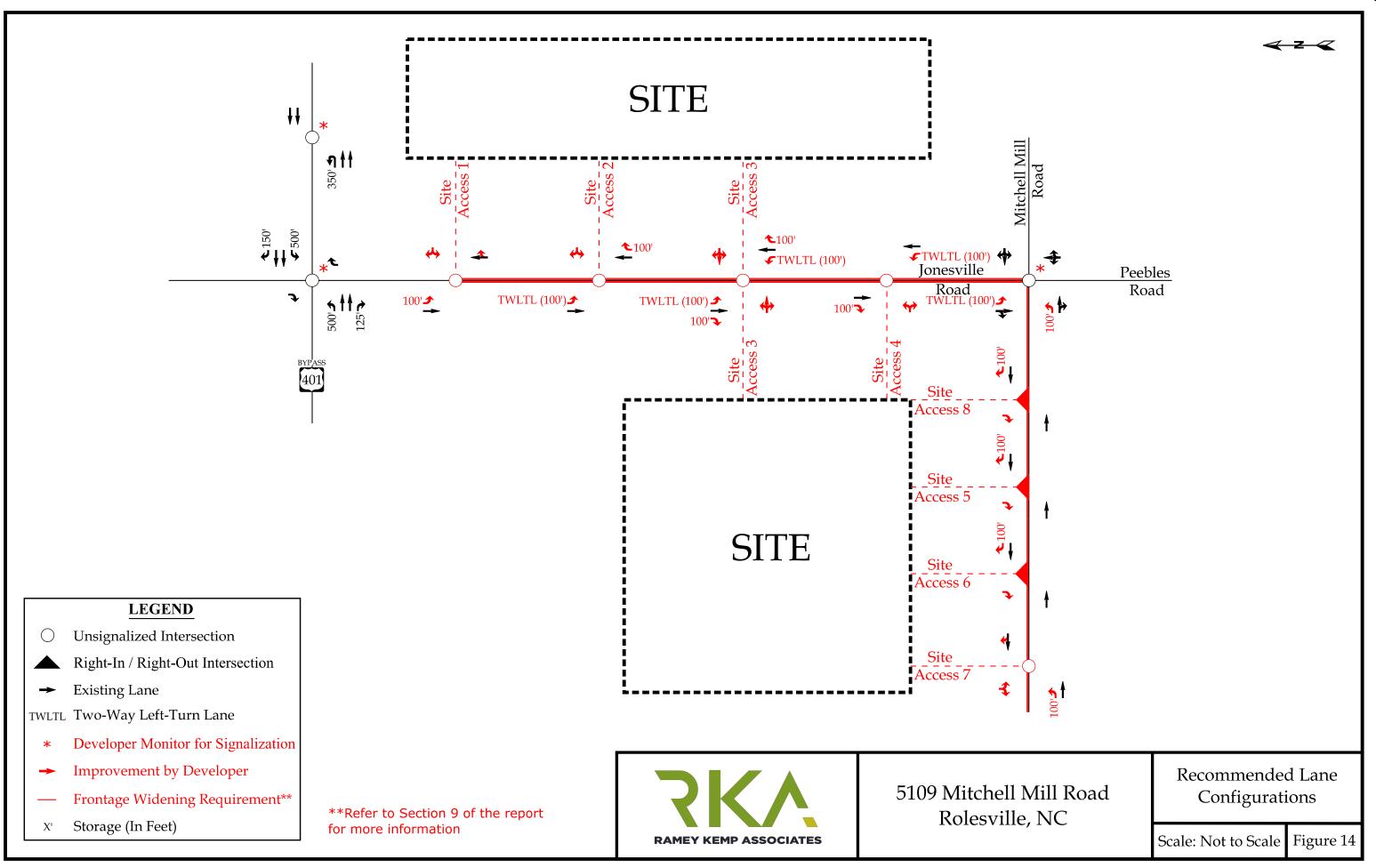
Mitchell Mill Road and Site Access 5

- Construct the southbound approach (Site Access 5) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 5). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 6

- Construct the southbound approach (Site Access 6) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 6). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 7


- Construct the southbound approach (Site Access 7) with one ingress lane and one egress lane.
- Provide stop-control for the southbound approach (Site Access 7)
- Construct an exclusive eastbound (Mitchell Mill Road) left-turn lane with at least 100 feet of storage and appropriate decel and taper.

Mitchell Mill Road and Site Access 8

- Construct the southbound approach (Site Access 8) with one ingress lane and one egress lane striped as an exclusive right-turn lane.
- Provide stop-control for the southbound approach (Site Access 8). This proposed intersection will be restricted to right-in/right-out operations.
- Construct an exclusive westbound (Mitchell Mill Road) right-turn lane with at least 100 feet of storage and appropriate decel and taper.

TECHNICAL APPENDIX

APPENDIX A

SCOPING DOCUMENTATION

Tucker Fulle

From: Nolfo, Matthew J <mjnolfo@ncdot.gov>

Sent: Friday, June 24, 2022 2:51 PM

To: Jessica McClure; Beth Trahos; Craig Hyman; Tucker Fulle

Cc: Warren, Jeremy L; Elabarger, Michael S **Subject:** RE: [External] RE: 5109 Mitchell Mill

Jessica,

The driveway for the commercial parcel would need to be studied, especially if it is desired for it to be a full access connection. The decision to do a phased TIA is up to the developer, but if it is not their intent to build all of the roadway improvements prior to the use of any section of the development, then a phased TIA would be required. Feel free to give me a call, but those are my initial thoughts.

Thanks.

Matthew Nolfo

Assistant District Engineer
Northern Wake County
Wake County District Office (Division 5 District 1)
North Carolina Department of Transportation

mjnolfo@ncdot.gov

(919)733-7759

Physical Address

4009 District Drive Raleigh, NC 27607

Mailing Address

1575 Mail Service Center Raleigh, NC 27699-1575

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

From: Jessica McClure < JMCClure@rameykemp.com>

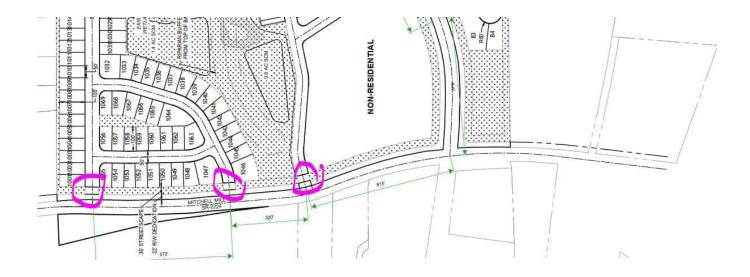
Sent: Thursday, June 23, 2022 5:04 PM

To: Beth Trahos <beth.trahos@nelsonmullins.com>; Nolfo, Matthew J <mjnolfo@ncdot.gov>; Craig Hyman

<chyman@rameykemp.com>; Tucker Fulle <tfulle@rameykemp.com>

Cc: Warren, Jeremy L <jlwarren@ncdot.gov>; Elabarger, Michael S <michael.elabarger@rolesville.nc.gov>

Subject: [External] RE: 5109 Mitchell Mill


CAUTION: External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to Report Spam.

Hi Beth – thanks for circling up on this one.

The TIA was scoped with the access/site plan shown below (purple indicates driveways on Mitchell Mill Road). Not to speak for NCDOT, but if the developer is pursuing a fourth driveway for the non-residential use, I would assume a TIA Update would be needed to show the impacts of the additional driveway.

If we are updating the study for the additional driveway, I think it would be wise to decide if a phasing study is also appropriate and knock it all out at once, unless the developer is OK with providing all of the improvements required prior to final plats and/or CO per Matthew's email.

We'll give DOT a call tomorrow morning and get a path forward on this one.

Jessica McClure, PE State Traffic Engineering Lead D 919 987 1283 | T 919 872 5115 | C 919 637 5553

From: Beth Trahos <beth.trahos@nelsonmullins.com>

Sent: Thursday, June 23, 2022 4:39 PM

To: Nolfo, Matthew J < <u>minolfo@ncdot.gov</u>>; Jessica McClure < <u>JMCClure@rameykemp.com</u>>; Rynal Stephenson

< <u>rstephenson@rameykemp.com</u>>

Cc: Warren, Jeremy L < <u>ilwarren@ncdot.gov</u>>; Elabarger, Michael S < <u>michael.elabarger@rolesville.nc.gov</u>>

Subject: RE: 5109 Mitchell Mill

Just wanted to touch base on this. How should we address it?

Thanks!

Beth

ELIZABETH C. TRAHOS PARTNER
beth.trahos@nelsonmullins.com

GLENLAKE ONE | SUITE 200

4140 PARKLAKE AVENUE | RALEIGH, NC 27612
T 919.329.3884 F 919.329.3799

NELSONMULLINS.COM VCARD VIEW BIO

From: Nolfo, Matthew J < mjnolfo@ncdot.gov >

Sent: Friday, June 10, 2022 11:17 AM

To: Beth Trahos < beth.trahos@nelsonmullins.com >; jmcclure@rameykemp.com

Cc: Warren, Jeremy L < <u>ilwarren@ncdot.gov</u>>; Elabarger, Michael S < <u>michael.elabarger@rolesville.nc.gov</u>>

Subject: RE: 5109 Mitchell Mill

▼External Email - From: mjnolfo@ncdot.gov

Jessica,

Michael's autoreply said he left Ramey Kemp on 5/5 and to direct emails towards you and Rynal. I am not sure what background you may have on 5109 Mitchell Mill, but I wanted to loop you into the conversation below.

Thanks,

Matthew Nolfo

Assistant District Engineer Northern Wake County Wake County District Office (Division 5 District 1) North Carolina Department of Transportation

mjnolfo@ncdot.gov (919)733-7759

Physical Address

4009 District Drive Raleigh, NC 27607

Mailing Address

1575 Mail Service Center Raleigh, NC 27699-1575

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

From: Nolfo, Matthew J

Sent: Friday, June 10, 2022 11:12 AM

To: beth.trahos@nelsonmullins.com; MKarpinski@rameykemp.com

Cc: Warren, Jeremy L < ilwarren@ncdot.gov>; Elabarger, Michael S < michael.elabarger@rolesville.nc.gov>

Subject: 5109 Mitchell Mill

Beth and Michael,

I am writing to follow up on some of the comments brought up in the Town of Rolesville meeting yesterday.

Currently, the TIA that has been submitted to NCDOT is unphased. There was a lot of discussion in the meeting yesterday about the possibility of 2 (or more) phases for this development. What this means is that prior to any residential units getting final plat approval, or any commercial building getting a CO, the expectation of the NCDOT is that all the non-frontage improvements on the TIA are constructed, as well as any frontage improvements for the site that is being approved for use.

Additionally, upon further review of the TIA, it only has 3 driveways along Mitchell Mill Road that are studied. When the distances of these driveways are compared with the TIA, it is evident that the missing driveway is the one into the proposed parking lot for the commercial unit (approximately 350 feet from the intersection of Mitchell Mill and Peebles. Currently, that TIA does not appear to study that connection, and I imagine the future tenant (grocery store?) would want that connection to exist. I have copied Michael Karpinski with Ramey Kemp who sealed the TIA, as he may be able to shed a bit of light on this as it was scoped and studied before I came into the picture at the District Office.

I think it is very important that we get this straightened out sooner rather than later to avoid unexpected problems in the future.

Thanks,

Matthew Nolfo

Assistant District Engineer
Northern Wake County
Wake County District Office (Division 5 District 1)
North Carolina Department of Transportation

mjnolfo@ncdot.gov (919)733-7759

Physical Address 4009 District Drive Raleigh, NC 27607

Mailing Address
1575 Mail Service Center

Raleigh, NC 27699-1575

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

Confidentiality Notice

This message is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged, confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy or disseminate this message or any part of it. If you have received this message in error, please notify the sender immediately either by phone (800-237-2000) or reply to this e-mail and delete all copies of this message.

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

Tucker Fulle

From: Walker, Braden M

Sent: Wednesday, January 5, 2022 3:19 PM

To: Michael Karpinski; Brennan, Sean P; Neidringhaus, Amy N

Cc: Winkler, Niklaus C; Wheeler, Millard S; Ishak, Doumit Y; Bunting, Clarence B; McFarland,

Mical; Gruber, Meredith a; Carter, James E; Jessica McClure; Tucker Fulle

Subject: RE: [External] 5109 Mitchell Mill Road - TIA Scoping

Michael,

Congestion Management is ok with the MOU provided for the 5109 Mitchell Mill Road TIA.

Thank you,

Braden M. Walker, PE.

Congestion Management Project Design Engineer Traffic Management Unit North Carolina Department of Transportation

919 814 5078 office bmwalker1@ncdot.gov

750 N. Greenfield Parkway Garner, NC 27529

Nothing Compares

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Michael Karpinski < MKarpinski@rameykemp.com>

Sent: Monday, January 3, 2022 11:06 AM

To: Brennan, Sean P <spbrennan@ncdot.gov>; Walker, Braden M <bmwalker1@ncdot.gov>; Neidringhaus, Amy N <anneidringhaus@ncdot.gov>

Cc: Winkler, Niklaus C <ncwinkler@ncdot.gov>; Wheeler, Millard S <mswheeler1@ncdot.gov>; Ishak, Doumit Y <dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <JMCClure@rameykemp.com>; Tucker Fulle

<tfulle@rameykemp.com>

Subject: RE: [External] 5109 Mitchell Mill Road - TIA Scoping

CAUTION: External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to Report Spam.

ΑII,

Happy New Year! I am following up on my email below in regards to the attached MOU for the 5109 Mitchell Mill Road TIA in Rolesville. Let me know if you have any questions or need any additional information from us.

Regards, Michael

Michael Karpinski, PE Traffic Engineering Project Manager

D 919 987 1300 | T 919 872 5115

From: Michael Karpinski

Sent: Monday, December 13, 2021 1:26 PM

To: Brennan, Sean P <<u>spbrennan@ncdot.gov</u>>; Walker, Braden M <<u>bmwalker1@ncdot.gov</u>>; Neidringhaus, Amy N <<u>anneidringhaus@ncdot.gov</u>>

Cc: Winkler, Niklaus C < ncwinkler@ncdot.gov >; Wheeler, Millard S < ncwinkler@ncdot.gov >; Ishak, Doumit Y

<dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <JMCClure@rameykemp.com>; Tucker Fulle

<tfulle@rameykemp.com>

Subject: RE: [External] 5109 Mitchell Mill Road - TIA Scoping

Good afternoon,

Please find the attached MOU for the 5109 Mitchell Mill Road TIA in Rolesville, North Carolina. Let me know your thoughts/comments on the attached or if you need anything else from me for your review, thanks!

Regards, Michael

_

Michael Karpinski, PE Traffic Engineering Project Manager

D 919 987 1300 | T 919 872 5115

From: Brennan, Sean P < spbrennan@ncdot.gov>

Sent: Monday, October 18, 2021 3:01 PM

To: Walker, Braden M < bmwalker1@ncdot.gov>; Michael Karpinski < MKarpinski@rameykemp.com>; Neidringhaus, Amy N < anneidringhaus@ncdot.gov>

Cc: Winkler, Niklaus C < ncwinkler@ncdot.gov">ncwinkler@ncdot.gov; Wheeler, Millard S < ncwinkler@ncdot.gov; Ishak, Doumit Y < dishak@ncdot.gov; Bunting, Clarence B < cbunting@ncdot.gov; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <JMCClure@rameykemp.com>

Subject: Re: [External] 5109 Mitchell Mill Road - TIA Scoping

Michael,

I don't have any additional comments.

Regards,

Sean Brennan, PE
Senior Assistant District Engineer
Division 5/District 1
Department of Transportation

919-733-3213 office 919-715-5778 fax spbrennan@ncdot.gov

4009 District Drive (Physical Address) Raleigh, NC 27607

1575 Mail Service Center (Mailing Address) Raleigh, NC 27699-1575

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Walker, Braden M < bmwalker1@ncdot.gov>

Sent: Monday, October 18, 2021 1:13 PM

To: Michael Karpinski < MKarpinski@rameykemp.com>; Brennan, Sean P < spbrennan@ncdot.gov>; Neidringhaus, Amy N < anneidringhaus@ncdot.gov>

 $\textbf{Cc:} \ Winkler, \ Niklaus \ C < \underline{ncwinkler@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Ishak, \ Doumit \ Y < \underline{ncwinkler@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdot.gov} >; \ Wheeler, \ Millard \ S < \underline{mswheeler1@ncdo$

<<u>dishak@ncdot.gov</u>>; Bunting, Clarence B <<u>cbunting@ncdot.gov</u>>; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <JMCClure@rameykemp.com>

Subject: RE: [External] 5109 Mitchell Mill Road - TIA Scoping

Michael,

Congestion Management has no additional comments.

I have attached the Town of Rolesville traffic analysis which should have traffic counts from 2016. The report also projected volumes for 2020 and 2025.

Thank you,

Braden M. Walker, PE.Congestion Management Project Design Engineer Traffic Management Unit

North Carolina Department of Transportation

919 814 5078 office bmwalker1@ncdot.gov

750 N. Greenfield Parkway

Nothing Compares

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Michael Karpinski < MKarpinski@rameykemp.com >

Sent: Monday, October 11, 2021 12:17 PM

To: Brennan, Sean P <spbrennan@ncdot.gov>; Neidringhaus, Amy N <anneidringhaus@ncdot.gov>

Cc: Winkler, Niklaus C < ncwinkler@ncdot.gov >; Wheeler, Millard S < mswheeler1@ncdot.gov >; Ishak, Doumit Y

<dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <JMCClure@rameykemp.com>; Walker, Braden M

<bmwalker1@ncdot.gov>

Subject: RE: [External] 5109 Mitchell Mill Road - TIA Scoping

CAUTION: External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to Report Spam.

Thanks, Sean! Do you have any other comments regarding the proposed TIA scope outlined below?

Michael Karpinski, PE Traffic Engineering Project Manager

D 919 987 1300 | T 919 872 5115

From: Brennan, Sean P < spbrennan@ncdot.gov>

Sent: Friday, October 8, 2021 10:27 AM

To: Michael Karpinski < MKarpinski@rameykemp.com>; Neidringhaus, Amy N < anneidringhaus@ncdot.gov>

Cc: Winkler, Niklaus C < ncwinkler@ncdot.gov >; Wheeler, Millard S < ncwheeler1@ncdot.gov >; Ishak, Doumit Y

<dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <JMCClure@rameykemp.com>; Walker, Braden M

<bmwalker1@ncdot.gov>

Subject: Re: [External] 5109 Mitchell Mill Road - TIA Scoping

Michael,

I'm okay with the driveways on Jonesville operating as full access assuming that they have adequate sight distance. Given the required cross section on Mitchell Mill Road, we will only support the western most access being studied as a full movement, the other two driveway will need to be restricted to right-in/right-out.


Regards,

Sean Brennan, PE
Senior Assistant District Engineer
Division 5/District 1
Department of Transportation

919-733-3213 office 919-715-5778 fax spbrennan@ncdot.gov

4009 District Drive (Physical Address) Raleigh, NC 27607

1575 Mail Service Center (Mailing Address) Raleigh, NC 27699-1575

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Michael Karpinski < MKarpinski@rameykemp.com>

Sent: Wednesday, October 6, 2021 12:06 PM

To: Brennan, Sean P <spbrennan@ncdot.gov>; Neidringhaus, Amy N <anneidringhaus@ncdot.gov>

Cc: Winkler, Niklaus C < ncwinkler@ncdot.gov >; Wheeler, Millard S < mswheeler1@ncdot.gov >; Ishak, Doumit Y

<dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <<u>JMCClure@rameykemp.com</u>>; Walker, Braden M

<bmwalker1@ncdot.gov>

Subject: RE: [External] 5109 Mitchell Mill Road - TIA Scoping

CAUTION: External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to Report Spam.

Hey Sean,

See below for answers to your questions:

- The developer would prefer full movement access for all of their proposed driveway connections.
- The Town's Community Transportation Plan shows the future cross section of Jonesville Road as a 2-lane roadway with a TWLTL and Mitchell Mill Road as a 4-lane median divided roadway. Based on my coordination with Town staff, with all the surrounding residential development coming in, road sizing and signalization on Mitchell Mill Road is something we will need to continue to evaluate and work closely with NCDOT. Kalas Falls (450+ homes) and Rolesville Crossing (formerly Hopper Communities, 300 homes) are being proposed near the

intersection Mitchell Mill Road and Rolesville Road. At a minimum, the Town is considering requiring ROW dedication and ultimate cross-section widening along this proposed development's frontage on Mitchell Mill Road and Jonesville Road.

Braden – any luck finding traffic count data at the US 401 Bypass / Jonesville Road intersection from the Bypass project?

Let me know if you have any questions. Thanks!

_

Michael Karpinski, PE Traffic Engineering Project Manager

D 919 987 1300 | T 919 872 5115

From: Brennan, Sean P < sent: Friday, September 24, 2021 10:45 AM

To: Michael Karpinski < MKarpinski@rameykemp.com; Neidringhaus, Amy N < anneidringhaus@ncdot.gov; Wheeler, Millard S < mwheeler@ncdot.gov; Ishak, Doumit Y

<dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <JMCClure@rameykemp.com>; Walker, Braden M

<bmwalker1@ncdot.gov>

Subject: Re: [External] 5109 Mitchell Mill Road - TIA Scoping

Michael,

I have the following questions:

- What type of access is being proposed at each access location.
- What are the ultimate cross sections for Mitchell Mill Rd and Jonesville Rd, and what will the town require in terms of ultimate section widening?

Braden,

Do we have any traffic count data available at the US 401 Bypass / Jonesville Road intersection from the Bypass project?

Regards,

Sean Brennan, PESenior Assistant District Engineer
Division 5/District 1
Department of Transportation

919-733-3213 office 919-715-5778 fax spbrennan@ncdot.gov 4009 District Drive (Physical Address) Raleigh, NC 27607

1575 Mail Service Center (Mailing Address) Raleigh, NC 27699-1575

*	Nation reprint the first that the first the second of the

Email correspondence to and from this address is subject to the North Carolina Public Records Law and may be disclosed to third parties.

From: Michael Karpinski < MKarpinski@rameykemp.com >

Sent: Tuesday, September 21, 2021 3:23 PM

To: Brennan, Sean P < spbrennan@ncdot.gov>; Neidringhaus, Amy N < anneidringhaus@ncdot.gov>

Cc: Winkler, Niklaus C < ncwinkler@ncdot.gov >; Wheeler, Millard S < nwheeler@ncdot.gov >; Ishak, Doumit Y

<dishak@ncdot.gov>; Bunting, Clarence B <cbunting@ncdot.gov>; McFarland, Mical

<mical.mcfarland@rolesville.nc.gov>; Gruber, Meredith a <meredith.gruber@rolesville.nc.gov>; Carter, James E

<james.carter@rolesville.nc.gov>; Jessica McClure <JMCClure@rameykemp.com>

Subject: [External] 5109 Mitchell Mill Road - TIA Scoping

CAUTION: External email. Do not click links or open attachments unless you verify. Send all suspicious email as an attachment to Report Spam.

Good afternoon, Sean / Amy -

We are working with the Town of Rolesville on a TIA for the proposed development located at 5109 Mitchell Mill Road in Rolesville, NC. The proposed development is separated into two (2) tracts on both sides of Jonesville Road, north of Mitchell Mill Road. I have attached a preliminary site plan for reference. Let me know if you would like to have a meeting to discuss the scope of the TIA, if you need this information in the NCDOT TIA scoping checklist, and/or if you have any questions/comments on the scope. We will submit a formal MOU once the TIA is underway for confirmation of all scoping assumptions/methodology.

Existing Traffic Conditions:

Study Intersections

- i. Mitchell Mill Road and Jonesville Road / Peebles Road (unsignalized)
- ii. US 401 Bypass and Jonesville Road (unsignalized)
- iii. US 401 Bypass and Eastern U-Turn Location (unsignalized)
- iv. Mitchell Mill Road and Site Driveways (3 in total all on west side)
- v. Jonesville Road and Site Driveways (2 on west side, 3 on east side only 1 will be aligned on both sides)

Traffic Counts

- Does NCDOT have any traffic count data available at the US 401 Bypass / Jonesville Road intersection from the Bypass project? I was not able to find count data from NCDOT's website at the existing study intersections noted above.
- Attached are turning movement counts at the intersection of US 401 Business (Louisburg Road) and Jonesville Road / Hampton Lakes Drive from March of 2019 (please note, NOT a study intersection for this TIA); if no other count data is available, we could collect new turning movement counts at this intersection to determine an

appropriate adjustment factor to account for COVID-19 to apply to new traffic counts at the existing study intersections.

Trip Generation:

- West Side:
 - o 8.27 acres of non-residential use; assumed 57,890 sq. ft. of general retail (ITE LUC 820)
 - Exact land uses & intensity unknown at this time; therefore, we are assuming 7,000 square feet of general retail space per acre
 - 8.27 acres * 7,000 sq. ft. / acre = 57,890 sq. ft. of general retail (ITE LUC 820)
 - 69 Single Family Homes (ITE LUC 210)
 - 129 Townhomes (ITE LUC 220)
- East Side:
 - 195 Single Family Homes (ITE LUC 210)
- Total Unadjusted Trip Generation: 7,500 ADT; 434 AM (174 Entering, 260 Exiting); 695 PM (384 Entering, 311 Exiting)
 - o Calculated utilized 264 Single Family Homes, 129 Townhomes, and 57,890 sq ft. of general retail.

Future Traffic Conditions:

- Build-out year: 2028
- Growth Rate: 2% (consistent with previous studies in the area)
- Adjacent Developments: (Please advise if there are any we are missing)
 - Cobblestone Crossing Mixed-Use
 - o Kalas Falls
 - East Young Street PUD (The Point)
 - Rolesville Crossing (Formerly Hopper Communities)
 - Louisbury Road Assemblage
- Future Roadway Improvements: (Please advise if there are any nothing on STIP map)

Let me know if you have any questions, thanks!

Michael

Michael Karpinski, PE Traffic Engineering Project Manager

D 919 987 1300 | T 919 872 5115

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

Email correspondence to and from this sender is subject to the N.C. Public Records Law and may be disclosed to third parties.

RAMEY KEMP ASSOCIATES

TOGETHER WE ARE LIMITLESS

T 919 872 5115 5808 Faringdon PI, Raleigh, NC 27609

December 13, 2021

Meredith Gruber, PLA, AICP Town of Rolesville - Planning Director PO Box 250 502 Southtown Circle Rolesville, NC 27571 meredith.gruber@rolesville.nc.gov [Sent via Email]

Reference: 5109 Mitchell Mill Road

Rolesville, North Carolina

Subject: Memorandum of Understanding for TIA Report

Dear Ms. Gruber:

The following is a Memorandum of Understanding (MOU) outlining the proposed scope of work and assumptions related to the Traffic Impact Analysis (TIA) for the proposed 5109 Mitchell Mill Road development in Rolesville, North Carolina. The proposed development is separated into two (2) tracts on both sides of Jonesville Road, north of Mitchell Mill Road. The eastern tract is expected to consist of 195 single-family homes and the western tract of development is expected to consist of 69 single-family homes, 129 townhomes, and 8.27 acres of commercial development. This MOU reflects the assumptions outlined during initial coordination between Ramey Kemp Associates (RKA), the Town of Rolesville (Town), and the North Carolina Department of Transportation (NCDOT). Refer to the attached site location map. Site access to the proposed development is expected to be provided via four (4) full-movement driveway connections along Jonesville Road, two (2) right-in/right-out (RIRO) driveway connections along Mitchell Mill Road, and one (1) full-movement driveway connection along Mitchell Mill Road. One of the site driveway connections along Jonesville Road will be aligned to provide access to both the eastern and western tracts of the proposed development.

The proposed development, anticipated to be completed in 2028, is expected to consist of 264 single-family homes, 129 townhomes, and 8.27 acres of commercial development. It should be noted that the commercial development land use(s) and intensity are not known at this time. Therefore, 7,000 square feet (sq. ft.) of general retail space per acre of land [approximately 57,890 sq. ft.] was assumed for the commercial development in this study. The proposed development is assumed to consist of the following land uses:

- 264 single-family homes
- 129 townhomes
- 57,890 sq. ft. of general retail

Study Area

Based on a coordination with NCDOT and Town staff, the study area is proposed to consist of the following intersections:

- Mitchell Mill Road & Jonesville Road / Peebles Road (unsignalized)
- US 401 Bypass and Jonesville Road (unsignalized)
- US 401 Bypass and Eastern U-Turn Location (unsignalized)
- Jonesville Road and Site Driveways (4)
- Mitchell Mill Road and Site Driveways (3)

Existing Traffic Volumes

Existing peak hour traffic volumes will be determined based on traffic counts conducted at the study intersections below, in November 2021 during a typical weekday AM (7:00 AM – 9:00 AM) and PM (4:00 PM – 6:00 PM) peak periods, while schools are in session for in-person learning:

- Mitchell Mill Road & Jonesville Road / Peebles Road
- US 401 Bypass and Jonesville Road
- US 401 Bypass and Eastern U-Turn Location

Background Traffic Volumes

Based on coordination with NCDOT and the Town, background traffic volumes will be determined by projecting 2021 existing traffic volumes to the year 2028 using a 2% annual growth rate. Additionally, it was determined that the following adjacent developments are to be included in this study:

- Cobblestone Crossing Mixed-Use
- Young Street PUD
- Wheeler Tract
- Louisbury Road Assemblage
- Kalas / Watkins Family Property

Future Roadway Improvements

Based on coordination with the Town and NCDOT, it was determined that there are no future roadway improvements within the study area to consider under future traffic conditions.

Trip Generation

Average weekday daily, AM peak hour, and PM peak hour trips for the proposed development were estimated using methodology contained within the ITE *Trip Generation Manual*, 10th Edition. Refer to Table 1, on the following page, for a summary of the proposed site trip generation for full buildout of the proposed development.

