

TEST LOCATION

Address/Location Description 1208 Jones Dairy Road, Wake Forest Test hydrant Facility ID WHYD 125123 Flow hydrant Facility ID WHYD 128077

APPLICATION INFORMATION

Name	River	crest	: Realt	y Inve	estors			
Address	8816	Six	Forks	Road,	Suite	201,	Raleigh,	NC 27615
Contact Person_Brian Holder Phone 919.846.4046								
Email	bholde	r@ri	vercre	streal	ty.com	L		

SYSTEM INFORMATION

Test DateMarch 1, 2023Nearest Elevated TankFriendship ChapelMain Size12"Tank Hydraulic Grade517.47'Pump InfoForestville P2/P3

Time of Test 12:35 PM Test Hydrant Elevation 390' +1-Pressure Zone 523' Use 20ft below pressure zone (tank overflow) for design* Theoretical Pressure 55, 2 ps;

RESULTS

Static Pressure 57 psi Residual Pressure 51 psi Outlet Diameter 2 inches Number of Outlets Flowing 2 Flow Hydrant Discharge Pressure 15,15 psi Volume of Discharge 638 + 638 = 1,276 gpm Water usage during test 3,000+1- Total Gal

Test Completed by: Drew King & Danny Wilder Testing Company: Associated Fire Protection Checked by: N/A Date 3/1/2023

Notes: Flowed (**2**) 2-1/2" Hose Monster(s) with 2" Pitotless Nozzle(s). C = 1.38

Please attach the following supporting documentation to this form; Labeled map of location of test identifying test hydrant and flow hydrant Calculation demonstrating how the discharge flow was determined Calculation demonstrating the available fire flow at a residual pressure of 20 psi Printout of any recorded data supporting the static and residual pressure at the test hydrant. Printout of any recorded data supporting the discharge pressure of the flow