Table 1: Trip Generation Summary

Land Use (ITE Code)	Intensity Daily			Weekday eak Hour (vph)		Weekday PM Peak Hour Trips (vph)		
		(vpd)	Enter	Exit	Total	Enter	Exit	Total
Single-Family Home (210)	264 DU	2,540	48	144	192	163	95	258
Multi-Family Home (Low-Rise) (220)	129 DU	934	14	47	61	47	27	74
Shopping Center (820)	57.89* KSF	4,146	112	69	181	174	189	363
Total Trips		7,620	174	260	434	384	311	695
	Internal Capture (1% AM, 16% PM)**				-4	-40	-41	-81
Total External T	172	258	430	344	270	614		
Pass-By Trips: Shoppi (34% PM)	-	-	-	-52	-52	-104		
Total Primary T	172	258	430	292	218	510		

*Since the commercial development is unknown at this time, 7,000 SF of general retail space per acre of land [8.27 acres in total] was assumed for this land use.

It is estimated that the proposed development will generate approximately 7,620 site trips on the roadway network during a typical 24-hour weekday period. Of the daily traffic volume, it is anticipated that 434 trips (174 entering and 260 exiting) will occur during the weekday AM peak hour and 695 trips (384 entering and 311 exiting) will occur during the weekday PM peak hour.

Internal capture of trips between the retail and residential land uses was considered in this study. Internal capture is the consideration for trips that will be made within the site between different land uses, so the vehicle technically never leaves the internal site but can still be considered as a trip to that specific land use. However, since the site is split into two (2) tracts on either side of Jonesville Road, internal capture was only considered for the land uses in the western tract. Based on NCHRP Report 684 methodology, weekday AM and PM peak hour internal capture rates of 1% and 16%, respectively, were applied to the trips generated from the western tract only. The internal capture reductions are expected to account for approximately 4 trips (2 entering and 2 exiting) during the weekday AM peak hour and 81 trips (40 entering and 41 exiting) during the weekday PM peak hour. Refer to the attached NCHRP internal capture reports for reference.

Pass-by trips will also be taken into consideration in this study. Pass-by trips are made by the traffic already using the adjacent roadway, entering the site as an intermediate stop on their way to another destination. Pass-by percentages are applied to site trips after adjustments for internal capture. Pass-by trips are expected to account for approximately 104 trips (52 entering and 52 exiting) during the weekday PM peak hour. It should be noted that the pass-by trips were balanced, as it is likely that these trips would enter and exit in the same hour.

^{**}Utilizing methodology contained in the NCHRP Report 684.

The total primary trips are the calculated site trips after the reduction for internal capture and pass-by trips. Primary site traffic is expected to generate approximately 430 trips (172 entering and 258 exiting) during the weekday AM peak hour, and 510 trips (292 entering and 218 exiting) during the

Trip Distribution and Assignment

Site trips are distributed based on the locations of existing traffic patterns, population centers adjacent to the study area, and engineering judgment. A summary of the overall distributions is below.

Residential

weekday PM peak hour.

- 40% to/from the west via US 401 Bypass
- 20 % to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 25% to/from the west via Mitchell Mill Road
- 5% to/from the east via Mitchell Mill Road

Commercial

- 25% to/from the west via US 401 Bypass
- 15% to/from the east via US 401 Bypass
- 10% to/from the south via Peebles Road
- 40% to/from the west via Mitchell Mill Road
- 10% to/from the east via Mitchell Mill Road

Refer to the attached site trip distribution figures.

Analysis Scenarios

All capacity analyses will be performed utilizing Synchro (Version 10.3). All study intersections will be analyzed during the weekday AM and PM peak hours under the following proposed traffic scenarios:

- 2021 Existing Traffic Conditions
- 2028 No-Build Traffic Conditions
- 2028 Build Traffic Conditions

Report

The TIA report will be prepared based on the Town and NCDOT requirements.

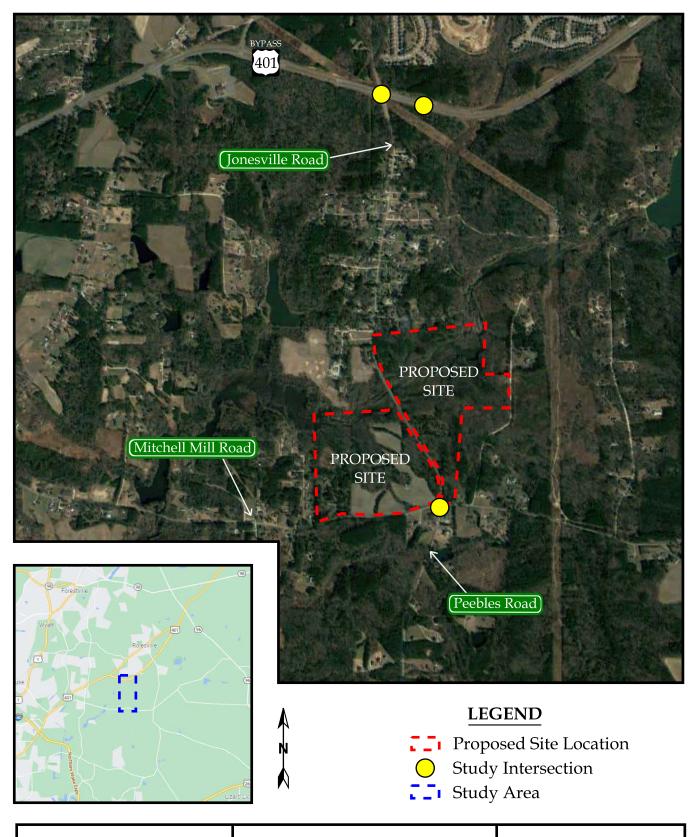
If you find this memorandum of understanding acceptable, please let me know so that we may include it in the TIA report. If you have any questions or concerns, please do not hesitate to contact me.

Sincerely,

Ramey Kemp Associates,

Michael Karpkinski, P.E.

Traffic Engineering Project Manager


Under Kyjuhi

Attachments: Site Location Map

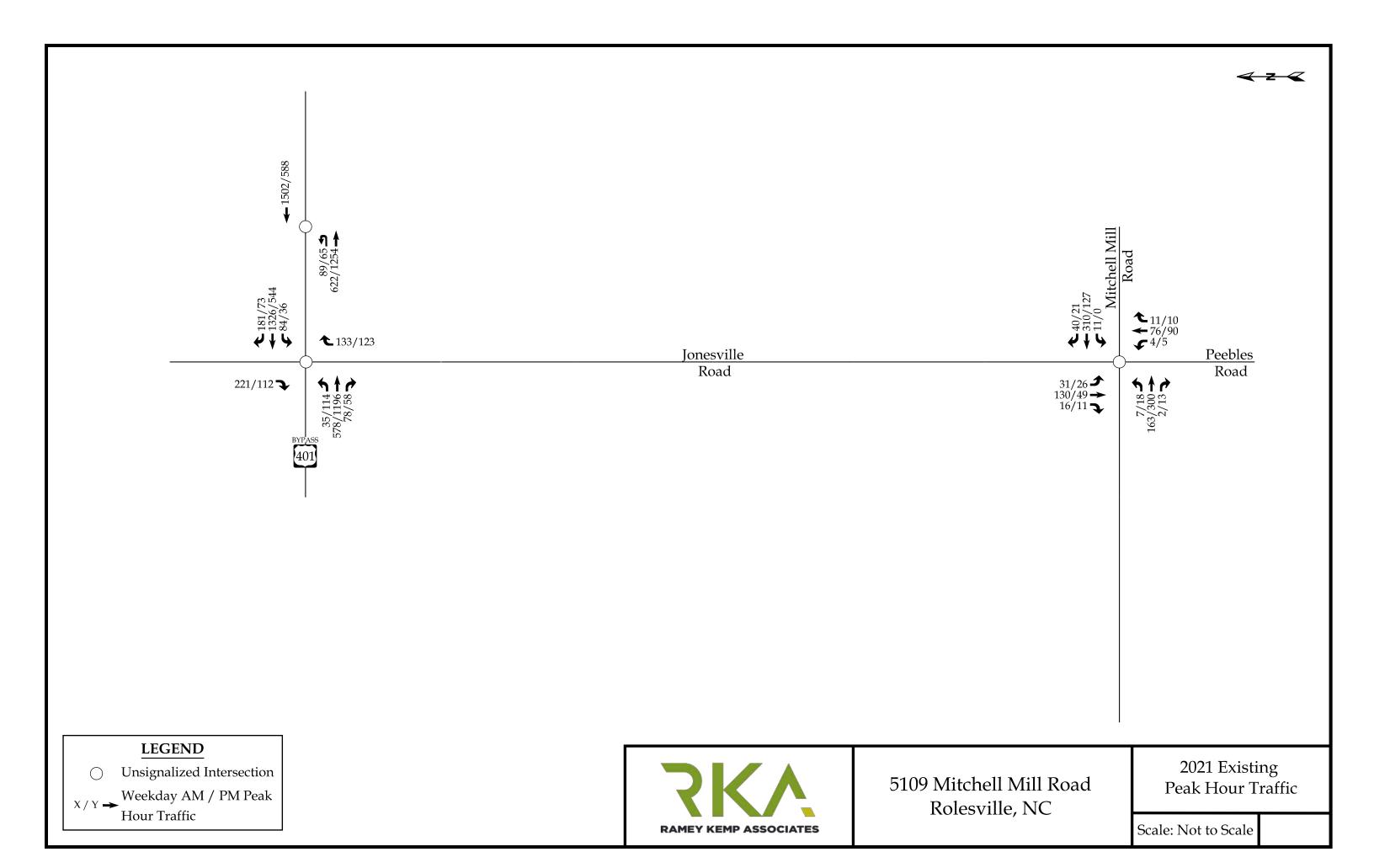
Site Plan

2021 Existing Traffic Volumes Figure NCHRP 684 Internal Capture Reports Proposed Site Trip Distribution Figures

5109 Mitchell Mill Road Rolesville, NC Site Location Map

Scale: Not to Scale

CONCEPTUAL PLAN 7


5109 MITCHELL MILL ROAD - July 2, 2021

NCHRP 684 Internal Trip Capture Estimation Tool										
Project Name:	5109 Mitchell Mill Road		Organization:	RKA						
Project Location:	Rolesville, NC		Performed By:	TF						
Scenario Description:	Full-Build		Date:	12/9/2021						
Analysis Year:	2028	1	Checked By:							
Analysis Period:	AM Street Peak Hour		Date:							

	Table 1	-A: Base Vehicl	e-Trip Generation	n Est	timates (Single-Use S	ite Estimate)	
Land Use	Developm	ent Data (<i>For Int</i>	formation Only)			Estimated Vehicle-Trips ³	
Land Ose	ITE LUCs1	Quantity	Units	7 I	Total	Entering	Exiting
Office				Ī			
Retail	820	58	KSF			112	69
Restaurant							
Cinema/Entertainment							
Residential	210,220	69, 129	DU	Ī		26	84
Hotel				Ī			
All Other Land Uses ²							
					0	138	153

Table 2-A: Mode Split and Vehicle Occupancy Estimates										
Land Use		Entering Trip	os		Exiting Trips					
Land Ose	Veh. Occ.4	% Transit	% Non-Motorized		Veh. Occ.4	% Transit	% Non-Motorized			
Office	1.10	0%	0%		1.10	0%	0%			
Retail	1.10	0%	0%		1.10	0%	0%			
Restaurant	1.10	0%	0%		1.10	0%	0%			
Cinema/Entertainment	1.10	0%	0%		1.10	0%	0%			
Residential	1.10	0%	0%		1.10	0%	0%			
Hotel	1.10	0%	0%		1.10	0%	0%			
All Other Land Uses ²	1.10	0%	0%		1.10	0%	0%			

Table 3-A: Average Land Use Interchange Distances (Feet Walking Distance)											
Origin (From)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office											
Retail											
Restaurant											
Cinema/Entertainment											
Residential											
Hotel											

Table 4-A: Internal Person-Trip Origin-Destination Matrix*										
Origin (From)	Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		0	0	0	0	0				
Retail	0		0	0	1	0				
Restaurant	0	0		0	0	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	0	1	0	0		0				
Hotel	0	0	0	0	0					

Table 5-A: Computations Summary									
Total Entering Exiting									
All Person-Trips	320	152	168						
Internal Capture Percentage	1%	1%	1%						
External Vehicle-Trips ⁵	287	136	151						
External Transit-Trips ⁶	0	0	0						
External Non-Motorized Trips ⁶	0	0	0						

Table 6-A: Internal Trip Capture Percentages by Land Use										
Land Use	Entering Trips	Exiting Trips								
Office	N/A	N/A								
Retail	1%	1%								
Restaurant	N/A	N/A								
Cinema/Entertainment	N/A	N/A								
Residential	3%	1%								
Hotel	N/A	N/A								

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-A vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made to Tables 5-A, 9-A (O and D). Enter transit, non-motorized percentages that will result with proposed mixed-use project complete.

⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

Project Name:	5109 Mitchell Mill Road
Analysis Period:	AM Street Peak Hour

Table 7-A: Conversion of Vehicle-Trip Ends to Person-Trip Ends										
Land Use	Tab	ole 7-A (D): Enter	ing Trips		Table 7-A (O): Exiting Trips					
Land Use	Veh. Occ.	Vehicle-Trips	Person-Trips*	1	Veh. Occ.	Vehicle-Trips	Person-Trips*			
Office	1.10	0	0	1	1.10	0	0			
Retail	1.10	112	123	1	1.10	69	76			
Restaurant	1.10	0	0	1	1.10	0	0			
Cinema/Entertainment	1.10	0	0	1	1.10	0	0			
Residential	1.10	26	29	1	1.10	84	92			
Hotel	1.10	0	0	1	1.10	0	0			

Table 8-A (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)											
Orderic (France)		Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel					
Office		0	0	0	0	0					
Retail	22		10	0	11	0					
Restaurant	0	0		0	0	0					
Cinema/Entertainment	0	0	0		0	0					
Residential	2	1	18	0		0					
Hotel	0	0	0	0	0						

	Table 8-A (D): Internal Person-Trip Origin-Destination Matrix (Computed at Destination)									
Origin (Fram)		Destination (To)								
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office		39	0	0	0	0				
Retail	0	0 0 0 1 0								
Restaurant	0	10		0	1	0				
Cinema/Entertainment	0	0	0		0	0				
Residential	0	21	0	0		0				
Hotel	0	5	0	0	0					

	Table 9-A (D): Internal and External Trips Summary (Entering Trips)									
Destination Land Use		Person-Trip Estimates			External Trips by Mode*					
Destination Land Use	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0	1	0	0	0			
Retail	1	122	123	1	111	0	0			
Restaurant	0	0	0	1	0	0	0			
Cinema/Entertainment	0	0	0		0	0	0			
Residential	1	28	29	1	25	0	0			
Hotel	0	0	0		0	0	0			
All Other Land Uses ³	0	0	0	1	0	0	0			

	Table 9-A (O): Internal and External Trips Summary (Exiting Trips)									
Origin Land Han		Person-Trip Estimates			External Trips by Mode*					
Origin Land Use	Internal	External	Total	1 [Vehicles ¹	Transit ²	Non-Motorized ²			
Office	0	0	0] [0	0	0			
Retail	1	75	76	1 [68	0	0			
Restaurant	0	0	0	1 [0	0	0			
Cinema/Entertainment	0	0	0	1 [0	0	0			
Residential	1	91	92	1 I	83	0	0			
Hotel	0	0	0	1 [0	0	0			
All Other Land Uses ³	0	0	0] [0	0	0			

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-A

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator

*Indicates computation that has been rounded to the nearest whole number.

	NCHRP 684 Internal Trip Capture Estimation Tool								
Project Name:	5109 Mitchell Mill Road	Organization:	RKA						
Project Location:	Rolesville, NC	Ī	Performed By:	TF					
Scenario Description:	Full-Build		Date:	12/9/2021					
Analysis Year:	2028		Checked By:						
Analysis Period:	PM Street Peak Hour		Date:						

Table 1-P: Base Vehicle-Trip Generation Estimates (Single-Use Site Estimate)								
Land Use	Developm	ent Data (For Inf	ormation Only)			Estimated Vehicle-Trips ³		
Land Use	ITE LUCs1	Quantity	Units	1	Total	Entering	Exiting	
Office								
Retail	820	58	KSF			174	189	
Restaurant								
Cinema/Entertainment								
Residential	210,220	69, 129	DU			89	52	
-lotel								
All Other Land Uses ²								
					0	263	241	

	Table 2-P: Mode Split and Vehicle Occupancy Estimates									
Landillan		Entering Trip	os		Exiting Trips					
Land Use	Veh. Occ.4	Veh. Occ. ⁴ % Transit % Non-Motorized			Veh. Occ.⁴	% Transit	% Non-Motorized			
Office	1.10	0%	0%		1.10	0%	0%			
Retail	1.10	0%	0%		1.10	0%	0%			
Restaurant	1.10	0%	0%		1.10	0%	0%			
Cinema/Entertainment	1.10	0%	0%		1.10	0%	0%			
Residential	1.10	0%	0%		1.10	0%	0%			
Hotel	1.10	0%	0%		1.10	0%	0%			
All Other Land Uses ²	1.10	0%	0%		1.10	0%	0%			

	Table 3-P: Average Land Use Interchange Distances (Feet Walking Distance)									
Origin (From)		Destination (To)								
Grigin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel				
Office										
Retail					1900					
Restaurant										
Cinema/Entertainment										
Residential		1900								
Hotel										

Table 4-P: Internal Person-Trip Origin-Destination Matrix*									
Origin (From)				Destination (To)					
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel			
Office		0	0	0	0	0			
Retail	0	0 0 36 0							
Restaurant	0	0		0	0	0			
Cinema/Entertainment	0	0	0		0	0			
Residential	0	7	0	0		0			
Hotel	0	0	0	0	0				

Table 5-P: Computations Summary								
Total Entering Exiting								
All Person-Trips	554	289	265					
Internal Capture Percentage	16%	15%	16%					
External Vehicle-Trips ⁵	424	223	201					
External Transit-Trips ⁶	0	0	0					
External Non-Motorized Trips ⁶	0	0	0					

Table 6-P: Internal Trip Capture Percentages by Land Use							
Land Use	Entering Trips	Exiting Trips					
Office	N/A	N/A					
Retail	4%	17%					
Restaurant	N/A	N/A					
Cinema/Entertainment	N/A	N/A					
Residential	37%	12%					
Hotel	N/A	N/A					

¹Land Use Codes (LUCs) from *Trip Generation Manual*, published by the Institute of Transportation Engineers.

²Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator.

³Enter trips assuming no transit or non-motorized trips (as assumed in ITE *Trip Generation Manual*).

⁴Enter vehicle occupancy assumed in Table 1-P vehicle trips. If vehicle occupancy changes for proposed mixed-use project, manual adjustments must be made ⁵Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P.

⁶Person-Trips

*Indicates computation that has been rounded to the nearest whole number.

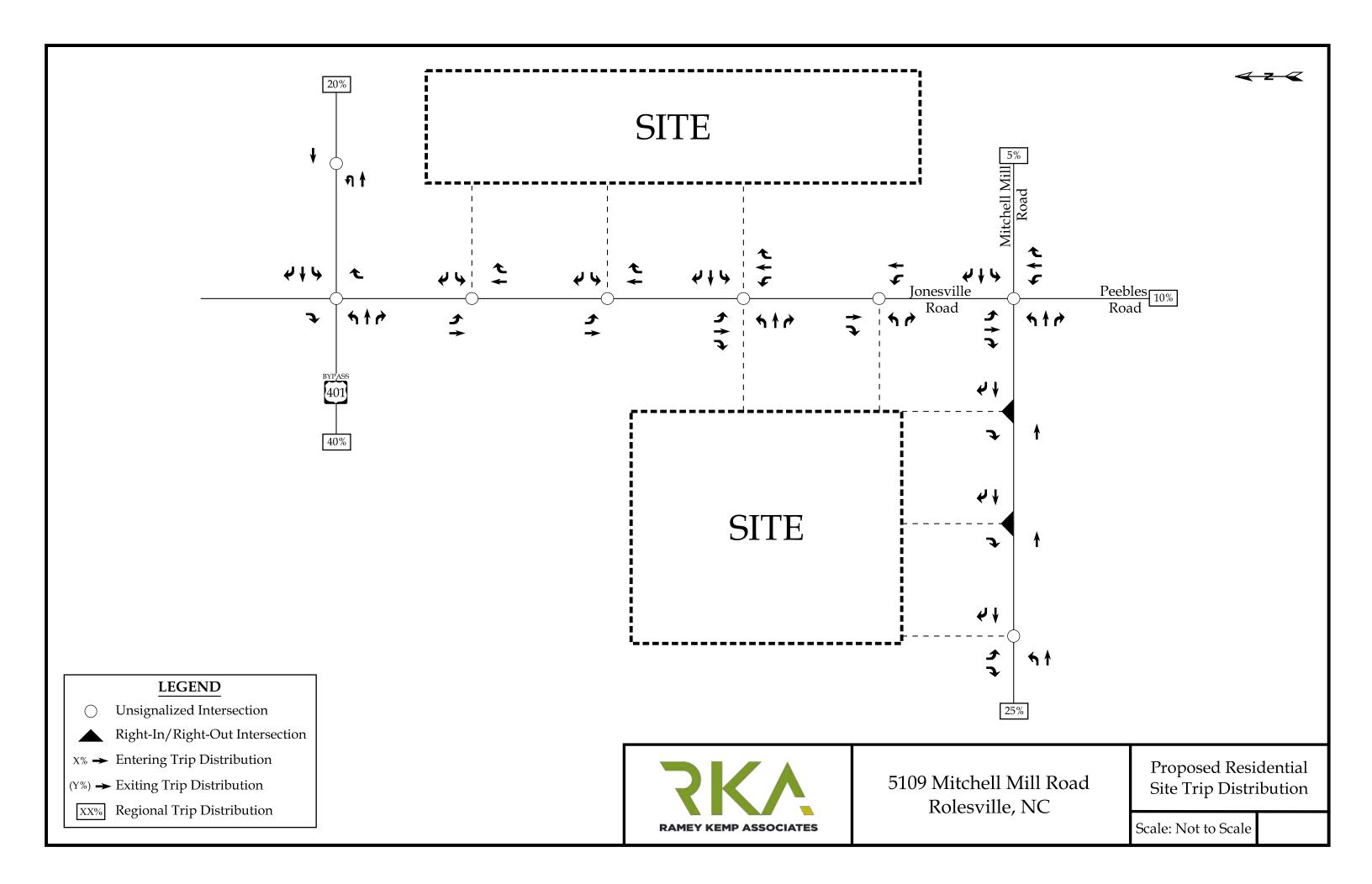
Estimation Tool Developed by the Texas A&M Transportation Institute - Version 2013.1

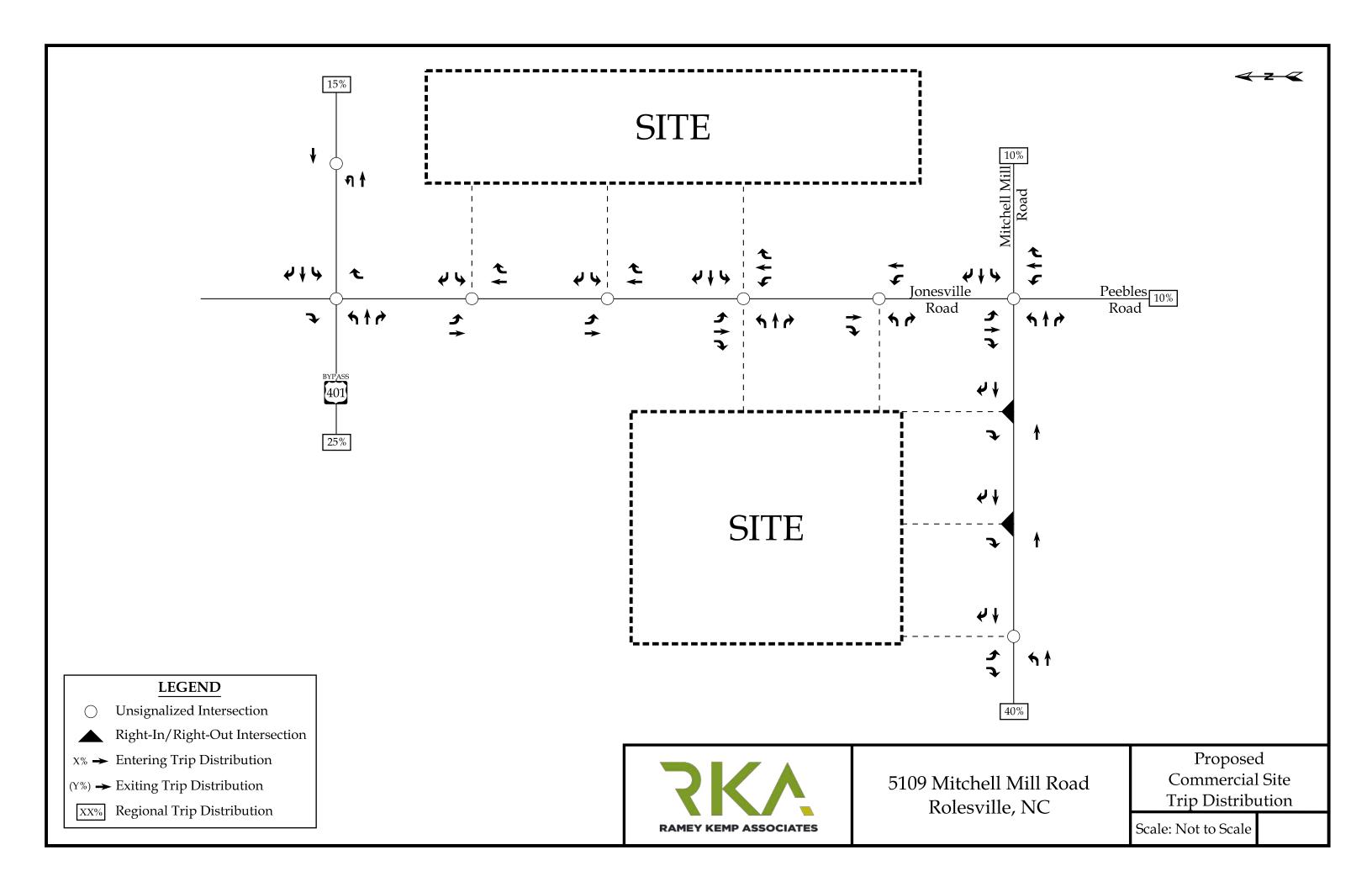
Project Name:	5109 Mitchell Mill Road
Analysis Period:	PM Street Peak Hour

Table 7-P: Conversion of Vehicle-Trip Ends to Person-Trip Ends									
Land Use	Table	Table 7-P (D): Entering Trips				Гable 7-Р (О): Exiting Trips			
Land Ose	Veh. Occ.	Vehicle-Trips	Person-Trips*		Veh. Occ.	Vehicle-Trips	Person-Trips*		
Office	1.10	0	0		1.10	0	0		
Retail	1.10	174	191		1.10	189	208		
Restaurant	1.10	0	0		1.10	0	0		
Cinema/Entertainment	1.10	0	0		1.10	0	0		
Residential	1.10	89	98		1.10	52	57		
Hotel	1.10	0	0		1.10	0	0		

	Table 8-P (O): Internal Person-Trip Origin-Destination Matrix (Computed at Origin)												
Origin (From)				Destination (To)									
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel							
Office		0	0	0	0	0							
Retail	4		60	8	36	10							
Restaurant	0	0		0	0	0							
Cinema/Entertainment	0	0	0		0	0							
Residential	2	9	12	0		2							
Hotel	0	0	0	0	0								

	Table 8-P (D):	Internal Person	-Trip Origin-Desti	nation Matrix (Computed a	t Destination)	
Origin (From)				Destination (To)		
Origin (From)	Office	Retail	Restaurant	Cinema/Entertainment	Residential	Hotel
Office		15	0	0	4	0
Retail	0		0	0	45	0
Restaurant	0	96		0	16	0
Cinema/Entertainment	0	8	0		4	0
Residential	0	7	0	0		0
Hotel	0	4	0	0	0	


	Tab	le 9-P (D): Interi	nal and External T	rips	Summary (Entering Tr	ps)	
Destination Land Use	Pe	erson-Trip Estima	ites			External Trips by Mode*	
Destination Land Ose	Internal	External	Total	1	Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0		0	0	0
Retail	7	184	191		167	0	0
Restaurant	0	0	0	1	0	0	0
Cinema/Entertainment	0	0	0	1	0	0	0
Residential	36	62	98		56	0	0
Hotel	0	0	0	1	0	0	0
All Other Land Uses ³	0	0	0	1	0	0	0


	Та	ble 9-P (O): Inter	nal and External	Trip	s Summary (Exiting Tri	ps)	
Origin Land Use	Pe	erson-Trip Estima	ites			External Trips by Mode*	
Origin Land Ose	Internal	External	Total		Vehicles ¹	Transit ²	Non-Motorized ²
Office	0	0	0		0	0	0
Retail	36	172	208		156	0	0
Restaurant	0	0	0		0	0	0
Cinema/Entertainment	0	0	0		0	0	0
Residential	7	50	57		45	0	0
Hotel	0	0	0		0	0	0
All Other Land Uses ³	0	0	0		0	0	0

¹Vehicle-trips computed using the mode split and vehicle occupancy values provided in Table 2-P

²Person-Trips

³Total estimate for all other land uses at mixed-use development site is not subject to internal trip capture computations in this estimator *Indicates computation that has been rounded to the nearest whole number.

APPENDIX B

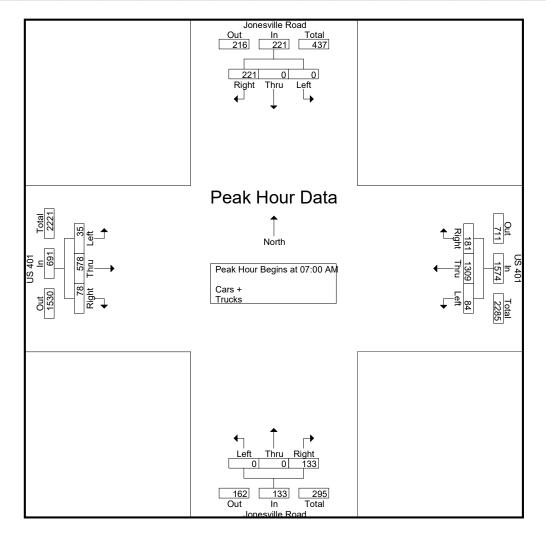
TRAFFIC COUNTS

File Name: Rolesville(US 401 and Jonesville)AM Peak

Site Code:

Start Date : 11/9/2021

							G	roups F	Printed- C	ars + -	Trucks							
			Jonesvil	le Roa	d		US	401			Jonesvi	lle Roa	d		US	401		
			South	bound			West	bound			North	bound			East	bound		
Start Tin	ne Ri	ight	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00	AΜ	63	0	0	63	24	380	21	425	23	0	0	23	18	182	3	203	714
07:15 A	AM	42	0	0	42	39	362	24	425	37	0	0	37	11	125	7	143	647
07:30 A	AM	51	0	0	51	80	318	23	421	48	0	0	48	24	136	15	175	695
07:45 A	AM	65	0	0	65	38	249	16	303	25	0	0	25	25	135	10	170	563
To	otal 2	221	0	0	221	181	1309	84	1574	133	0	0	133	78	578	35	691	2619
08:00 A	AM	61	0	0	61	26	236	13	275	23	0	0	23	30	120	10	160	519
08:15 A	AM	36	0	0	36	12	233	9	254	16	0	0	16	13	94	9	116	422
08:30 A	AM	24	0	0	24	10	213	5	228	9	0	0	9	6	91	3	100	361
08:45 A	AM/	28	0	0	28	9	145	5	159	10	0	0	10	11	85	2	98	295
To	otal 1	149	0	0	149	57	827	32	916	58	0	0	58	60	390	24	474	1597
Grand To	tal 3	370	0	0	370	238	2136	116	2490	191	0	0	191	138	968	59	1165	4216
Apprch	% 1	100	0	0		9.6	85.8	4.7		100	0	0		11.8	83.1	5.1		
Total	l %	8.8	0	0	8.8	5.6	50.7	2.8	59.1	4.5	0	0	4.5	3.3	23	1.4	27.6	
Cars	s+ 3	366	0	0	366	233	2094	114	2441	188	0	0	188	135	916	57	1108	4103
% Cars	s + 9	8.9	0	0	98.9	97.9	98	98.3	98	98.4	0	0	98.4	97.8	94.6	96.6	95.1	97.3
Truc	cks	4	0	0	4	5	42	2	49	3	0	0	3	3	52	2	57	113
% Truc	cks	1.1	0	0	1.1	2.1	2	1.7	2	1.6	0	0	1.6	2.2	5.4	3.4	4.9	2.7



File Name: Rolesville(US 401 and Jonesville)AM Peak

Site Code:

Start Date : 11/9/2021

		Jonesvi	lle Roa	d		US	401			Jonesvi	lle Roa	d		US	401]
		South	bound			Westl	oound			North	oound			East	oound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 07:0	0 AM t	o 08:45 A	M - Pea	ak 1 of 1			_				_				
Peak Hour for I	Entire In	tersecti	on Beg	ins at 07:	00 AM												
07:00 AM	63	0	0	63	24	380	21	425	23	0	0	23	18	182	3	203	714
07:15 AM	42	0	0	42	39	362	24	425	37	0	0	37	11	125	7	143	647
07:30 AM	51	0	0	51	80	318	23	421	48	0	0	48	24	136	15	175	695
07:45 AM	65	0	0	65	38	249	16	303	25	0	0	25	25	135	10	170	563
Total Volume	221	0	0	221	181	1309	84	1574	133	0	0	133	78	578	35	691	2619
% App. Total	100	0	0		11.5	83.2	5.3		100	0	0		11.3	83.6	5.1		
PHF	.850	.000	.000	.850	.566	.861	.875	.926	.693	.000	.000	.693	.780	.794	.583	.851	.917

File Name: Rolesville(US 401 and Jonesville)PM Peak

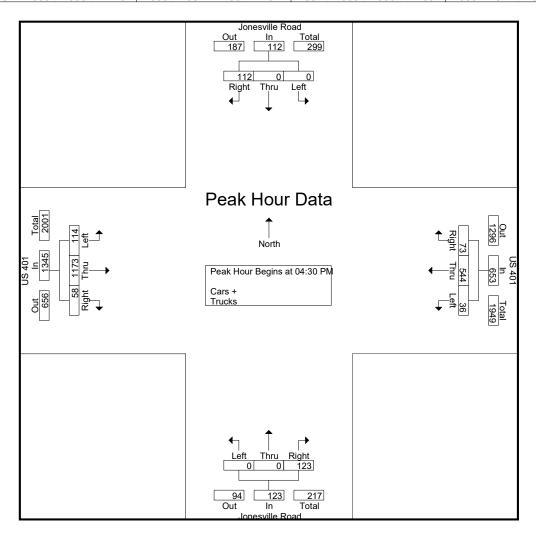
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

						G	roups F	<u> Printed- C</u>	ars + -	Trucks							
		Jonesvi	lle Roa	d		US	401			Jonesvi	ille Roa	d		US	401		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	47	0	0	47	13	124	6	143	21	0	0	21	37	217	22	276	487
04:15 PM	34	0	0	34	13	119	6	138	26	0	0	26	15	231	20	266	464
04:30 PM	30	0	0	30	19	118	12	149	32	0	0	32	12	291	28	331	542
04:45 PM	15	0	0	15	22	137	6	165	32	0	0	32	8	303	30	341	553
Total	126	0	0	126	67	498	30	595	111	0	0	111	72	1042	100	1214	2046
05:00 PM	37	0	0	37	10	143	7	160	23	0	0	23	23	322	30	375	595
05:15 PM	30	0	0	30	22	146	11	179	36	0	0	36	15	257	26	298	543
05:30 PM	39	0	0	39	20	145	3	168	34	0	0	34	23	262	14	299	540
05:45 PM	24	0	0	24	10	112	9	131	22	0	0	22	11	227	21	259	436
Total	130	0	0	130	62	546	30	638	115	0	0	115	72	1068	91	1231	2114
Grand Total	256	0	0	256	129	1044	60	1233	226	0	0	226	144	2110	191	2445	4160
Apprch %	100	0	0		10.5	84.7	4.9		100	0	0		5.9	86.3	7.8		
Total %	6.2	0	0	6.2	3.1	25.1	1.4	29.6	5.4	0	0	5.4	3.5	50.7	4.6	58.8	
Cars +	252	0	0	252	127	1020	60	1207	223	0	0	223	142	2051	191	2384	4066
% Cars +	98.4	0	0	98.4	98.4	97.7	100	97.9	98.7	0	0	98.7	98.6	97.2	100	97.5	97.7
Trucks	4	0	0	4	2	24	0	26	3	0	0	3	2	59	0	61	94
% Trucks	1.6	0	0	1.6	1.6	2.3	0	2.1	1.3	0	0	1.3	1.4	2.8	0	2.5	2.3



File Name: Rolesville(US 401 and Jonesville)PM Peak

Site Code:

Start Date : 11/9/2021

																	,
		Jonesvi	lle Roa	d		US	401			Jonesv	ille Roa	d		US	401		
		South	bound			West	bound			North	bound			East	bound		
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	alysis Fro	om 04:0	0 PM to	o 05:45 P	M - Pea	k 1 of 1											
Peak Hour for I																	
04:30 PM	30	0	0	30	19	118	12	149	32	0	0	32	12	291	28	331	542
04:45 PM	15	0	0	15	22	137	6	165	32	0	0	32	8	303	30	341	553
05:00 PM	37	0	0	37	10	143	7	160	23	0	0	23	23	322	30	375	595
05:15 PM	30	0	0	30	22	146	11	179	36	0	0	36	15	257	26	298	543
Total Volume	112	0	0	112	73	544	36	653	123	0	0	123	58	1173	114	1345	2233
% App. Total	100	0	0		11.2	83.3	5.5		100	0	0		4.3	87.2	8.5		
PHF	.757	.000	.000	.757	.830	.932	.750	.912	.854	.000	.000	.854	.630	.911	.950	.897	.938

File Name: Rolesville(US 401 and Eastern U Turn)AM Peak

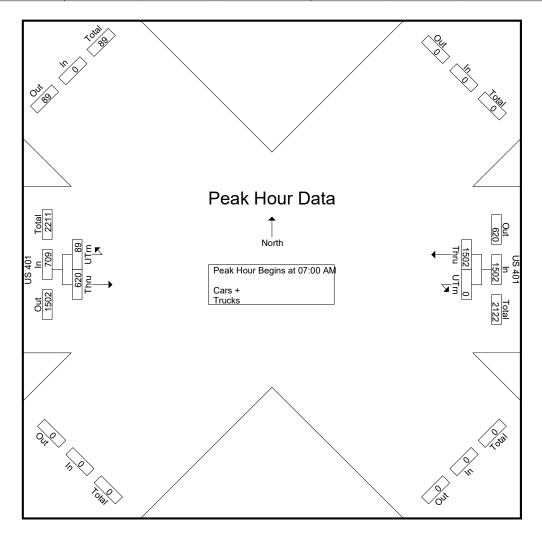
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

		Gro	ups Printed- Cars	+ - Trucks			
		US 401	-		US 401		
		Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
07:00 AM	421	0	421	198	12	210	631
07:15 AM	410	0	410	136	24	160	570
07:30 AM	392	0	392	149	36	185	577
07:45 AM	279	0	279	137	17	154	433
Total	1502	0	1502	620	89	709	2211
08:00 AM	253	0	253	130	20	150	403
08:15 AM	243	0	243	98	13	111	354
08:30 AM	223	0	223	94	7	101	324
08:45 AM	147	0	147	85	9	94	241
Total	866	0	866	407	49	456	1322
Grand Total	2368	0	2368	1027	138	1165	3533
Apprch %	100	0		88.2	11.8		
Total %	67	0	67	29.1	3.9	33	
Cars +	2318	0	2318	973	136	1109	3427
% Cars +	97.9	0	97.9	94.7	98.6	95.2	97
Trucks	50	0	50	54	2	56	106
% Trucks	2.1	0	2.1	5.3	1.4	4.8	3



File Name: Rolesville(US 401 and Eastern U Turn)AM Peak

Site Code :

Start Date : 11/9/2021

		US 401 Westbound			US 401 Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
Peak Hour Analysis From 07:00	O AM to 08:45 AM	- Peak 1 of 1	• •			• •	_
Peak Hour for Entire Intersection	n Begins at 07:00	AM					
07:00 AM	421	0	421	198	12	210	631
07:15 AM	410	0	410	136	24	160	570
07:30 AM	392	0	392	149	36	185	577
07:45 AM	279	0	279	137	17	154	433
Total Volume	1502	0	1502	620	89	709	2211
% App. Total	100	0		87.4	12.6		
PHF	.892	.000	.892	.783	.618	.844	.876

File Name: Rolesville(US 401 and Eastern U Turn)PM Peak

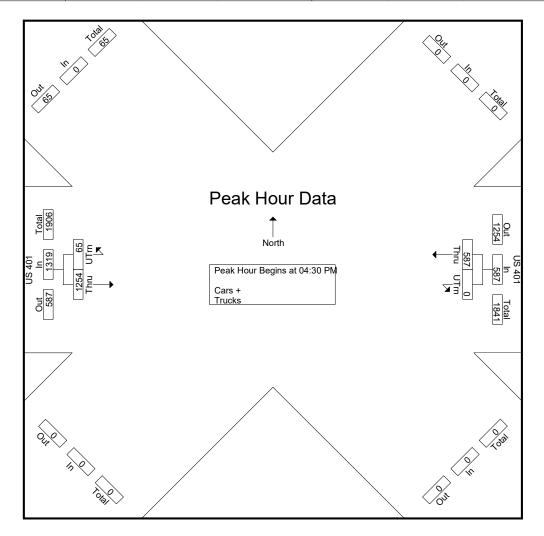
Site Code:

Start Date : 11/9/2021

Page No : 1

Groups Printed- Cars + - Trucks

		Group	os Printed- Cars +	- Trucks			
		US 401			US 401		
	1	Westbound			Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
04:00 PM	130	0	130	240	12	252	382
04:15 PM	128	0	128	237	15	252	380
04:30 PM	129	0	129	311	19	330	459
04:45 PM	149	0	149	317	19	336	485
Total	536	0	536	1105	65	1170	1706
05:00 PM	149	0	149	342	8	350	499
05:15 PM	160	0	160	284	19	303	463
05:30 PM	161	0	161	273	22	295	456
05:45 PM	120	0	120	235	12	247	367
Total	590	0	590	1134	61	1195	1785
Grand Total	1126	0	1126	2239	126	2365	3491
Apprch %	100	0		94.7	5.3		
Total %	32.3	0	32.3	64.1	3.6	67.7	
Cars +	1101	0	1101	2175	125	2300	3401
% Cars +	97.8	0	97.8	97.1	99.2	97.3	97.4
Trucks	25	0	25	64	1	65	90
% Trucks	2.2	0	2.2	2.9	0.8	2.7	2.6



File Name: Rolesville(US 401 and Eastern U Turn)PM Peak

Site Code :

Start Date : 11/9/2021

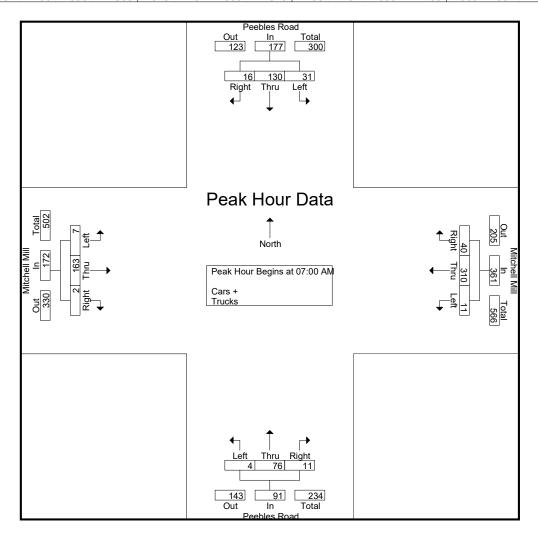
		US 401 Westbound			US 401 Eastbound		
Start Time	Thru	UTrn	App. Total	Thru	UTrn	App. Total	Int. Total
Peak Hour Analysis From 04:00	O PM to 05:45 PM	- Peak 1 of 1					
Peak Hour for Entire Intersection	n Begins at 04:30	PM					
04:30 PM	129	0	129	311	19	330	459
04:45 PM	149	0	149	317	19	336	485
05:00 PM	149	0	149	342	8	350	499
05:15 PM	160	0	160	284	19	303	463
Total Volume	587	0	587	1254	65	1319	1906
% App. Total	100	0		95.1	4.9		
PHF	.917	.000	.917	.917	.855	.942	.955

File Name: Rolesville(Jonesville and Mitchell Mill)AM Peak

Site Code:

Start Date : 11/30/2021

	Groups Printed- Cars + - Trucks																
		Peeble	s Road	t	Mitchell Mill					Peeble	es Road	d					
		South	bound		Westbound					North	bound						
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
07:00 AM	4	17	13	34	8	73	5	86	6	11	3	20	0	74	1	75	215
07:15 AM	4	36	7	47	8	101	2	111	3	26	1	30	0	32	1	33	221
07:30 AM	6	34	5	45	16	87	3	106	0	24	0	24	1	33	1	35	210
07:45 AM	2	43	6	51	8	49	1	58	2	15	0	17	1	24	4	29	155
Total	16	130	31	177	40	310	11	361	11	76	4	91	2	163	7	172	801
08:00 AM	7	31	12	50	4	53	1	58	1	8	2	11	0	28	3	31	150
08:15 AM	12	17	3	32	1	37	1	39	1	7	0	8	1	24	1	26	105
08:30 AM	6	4	2	12	3	49	2	54	1	4	2	7	0	19	0	19	92
08:45 AM	1	13	3	17	4	32	1	37	1	3	1	5	1	18	2	21	80
Total	26	65	20	111	12	171	5	188	4	22	5	31	2	89	6	97	427
Grand Total	42	195	51	288	52	481	16	549	15	98	9	122	4	252	13	269	1228
Apprch %	14.6	67.7	17.7		9.5	87.6	2.9		12.3	80.3	7.4		1.5	93.7	4.8		
Total %	3.4	15.9	4.2	23.5	4.2	39.2	1.3	44.7	1.2	8	0.7	9.9	0.3	20.5	1.1	21.9	
Cars +	42	195	50	287	52	479	16	547	15	98	9	122	4	249	13	266	1222
% Cars +	100	100	98	99.7	100	99.6	100	99.6	100	100	100	100	100	98.8	100	98.9	99.5
Trucks	0	0	1	1	0	2	0	2	0	0	0	0	0	3	0	3	6
% Trucks	0	0	2	0.3	0	0.4	0	0.4	0	0	0	0	0	1.2	0	1.1	0.5



File Name: Rolesville(Jonesville and Mitchell Mill)AM Peak

Site Code:

Start Date : 11/30/2021

		Peeble	s Road	l	Mitchell Mill					Peeble	es Road						
		South		Westbound					North	bound							
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Analysis From 07:00 AM to 08:45 AM - Peak 1 of 1																	
Peak Hour for I	Peak Hour for Entire Intersection Begins at 07																
07:00 AM	4	17	13	34	8	73	5	86	6	11	3	20	0	74	1	75	215
07:15 AM	4	36	7	47	8	101	2	111	3	26	1	30	0	32	1	33	221
07:30 AM	6	34	5	45	16	87	3	106	0	24	0	24	1	33	1	35	210
07:45 AM	2	43	6	51	8	49	1	58	2	15	0	17	1	24	4	29	155
Total Volume	16	130	31	177	40	310	11	361	11	76	4	91	2	163	7	172	801
% App. Total	9	73.4	17.5		11.1	85.9	3		12.1	83.5	4.4		1.2	94.8	4.1		
PHF	.667	.756	.596	.868	.625	.767	.550	.813	.458	.731	.333	.758	.500	.551	.438	.573	.906

File Name: Rolesville(Jonesville and Mitchell Mill)PM Peak

Site Code:

Start Date : 11/30/2021

Page No : 1

Groups Printed- Cars + - Trucks

Groups Printed- Cars + - Trucks Peebles Road Mitchell Mill Peebles Road Mitchell Mill																	
		Peeble	s Road	t		Mitch	ell Mill			Peeble	s Road	t					
		South			West	bound			North	bound							
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
04:00 PM	7	11	13	31	6	25	1	32	1	14	1	16	2	44	6	52	131
04:15 PM	6	11	4	21	2	27	2	31	1	17	3	21	1	62	4	67	140
04:30 PM	3	13	3	19	4	30	2	36	0	27	1	28	3	64	3	70	153
04:45 PM	2	8	5	15	4	37	0	41	3	18	0	21	3	71	3	77	154_
Total	18	43	25	86	16	119	5	140	5	76	5	86	9	241	16	266	578
05:00 PM	1	15	6	22	5	31	0	36	3	19	2	24	1	78	5	84	166
05:15 PM	3	15	6	24	4	23	0	27	3	26	1	30	4	89	7	100	181
05:30 PM	5	11	9	25	8	36	0	44	1	27	2	30	5	62	3	70	169
05:45 PM	1	7	4	12	2	21	1	24	2	13	2	17	4	55	6	65	118
Total	10	48	25	83	19	111	1	131	9	85	7	101	14	284	21	319	634
Grand Total	28	91	50	169	35	230	6	271	14	161	12	187	23	525	37	585	1212
Apprch %	16.6	53.8	29.6		12.9	84.9	2.2		7.5	86.1	6.4		3.9	89.7	6.3		
Total %	2.3	7.5	4.1	13.9	2.9	19	0.5	22.4	1.2	13.3	1_	15.4	1.9	43.3	3.1	48.3	
Cars +	28	91	50	169	35	229	6	270	14	161	12	187	23	524	37	584	1210
% Cars +	100	100	100	100	100	99.6	100	99.6	100	100	100	100	100	99.8	100	99.8	99.8
Trucks	0	0	0	0	0	1	0	1	0	0	0	0	0	1	0	1	2
% Trucks	0	0	0	0	0	0.4	0	0.4	0	0	0	0	0	0.2	0	0.2	0.2

File Name: Rolesville(Jonesville and Mitchell Mill)PM Peak

Site Code:

Start Date : 11/30/2021

Page No : 2

		Peeble	s Road	l		Mitchell Mill Peebles Road Mitchell Mill											
		South	bound		Westbound					North	bound						
Start Time	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Right	Thru	Left	App. Total	Int. Total
Peak Hour Ana	eak Hour Analysis From 04:00 PM to 05:45 PM - Peak 1 of 1																
Peak Hour for I	Entire In	tersecti	on Beg	ins at 04:	45 PM												
04:45 PM	2	8	5	15	4	37	0	41	3	18	0	21	3	71	3	77	154
05:00 PM	1	15	6	22	5	31	0	36	3	19	2	24	1	78	5	84	166
05:15 PM	3	15	6	24	4	23	0	27	3	26	1	30	4	89	7	100	181
05:30 PM	5	11_	9	25	8	36	0	44	1_	27	2	30	5	62	3	70	169
Total Volume	11	49	26	86	21	127	0	148	10	90	5	105	13	300	18	331	670
% App. Total	12.8	57	30.2		14.2	85.8	0		9.5	85.7	4.8		3.9	90.6	5.4		
PHF	.550	.817	.722	.860	.656	.858	.000	.841	.833	.833	.625	.875	.650	.843	.643	.828	.925

APPENDIX C

ADJACENT DEVELOPMENT INFORMATION

TRAFFIC IMPACT ANALYSIS

FOR

COBBLESTONE CROSSING MIXED-USE

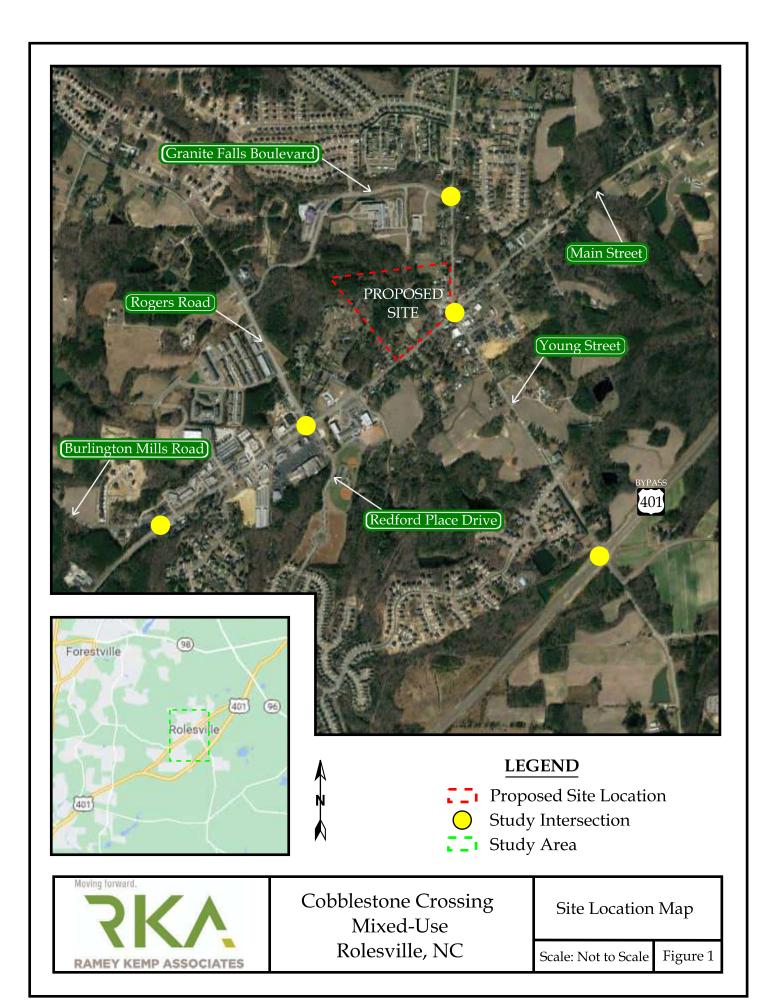
LOCATED

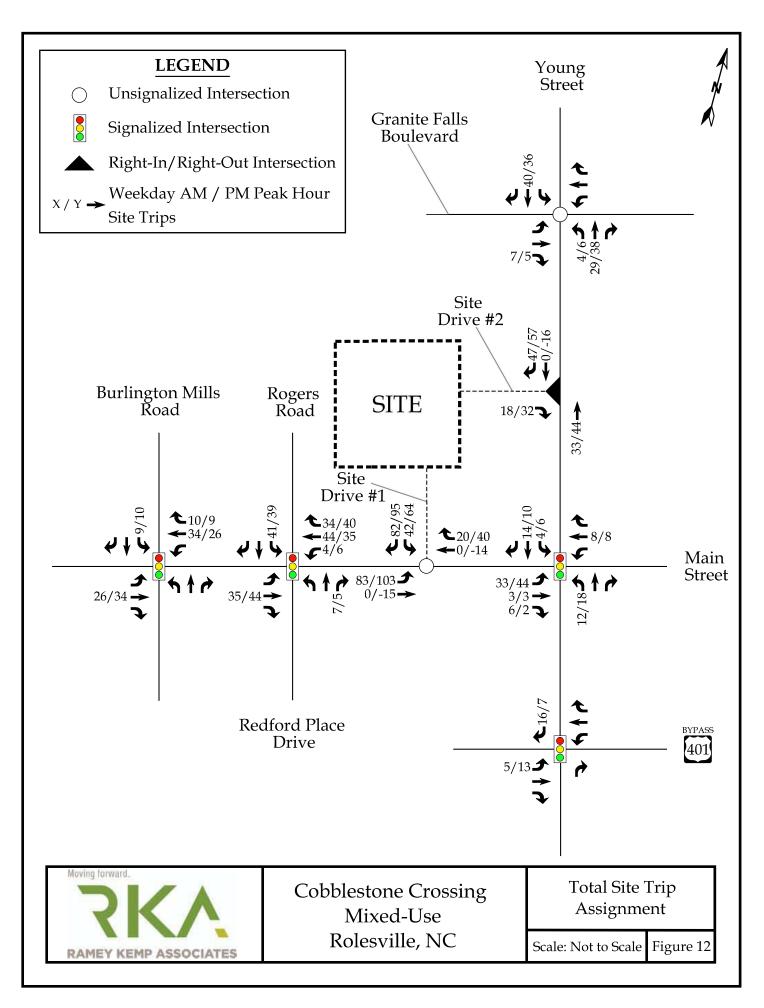
IN

ROLESVILLE, NORTH CAROLINA

Prepared For: Town of Rolesville 502 Southtown Circle Rolesville, NC 27571

Prepared By:
Ramey Kemp & Associates, Inc.
5808 Faringdon Place, Suite 100
Raleigh, NC 27609
License #C-0910


3-15-2021


MARCH 2021

RKA Project No. 20498

Prepared By: TF

Reviewed By: MK

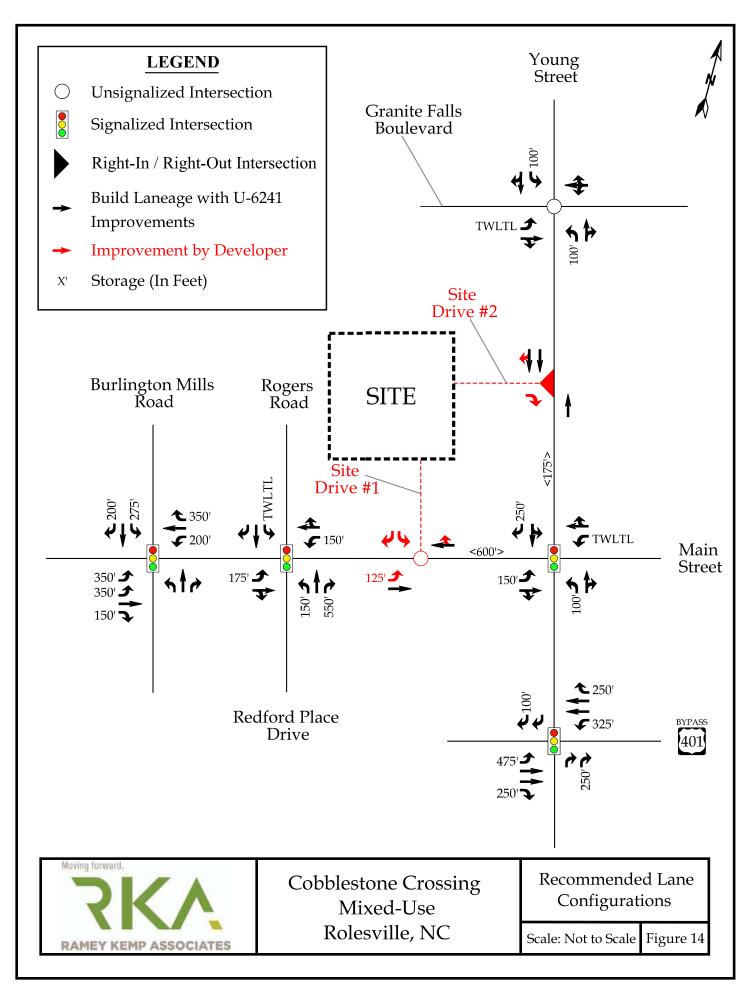
9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 14 for an illustration of the recommended lane configuration for the proposed development.

Improvements by STIP U-6241

STIP U-6241 is expected to realign Burlington Mills Road and install a traffic signal at the relocated intersection on Main Street. STIP U-6241 is also expected to provide improvements to the pedestrian and bike facilities along Main Street and add a concrete median island along Main Street west of Rogers Road. These improvements associated with STIP U-6241 will alter the existing lane configurations at the study intersections along Main Street.

Recommended Improvements by Developer


Main Street and Site Drive 1

- Construct the southbound approach with one ingress and two egress lanes.
- Provide stop control for the southbound approach.
- Install an eastbound left-turn lane with at least 125 feet of storage and appropriate decel and taper.

Young Street and Site Drive 2

- Construct the eastbound approach with one ingress and egress lane.
- Provide stop control for the eastbound approach.

Revised Traffic Impact Analysis for

Young Street PUD

Rolesville, North Carolina

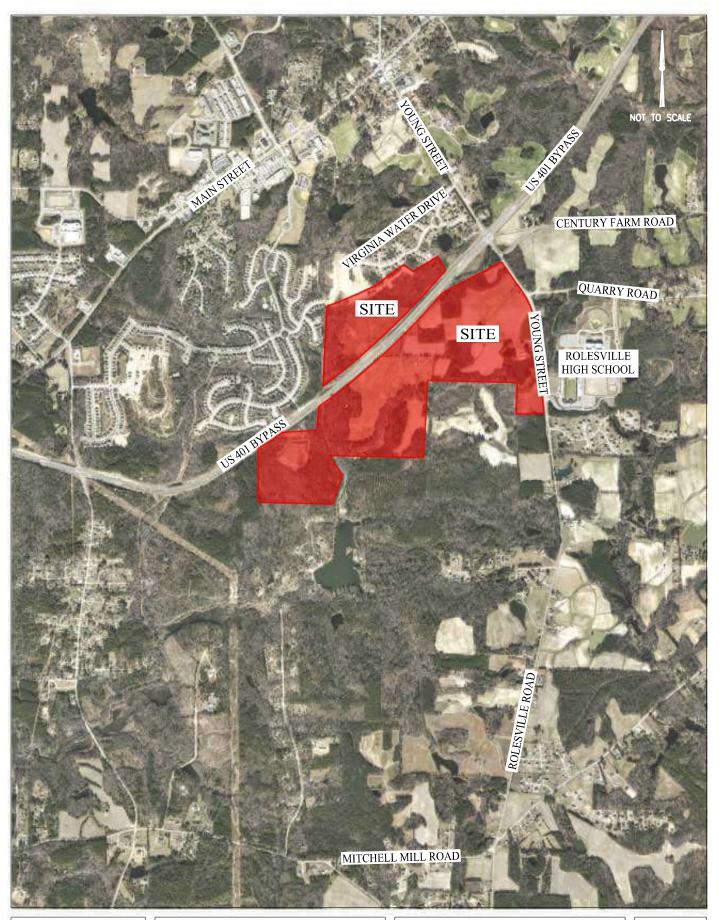
Prepared for:

Ashton Woods Raleigh, North Carolina

Prepared by:

Kimley-Horn and Associates, Inc. NC License #F-0102 421 Fayetteville Street, Suite 600 Raleigh, NC 27601 (919) 677-2000

> June 2019 015956012

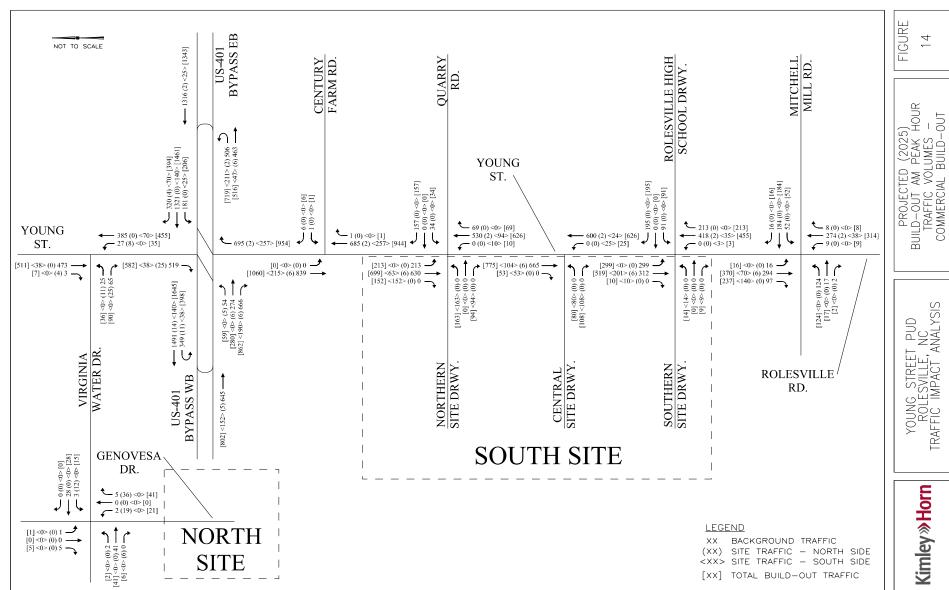

Docusion And by:

034394

VILLE

FEED STANSES AXES.

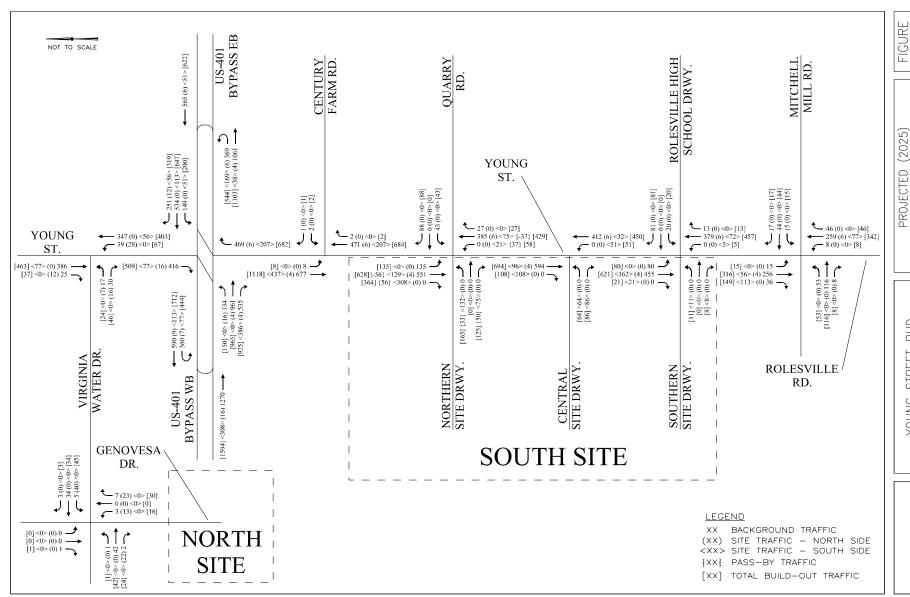
6/13/2019



Kimley»Horn

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

SITE LOCATION


FIGURE 1

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley » Horn

THIS DOCUMENT, TOGETHER WITH THE CONCEPTS, AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPAR RELANCE ON THIS DOCUMENT WITHOUT WRITEN AUTHORIZATION AND ASSOCIATES, INC. SHALL BE WITHOUT LUBULITY TO KIMLEY-HORN AND ASSOCIATES, INC.

PROJECTED (2025)
BUILD-OUT PM PEAK HOUR
TRAFFIC VOLUMES COMMERCIAL BUILD-OUT

9

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley.» Horn

THIS DOCUMENT, TOGETHER WITH THE CONCEPTS AND DESIGNS PRESENTED HEREIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE AND CLIENT FOR WHICH IT WAS PREPAR. RELAKCE ON THIS DOCUMENT WITHOUT WRITTEN AUTHORIZATION AND ASSOCIATES, INC. SHALL BE WITHOUT LUBGLITY TO KIMLEY-HORN AND ASSOCIATES, INC.

7.0 Recommendations

Residential Build-out

The following improvements are recommended to be performed to accommodate projected site traffic volumes at build-out of the residential portion of the development:

US 401 Bypass:

 Coordinate the traffic signals at the intersections of US 401 at Young Street and the Superstreet U-turns

Young Street at Quarry Road/North Site Driveway:

- Construct a northbound left-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Construct a southbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Restripe the existing westbound left-turn lane on Quarry Road to a shared left/through lane
- Provide an exclusive left-turn lane with 275 feet of storage and appropriate tapers and a shared through/right lane on the North Site Driveway
- Install a traffic signal when warranted

Young Street at Central Site Driveway:

- Construct a northbound left-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Construct a southbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Provide exclusive left and right-turn lanes on the Central Site Driveway with 125 feet of storage and appropriate tapers for the left-turn lane

Young Street at Rolesville High School Driveway/South Site Driveway:

- Construct a northbound left-turn lane on Young Street with 50 feet of storage and appropriate tapers
- Provide one egress lane on the South Site Driveway

Rolesville Road at Mitchell Mill Road:

Install a traffic signal when warranted

Analyses indicate that with the recommended improvements in place, all of the study intersections except for Young Street at Century Farm Road and Young Street at Rolesville High School Driveway/South Site Driveway are expected to operate at an acceptable LOS at build-out of the residential-only phase of the development.

Kimley » Horn

Analyses indicate that the intersection of Young Street at Century Farm Road is expected to operate with long delays on the minor street approach (Century Farm Road) in the AM peak hour at project build-out. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic traffic simulations indicate that no queuing issues are expected at this intersection.

Analyses indicate that the intersection of Young Street at the Rolesville High School Driveway/South Site Driveway is expected to operate with long delays on the minor street approach (Rolesville High School Driveway) in the AM peak hour and school PM peak hour with or without the proposed project in place in the study year 2025. SimTraffic traffic simulations also indicate the possibility of long queues on the westbound left-turn movement at this intersection in the AM peak hour and school PM peak hour. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. This intersection is not expected to meet 4-hour or 8-hour MUTCD traffic signal warrants.

Commercial Build-out

The following additional improvements are recommended to be performed in addition to those recommended above for the residential phase to accommodate projected site traffic volumes when the retail portion of the site is developed:

US 401 Bypass Eastbound at Young Street:

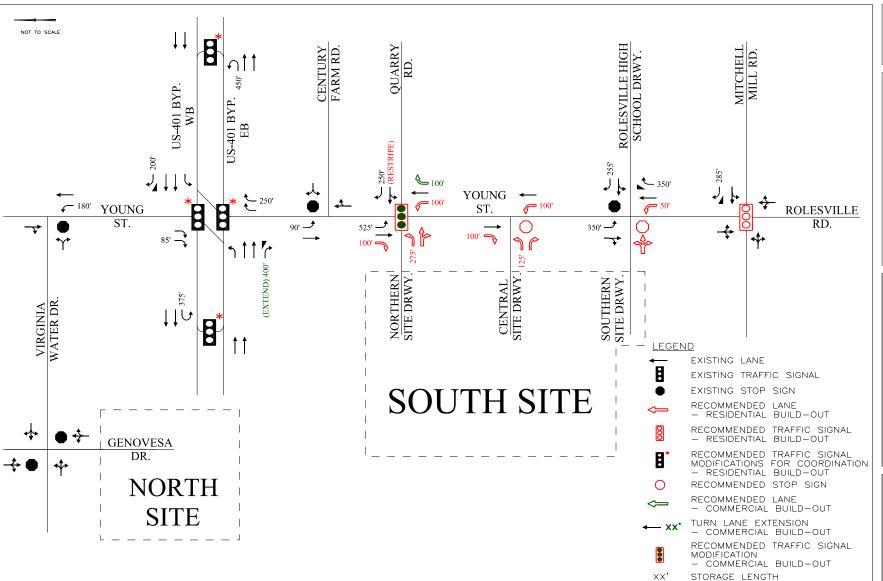
• Extend the storage of the existing eastbound right-turn lane on US 401 Bypass by approximately 175 feet to provide 400 feet of storage and appropriate tapers

Young Street at Quarry Road/North Site Driveway:

- Construct a northbound right-turn lane on Young Street with 100 feet of storage and appropriate tapers
- Modify the traffic signal to accommodate the additional laneage

Analyses indicate that with the recommended improvements in place, all of the study intersections except for Young Street at Century Farm Road, Young Street at the Central Site Driveway, and Young Street at Rolesville High School Driveway/South Site Driveway are expected to operate at acceptable LOS at commercial build-out of the development.

Analyses indicate that the intersection of Young Street at Century Farm Road is expected to operate with long delays on the minor street approach (Century Farm Road) in the AM peak hour at project build-out. It is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic


traffic simulations indicate that short queues are likely on the minor street approach in the AM peak hour at commercial build-out.

Analyses indicate that the intersection of Young Street at the Central Site Driveway is expected to operate with long delays on the minor street approach (Central Site Driveway) in the AM peak hour in the commercial build-out traffic condition. It is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. SimTraffic traffic simulations indicate the possibility of long queues on the eastbound left-turn movement at this intersection in the AM peak hour in the commercial build-out condition.

Analyses indicate that the intersection of Young Street at the Rolesville High School Driveway/South Site Driveway is expected to operate with long delays on the minor street approach (Rolesville High School Driveway) in the AM peak hour and school PM peak hour with or without the proposed project in place in the study year 2025. SimTraffic traffic simulations also indicate the possibility of long queues on the westbound left-turn movement at this intersection in the AM peak hour and school PM peak hour. However, it is typical for stop sign controlled side streets and driveways intersecting major streets to experience long delays during peak hours, while the majority of the traffic moving through the intersection on the major street experiences little or no delay. This intersection is not expected to meet 4-hour or 8-hour MUTCD traffic signal warrants.

As shown in the analysis, the impact of site traffic associated with the commercial build-out of this proposed PUD is generally consistent with the currently-approved PUD for the site. The proposed PUD is expected to generate no more than 50 additional peak hour trips in each of the studied peak hours compared to the approved PUD, and delays at commercial build-out of both plans are generally consistent at each of the study intersections.

The recommended laneage for the development is shown on **Figure 17**.

FIGURE

RECOMMENDED ROADWAY LANEAGE

YOUNG STREET PUD ROLESVILLE, NC TRAFFIC IMPACT ANALYSIS

Kimley.» Horn

AND DESIGNS PRESENTED HERBIN, AS AN INSTRUMENT OF SERVICE, IS INTENDED ONLY FOR THE SPECIFIC PURPOSE, AND CLIENT FOR WHICH IT AUTHORIZATION AND ADAPTATION BY KMALEY-HORN AND ASSOCIATES, INC. SHALL BE WITHOUT LABILITY TO KMALEY-HORN AND ASSOCIATES, INC. THIS DOCUMENT, TOGETHER WITH THE CONCEPTS RELIANCE ON THIS DOCUMENT WITHOUT WRITTEN

TRAFFIC IMPACT ANALYSIS

FOR

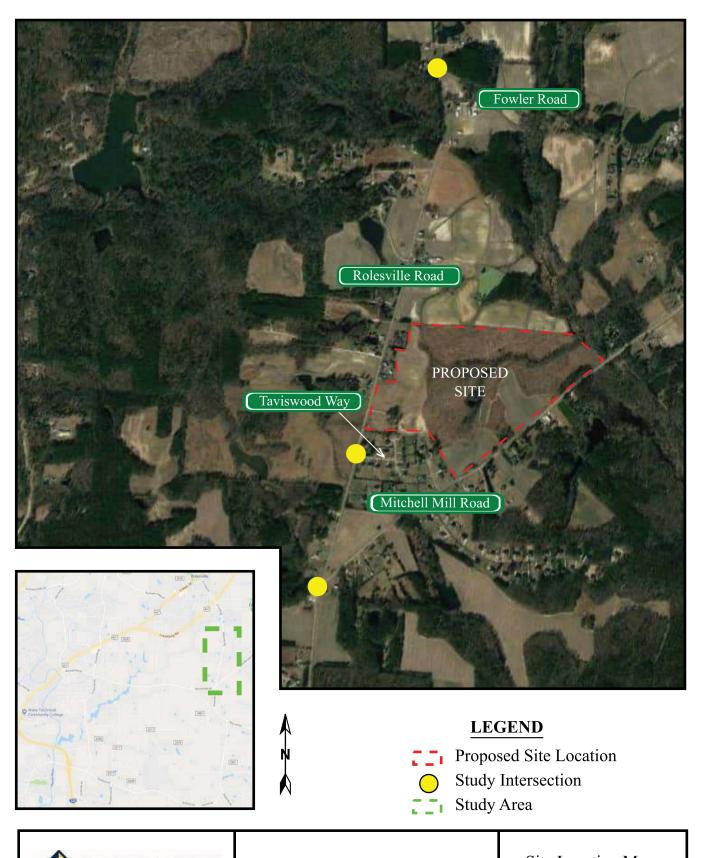
WHEELER TRACT

LOCATED

IN

ROLESVILLE, NC

Prepared For: Hopper Communities 173 Paraggi Court Clayton, NC 27527

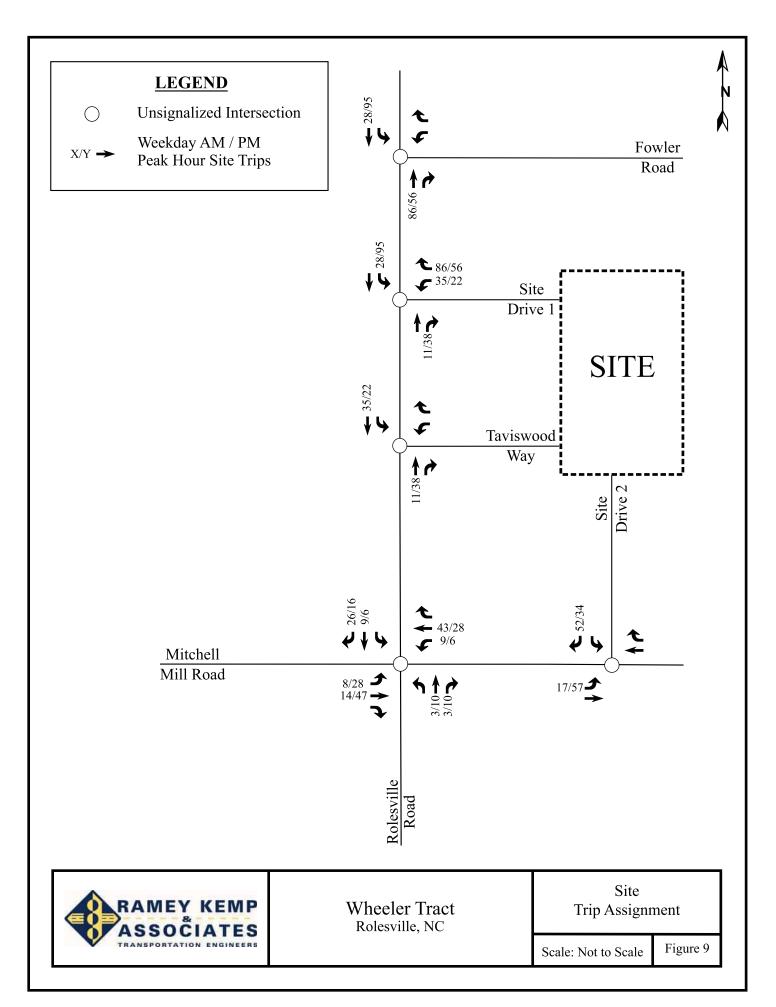

Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910

June 2019

CAROLLESSIONER SEAL TO SEAL TO

Prepared By: CAB

Reviewed By: JTR



Wheeler Tract Rolesville, NC Site Location Map

Scale: Not to Scale

Figure 1

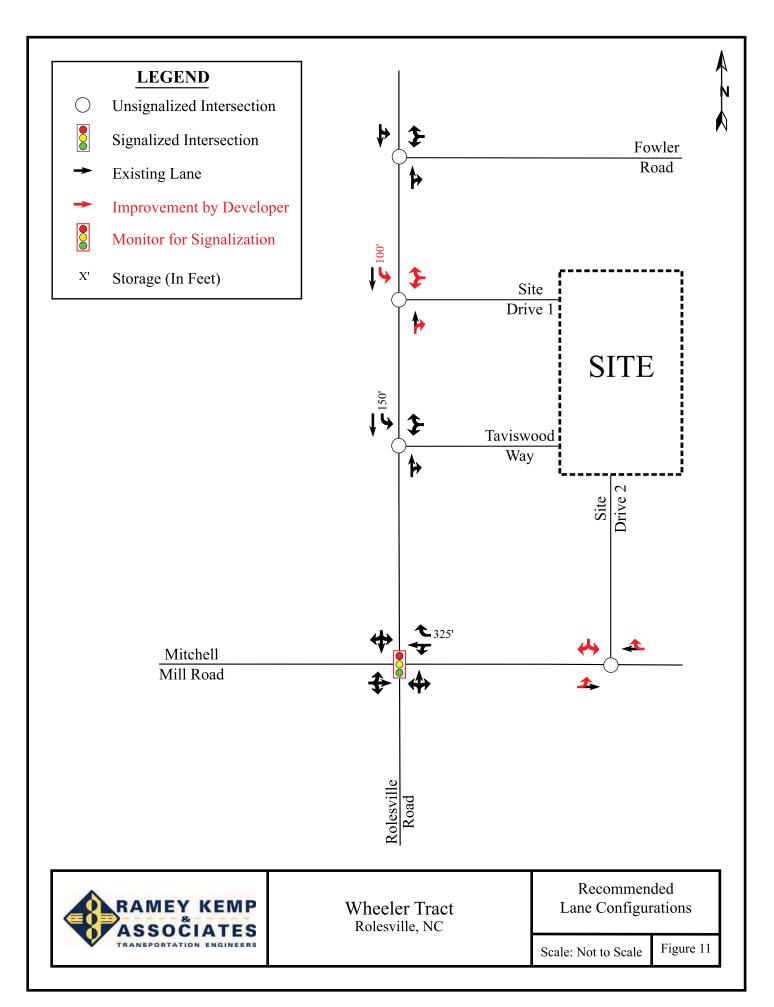
9. **RECOMMENDATIONS**

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 11 for an illustration of the recommended lane configuration for the proposed development.

Recommended Improvements by Developer

Rolesville Road and Mitchell Mill Road

• Monitor intersection for signalization.


Rolesville Road and Site Drive 1

- Provide site access via a full movement intersection with one ingress lane and one egress lane.
- Provide stop control for westbound Site Drive 1 approach.
- Provide a designated southbound left-turn lane with at least 100 feet of storage and appropriate deceleration and taper.

Mitchell Mill Road and Site Drive 2

- Provide site access via a full movement intersection with one ingress lane and one egress lane.
- Provide stop control for southbound Site Drive 2 approach.

TRAFFIC IMPACT ANALYSIS

FOR

LOUISBURY ROAD ASSEMBLAGE

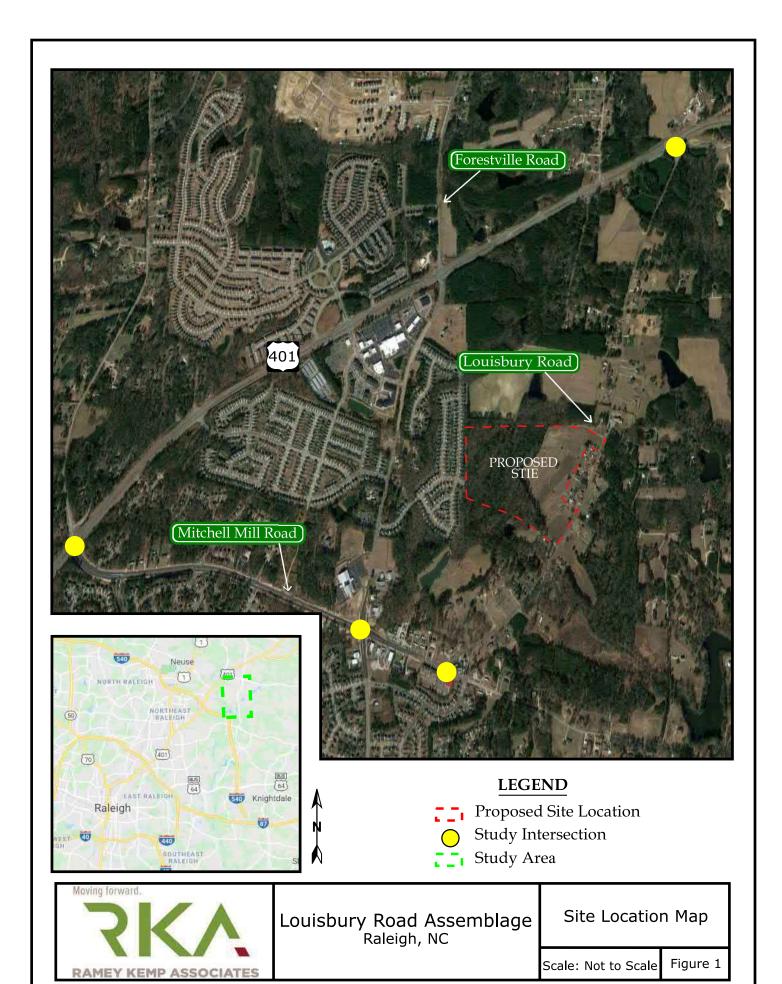
LOCATED

IN

RALEIGH, NC

Prepared For: McAdams Company 2905 Meridian Parkway Durham, NC 27713

Prepared By: Ramey Kemp & Associates, Inc. 5808 Faringdon Place, Suite 100 Raleigh, NC 27609 License #C-0910


May 2020

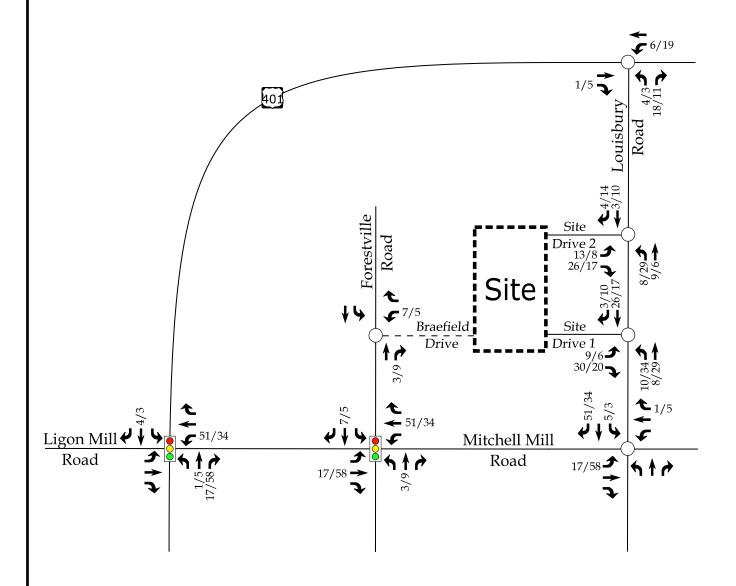
Prepared By: <u>DT</u>

5/8/2020

andrew Kyle Rith

Reviewed By: <u>DR</u>

LEGEND


Unsignalized Intersection

Signalized Intersection

X / Y → Weekday AM / PM Peak Hour Site Trips

Louisbury Road Assemblage Raleigh, NC Site Trip Assignment

Scale: Not to Scale

Figure 7

12. RECOMMENDATIONS

Based on the findings of this study, specific geometric improvements have been identified and are recommended to accommodate future traffic conditions. See a more detailed description of the recommended improvements below. Refer to Figure 9 for an illustration of the recommended lane configuration for the proposed development.

Recommended Improvements by Developer

Mitchell Mill Road and Louisbury Road

• Monitor for signalization after site is constructed.

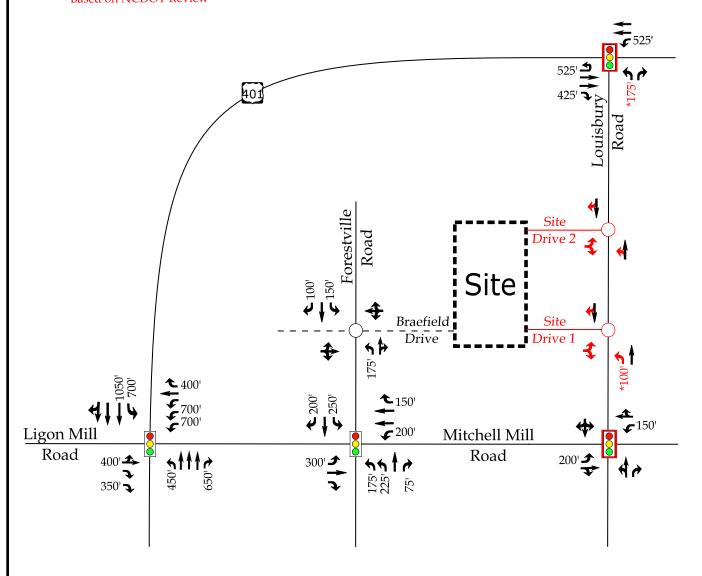
US 401 and Louisbury Road

- Per NCDOT, extend northbound left turn lane to 175' of storage.
- Monitor for signalization after site is constructed.

Louisbury Road and Site Drive 1

- Provide site access via full movement intersection with one (1) ingress lane and one (1) egress lane.
- Per NCDOT, provide northbound left turn lane with 100' of storage.
- Provide stop control for eastbound approach.

Louisbury Road and Site Drive 2


- Provide site access via full movement intersection with one (1) ingress lane and one (1) egress lane.
- Provide stop control for eastbound approach.

LEGEND

- Unsignalized Intersection
- Signalized Intersection
- Monitor for Signalization at Full Build-Out
- → Existing Lane
- → Improvement by Developer
- X' Storage (In Feet)

^{*}Based on NCDOT Review

RAMEY KEMP ASSOCIATES

Louisbury Road Assemblage Raleigh, NC Recommended Lane Configurations

Scale: Not to Scale

Figure 9

Kalas / Watkins Family Property Traffic Impact Analysis

Rolesville Road, Rolesville, North Carolina

August 24, 2019

Prepared for:

Mitchell Mill Road Investors LLC PO Box 3557 Cary, NC 27519

Prepared by:

Stantec Consulting Services Inc. 801 Jones Franklin Road Suite 300 Raleigh, NC 27606

Sign-off Sheet

This document entitled Kalas / Watkins Family Property Traffic Impact Analysis was prepared by Stantec Consulting Services Inc. ("Stantec") for the account of Mitchell Mill Road Investors LLC (the "Client"). Any reliance on this document by any third party is strictly prohibited. The material in it reflects Stantec's professional judgment in light of the scope, schedule and other limitations stated in the document and in the contract between Stantec and the Client. The opinions in the document are based on conditions and information existing at the time the document was published and do not take into account any subsequent changes. In preparing the document, Stantec did not verify information supplied to it by others. Any use which a third party makes of this document is the responsibility of such third party. Such third party agrees that Stantec shall not be responsible for costs or damages of any kind, if any, suffered by it or any other third party as a result of decisions made or actions taken based on this document.

Prepared by

(signature)

Maggie Rogers

Reviewed by _

(signature)

Matt Peach, PE, PTOE

Approved by

(signature)

Christa Greene, PE

SEAL 039265

SEAL 039265

SEAL 039265

SEAL 039265

SEAL 039265

SEAL 039265

Introduction August 24, 2019

1.0 INTRODUCTION

The purpose of this report is to evaluate the transportation impacts of the proposed Kalas / Watkins Family Property development located on the west side of Rolesville Road just north of Mitchell Mill Road in Rolesville, NC. The project location is shown below in Figure 1.

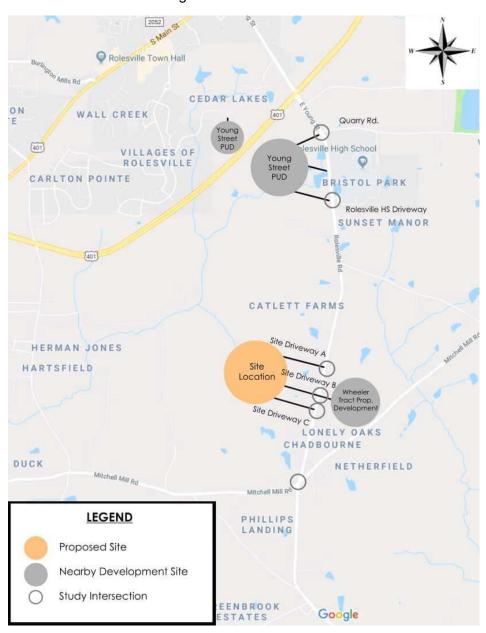


Figure 1: Site Location

1.7

Trip Generation and Distribution August 24, 2019

55 (183) Young Street PUD North Driveway Quarry Road Young Street PUD South Driveway Rolesville HS Driveway 182 (117) Site Access A 76 (49) 45 (29) Wheeler Tract Driveway Site Access B 15 (10) 🚅 106 (108) Key Site Access C Permitted Movement 91 (58) 76 (49) XX AM Peak Hour Trips (XX)PM Peak Hour Trips 30 (20) 76 (49) 15 (10) Figure is Not To Scale **L** 5 (17) Mitchell Mill Road 10 (33) 25 (83) Rolesville Road

Figure 6: Site Trip Assignment

Traffic Analysis August 24, 2019

5.4 2025 BUILD WITH IMPROVEMENTS

Geometric improvements such as the installation of turn-lanes are recommended and therefore analyzed in this scenario. These items are listed below as well as in the recommendations section.

Rolesville Road at Site Driveway A

- Construct Driveway A as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive eastbound right-turn lane with 100 feet of full-width storage and appropriate taper on Driveway A.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.

Rolesville Road at Site Driveway B / Wheeler Tract Driveway

- Construct Driveway B as a full-movement access point onto Rolesville Road with one ingress lane and one
 egress lane.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 50 feet of full-width storage and appropriate taper on Rolesville Road.

Rolesville Road at Site Driveway C

- Construct Driveway C as a full-movement access point onto Rolesville Road with one ingress lane and one egress lane.
- Construct an exclusive eastbound right-turn lane with 100 feet of full-width storage and appropriate taper on Driveway C.
- Construct an exclusive northbound left-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.
- Construct an exclusive southbound right-turn lane with 100 feet of full-width storage and appropriate taper on Rolesville Road.

Accordingly, all study area intersections and approaches operate at acceptable levels of service with the following exceptions:

- The east and westbound approaches to the intersection of Rolesville Road at Rolesville High School Driveway /
 Young Street PUD Southern Driveway operates at LOS F in the AM peak hour. This causes high overall delays
 at the intersection. Furthermore, the eastbound approach operates at LOS F and westbound approach operates
 at LOS E in the PM peak hour.
- The east and westbound approaches at the intersection of Rolesville Road at Site Driveway B / Wheeler Tract Driveway operate at LOS E in the AM peak hour.

The east and westbound approaches to the intersection of Rolesville Road at Rolesville High School Driveway / Young Street PUD Southern Driveway performs unacceptably across analysis scenarios. These delays can be

KALAS / WATKINS FAMILY PROPERTY TRAFFIC IMPACT ANALYSIS

Traffic Analysis August 24, 2019

attributed to both the Young Street PUD and High School traffic on the side street approaches. The Kalas / Watkins development is projected to only add through volumes to the intersection and are anticipated to have a minimal impact on overall delays at this intersection.

Delays on the eastbound approach of Site Driveway B at Rolesville Road can be attributed to high thru volumes on Rolesville Road during the AM peak hour. Traffic volumes using this approach are anticipated to be minor (i.e. 15 vehicles in the AM peak hour and 10 vehicles in the PM peak hour) and side street delays should dissipate after High School Traffic passes through the network. Table 8 lists the results of the capacity analysis under the 2025 build-improved traffic conditions. The recommended improvements are illustrated in figure 14.

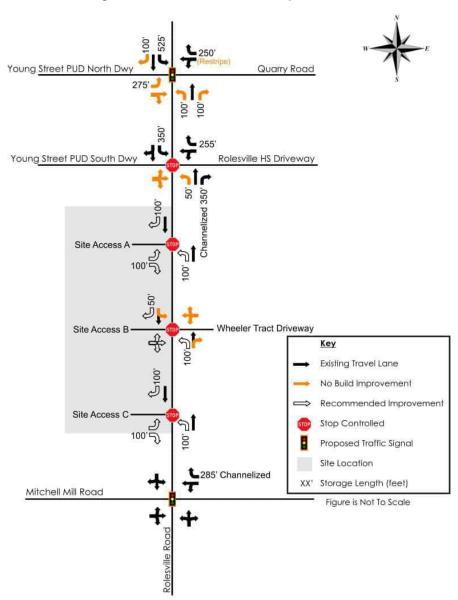


Figure 14: Recommended Improvements

APPENDIX D

CAPACITY ANALYSIS CALCULATIONS US 401 BYPASS

&

JONESVILLE ROAD

Intersection												
Int Delay, s/veh	3.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		11	ř						7		1	
Traffic Vol, veh/h	0	578	78	0	0	0	0	0	133	0	84	0
Future Vol, veh/h	0	578	78	0	0	0	0	0	133	0	84	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	16983	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	642	87	0	0	0	0	0	148	0	93	0
Major/Minor N	/lajor1						Minor1		N	/linor2		
Conflicting Flow All		0	0				-	_	321	//////////////////////////////////////	642	_
Stage 1	-	U	-				-	-	JZI	-	042	-
Stage 1 Stage 2	-	-	-				-	•	-	-	642	-
	-	-	-				-	-	6.94		6.54	
Critical Hdwy							-	-	0.94	-	0.04	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	5.54	-
Critical Hdwy Stg 2			-					-	2 22	-		-
Follow-up Hdwy	<u>-</u>	-	-				<u>-</u>	- 0	3.32	<u>-</u>	4.02	<u>-</u>
Pot Cap-1 Maneuver	0		-				0	0	675	0	391	0
Stage 1	0	-	-				0	0	-	0	467	0
Stage 2	0	-	-				0	0	-	0	467	0
Platoon blocked, %		-	-						075		204	
Mov Cap-1 Maneuver	-		-				-	-	675	-	391	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	391	-
Stage 1	-		-				-	-	-	-	40-	-
Stage 2	-	-	-				-	-	-	-	467	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						11.8			17.1		
HCM LOS							В			С		
Minor Lane/Major Mvmt	· N	NBLn1	EBT	EBR S	SBI n1							
Capacity (veh/h)		675		-	391							
HCM Lane V/C Ratio		0.219	-		0.239							
HCM Control Delay (s)		11.8	-	-	17.1							
HCM Lane LOS												
HCM 95th %tile Q(veh)		B 0.8	-	-	0.9							
HOW SOUT WHILE Q(Ven)		0.0	-	-	0.9							

HCM 6th TWSC 2028 No-Build Timing Plan: AM Peak Hour

Intersection												
Int Delay, s/veh	4.3											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		11	7						7		1	
Traffic Vol, veh/h	0	886	90	0	0	0	0	0	153	0	96	0
Future Vol, veh/h	0	886	90	0	0	0	0	0	153	0	96	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	-	-	16983	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	984	100	0	0	0	0	0	170	0	107	0
Major/Minor M	ajor1					N	/linor1		N	/linor2		
Conflicting Flow All	-	0	0				-	-	492	-	984	-
Stage 1	-	-	-				-	-	_	-	0	_
Stage 2	-	-	-				-	-	-	-	984	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	_
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	_	_				-	-	_	_	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	522	0	247	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	325	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuver	-	-	-				-	-	522	-	247	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	247	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	325	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						15.2			30.2		
HCM LOS	= =						С			D		
Minor Lane/Major Mvmt	١	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		522	_	-								
HCM Lane V/C Ratio		0.326	_	-	0.432							
HCM Control Delay (s)		15.2	-	-								
HCM Lane LOS		С	_	_	D							
HCM 95th %tile Q(veh)		1.4	_	-	2							

HCM 6th TWSC 2028 Build Timing Plan: AM Peak Hour

Intersection													
Int Delay, s/veh	7.8												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations		^	7		1101	TTDIX.	1102	1161	*	- 052	^	0511	
Traffic Vol, veh/h	0	886	142	0	0	0	0	0	292	0	125	0	
Future Vol, veh/h	0	886	142	0	0	0	0	0	292	0	125	0	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-	-	Yield	- Otop	-	None	- Olop	- Otop	None	- -	-	None	
Storage Length	_	_	125	_	_	-	_	_	0	_	_	-	
Veh in Median Storage,		0	120		16983	_	_	0	-	_	0	_	
Grade, %	<u>-</u>	0	_	_	0	-	_	0	_	_	0	_	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	984	158	0	0	0	0	0	324	0	139	0	
WWW	U	504	100	U	U	U	U	U	UZ-T	U	100	U	
Major/Minor Ma	ajor1					ı	/linor1			/linor2			
Conflicting Flow All	<u>-</u>	0	0				/III IOI I -		492	-	984	_	
Stage 1	-	-	-				_	<u>-</u>	432	_	0	<u>-</u>	
Stage 2	_		_				_		_	_	984	_	
Critical Hdwy	-	_	_				_	-	6.94	_	6.54	<u>-</u>	
Critical Hdwy Stg 1		_					_	_	0.54	_	0.04	_	
Critical Hdwy Stg 2	_	_	_				_	_		_	5.54	_	
Follow-up Hdwy	_	_	_				_	_	3.32	_	4.02	_	
Pot Cap-1 Maneuver	0	_	_				0	0	522	0	247	0	
Stage 1	0	_					0	0	522 <u>-</u>	0	<u>-</u>	0	
Stage 2	0	_	_				0	0	_	0	325	0	
Platoon blocked, %	U	_	_				U	U		U	020	U	
Mov Cap-1 Maneuver	_	_	_				_	_	522	_	247	_	
Mov Cap-1 Maneuver	-	_	_				_	_	522 <u>-</u>	_	247	_	
Stage 1	_	_	_					_	_	_	<u>-</u>	_	
Stage 2	_	_	_				_	_	_	_	325	_	
Olago Z											020		
Approach	EB						NB			SB			
HCM Control Delay, s	0						22.6			36.8			_
HCM LOS	U						22.0 C			30.0 E			
TIOWI LOS							U			<u> </u>			
Minor Lane/Major Mvmt		NBLn1	EBT	ERD (SBLn1								
-	<u> </u>	522		LDIX.									_
Capacity (veh/h) HCM Lane V/C Ratio		0.622	-										
			-		0.562								
HCM Control Delay (s) HCM Lane LOS		22.6 C	-	-	36.8 E								
HCM 95th %tile Q(veh)		4.2	-	-	3.1								
HOW SOUL WILLE Q(Ven)		4.2	=	-	٥.١								

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		11	ř						ř		^	
Traffic Vol, veh/h	0	1196	58	0	0	0	0	0	123	0	36	0
Future Vol, veh/h	0	1196	58	0	0	0	0	0	123	0	36	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	Yield	-	-	None	-	-	None	-	-	None
Storage Length	-	-	125	-	-	-	-	-	0	-	-	-
Veh in Median Storage,	# -	0	_	-	16983	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	1329	64	0	0	0	0	0	137	0	40	0
Major/Minor Ma	ajor1						/linor1			/linor2		
Conflicting Flow All	-	0	0				-	-	665	-	1329	-
Stage 1	-	-	_				_	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	1329	-
Critical Hdwy	-	-	_				_	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	403	0	154	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	222	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuver	-	-	-				-	-	403	-	154	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	154	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	222	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						18.4			36.4		
HCM LOS							С			Е		
Minor Lane/Major Mvmt	<u> </u>	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		403	-	-	154							
HCM Lane V/C Ratio		0.339	-	-	0.26							
HCM Control Delay (s)		18.4	-	-	36.4							
HCM Lane LOS		С	-	-	Ε							
HCM 95th %tile Q(veh)		1.5	_	-	1							

HCM 6th TWSC 2028 No-Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	7.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		11	ř						7		1	
Traffic Vol, veh/h	0	1862	67	0	0	0	0	0	141	0	41	0
Future Vol, veh/h	0	1862	67	0	0	0	0	0	141	0	41	0
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	_	_	Yield	_	-	None	-	-	None	-	_	None
Storage Length	_	-	125	-	_	-	_	-	0	-	_	-
Veh in Median Storage,	# -	0	-	_	16983	-	_	0	_	-	0	-
Grade, %	_	0	-	_	0	-	-	0	_	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2069	74	0	0	0	0	0	157	0	46	0
Major/Minor M	lajor1					N	/linor1		N	/linor2		
Conflicting Flow All		0	0				-	-	1035	-	2069	-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	-	-	2069	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	-	-	5.54	-
Follow-up Hdwy	-	-	-				-	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0	0	229	0	54	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	95	0
Platoon blocked, %		-	-									
Mov Cap-1 Maneuver	-	-	-				-	-	229	-	54	-
Mov Cap-2 Maneuver	-	-	-				-	-	-	-	54	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	95	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						49.1			199.4		
HCM LOS							Е			F		
Minor Lane/Major Mvmt		NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		229	-	-	54							
HCM Lane V/C Ratio		0.684	-	-	0.844							
HCM Control Delay (s)		49.1	-	-	199.4							
HCM Lane LOS		Е	-	-	F							
HCM 95th %tile Q(veh)		4.4	-	-	3.6							
			-	-								

HCM 6th TWSC 2028 Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	41.1											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		^	ř						ř		1	
Traffic Vol, veh/h	0	1862	167	0	0	0	0	0	246	0	94	0
Future Vol, veh/h	0	1862	167	0	0	0	0	0	246	0	94	0
Conflicting Peds, #/hr		0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized			Yield	_	-	None	-	-	None	-	-	None
Storage Length	_	_	125	_	_	-	_	_	0	_	_	-
Veh in Median Storag	e.# -	0		_	16983	_	_	0		_	0	_
Grade, %	-,	0	-	-	0	_	-	0	_	_	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	2069	186	0	0	0	0	0	273	0	104	0
				-		-						-
Majar/Miner	Maiard						line at			Ain c = O		
Major/Minor	Major1						Minor1			Minor2	0000	
Conflicting Flow All	-	0	0				-	-	1035	-		-
Stage 1	-	-	-				-	-	-	-	0	-
Stage 2	-	-	-				-	-	0.04	-	2069	-
Critical Hdwy	-	-	-				-	-	6.94	-	6.54	-
Critical Hdwy Stg 1	-	-	-				-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-				-	-	- 0.00	-	5.54	-
Follow-up Hdwy	-	-	-				_	-	3.32	-	4.02	-
Pot Cap-1 Maneuver	0	-	-				0		~ 229	0	~ 54	0
Stage 1	0	-	-				0	0	-	0	-	0
Stage 2	0	-	-				0	0	-	0	~ 95	0
Platoon blocked, %		-	-						000			
Mov Cap-1 Maneuver		-	-				-	-	~ 229	-	~ 54	-
Mov Cap-2 Maneuver		-	-				-	-	-	-	~ 54	-
Stage 1	-	-	-				-	-	-	-	-	-
Stage 2	-	-	-				-	-	-	-	~ 95	-
Approach	EB						NB			SB		
HCM Control Delay, s	0						166		\$	601.5		
HCM LOS							F			F		
Minor Lane/Major Mvr	mt I	NBLn1	EBT	EBR S	SBLn1							
Capacity (veh/h)		229	-	-	54							
HCM Lane V/C Ratio		1.194	-	-	1.934							
HCM Control Delay (s	s)	166	-		601.5							
HCM Lane LOS	,	F	-	-	F							
HCM 95th %tile Q(veh	า)	13.3	-	-	10.2							
`	,											
Notes	! 4	ф. Б	lav -	a a -l - 04	10-	1. 0.	4-4'	NI-4 P	e Const	*. *!		radi
~: Volume exceeds ca	apacity	\$: De	iay exc	eeds 30	JUS ·	+: Comp	outation	NOT DE	erinea	": All	major v	olume i

HCM 6th TWSC 2021 Existing Timing Plan: AM Peak Hour

Novement EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR
Lane Configurations Traffic Vol, veh/h 0 0 0 1326 181 0 35 0 0 0 221 Future Vol, veh/h 0 0 0 0 1326 181 0 35 0 0 0 221 Conflicting Peds, #/hr 0
Lane Configurations Image: Configuration of the confi
Traffic Vol, veh/h 0 0 0 1326 181 0 35 0 0 0 221 Future Vol, veh/h 0 0 0 0 1326 181 0 35 0 0 0 221 Conflicting Peds, #/hr 0
Future Vol, veh/h 0 0 0 0 1326 181 0 35 0 0 0 221 Conflicting Peds, #/hr 0<
Conflicting Peds, #/hr 0
Sign Control Stop Stop Free Free Free Stop
RT Channelized - - None - - - 0 - - 0 - - 0 - - 0 - - 0 - - 0 - <td< td=""></td<>
Storage Length - - - - 150 - - - 0 Veh in Median Storage, # - 0 - - 0 - - 0 - </td
Veh in Median Storage, # - 0 - </td
Grade, % - 0 0 0 -
Heavy Vehicles, % 2 2 2 2 2 2 2 2 2 2 2 2 2
Mvmt Flow 0 0 0 0 1473 201 0 39 0 0 0 246
Major/Minor Major2 Minor1 Minor2
· ·
10-1
0.82 1111
Critical Hdwy Stg 1 6.54 6.94
Follow-up Hdwy 4.02 3.32 Pot Cap-1 Maneuver 0 - 0 95 0 0 361
Stage 1 0 0 95 0 0 361
Stage 2 0 0 151 0 0 0 -
Platoon blocked, %
Mov Cap-1 Maneuver 95 361
Mov Cap-1 Maneuver 95 95
Stage 1
Stage 2 151
101
Approach WB NB SB
HCM Control Delay, s 0 67 33.7
HCM LOS F D
Minor Lane/Major Mvmt NBLn1 WBT WBR SBLn1
Capacity (veh/h) 95 361
HCM Lane V/C Ratio 0.409 0.68
HCM Control Delay (s) 67 33.7
HCM Lane LOS F D
HCM 95th %tile Q(veh) 1.7 4.8

HCM 6th TWSC 2028 No-Build Timing Plan: AM Peak Hour

Intersection													
nt Delay, s/veh	23.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations			LDIX	******	^	*	IIDL	1	HOIX	ODL	<u> </u>	7	
raffic Vol, veh/h	0	0	0	0	1826	208	0	40	0	0	0	254	
future Vol, veh/h	0	0	0	0	1826	208	0	40	0	0	0	254	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	- -	- Otop	None	-	-	None	Olop -	- Otop	None	- Clop	- Otop	None	
Storage Length	_	_	-	_	_	150	_	_	-	_	_	0	
Veh in Median Storage,		0	_	_	0	-	_	0	_	_	0	_	
Grade, %	"	0	_	_	0	-	_	0	_	_	0	_	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
leavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Nymt Flow	0	0	0	0	2029	231	0	44	0	0	0	282	
VIVIIICI IOW	U	U	U	U	2020	201	U	77	U	U	U	202	
/lajor/Minor				Major2			Minor1		I	Minor2			
Conflicting Flow All				-	-	0	-	2260	-	-	-	1015	
Stage 1				-	-	-	-	0	-	-	-	-	
Stage 2				-	-	-	-	2260	-	-	-	-	
Critical Hdwy				-	-	-	-	6.54	-	-	-	6.94	
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2				-	-	-	-	5.54	_	-	-	-	
ollow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32	
Pot Cap-1 Maneuver				0	-	_	0	~ 40	0	0	0	~ 236	
Stage 1				0	-	-	0	-	0	0	0	-	
Stage 2				0	-	_	0	76	0	0	0	-	
Platoon blocked, %					-	-							
Mov Cap-1 Maneuver				-	-	-	-	~ 40	_	-	-	~ 236	
Nov Cap-2 Maneuver				-	-	-	-	~ 40	-	-	-	-	
Stage 1				-	-	-	-	-	-	-	-	-	
Stage 2				-	-	-	-	76	-	-	-	-	
Approach				WB			NB			SB			
HCM Control Delay, s				0		\$	333.6			165.1			
HCM LOS						Ψ	F			F			
										•			
Ainer Lone (NAsis a NAsis a		UDL 4	WDT	WDD (2DL 4								
Minor Lane/Major Mvmt		NBLn1	WBT	WBR S									
Capacity (veh/h)		40	-	-	236								
ICM Cartest Dates (2)	A	1.111	-		1.196								
ICM Control Delay (s)	\$	333.6	-	-	165.1								
ICM Lane LOS		F	-	-	F								
HCM 95th %tile Q(veh)		4.4	-	-	13.6								
lotes													
: Volume exceeds capa	acitv	\$: De	elay exc	eeds 30	00s	+: Comp	outation	Not De	efined	*: All	major v	olume ii	n platoon
The same super		Ţ. _ 0	J., 07.10		-						,		μ.σ.σσ

HCM 6th TWSC 2028 Build Timing Plan: AM Peak Hour

Intersection													
nt Delay, s/veh	28.6												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR	
Lane Configurations					11	7		1				7	
Traffic Vol, veh/h	0	0	0	0	1918	208	0	40	0	0	0	254	
Future Vol, veh/h	0	0	0	0	1918	208	0	40	0	0	0	254	
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0	
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop	
RT Channelized	-		None	-	-	None	-		None	-	-	None	
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0	
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-	
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-	
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90	
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2	
Mvmt Flow	0	0	0	0	2131	231	0	44	0	0	0	282	
lajor/Minor			ı	Major2			Minor1		N	Minor2			
Conflicting Flow All					_	0	_	2362	_	-	-	1066	
Stage 1				-	-	-	-	0	-	-	-	-	
Stage 2				-	-	-	-	2362	-	-	-	-	
Critical Hdwy				-	_	-	-	6.54	-	-	-	6.94	
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-	
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-	
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32	
Pot Cap-1 Maneuver				0	-	-	0	~ 35	0	0	0	~ 218	
Stage 1				0	-	-	0	-	0	0	0	-	
Stage 2				0	-	-	0	67	0	0	0	-	
Platoon blocked, %					-	-							
Mov Cap-1 Maneuver				-	-	-	-	~ 35	-	-	-	~ 218	
Mov Cap-2 Maneuver				-	-	-	-	~ 35	-	-	-	-	
Stage 1				-	-	=	-	-	-	-	-	-	
Stage 2				-	-	-	-	67	-	-	-	-	
Approach				WB			NB			SB			
HCM Control Delay, s				0		\$	418.5			206.2			
HCM LOS							F			F			
Minor Lane/Major Mvmt	1	NBLn1	WBT	WBR S	SBL _{n1}								
Capacity (veh/h)		35	-	-	218								
ICM Lane V/C Ratio		1.27	-	-	1.295								
HCM Control Delay (s)	\$	418.5	-		206.2								
HCM Lane LOS		F	-	-	F								
HCM 95th %tile Q(veh)		4.7	-	-	15.1								
Notes													
: Volume exceeds capa	acity	\$· De	lav evo	eeds 30)Os	+: Com	outation	Not Da	efined	*· ΔII	maior v	olume i	n platoon
olullie exceeds capa	Joily	ψ. De	iay c xu	ccus J	103	·. Com	palalion	ו ואטנ של	Jilliou	. 📶	major v	olulli c II	ii piatuuii

HCM 6th TWSC 2021 Existing Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	4.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	ř		*				7
Traffic Vol, veh/h	0	0	0	0	544	73	0	114	0	0	0	112
Future Vol, veh/h	0	0	0	0	544	73	0	114	0	0	0	112
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	_	None	_	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	_	0	-	_	0	_
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	604	81	0	127	0	0	0	124
Major/Minor				Major2		N	Minor1		N	/linor2		
Conflicting Flow All				-	-	0	-	685	-	-	-	302
Stage 1				-	_	-	-	0	_	_	_	-
Stage 2				-	-	-	-	685	-	-	-	-
Critical Hdwy				-	_	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	-
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	-	0	369	0	0	0	694
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	-	-	0	447	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	_	-	-	369	-	_	-	694
Mov Cap-2 Maneuver				-	-	-	-	369	-	-	-	-
Stage 1				-	_	-	-	-	-	_	_	_
Stage 2				-	-	-	-	447	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				0			19.8			11.3		
HCM LOS							C			В		
Minor Lane/Major Mvmt	N	NBLn1	WBT	WBR S	SBLn1							
Capacity (veh/h)		369	-	-	694							
HCM Lane V/C Ratio		0.343	_		0.179							
HCM Control Delay (s)		19.8	_		11.3							
HCM Lane LOS		C	_	_	В							
HCM 95th %tile Q(veh)		1.5	_	_	0.7							
		-110			J.1							

HCM 6th TWSC 2028 No-Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	6.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	7		^				7
Traffic Vol, veh/h	0	0	0	0	855	84	0	131	0	0	0	129
Future Vol, veh/h	0	0	0	0	855	84	0	131	0	0	0	129
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0
Veh in Median Storage,	,# -	0	-	-	0	-	_	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	0	0	0	0	950	93	0	146	0	0	0	143
Major/Minor			ı	Major2		N	Minor1		N	/linor2		
Conflicting Flow All				-	-	0	-	1043	-	-	-	475
Stage 1				-	-	-	-	0	-	-	-	-
Stage 2				-	-	-	-	1043	-	-	-	-
Critical Hdwy				-	-	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2				-	-	-	_	5.54	-	-	_	-
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	-	0	228	0	0	0	536
Stage 1				0	_	-	0	-	0	0	0	-
Stage 2				0	_	-	0	305	0	0	0	_
Platoon blocked, %					_	-						
Mov Cap-1 Maneuver				_	_	-	-	228	_	_	_	536
Mov Cap-2 Maneuver				_	_	-	_	228	_	_	_	-
Stage 1				_	_	-	-		-	-	_	_
Stage 2				_	_	-	_	305	_	_	_	_
g s =												
Approach				WB			NB			SB		
HCM Control Delay, s				0			45			14.2		
HCM LOS							Е			В		
Minor Lane/Major Mvm	t N	NBLn1	WBT	WBR:	SBLn1							
Capacity (veh/h)		228	-	-	536							
HCM Lane V/C Ratio		0.638	-	-	0.267							
HCM Control Delay (s)		45	-	-	14.2							
HCM Lane LOS		Е	-	-	В							
HCM 95th %tile Q(veh)		3.9	-	-	1.1							

HCM 6th TWSC 2028 Build Timing Plan: PM Peak Hour

Intersection												
Int Delay, s/veh	7.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations					11	ř		*				ř
Traffic Vol, veh/h	0	0	0	0	923	84	0	131	0	0	0	129
Future Vol, veh/h	0	0	0	0	923	84	0	131	0	0	0	129
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None	-	-	None	-	-	None	-	-	None
Storage Length	-	-	-	-	-	150	-	-	-	-	-	0
Veh in Median Storage,	# -	0	-	-	0	-	-	0	-	-	0	-
Grade, %	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	0	0	1026	93	0	146	0	0	0	143
Major/Minor				Major2		<u> </u>	/linor1		<u> </u>	Minor2		
Conflicting Flow All				-	-	0	-	1119	-	-	-	513
Stage 1				-	-	-	-	0	-	-	-	-
Stage 2				-	-	-	-	1119	-	-	-	-
Critical Hdwy				-	-	-	-	6.54	-	-	-	6.94
Critical Hdwy Stg 1				-	-	-	-	-	-	-	-	-
Critical Hdwy Stg 2				-	-	-	-	5.54	-	-	-	_
Follow-up Hdwy				-	-	-	-	4.02	-	-	-	3.32
Pot Cap-1 Maneuver				0	-	-	0	205	0	0	0	506
Stage 1				0	-	-	0	-	0	0	0	-
Stage 2				0	-	-	0	280	0	0	0	-
Platoon blocked, %					-	-						
Mov Cap-1 Maneuver				-	-	-	-	205	-	-	-	506
Mov Cap-2 Maneuver				-	-	-	-	205	-	-	-	-
Stage 1				-	-	-	-	-	-	-	-	-
Stage 2				-	-	-	-	280	-	-	-	-
Approach				WB			NB			SB		
HCM Control Delay, s				0			56.7			14.9		
HCM LOS							F			В		
Minor Lane/Major Mvmt	t <u></u> N	NBLn1	WBT	WBR S	SBLn1							
Capacity (veh/h)		205	-	-	506							
HCM Lane V/C Ratio		0.71	-	-	0.283							
HCM Control Delay (s)		56.7	-	-								
HCM Lane LOS		F	-	-	В							
HCM 95th %tile Q(veh)		4.6	-	-	1.2							

APPENDIX E

CAPACITY ANALYSIS CALCULATIONS US 401 BYPASS

&

EASTERN U-TURN LOCATION

Intersection						
Int Delay, s/veh	1.2					
		EDD	\A/DI	MOT	NDI	NDD
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	•	^	•	^	7	^
Traffic Vol, veh/h	0	0	0	1502	89	0
Future Vol, veh/h	0	0	0	1502	89	0
Conflicting Peds, #/hr	0	0	0	_ 0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-		-		-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	1669	99	0
Major/Minor		N	Major2	N	/linor1	
Conflicting Flow All			- -	_	835	_
Stage 1			_	_	0	_
Stage 2			-	_	835	-
Critical Hdwy			_	_	6.84	_
Critical Hdwy Stg 1			_	_	0.01	_
Critical Hdwy Stg 2			_	_	5.84	_
Follow-up Hdwy			_	-	3.52	_
Pot Cap-1 Maneuver			0	_	306	0
Stage 1			0		<u>-</u>	0
Stage 2			0	_	386	0
Platoon blocked, %			- 0		000	
Mov Cap-1 Maneuver			_		306	_
Mov Cap-1 Maneuver			_		306	_
Stage 1				-		
•			-		386	-
Stage 2			-	-	300	-
Approach			WB		NB	
HCM Control Delay, s			0		22.3	
HCM LOS					С	
Minor Lang/Major Muset		MDI 54	MPT			
Minor Lane/Major Mymt	. [NBLn1	WBT			
Capacity (veh/h)		306	-			
HCM Lane V/C Ratio		0.323	-			
HCM Control Delay (s)		22.3	-			
HCM Lane LOS		C	-			
HCM 95th %tile Q(veh)		1.4	-			

Intersection						
Int Delay, s/veh	2.2					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	רטו	LDIX	VVDL	**	NDL	NOIN
Traffic Vol, veh/h	0	0	0	TT 2028	102	0
Future Vol, veh/h	0	0	0	2028	102	0
Conflicting Peds, #/hr	0	0	0	2020	0	0
			Free	Free		
Sign Control	Stop	Stop			Stop	Stop
RT Channelized	-		-			None
Storage Length		-	-	-	0	-
Veh in Median Storage,		-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	2253	113	0
Major/Minor		N	Major2	N	Minor1	
Conflicting Flow All			viajoiz_		1127	_
Stage 1			-	-	0	-
				-		
Stage 2			-	-	1127	-
Critical Hdwy			-	-	6.84	-
Critical Hdwy Stg 1			-	-		-
Critical Hdwy Stg 2			-	-	5.84	-
Follow-up Hdwy			-	-	3.52	-
Pot Cap-1 Maneuver			0	-	198	0
Stage 1			0	-	-	0
Stage 2			0	-	271	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	_	198	-
Mov Cap-2 Maneuver			_	_	198	-
Stage 1				_	.00	_
Stage 2					271	_
Jiaye 2			_	_	411	_
Approach			WB		NB	
HCM Control Delay, s			0		45	
HCM LOS					E	
					_	
Minor Lane/Major Mvmt	1	NBLn1	WBT			
Capacity (veh/h)		198	-			
HCM Lane V/C Ratio		0.572	-			
HCM Control Delay (s)		45	-			
HCM Lane LOS		Е	-			
HCM 95th %tile Q(veh)		3.1	_			

HCM 6th TWSC 2028 Build Timing Plan: AM Peak Hour

Intersection									
Int Delay, s/veh	12.8								
<u> </u>		EDD	WDI	WDT	NDI	NDD			
Movement	EBT	EBR	WBL	WBT	NBL	NBR			
ane Configurations	0	0	^	^	104	0			
raffic Vol, veh/h	0	0	0	2057	194	0			
uture Vol, veh/h	0	0	0	2057	194	0			
Conflicting Peds, #/hr	0	0	0	0	0	0			
Sign Control	Stop	Stop	Free	Free	Stop	Stop			
RT Channelized	-	None	=	None	-	None			
Storage Length		-	-	-	0	-			
/eh in Median Storage,		-	-	0	0	-			
Grade, %	0	-	-	0	0	-			
eak Hour Factor	90	90	90	90	90	90			
eavy Vehicles, %	2	2	2	2	2	2			
vmt Flow	0	0	0	2286	216	0			
ajor/Minor			Major2		Minor1				
onflicting Flow All			-	-	1143	-			
Stage 1			-	-	0	-			
Stage 2			-	-	1143	-			
ritical Hdwy			-	-	6.84	-			
ritical Hdwy Stg 1			-	-	-	-			
ritical Hdwy Stg 2			-	-	5.84	-			
illow-up Hdwy			-	-	3.52	-			
ot Cap-1 Maneuver			0	-	~ 194	0			
Stage 1			0	-	-	0			
Stage 2			0	-	266	0			
latoon blocked, %				-					
lov Cap-1 Maneuver			-		~ 194	-			
lov Cap-2 Maneuver			-	-	~ 194	-			
Stage 1			-	-	-	-			
Stage 2			-	-	266	-			
oproach			WB		NB				
ICM Control Delay, s			0		148.1				
ICM LOS					F				
inor Lane/Major Mvmt	t I	NBLn1	WBT						
apacity (veh/h)		194	-						
CM Lane V/C Ratio		1.111	-						
CM Control Delay (s)		148.1	-						
CM Lane LOS		F	-						
CM 95th %tile Q(veh)		10.4	-						
lotes									
Volume exceeds cap	acity	\$· De	elav exc	eeds 30)0s	t: Comi	putation Not Defined	*: All major volu	ume in platoor
volumo exceeds cap	doity	ψ. De	nay ext	occus ot	703	· . Com	Jalation Not Delined	. All major voli	unic in platool

Intersection						
Int Delay, s/veh	1.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	וטם	רטו	VVDL	^	TABL	HOIN
Traffic Vol, veh/h	0	0	0	588	65	0
Future Vol, veh/h	0	0	0	588	65	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	Stop -	None		None	310p	
Storage Length	_	None	_	-	0	INOILE
Veh in Median Storage,		_	_	0	0	_
Grade, %	0			0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	653	72	0
Major/Minor		N	Major2	N	/linor1	
Conflicting Flow All			-	-	327	-
Stage 1			-	_	0	_
Stage 2			-	-	327	-
Critical Hdwy			-	-	6.84	-
Critical Hdwy Stg 1			-	-	_	-
Critical Hdwy Stg 2			-	_	5.84	_
Follow-up Hdwy			-	_	3.52	_
Pot Cap-1 Maneuver			0	_	642	0
Stage 1			0	_	-	0
Stage 2			0	_	703	0
Platoon blocked, %			U	_	100	U
Mov Cap-1 Maneuver			_	-	642	_
			-	-	642	
Mov Cap-2 Maneuver			-	-		-
Stage 1			-		702	-
Stage 2			-	-	703	-
Approach			WB		NB	
HCM Control Delay, s			0		11.3	
HCM LOS					В	
NA' 1 /NA - ' - NA - '		IDL 4	MET			
Minor Lane/Major Mvmt	i [NBLn1	WBT			
Capacity (veh/h)		642	-			
HCM Lane V/C Ratio		0.112	-			
HCM Control Delay (s)		11.3	-			
HCM Lane LOS		В	-			
HCM 95th %tile Q(veh)		0.4	-			

HCM 6th TWSC 2028 No-Build Timing Plan: PM Peak Hour

Intersection Int Delay, s/veh						
	1					
				==		
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations				^	7	
Traffic Vol, veh/h	0	0	0	905	75	0
Future Vol, veh/h	0	0	0	905	75	0
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage	•	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	1006	83	0
Major/Minor		A	Majora		/linor1	
Major/Minor			Major2			
Conflicting Flow All			-	-	503	-
Stage 1			-	-	0	-
Stage 2			-	-	503	-
Critical Hdwy			-	-	6.84	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	5.84	-
Follow-up Hdwy			-	-	3.52	-
Pot Cap-1 Maneuver			0	-	498	0
Stage 1			0	-	-	0
Stage 2			0	-	573	0
Platoon blocked, %				-		
Mov Cap-1 Maneuver			-	-	498	-
Mov Cap-2 Maneuver			-	-	498	-
Stage 1			-	-	-	-
Stage 2			_	_	573	_
Jugo Z					57.0	
Approach			WB		NB	
HCM Control Delay, s			0		13.7	
HCM LOS					В	
Minor Long/Major Mym	nt I	NBLn1	WBT			
	it l					
Minor Lane/Major Mvm		498	-			
Capacity (veh/h)						
Capacity (veh/h) HCM Lane V/C Ratio		0.167	-			
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)		0.167 13.7	-			
Capacity (veh/h) HCM Lane V/C Ratio		0.167				

HCM 6th TWSC 2028 Build Timing Plan: PM Peak Hour

Intersection						
Int Delay, s/veh	2.1					
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations				^	*	
Traffic Vol, veh/h	0	0	0	958	143	0
Future Vol, veh/h	0	0	0	958	143	0
Conflicting Peds, #/hr	0	0	0	0	0	0
	Stop	Stop	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	-	0	-
Veh in Median Storage,	# 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	0	0	1064	159	0
		_				
Major/Minor		N	Major2		/linor1	
Conflicting Flow All			-	-	532	-
Stage 1			-	-	0	-
Stage 2			-	-	532	-
Critical Hdwy			-	-	6.84	-
Critical Hdwy Stg 1			-	-	-	-
Critical Hdwy Stg 2			-	-	5.84	-
Follow-up Hdwy			-	-	3.52	-
Pot Cap-1 Maneuver			0	_	477	0
Stage 1			0	-	_	0
Stage 2			0	-	553	0
Platoon blocked, %				_		
Mov Cap-1 Maneuver			-	-	477	-
Mov Cap-2 Maneuver			_	_	477	_
Stage 1						
Stage 2				-	553	_
Slaye Z			-	-	555	-
Approach			WB		NB	
HCM Control Delay, s			0		16.3	
HCM LOS					С	
Minor Lane/Major Mvmt	1	NBLn1	WBT			
Capacity (veh/h)		477	-			
HCM Lane V/C Ratio		0.333	-			
HCM Control Delay (s)		16.3	-			
HCM Lane LOS		С	-			
HCM 95th %tile Q(veh)		1.4	-			

APPENDIX F

CAPACITY ANALYSIS CALCULATIONS MITCHELL MILL ROAD

&

JONESVILLE ROAD / PEEBLES ROAD

HCM 6th AWSC 2021 Existing Timing Plan: AM Peak Hour

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	7	163	4	11	310	40	4	76	11	31	130	16
Future Vol, veh/h	7	163	4	11	310	40	4	76	11	31	130	16
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	181	4	12	344	44	4	84	12	34	144	18
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	10.6			14.4			10			11.2		
HCM LOS	В			В			Α			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	4%	4%	3%	18%	
Vol Thru, %	84%	94%	86%	73%	
Vol Right, %	12%	2%	11%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	91	174	361	177	
LT Vol	4	7	11	31	
Through Vol	76	163	310	130	
RT Vol	11	4	40	16	
Lane Flow Rate	101	193	401	197	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.163	0.289	0.562	0.309	
Departure Headway (Hd)	5.798	5.389	5.044	5.651	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	618	665	714	635	
Service Time	3.846	3.43	3.078	3.693	
HCM Lane V/C Ratio	0.163	0.29	0.562	0.31	
HCM Control Delay	10	10.6	14.4	11.2	
HCM Lane LOS	Α	В	В	В	
HCM 95th-tile Q	0.6	1.2	3.5	1.3	

HCM 6th AWSC 2028 No-Build Timing Plan: AM Peak Hour

Intersection		
Intersection Delay, s/veh	55.2	
Intersection LOS	F	

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	8	244	4	13	576	46	5	87	13	36	149	18
Future Vol, veh/h	8	244	4	13	576	46	5	87	13	36	149	18
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	9	271	4	14	640	51	6	97	14	40	166	20
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	15.6			91			12.7			15.3		
HCM LOS	С			F			В			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	5%	3%	2%	18%	
Vol Thru, %	83%	95%	91%	73%	
Vol Right, %	12%	2%	7%	9%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	105	256	635	203	
LT Vol	5	8	13	36	
Through Vol	87	244	576	149	
RT Vol	13	4	46	18	
Lane Flow Rate	117	284	706	226	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.23	0.492	1.106	0.426	
Departure Headway (Hd)	7.498	6.491	5.644	7.145	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	482	558	642	507	
Service Time	5.498	4.491	3.709	5.145	
HCM Lane V/C Ratio	0.243	0.509	1.1	0.446	
HCM Control Delay	12.7	15.6	91	15.3	
HCM Lane LOS	В	С	F	С	
HCM 95th-tile Q	0.9	2.7	20.9	2.1	

HCM 6th AWSC 2028 Build Timing Plan: AM Peak Hour

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	64	244	12	13	587	49	13	95	13	53	165	56
Future Vol, veh/h	64	244	12	13	587	49	13	95	13	53	165	56
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	71	271	13	14	652	54	14	106	14	59	183	62
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	24.1			157.3			15.1			21.9		
HCM LOS	С			F			С			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	11%	20%	2%	19%	
Vol Thru, %	79%	76%	90%	60%	
Vol Right, %	11%	4%	8%	20%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	121	320	649	274	
LT Vol	13	64	13	53	
Through Vol	95	244	587	165	
RT Vol	13	12	49	56	
Lane Flow Rate	134	356	721	304	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.291	0.671	1.273	0.601	
Departure Headway (Hd)	8.613	7.35	6.354	7.796	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	419	494	570	466	
Service Time	6.613	5.35	4.453	5.796	
HCM Lane V/C Ratio	0.32	0.721	1.265	0.652	
HCM Control Delay	15.1	24.1	157.3	21.9	
HCM Lane LOS	С	С	F	С	
HCM 95th-tile Q	1.2	4.9	28.4	3.9	

ntersection	
ntersection Delay, s/veh	107.1
	107.1
ntersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1			4			4		*	10	
Traffic Vol, veh/h	64	244	12	13	587	49	13	95	13	53	165	56
Future Vol, veh/h	64	244	12	13	587	49	13	95	13	53	165	56
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	71	271	13	14	652	54	14	106	14	59	183	62
Number of Lanes	1	1	0	0	1	0	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	18.7			205.1			16.5			18.3		
HCM LOS	С			F			С			С		

Lane	NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2	
Vol Left, %	11%	100%	0%	2%	100%	0%	
Vol Thru, %	79%	0%	95%	90%	0%	75%	
Vol Right, %	11%	0%	5%	8%	0%	25%	
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	121	64	256	649	53	221	
LT Vol	13	64	0	13	53	0	
Through Vol	95	0	244	587	0	165	
RT Vol	13	0	12	49	0	56	
Lane Flow Rate	134	71	284	721	59	246	
Geometry Grp	6	7	7	6	7	7	
Degree of Util (X)	0.309	0.152	0.566	1.384	0.134	0.512	
Departure Headway (Hd)	9.36	8.371	7.82	6.91	9.083	8.38	
Convergence, Y/N	Yes	Yes	Yes	Yes	Yes	Yes	
Cap	387	431	464	526	398	432	
Service Time	7.36	6.071	5.52	5	6.783	6.08	
HCM Lane V/C Ratio	0.346	0.165	0.612	1.371	0.148	0.569	
HCM Control Delay	16.5	12.6	20.2	205.1	13.2	19.5	
HCM Lane LOS	С	В	С	F	В	С	
HCM 95th-tile Q	1.3	0.5	3.4	32.8	0.5	2.8	

HCM 6th AWSC 2021 Existing Timing Plan: PM Peak Hour

Intersection	
Intersection Delay, s/veh	10.7
Intersection LOS	В

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	18	300	13	4	127	21	5	90	10	26	49	11
Future Vol, veh/h	18	300	13	4	127	21	5	90	10	26	49	11
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	20	333	14	4	141	23	6	100	11	29	54	12
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	12			9.4			9.5			9.3		
HCM LOS	В			Α			Α			Α		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	5%	5%	3%	30%	
Vol Thru, %	86%	91%	84%	57%	
Vol Right, %	10%	4%	14%	13%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	105	331	152	86	
LT Vol	5	18	4	26	
Through Vol	90	300	127	49	
RT Vol	10	13	21	11	
Lane Flow Rate	117	368	169	96	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.171	0.478	0.228	0.142	
Departure Headway (Hd)	5.281	4.681	4.85	5.345	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Сар	672	765	733	663	
Service Time	3.372	2.744	2.927	3.439	
HCM Lane V/C Ratio	0.174	0.481	0.231	0.145	
HCM Control Delay	9.5	12	9.4	9.3	
HCM Lane LOS	Α	В	Α	Α	
HCM 95th-tile Q	0.6	2.6	0.9	0.5	

HCM 6th AWSC 2028 No-Build Timing Plan: PM Peak Hour

Intersection			
Intersection Delay, s/veh	20.4		
Intersection LOS	С		

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	21	443	15	4	341	24	6	103	11	30	56	13
Future Vol, veh/h	21	443	15	4	341	24	6	103	11	30	56	13
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	23	492	17	4	379	27	7	114	12	33	62	14
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	26.3			17.7			12			11.6		
HCM LOS	D			С			В			В		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	5%	4%	1%	30%	
Vol Thru, %	86%	92%	92%	57%	
Vol Right, %	9%	3%	7%	13%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	120	479	369	99	
LT Vol	6	21	4	30	
Through Vol	103	443	341	56	
RT Vol	11	15	24	13	
Lane Flow Rate	133	532	410	110	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.249	0.796	0.63	0.209	
Departure Headway (Hd)	6.736	5.385	5.53	6.841	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	536	665	648	527	
Service Time	4.742	3.468	3.62	4.847	
HCM Lane V/C Ratio	0.248	8.0	0.633	0.209	
HCM Control Delay	12	26.3	17.7	11.6	
HCM Lane LOS	В	D	С	В	
HCM 95th-tile Q	1	7.9	4.4	8.0	

HCM 6th AWSC 2028 Build Timing Plan: PM Peak Hour

Intersection	
Intersection Delay, s/veh	51.5
Intersection LOS	F

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Vol, veh/h	117	421	21	4	349	34	20	117	11	68	71	35
Future Vol, veh/h	117	421	21	4	349	34	20	117	11	68	71	35
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	130	468	23	4	388	38	22	130	12	76	79	39
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			1			1			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	1			1			1			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			1			1			1		
HCM Control Delay	88.4			28			15.1			15.9		
HCM LOS	F			D			С			С		

Lane	NBLn1	EBLn1	WBLn1	SBLn1	
Vol Left, %	14%	21%	1%	39%	
Vol Thru, %	79%	75%	90%	41%	
Vol Right, %	7%	4%	9%	20%	
Sign Control	Stop	Stop	Stop	Stop	
Traffic Vol by Lane	148	559	387	174	
LT Vol	20	117	4	68	
Through Vol	117	421	349	71	
RT Vol	11	21	34	35	
Lane Flow Rate	164	621	430	193	
Geometry Grp	1	1	1	1	
Degree of Util (X)	0.347	1.089	0.763	0.401	
Departure Headway (Hd)	7.95	6.311	6.66	7.793	
Convergence, Y/N	Yes	Yes	Yes	Yes	
Cap	456	578	546	464	
Service Time	5.95	4.311	4.66	5.793	
HCM Lane V/C Ratio	0.36	1.074	0.788	0.416	
HCM Control Delay	15.1	88.4	28	15.9	
HCM Lane LOS	С	F	D	С	
HCM 95th-tile Q	1.5	18.8	6.8	1.9	

Intersection												
Intersection Delay, s/veh	34.5											
Intersection LOS	D											
interestation 200												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	*	1.			4			44		*	1	
Traffic Vol, veh/h	117	421	21	4	349	34	20	117	11	68	71	35
Future Vol, veh/h	117	421	21	4	349	34	20	117	11	68	71	35
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	130	468	23	4	388	38	22	130	12	76	79	39
Number of Lanes	1	1	0	0	1	0	0	1	0	1	1	0
Approach	EB			WB			NB			SB		
Opposing Approach	WB			EB			SB			NB		
Opposing Lanes	1			2			2			1		
Conflicting Approach Left	SB			NB			EB			WB		
Conflicting Lanes Left	2			1			2			1		
Conflicting Approach Right	NB			SB			WB			EB		
Conflicting Lanes Right	1			2			1			2		
HCM Control Delay	42.8			38.8			16.6			13.6		
HCM LOS	Е			Е			С			В		
Lane		NBLn1	EBLn1	EBLn2	WBLn1	SBLn1	SBLn2					
Vol Left, %		14%	100%	0%	1%	100%	0%					
Vol Thru, %		79%	0%	95%	90%	0%	67%					
Vol Right, %		7%	0%	5%	9%	0%	33%					
Sign Control		Stop	Stop	Stop	Stop	Stop	Stop					
Traffic Vol by Lane		148	117	442	387	68	106					
LT Vol		20	117	0	4	68	0					
Through Vol		117	0	421	349	0	71					
RT Vol		11	0	21	34	0	35					
Lane Flow Rate		164	130	491	430	76	118					
Geometry Grp		6	7	7	6	7	7					
Degree of Util (X)		0.383	0.267	0.934	0.85	0.184	0.262					
Departure Headway (Hd)		8.393	7.394	6.848	7.118	8.777	8.021					
Convergence, Y/N		Yes	Yes	Yes	Yes	Yes	Yes					
Cap Time		428	485	530	507	408	446					
Service Time		6.478	5.156	4.61	5.181	6.554	5.797					
HCM Cantral Dalay		0.383	0.268	0.926	0.848	0.186	0.265					
HCM Control Delay		16.6	12.8	50.7	38.8	13.5	13.6					
HCM Lane LOS		С	В	F	Е	В	В					

HCM 95th-tile Q

1.8

1.1

11.5

8.8

0.7

1

APPENDIX G

CAPACITY ANALYSIS CALCULATIONS JONESVILLE ROAD

&

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	WBL	אטא	1	NDIX	SDL.	<u>361</u>
Traffic Vol, veh/h	9	9	271	4	4	T 281
Future Vol, veh/h	9	9	271	4	4	281
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	310p	None	-	None	-	
Storage Length	0	INOITE	_	INOHE	100	INOITE
Veh in Median Storage		_	0	-	100	0
Grade, %	0		0			0
•	90	00	90	00	00	90
Peak Hour Factor		90		90	90	
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	10	10	301	4	4	312
Major/Minor I	Minor1	N	Major1		Major2	
Conflicting Flow All	623	303	0	0	305	0
Stage 1	303	-	-	-	-	-
Stage 2	320	_	_	_	_	_
Critical Hdwy	6.42	6.22	_	_	4.12	_
Critical Hdwy Stg 1	5.42	0.22	_	_	1.14	_
Critical Hdwy Stg 2	5.42	-	_	_		-
Follow-up Hdwy	3.518	3.318	-	-	2.218	_
Pot Cap-1 Maneuver	450	737			1256	-
•	749	131		-	1200	-
Stage 1		-	-	-	-	
Stage 2	736	-	-	-	-	-
Platoon blocked, %	4.40	707	-	-	4050	-
Mov Cap-1 Maneuver	449	737	-	-	1256	-
Mov Cap-2 Maneuver	543	-	-	-	-	-
Stage 1	749	-	-	-	-	-
Stage 2	734	-	-	-	-	-
Approach	WB		NB		SB	
	11		0		0.1	
HCM Control Delay, s HCM LOS	В		U		U. I	
HOIVI LUS	Ď					
Minor Lane/Major Mvm	nt	NBT	NBRV	WBLn1	SBL	SBT
Capacity (veh/h)			-		1256	-
HCM Lane V/C Ratio		-		0.032		_
HCM Control Delay (s)		_	-	11	7.9	-
HCM Lane LOS			_	В	A	_
					, ,	
HCM 95th %tile Q(veh)		_	_	0.1	0	_

Intersection						
Int Delay, s/veh	0.4					
		MDD	NET	NDD	001	ODT
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Y		1	40	7	1
Traffic Vol, veh/h	5	6	247	10	10	243
Future Vol, veh/h	5	6	247	10	10	243
Conflicting Peds, #/hr	0	0	_ 0	_ 0	_ 0	_ 0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	100	-
Veh in Median Storag		-	0	-	-	0
Grade, %	0	-	0	-	-	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	6	7	274	11	11	270
Majar/Minar	Minord		Aniou4		Majaro	
Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	572	280	0	0	285	0
Stage 1	280	-	-	-	-	-
Stage 2	292	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy		3.318	-	-	2.218	-
Pot Cap-1 Maneuver	482	759	-	-	1277	-
Stage 1	767	-	-	-	-	-
Stage 2	758	-	-	-	-	-
Platoon blocked, %			-	-		-
Mov Cap-1 Maneuver	478	759	-	-	1277	-
Mov Cap-2 Maneuver	564	-	-	-	-	-
Stage 1	767	-	-	-	-	_
Stage 2	751	_	_	_	_	_
Olage Z	701		_			<u>-</u>
Approach	WB		NB		SB	
HCM Control Delay, s	10.6		0		0.3	
HOW CONTION DELAY, 3						
	В					
HCM LOS	В					
HCM LOS		NDT	NDDV	VDI 51	QDI.	CDT
HCM LOS Minor Lane/Major Mvr		NBT	NBRV	VBLn1	SBL	SBT
HCM LOS Minor Lane/Major Mvr Capacity (veh/h)		-	-	656	1277	-
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio	nt	-	-	656 0.019	1277 0.009	-
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s	nt	- - -	- - -	656 0.019 10.6	1277 0.009 7.8	- -
Minor Lane/Major Mvr Capacity (veh/h) HCM Lane V/C Ratio	nt)	-	-	656 0.019	1277 0.009	-

APPENDIX H

CAPACITY ANALYSIS CALCULATIONS JONESVILLE ROAD

&

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	N.		1	7	*	1
Traffic Vol, veh/h	9	9	265	4	4	287
Future Vol., veh/h	9	9	265	4	4	287
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	_	None	-	None	_	None
Storage Length	0	-	_	100	100	
Veh in Median Storage		_	0	-	-	0
Grade, %	0	_	0	_	_	0
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	10	10	294	4	4	319
WWIIIL FIOW	10	10	294	4	4	319
Major/Minor I	Minor1	N	Major1		Major2	
Conflicting Flow All	621	294	0	0	298	0
Stage 1	294		-	-		-
Stage 2	327	-	-	-	_	-
Critical Hdwy	6.42	6.22	-	_	4.12	_
Critical Hdwy Stg 1	5.42	-	_	_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
Follow-up Hdwy	3.518		_	_	2.218	_
Pot Cap-1 Maneuver	451	745	_	_	1263	_
Stage 1	756	145	_	_	1205	_
	731			-	-	
Stage 2	131	-	-	-	-	-
Platoon blocked, %	450	715	-	-	4000	-
Mov Cap-1 Maneuver	450	745	-	-	1263	-
Mov Cap-2 Maneuver	450	-	-	-	-	-
Stage 1	756	-	-	-	-	-
Stage 2	729	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.7		0		0.1	
HCM LOS			U		0.1	
HOW LOS	В					
Minor Lane/Major Mvm	nt	NBT	NBRV	VBLn1	SBL	SBT
Capacity (veh/h)		_	-	561	1263	_
HCM Lane V/C Ratio		_	-	0.036		_
HCM Control Delay (s)		_	_		7.9	_
HCM Lane LOS		_	_	В	A	-
HCM 95th %tile Q(veh))	_	_	0.1	0	_
TOWN COULT JUSTIC SELVICITY				J. 1		

0.4					
WBL	WBR	NBT	NBR	SBL	SBT
					^
	5		_		237
					237
					0
					Free
- Clop					None
	-				NOITE
	_				0
					0
					90
					2
					263
Ö	Ö	200			203
Minor1	N	Major1	_	Major2	
	280	0	0		0
		-	-		-
	-	_	_		-
		_	_		_
	0.22 -		_	-	_
		_		_	_
			_	2 218	_
					-
					-
		-	-	-	
103		-			-
400	750		-	4074	-
					-
	-	-	-	-	-
	-	-	-	-	-
756	-	-	-	-	-
WB		NB		SB	
				3.0	
ט					
	NET	NDD	VDL 4	051	OPT
nt	NBT	NBRV	VBLn1	SBL	SBT
nt	NBT -	-	590	1271	-
	NBT - -	-	590 0.019	1271 0.009	
nt .	-	-	590 0.019 11.2	1271 0.009 7.9	-
	-	-	590 0.019	1271 0.009	-
	WBL 5 5 0 Stop - 0 90 2 6 Minor1 565 280 285 6.42 5.42 5.42 5.42 3.518 486 767 763 482 482 767 756	WBL WBR 5 5 5 0 0 0 Stop Stop - None 0 9, # 0 90 90 2 2 6 6 Minor1 N 565 280 280 285 6.42 6.22 5.42 5.42 3.518 3.318 486 759 767 763 482 759 482 767 756 WB 11.2	WBL WBR NBT 5 5 252 5 5 252 0 0 0 Stop Stop Free None - 0 0 - 0 90 90 90 2 2 2 6 6 280 0 - 0 280 - - 285 - - 5.42 - - 5.42 - - 3.518 3.318 - 486 759 - 767 - - 482 759 - 482 - - 767 - - 767 - - 767 - - 767 - - 767 - - 767 - -	WBL WBR NBT NBR 5 5 252 10 5 5 252 10 0 0 0 0 Stop Stop Free Free - None - None 0 - - 100 e, # 0 - 0 - 90 90 90 90 2 2 2 2 6 6 280 11 Minor1 Major1 N 565 280 0 0 280 - - - 285 - - - 6.42 6.22 - - 5.42 - - - 3.518 3.318 - - 486 759 - - 482 759 - - 482 759 -	WBL WBR NBT NBR SBL 5 5 252 10 10 5 5 252 10 10 0 0 0 0 0 Stop Stop Free Free Free - None - 100 100 20 - 0 - - 90 90 90 90 90 2 2 2 2 2 6 6 280 11 11 Minor1 Major1 Major2 565 280 0 0 291 280 - - - - 285 - - - - 5.42 - - - - 3.518 3.318 - 2.218 486 759 - 1271 767 - - -

APPENDIX I

CAPACITY ANALYSIS CALCULATIONS JONESVILLE ROAD

&

Intersection												
Int Delay, s/veh	2.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	LDL	4	LDIN	VVDL	4	WDIX	7	1	T T)		ĕ.
Traffic Vol, veh/h	47	4	10	19	4	38	4	183	6	12	268	16
Future Vol, veh/h	47	4	10	19	4	38	4	183	6	12	268	16
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	Olop -	Olop -	None	Olop -	510p	None	1100	1166	None	-	1100	None
Storage Length	_		INOILE		_	INOITE	100	_	100	100	_	100
Veh in Median Storage	. # -	0	<u>-</u>	-	0	-	-	0	100 -	100	0	100
Grade, %	-, π -	0	_	_	0	_	_	0	_	_	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	52	4	11	21	4	42	4	203	7	13	298	18
IVIVIIIL I IOW	52	4		71	4	42	4	200	ı	10	230	10
	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	562	542	298	552	553	203	316	0	0	210	0	0
Stage 1	324	324	-	211	211	-	-	-	-	-	-	-
Stage 2	238	218	-	341	342	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	-	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318	3.518	4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	438	447	741	444	441	838	1244	-	-	1361	-	-
Stage 1	688	650	-	791	728	-	-	-	-	-	-	-
Stage 2	765	723	-	674	638	-	-	-	-	-	-	-
Platoon blocked, %								-	-		-	-
Mov Cap-1 Maneuver	409	441	741	430	435	838	1244	-	-	1361	-	-
Mov Cap-2 Maneuver	409	441	-	430	435	-	-	-	-	-	-	-
Stage 1	686	644	-	789	726	-	-	-	-	-	-	-
Stage 2	720	721	-	653	632	-	-	-	-	-	-	-
Approach	EB			WB			NB			SB		
HCM Control Delay, s	14.6			11.5			0.2			0.3		
HCM LOS	В			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NRD	EBLn1V	VRI n1	SBL	SBT	SBR			
Capacity (veh/h)	IL.	1244	וטוו	NDI	444	618	1361	ומט	ומט			
HCM Lane V/C Ratio		0.004	-	-	0.153	0.11	0.01	-				
			-					-	-			
HCM Control Delay (s) HCM Lane LOS		7.9	=	-	14.6	11.5	7.7	-	-			
HCM 95th %tile Q(veh	١	A 0	-	-	0.5	0.4	A 0	-	-			
HOW SOUT WILL W(VEI))	U	-	-	0.5	0.4	U	-	-			

Intersection												
Int Delay, s/veh	2.4											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4		*	^	7	*	1	7
Traffic Vol, veh/h	27	4	6	11	4	22	10	213	20	40	153	49
Future Vol., veh/h	27	4	6	11	4	22	10	213	20	40	153	49
Conflicting Peds, #/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	_	_	None	-	_	None	_	-	None	_	_	None
Storage Length	-	-	-	-	-	-	100	-	100	100	_	100
Veh in Median Storage	e.# -	0	-	-	0	_	_	0	-	_	0	-
Grade, %	-,	0	-	-	0	_	-	0	-	_	0	_
Peak Hour Factor	90	90	90	90	90	90	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2	2	2	2	2	2	2
Mymt Flow	30	4	7	12	4	24	11	237	22	44	170	54
			•									
Major/Minor I	Minor2			Minor1			Major1			Major2		
Conflicting Flow All	542	539	170	550	571	237	224	0	0	259	0	0
Stage 1	258	258	-	259	259	-	-	-	-	-	_	-
Stage 2	284	281	-	291	312	-	-	-	-	-	-	-
Critical Hdwy	7.12	6.52	6.22	7.12	6.52	6.22	4.12	-	-	4.12	_	-
Critical Hdwy Stg 1	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Critical Hdwy Stg 2	6.12	5.52	-	6.12	5.52	-	-	-	-	-	-	-
Follow-up Hdwy	3.518	4.018	3.318		4.018	3.318	2.218	-	-	2.218	-	-
Pot Cap-1 Maneuver	451	449	874	446	431	802	1345	-	-	1306	-	-
Stage 1	747	694	-	746	694	-	-	-	-	-	-	-
Stage 2	723	678	-	717	658	_	-	-	-	-	_	_
Platoon blocked, %								_	-		_	_
Mov Cap-1 Maneuver	420	430	874	425	413	802	1345	-	_	1306	_	_
Mov Cap-2 Maneuver	420	430	-	425	413	-	-	_	-	-	_	_
Stage 1	741	670	-	740	688	_	-	-	_	-	_	-
Stage 2	691	673	_	683	636	_	-	_	_	-	_	_
2.5g0 2	301	3, 3		300	300							
Approach	EB			WB			NB			SB		
HCM Control Delay, s	13.6			11.6			0.3			1.3		
HCM LOS	В			В								
Minor Lane/Major Mvm	nt	NBL	NBT	NBR	EBLn1V	VBLn1	SBL	SBT	SBR			
Capacity (veh/h)		1345	-	-	460	587	1306	-	-			
HCM Lane V/C Ratio		0.008	-	-	0.089	0.07	0.034	-	-			
HCM Control Delay (s)		7.7	-	-	13.6	11.6	7.9	-	-			
HCM Lane LOS		Α	-	-	В	В	Α	-	-			
HCM 95th %tile Q(veh))	0	-	-	0.3	0.2	0.1	-	-			

APPENDIX J

CAPACITY ANALYSIS CALCULATIONS JONESVILLE ROAD

&

Intersection						
Int Delay, s/veh	2					
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	74		*	^	↑	7
Traffic Vol, veh/h	36	24	52	156	250	47
Future Vol, veh/h	36	24	52	156	250	47
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	- Olop		-	None	-	None
Storage Length	0	-	100	110110	-	100
Veh in Median Storage,		_	- 100	0	0	-
Grade, %	, # 0	_	_	0	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	40	27		173	278	52
WWIT Flow	40	21	58	1/3	2/8	52
Major/Minor N	Minor2	ı	Major1	N	/lajor2	
Conflicting Flow All	567	278	330	0	-	0
Stage 1	278	_	-	-	_	-
Stage 2	289	_	-	_	-	-
Critical Hdwy	6.42	6.22	4.12	_	-	_
Critical Hdwy Stg 1	5.42	-		_	-	_
Critical Hdwy Stg 2	5.42	_	_	_	_	_
		3.318	2 218	_	_	_
Pot Cap-1 Maneuver	485	761	1229	_	_	_
Stage 1	769	-	1220	_	_	_
Stage 2	760	_	_	_		_
Platoon blocked, %	700			_	_	_
Mov Cap-1 Maneuver	462	761	1229	_	_	-
Mov Cap-1 Maneuver	551	701		_	-	_
•	733	-	-	_	-	-
Stage 1		-				-
Stage 2	760	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.5		2		0	
HCM LOS	В					
	_					
				EDL.4	SBT	SBR
NA:	1	NIDI	NIDT			SBR
Minor Lane/Major Mvm	t	NBL	NBT		301	ODIX
Capacity (veh/h)	t	1229	-	619	-	-
Capacity (veh/h) HCM Lane V/C Ratio	t	1229 0.047	-	619 0.108		- -
Capacity (veh/h) HCM Lane V/C Ratio HCM Control Delay (s)	t	1229 0.047 8.1	-	619 0.108 11.5	-	-
Capacity (veh/h) HCM Lane V/C Ratio		1229 0.047	-	619 0.108	-	-

Intersection						
Int Delay, s/veh	3.4					
					000	005
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	Y		7	1	1	ř
Traffic Vol, veh/h	54	54	79	189	120	50
Future Vol, veh/h	54	54	79	189	120	50
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	100	-	-	100
Veh in Median Storage	e, # 0	-	-	0	0	-
Grade, %	0	-	-	0	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	60	60	88	210	133	56
	Minor2		Major1		/lajor2	
Conflicting Flow All	519	133	189	0	-	0
Stage 1	133	-	-	-	-	-
Stage 2	386	-	-	-	-	-
Critical Hdwy	6.42	6.22	4.12	-	-	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	2.218	-	-	-
Pot Cap-1 Maneuver	517	916	1385	-	-	-
Stage 1	893	_	-	-	-	-
Stage 2	687	_	-	_	-	-
Platoon blocked, %	001			_	_	_
Mov Cap-1 Maneuver	484	916	1385	_		_
Mov Cap-1 Maneuver	559	910 -	1000	_	_	_
Stage 1	836	_	-	-	_	-
	687	•		-	•	
Stage 2	780	-	-	-	-	-
Approach	EB		NB		SB	
HCM Control Delay, s	11.3		2.3		0	
HCM LOS	В		0			
1.0M E00	U					
Minor Lane/Major Mvn	nt	NBL	NBT	EBLn1	SBT	SBR
Capacity (veh/h)		1385	-	694	-	-
HCM Lane V/C Ratio		0.063	-	0.173	-	-
HCM Control Delay (s)		7.8	-	11.3	-	-
HCM Lane LOS		Α	-	В	-	-
HCM 95th %tile Q(veh)	0.2	-	0.6	-	-

APPENDIX K

Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	\\/DT	WBR	SBL	SBR
	CDL		WBT		ODL	
Lane Configurations	^	1000	1000	ř	_	ř
Traffic Vol, veh/h	0	320	660	5	0	6
Future Vol, veh/h	0	320	660	5	0	6
Conflicting Peds, #/hr	0	0	0	0	0	0
	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	100	-	0
Veh in Median Storage,	# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mymt Flow	0	356	733	6	0	7
WWITH FIOW	U	300	133	U	U	1
Major/Minor M	lajor1	N	Major2	Λ	/linor2	
Conflicting Flow All	<u>-</u>	0	- -	0	_	733
Stage 1	_	-	_	_	_	700
Stage 2	_	_	_	_		
	-					
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	421
Stage 1	0	-	-	-	0	-
Stage 2	0	_	-	-	0	-
Platoon blocked, %		_	-	-		
Mov Cap-1 Maneuver	_	_	_	_	_	421
Mov Cap-2 Maneuver	_	_	_	_	_	
Stage 1	_	_	_	_	_	_
	_		_	-		•
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		13.7	
	U		U		13.7 B	
HCM LOS					D	
Minor Lane/Major Mvmt		EBT	WBT	WBR S	BLn1	
Capacity (veh/h)						
HCM Lane V/C Ratio					0.016	
HCM Control Delay (s)		_	-		13.7	
		-				
HCM Lane LOS		-	-	-	В	
HCM 95th %tile Q(veh)		-		-	0	

Intersection Int Delay, s/veh Movement	0.1					
Movement						
	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		↑	1	*	UDL	₹
Traffic Vol, veh/h	0	559	421	4	0	10
Future Vol, veh/h	0	559	421	4	0	10
Conflicting Peds, #/h		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-	None	310p	None
Storage Length	-	None -	_	100	-	0
Veh in Median Storag	ae.# -	0	0	-	0	-
	ge, # -		0	_		-
Grade, % Peak Hour Factor	90	90	90	90	90	90
		2	2			2
Heavy Vehicles, %	2			2	2	
Mvmt Flow	0	621	468	4	0	11
Major/Minor	Major1	N	Major2	Λ	/linor2	
Conflicting Flow All		0	-	0	-	468
Stage 1	-	-	-	_	_	-
Stage 2	_	_	_	_	_	_
Critical Hdwy	_	_	_	_	_	6.22
Critical Hdwy Stg 1	_	_	-	_	-	-
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	_	_		3.318
Pot Cap-1 Maneuver		_	_	_	0	595
Stage 1	0	_	_	_	0	J3J
Stage 2	0	-	-	_	0	_
	U				U	-
Platoon blocked, %		-	-	-		F0F
Mov Cap-1 Maneuve		-	-	-	-	595
Mov Cap-2 Maneuve		-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay,			0		11.2	
HCM LOS	3 0		U		В	
TOW LOO					ر	
Minor Lane/Major My	/mt	EBT	WBT	WBR S		
Capacity (veh/h)		-	-	-	595	
· • • • • • • • • • • • • • • • • • • •)	-	-	-	0.019	
HCM Lane V/C Ratio					11.2	
	s)	-	-	-	11.4	
HCM Lane V/C Ratio HCM Control Delay (HCM Lane LOS		-	-	-	В	
HCM Lane V/C Ratio HCM Control Delay (

APPENDIX L

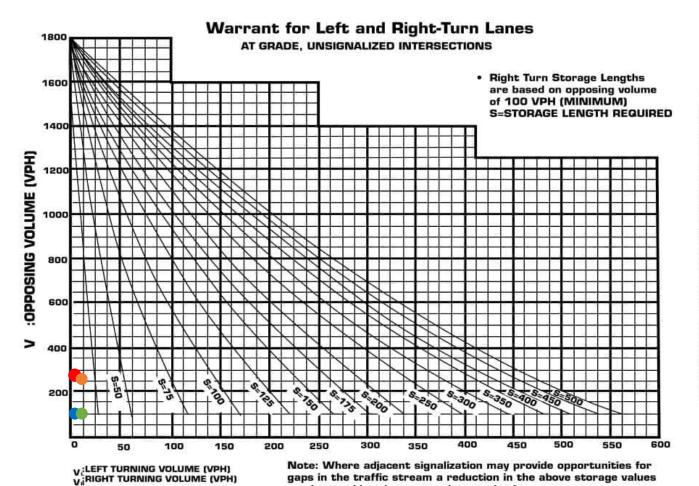
Intersection						
Int Delay, s/veh	0.1					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		^	↑	7		7
Traffic Vol, veh/h	0	320	663	4	0	4
Future Vol, veh/h	0	320	663	4	0	4
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-		-		-	
Storage Length	-	-		100	_	0
Veh in Median Storage	.# -	0	0	-	0	-
Grade, %	, -	0	0	_	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	356	737	4	0	4
IVIVIIIL I IOW	U	330	131		U	7
	Major1		Major2		/linor2	
Conflicting Flow All	-	0	-	0	-	737
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	_	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	418
Stage 1	0	-	-	-	0	-
Stage 2	0	_	-	-	0	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	_	_	_	-	-	418
Mov Cap-2 Maneuver	-	_	-	-	_	-
Stage 1	_	_	_	_	_	_
Stage 2	_	_	_	_	_	_
Olage 2						
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		13.7	
HCM LOS					В	
Minor Lang/Major Mum	+	EBT	WBT	WBR S	SDI n1	
Minor Lane/Major Mvm			VVDI	WDR 3		
Capacity (veh/h)		-	-	-	418	
HCM Cartral Palace (a)		-	-		0.011	
HCM Control Delay (s)		-	-	-	13.7	
HCM Lane LOS HCM 95th %tile Q(veh)		-	-	-	B 0	
HUNG YATE WILL ()(VAN)						

Intersection						
Int Delay, s/veh	0					
		FDT	MOT	WED	001	000
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		1	1	ř		ř
Traffic Vol, veh/h	0	559	421	10	0	4
Future Vol, veh/h	0	559	421	10	0	4
Conflicting Peds, #/hr		0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-		-	None
Storage Length	-	-	-	100	-	0
Veh in Median Storag	je,# -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	621	468	11	0	4
WWW.CT IOW	· ·	021	100		V	•
Major/Minor	Major1	ľ	Major2	N	/linor2	
Conflicting Flow All	-	0	-	0	-	468
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	_	-	6.22
Critical Hdwy Stg 1	-	-	-	-		-
Critical Hdwy Stg 2	_	_	_	_	_	_
Follow-up Hdwy	_	_	_	_		3.318
Pot Cap-1 Maneuver	0	_	_	_	0	595
Stage 1	0	_	-	_	0	- -
Stage 2	0	_	_	_	0	<u>-</u>
	U				U	_
Platoon blocked, %		-	-	-		F0F
Mov Cap-1 Maneuve		-	-	-	-	595
Mov Cap-2 Maneuve	r -	-	-	-	-	-
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Approach	EB		WB		SB	
HCM Control Delay, s	3 0		0		11.1	
HCM LOS					В	
Minor Lane/Major Mv	mt	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)				_	595	
HCM Lane V/C Ratio		_	_		0.007	
HCM Control Delay (_	-	-		
HCM Lane LOS	<i>3</i> ₁			-	В	
		-	-	-	ם	
	h)				Λ	
HCM 95th %tile Q(ve	h)	-	-	-	0	

APPENDIX M

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	T T		1	VVDIX	₩.	אופט
Traffic Vol, veh/h	<u>។</u> 11	↑ 553	421	4	6	6
		553				
Future Vol, veh/h	11		421	4	6	6
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	400	None	-		-	
Storage Length	100	-	-	-	0	-
Veh in Median Storage	e, # -	0	0	-	0	-
Grade, %	-	0	0	-	0	-
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	12	614	468	4	7	7
Major/Minor	Major1	N	Major2	N	Minor2	
Conflicting Flow All	472	0	• • • • • • • • • • • • • • • • • • •	0	1108	470
Stage 1	412	-	_	-	470	4 70
Stage 2		_	_	_	638	
Critical Hdwy	4.12	_	_	_	6.42	6.22
Critical Hdwy Stg 1		_	_	_	5.42	0.22
, ,	-	-	-	-		
Critical Hdwy Stg 2	0.040	-	-	-	5.42	- 0.40
Follow-up Hdwy	2.218	-	-	-	3.518	
Pot Cap-1 Maneuver	1090	-	-	-	232	594
Stage 1	-	-	-	-	629	-
Stage 2	-	-	-	-	526	-
Platoon blocked, %		-	-	-		
Mov Cap-1 Maneuver	1090	-	-	-	229	594
Mov Cap-2 Maneuver	-	-	-	-	229	-
Stage 1	-	-	-	-	622	-
Stage 2	-	-	-	-	526	-
Annroach	EB		WB		SB	
Approach						
HCM Control Delay, s	0.2		0		16.3	
HCM LOS					С	
Minor Lane/Major Mvm	nt	EBL	EBT	WBT	WBR :	SBLn1
Capacity (veh/h)		1090	-		_	331
HCM Lane V/C Ratio		0.011		_	_	0.04
HCM Control Delay (s)		8.3	_	_	_	16.3
HCM Lane LOS		A	_	-	_	C
HCM 95th %tile Q(veh	1	0	_	_	_	0.1

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	*	*	1.		A	
Traffic Vol, veh/h	4	310	663	4	10	10
Future Vol, veh/h	4	310	663	4	10	10
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	1100		-	None	- -	None
Storage Length	100	-	-	-	0	-
Veh in Median Storage		0	0	_	0	
Grade, %	υ, π - -	0	0	_	0	
Peak Hour Factor	90	90	90	90	90	90
		2	2	2	2	2
Heavy Vehicles, %	2	344	737	4	11	11
Mvmt Flow	4	344	131	4	- 11	11
Major/Minor	Major1	N	Major2	ľ	Minor2	
Conflicting Flow All	741	0	-	0	1091	739
Stage 1	-	-	-	-	739	_
Stage 2	-	-	-	-	352	-
Critical Hdwy	4.12	_	-	-	6.42	6.22
Critical Hdwy Stg 1	-	-	_	-	5.42	-
Critical Hdwy Stg 2	-	-	_	-	5.42	-
Follow-up Hdwy	2.218	-		-	3.518	3.318
Pot Cap-1 Maneuver	866	_	_	_	238	417
Stage 1	-	_	_	_	472	_
Stage 2	_	_	_	_	712	_
Platoon blocked, %		-	-	_	112	
Mov Cap-1 Maneuver	866	_	_	_	237	417
•					237	
Mov Cap-2 Maneuver		-	-	-		-
Stage 1	-	-	-	-	470	-
Stage 2	-	-	-	-	712	-
Approach	EB		WB		SB	
HCM Control Delay, s			0		17.9	
HCM LOS	0.1		U		C	
TIOIVI LOO					U	
Minor Lane/Major Mvr	nt	EBL	EBT	WBT	WBR	SBLn1
Capacity (veh/h)		866	-	-	-	302
HCM Lane V/C Ratio		0.005	-	-	-	0.074
HCM Control Delay (s)	9.2	-	-	-	17.9
HCM Lane LOS		Α	-	-	-	С
HCM 95th %tile Q(veh	1)	0	-	-	-	0.2

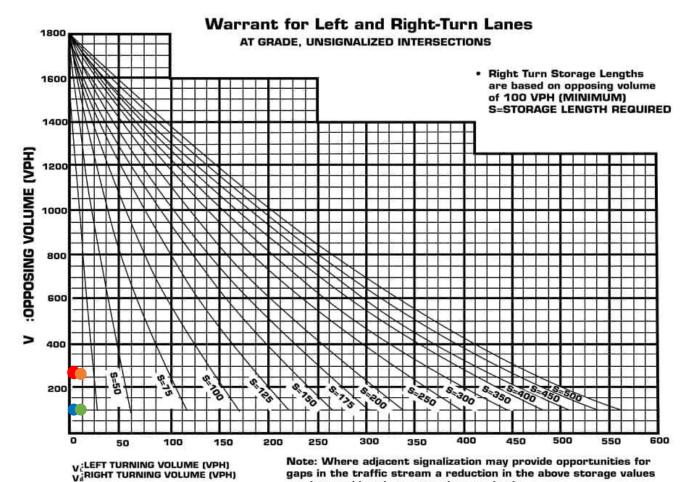

APPENDIX N

Intersection						
Int Delay, s/veh	0.3					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations	LUL	↑	↑	₩ M	ODL	ĕ.
Traffic Vol, veh/h	0	320	645	11	0	20
Future Vol, veh/h	0	320	645	11	0	20
Conflicting Peds, #/hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	
Storage Length	_	-	_	100	_	0
Veh in Median Storage,		0	0	-	0	-
Grade, %	π -	0	0	_	0	_
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	356	717	12	0	22
INIVITIL FIOW	U	330	111	12	U	22
Major/Minor M	/lajor1	N	Major2	N	Minor2	
Conflicting Flow All	-	0	-	0	-	717
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	-	-	-	-	-	6.22
Critical Hdwy Stg 1	-	-	-	-	-	-
Critical Hdwy Stg 2	-	-	-	-	-	-
Follow-up Hdwy	-	-	-	-	-	3.318
Pot Cap-1 Maneuver	0	-	-	-	0	430
Stage 1	0	-	-	-	0	-
Stage 2	0	-	-	-	0	_
Platoon blocked, %		_	-	-		
Mov Cap-1 Maneuver	-	_	-	-	_	430
Mov Cap-2 Maneuver	-	-	-	_	-	_
Stage 1	_	-	-	_	_	_
Stage 2		-	-	_	_	-
otago <u>-</u>						
			14/5		0.5	
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		13.8	
HCM LOS					В	
Minor Lane/Major Mvmt	l	EBT	WBT	WBR S	SBLn1	
Capacity (veh/h)		-	_	-		
HCM Lane V/C Ratio		_	-		0.052	
HCM Control Delay (s)			_	_		
HCM Lane LOS		_	_	_	В	
HCM 95th %tile Q(veh)		_	_	_	0.2	

Intersection						
Int Delay, s/veh	0.4					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
	CDL				ODL	
Lane Configurations	Λ		206	10	0	39
Traffic Vol, veh/h Future Vol, veh/h	0	559 559	386 386	18 18	0	39
	0	559	386	0	0	0
Conflicting Peds, #/hr	Free	Free	Free	Free		Stop
Sign Control RT Channelized	Free -			None	Stop	None
Storage Length	-		-	100	-	
		<u>-</u>	<u>-</u>			0
Veh in Median Storage,		0	0	-	0	-
Grade, %	- 00	0	0	00	0	- 00
Peak Hour Factor	90	90	90	90	90	90
Heavy Vehicles, %	2	2	2	2	2	2
Mvmt Flow	0	621	429	20	0	43
Major/Minor N	/lajor1	N	Major2	N	Minor2	
Conflicting Flow All	-	0	-	0	-	429
Stage 1	-	-	-	-	-	-
Stage 2	-	-	-	-	-	-
Critical Hdwy	_	-	_	-	_	6.22
Critical Hdwy Stg 1	_	_	_	_	_	-
Critical Hdwy Stg 2	_	-	_	-	_	-
Follow-up Hdwy	_	_	_	_	_	3.318
Pot Cap-1 Maneuver	0	-	_	-	0	626
Stage 1	0	-	_	_	0	-
Stage 2	0	-	_	-	0	-
Platoon blocked, %		_	_	_		
Mov Cap-1 Maneuver	_	-	_	-	_	626
Mov Cap-1 Maneuver	_	_	_		_	020
Stage 1	_	_	_	_	_	_
Stage 2	_					_
Olaye Z	_	_		, 		
Approach	EB		WB		SB	
HCM Control Delay, s	0		0		11.2	
HCM LOS					В	
Minor Lane/Major Mvmt	1	EBT	WBT	WBR S	SRI n1	
		LDI				
Capacity (veh/h) HCM Lane V/C Ratio		-	-	-	v-v	
		-	-	-	0.069	
					440	
HCM Control Delay (s)		-	-	-	11.2	
		-	-	-	11.2 B 0.2	

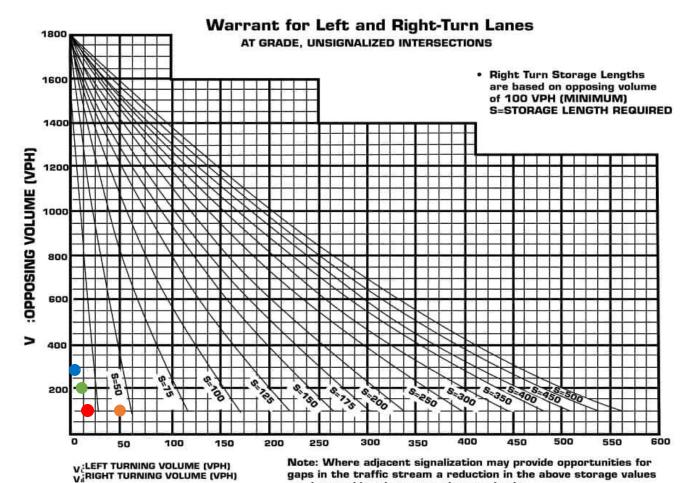
APPENDIX O

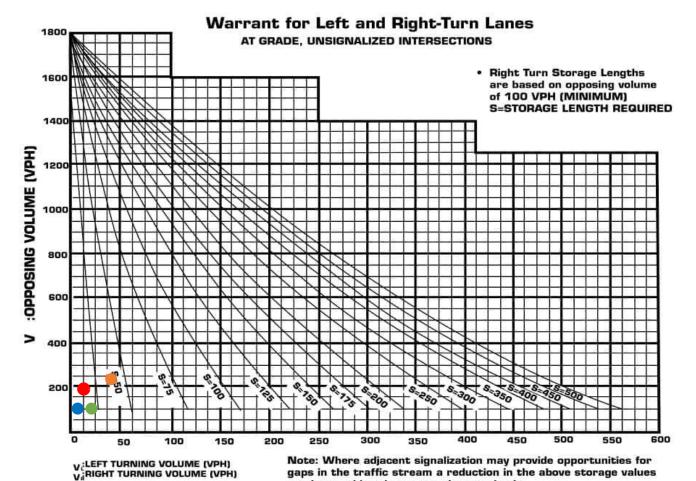
TURN LANE WARRANTS



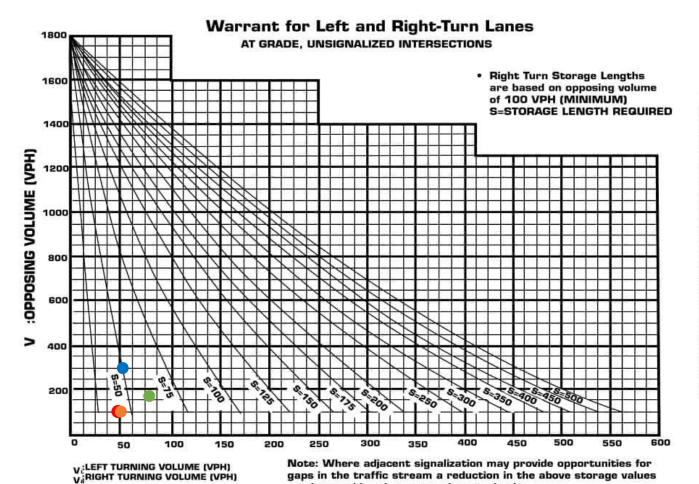
INTERSECTION: Jonesville Road & Site Access 1

SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	SBL	Left	3	274	
AM Build	NBR	Right	3	100	
PM Build	SBL	Left	10	257	
PM Build	NBR	Right	10	100	


gaps in the traffic stream a reduction in the above storage values


INTERSECTION: Jonesville Road & Site Access 2

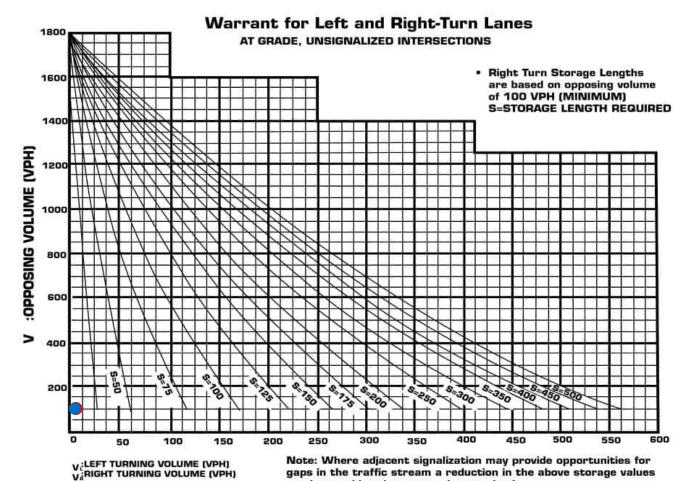
SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	SBL	Left	3	268	
AM Build	NBR	Right	3	100	
PM Build	SBL	Left	10	262	
PM Build	NBR	Right	10	100	


INTERSECTION: Jonesville Road & Site Access 3 [EB Approach]

SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	SBR	Right	16	100	
AM Build	NBL	Left	3	284	
PM Build	SBR	Right	49	100	
PM Build	NBL	Left	10	202	

INTERSECTION: Jonesville Road & Site Access 3 [WB Approach]

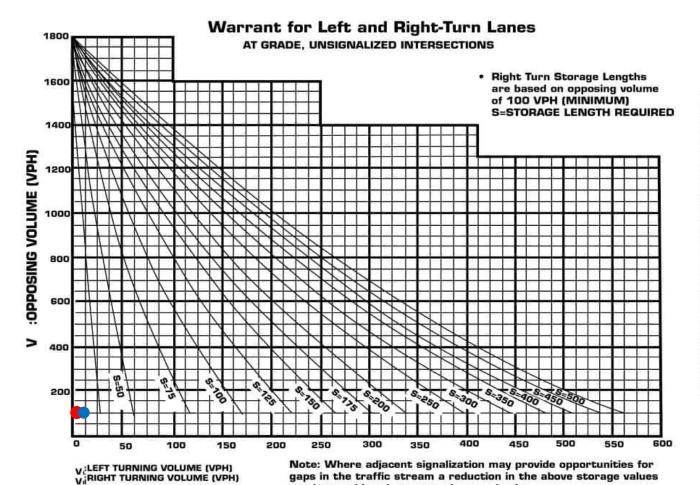
SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	SBL	Left	12	189	
AM Build	NBR	Right	6	100	
PM Build	SBL	Left	40	233	
PM Build	NBR	Right	20	100	



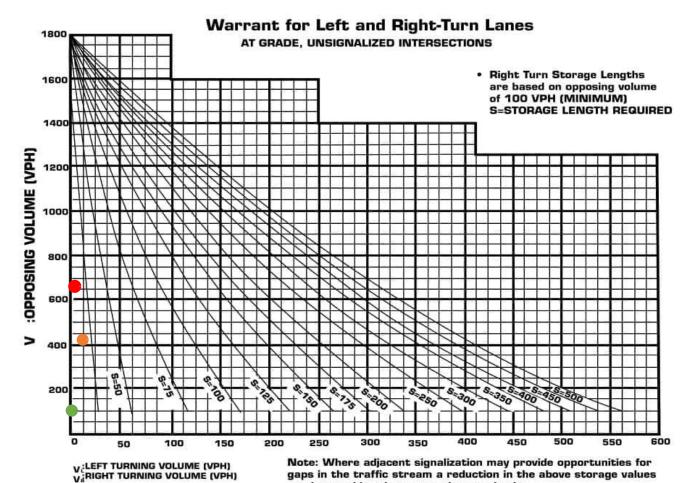
INTERSECTION: Jonesville Road & Site Access 4

SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	SBR	Right	47	100	
AM Build	NBL	Left	52	297	
PM Build	SBR	Right	50	100	
PM Build	NBL	Left	79	170	

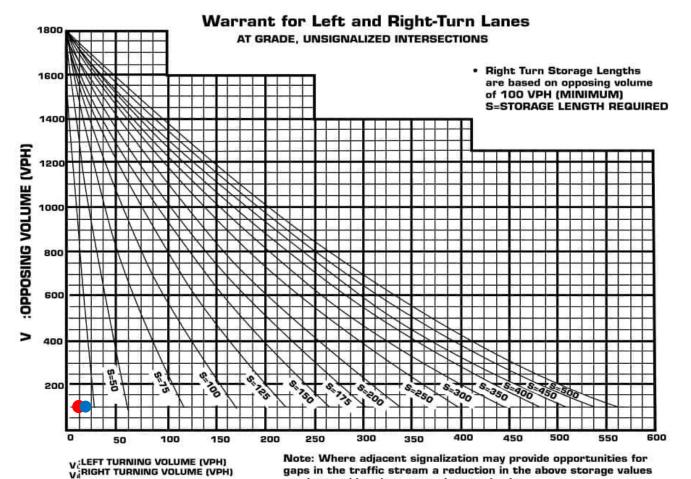
gaps in the traffic stream a reduction in the above storage values



INTERSECTION: Mitchell Mill Road & Site Access 5


SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	WBR	Right	5	100	
PM Build	WBR	Right	4	100	

INTERSECTION: Mitchell Mill Road & Site Access 6


SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	WBR	Right	3	100	
PM Build	WBR	Right	10	100	

INTERSECTION: Mitchell Mill Road & Site Access 7

SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	EBL	Left	3	663	
AM Build	WBR	Right	0	100	
PM Build	EBL	Left	11	421	
PM Build	WBR	Right	0	100	

INTERSECTION: Mitchell Mill Road & Site Access 8

SCENARIO	Movement	Turn Lane	Turning Volume (V _R /V _L)	Approach / Opposing Volume (V _A /V ₀)	Symbol
AM Build	WBR	Right	11	100	
PM Build	WBR	Right	18	100	

gaps in the traffic stream a reduction in the above storage values

APPENDIX P

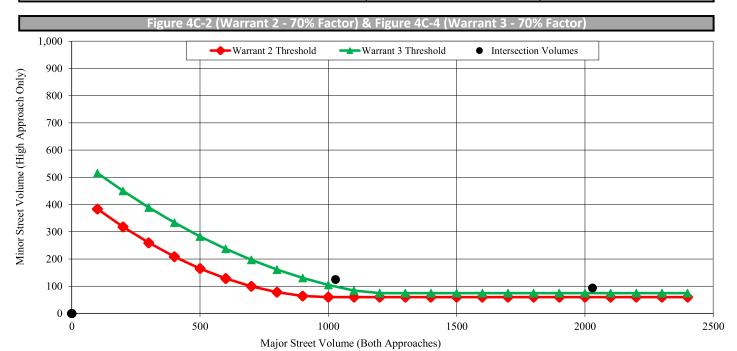
MUTCD / ITRE SIGNAL WARRANT ANALYSIS

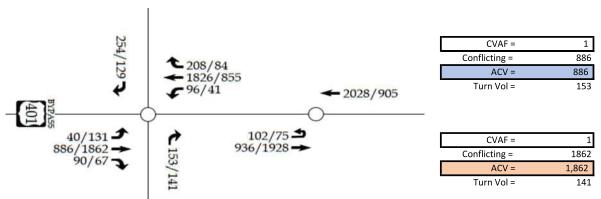
Traffic Signal Warrant Analysis

Warrants 1 - 3 (Volume Warrants)

Project Name	5109 Mitchell Mill Road
Project/File #	20498 - 04
Scenario	2028 Build

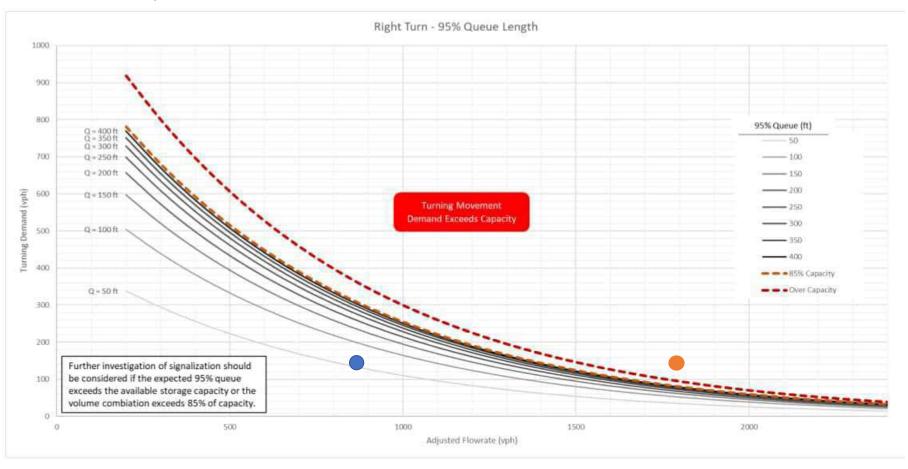
Intersection Information					
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Jonesville Road / WB Left-Over		
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane		
Total Approach Volume	3057 vehicles	Total Approach Volume	757 vehicles		
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings		
Right turn reduction of	0 percent applied	Right turn reduction of	100 percent applied		

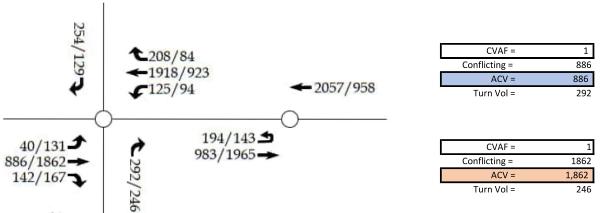

No high speed or isolated community reduction applied to the Volume Warrant thresholds.


Warrant 1, Eight Hour Vehicular Volume					
	Condition A	Condition B	Condition A+B*		
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied		
Required values reached for	1 hour	2 hours	2 (Cond. A) & 2 (Cond. B)		
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)		
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)		

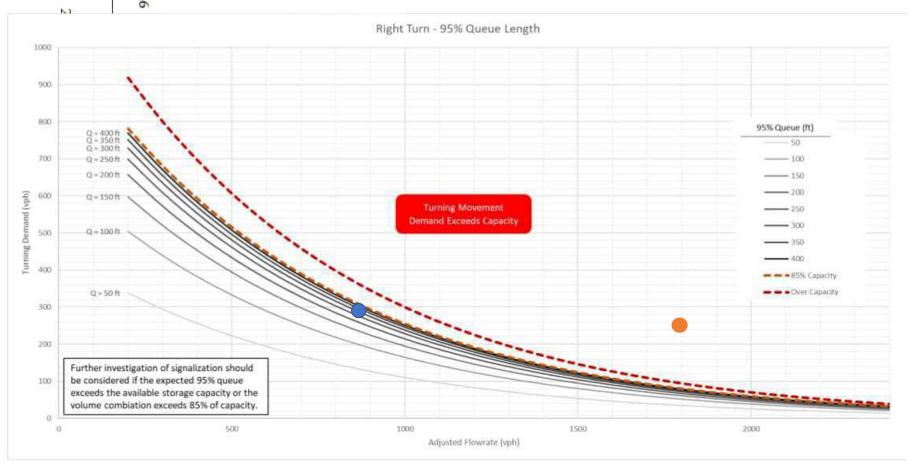
* Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

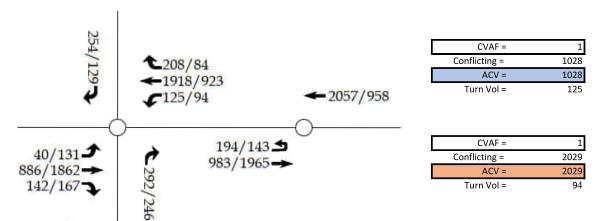
Warrant 2, Four Hour Vehicular Volume					
Condition Satisfied?	Not Satisfied				
Required values reached for	2 hours				
Criteria	See Figure Below				


Warrant 3, Peak Hour Vehicular Volume					
	Condition A	Condition B			
Condition Satisfied?	Not Satisfied	Satisfied			
Required values reached for	2369 total, 246 minor, 0 delay	2 hours			
Criteria - Total Approach Volume (veh in one hour)	800				
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below			
Criteria - Minor Street High Side Delay (veh-hrs)	4				

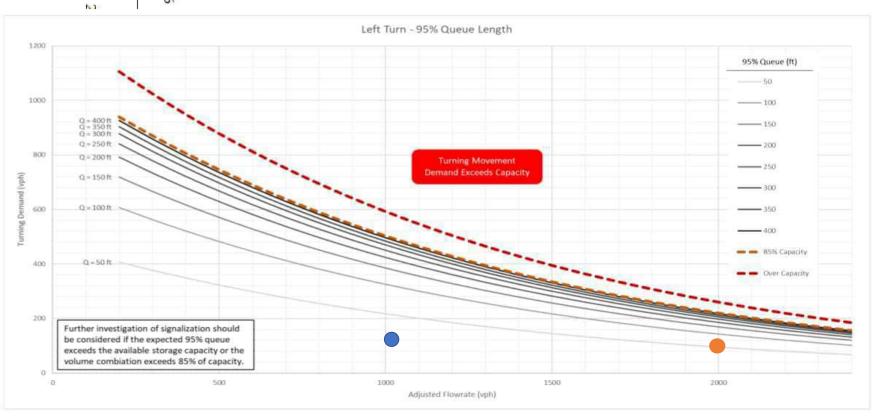


US 401 & Jonesville Road


2028 No-Build Traffic Conditions



US 401 & Jonesville Road


2028 Build Traffic Conditions

US 401 & Jonesville Road

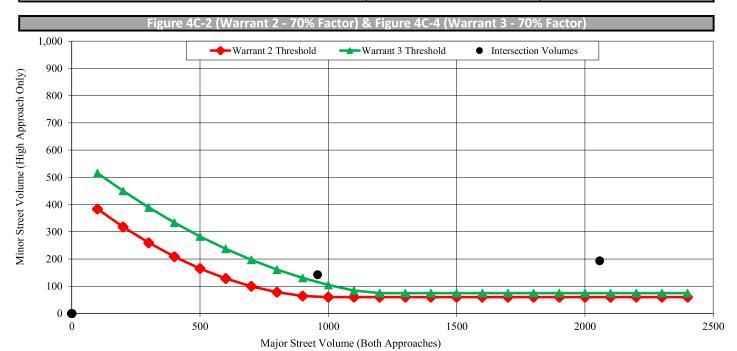
2028 Build Traffic Conditions

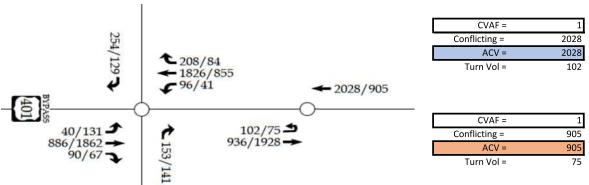
Traffic Signal Warrant Analysis

Warrants 1 - 3 (Volume Warrants)

Project Name	5109 Mitchell Mill Road		
Project/File #	20498 - 04		
Scenario	2028 Build		

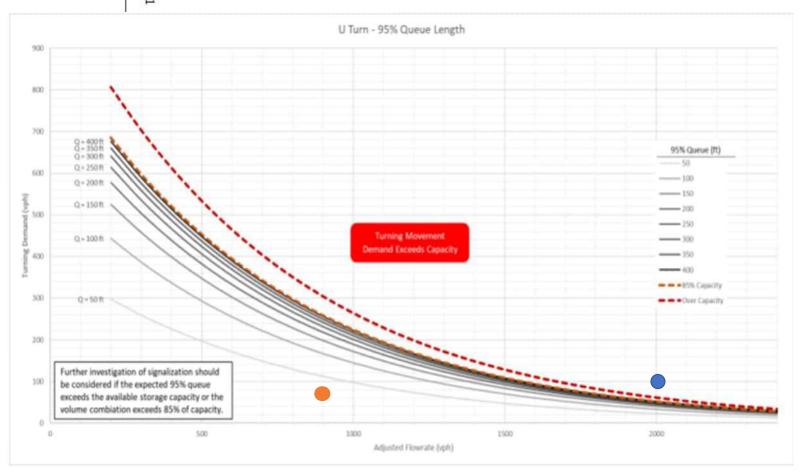
Intersection Information					
Major Street (E/W Road)	US 401 Bypass	Minor Street (N/S Road)	Eastern U-Turn Location		
Analyzed with	2 or more approach lanes	Analyzed with	1 Approach Lane		
Total Approach Volume	3015 vehicles	Total Approach Volume	337 vehicles		
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings		
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied		

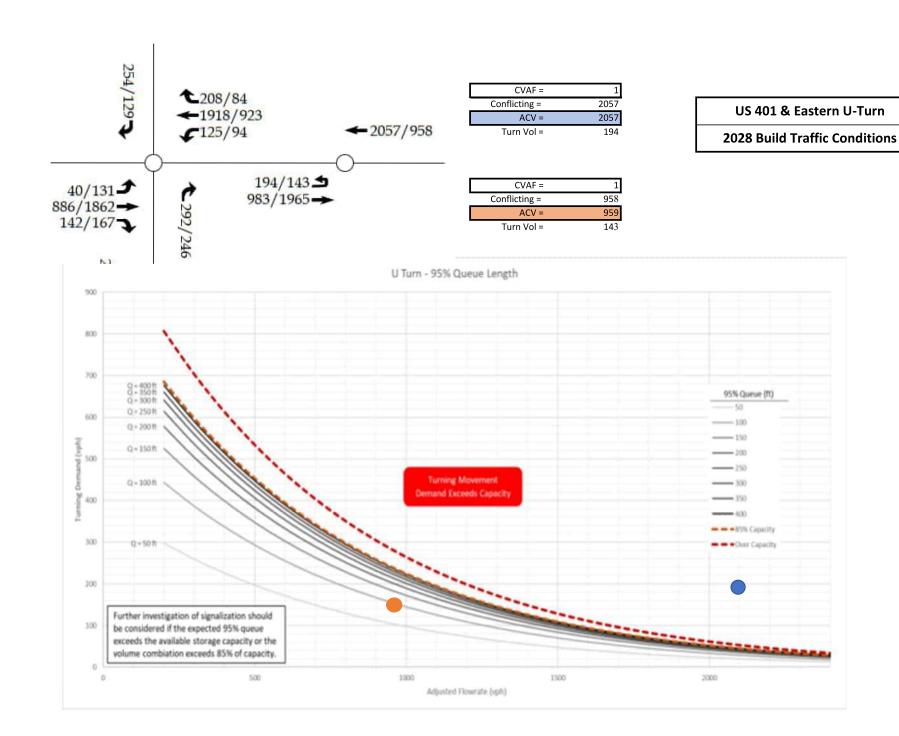

No high speed or isolated community reduction applied to the Volume Warrant thresholds.


Warrant 1, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)
Criteria - Major Street (veh/hr)	420	630	336 (Cond. A) & 504 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

* Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume		
Condition Satisfied?	Not Satisfied	
Required values reached for	2 hours	
Criteria	See Figure Below	


Warrant 3, Peak Hour Vehicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Satisfied	Satisfied
Required values reached for	2251 total, 194 minor, 0 delay	2 hours
Criteria - Total Approach Volume (veh in one hour)	650	
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	4	



US 401 & Eastern U-Turn

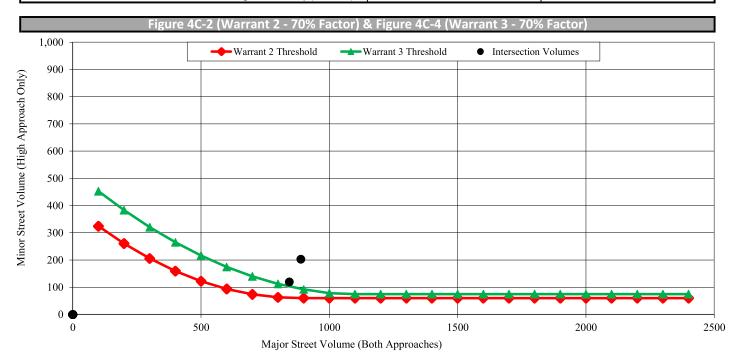
2028 No-Build Traffic Conditions

Traffic Signal Warrant Analysis

Warrants 1 - 3 (Volume Warrants)

Project Name	5109 Mitchell Mill Road
Project/File #	20498 - 04
Scenario	2028 No-Build

Intersection Information			
Major Street (E/W Road)	Mitchell Mill Road	Minor Street (N/S Road)	Jonesville Road
Analyzed with	1 approach lane	Analyzed with	1 Approach Lane
Total Approach Volume	1733 vehicles	Total Approach Volume	527 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied


No high speed or isolated community reduction applied to the Volume Warrant thresholds.

Warrant 1, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)
Criteria - Major Street (veh/hr)	350	525	280 (Cond. A) & 420 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

* Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume		
Condition Satisfied?	Not Satisfied	
Required values reached for	2 hours	
Criteria	See Figure Below	

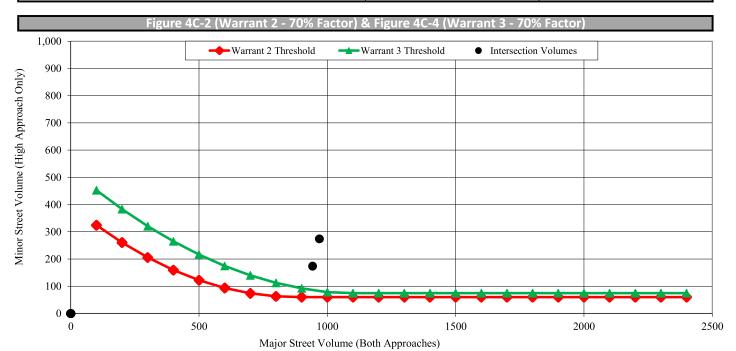
Warrant 3, Peak Hour Vehicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Satisfied	Satisfied
Required values reached for	1197 total, 203 minor, 0 delay	2 hours
Criteria - Total Approach Volume (veh in one hour)	800	
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	4	

Traffic Signal Warrant Analysis

Warrants 1 - 3 (Volume Warrants)

Project Name	5109 Mitchell Mill Road
Project/File #	20498 - 04
Scenario	2028 Build

Intersection Information			
Major Street (E/W Road)	Mitchell Mill Road	Minor Street (N/S Road)	Jonesville Road
Analyzed with	1 approach lane	Analyzed with	1 Approach Lane
Total Approach Volume	1911 vehicles	Total Approach Volume	717 vehicles
Total Ped/Bike Volume	0 crossings	Total Ped/Bike Volume	0 crossings
Right turn reduction of	0 percent applied	Right turn reduction of	0 percent applied


No high speed or isolated community reduction applied to the Volume Warrant thresholds.

Warrant 1, Eight Hour Vehicular Volume			
	Condition A	Condition B	Condition A+B*
Condition Satisfied?	Not Satisfied	Not Satisfied	Not Satisfied
Required values reached for	2 hours	2 hours	2 (Cond. A) & 2 (Cond. B)
Criteria - Major Street (veh/hr)	350	525	280 (Cond. A) & 420 (Cond. B)
Criteria - Minor Street (veh/hr)	105	53	84 (Cond. A) & 42 (Cond. B)

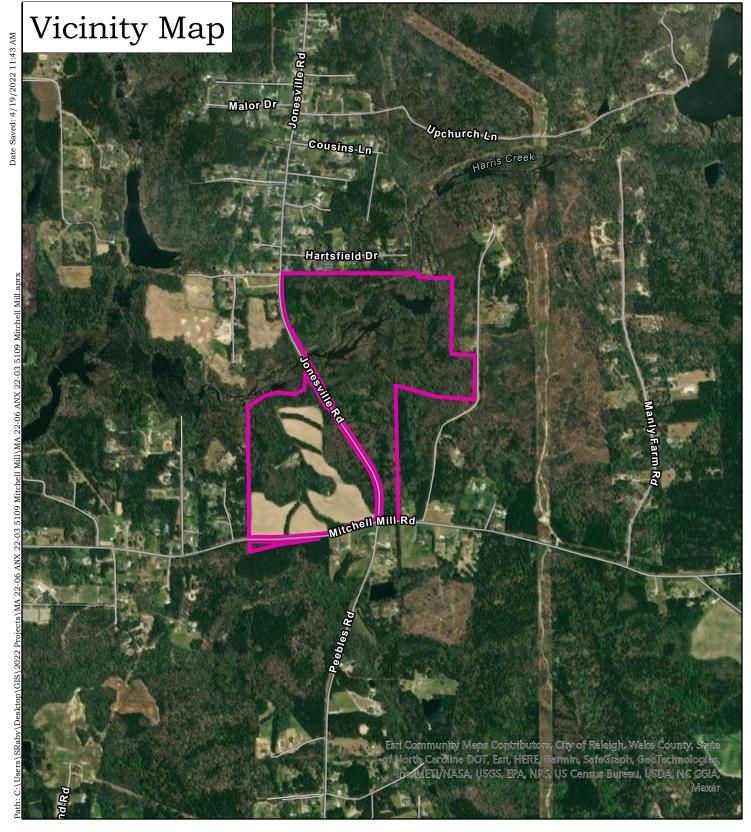
* Should be applied only after an adequate trial of other alternatives that could cause less delay and inconvenience to traffic has failed to solve the traffic problems.

Warrant 2, Four Hour Vehicular Volume		
Condition Satisfied?	Not Satisfied	
Required values reached for	2 hours	
Criteria	See Figure Below	

Warrant 3, Peak Hour Vehicular Volume		
	Condition A	Condition B
Condition Satisfied?	Not Satisfied	Satisfied
Required values reached for	1264 total, 174 minor, 0 delay	2 hours
Criteria - Total Approach Volume (veh in one hour)	800	
Criteria - Minor Street High Side Volume (veh in one hour)	100	See Figure Below
Criteria - Minor Street High Side Delay (veh-hrs)	4	

Case: MA 22-06 ANX 22-03 5109 Mitchell Mill

0.3


0.6 Miles

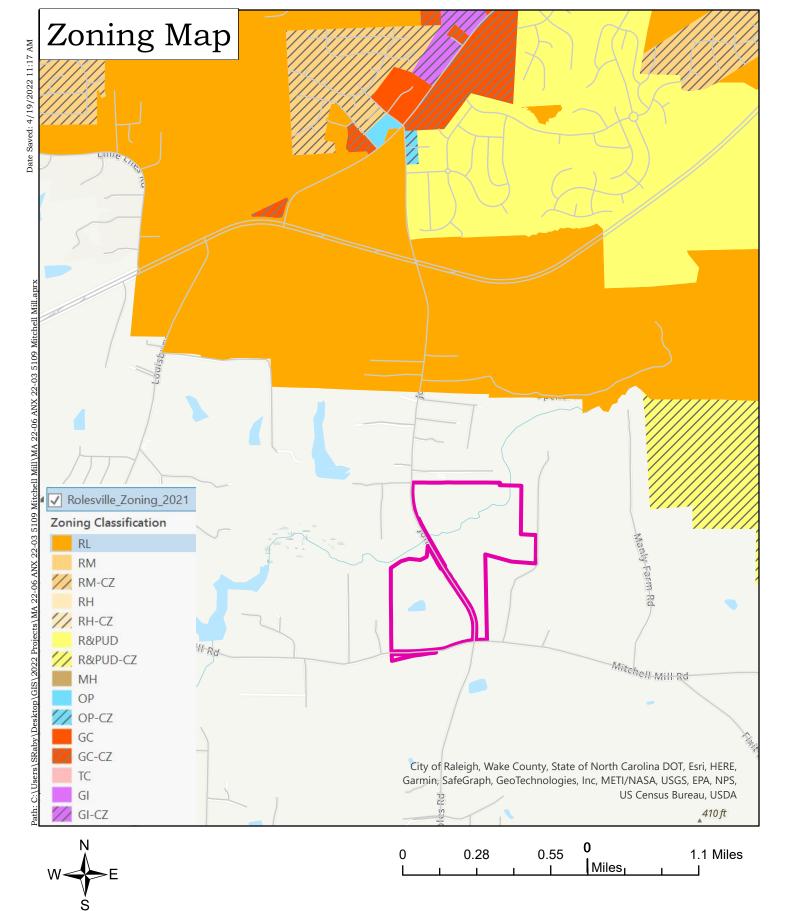
Miles

0.15

Address: 5109 Mitchell Mill

PIN 1757571035 Date: 04.19.2022

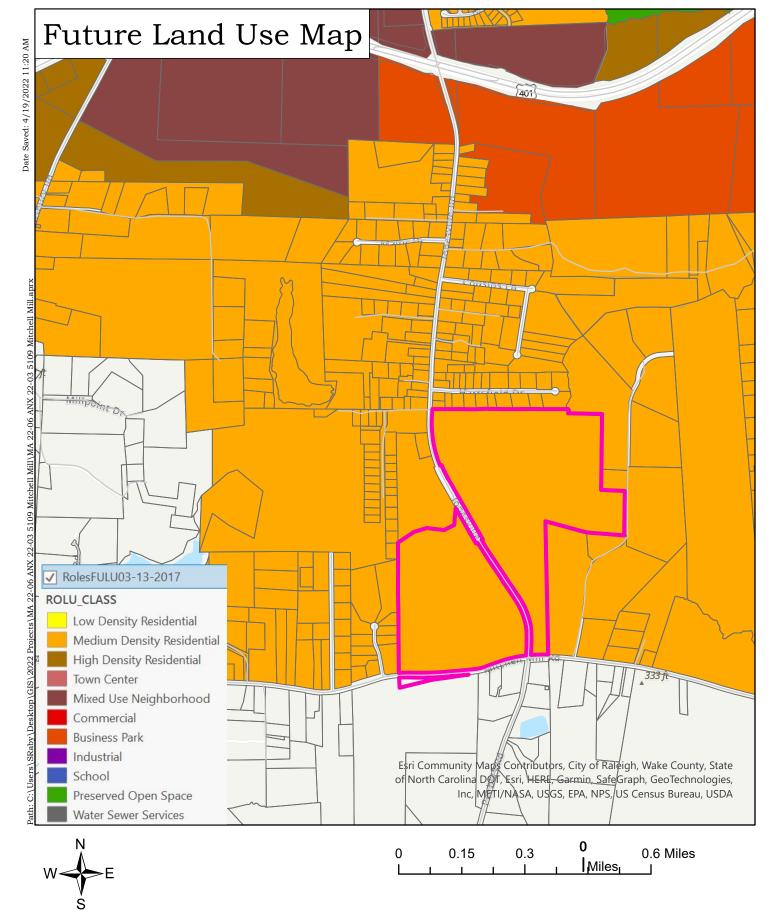
0



Case: MA 22-06 ANX 22-03 5109 Mitchell Mill

Address: 5109 Mitchell Mill

PIN 1757571035 Date: 04.19.2022



Case: MA 22-06 ANX 22-03 5109 Mitchell Mill

Address: 5109 Mitchell Mill

PIN 1757571035 Date: 04.19.2022

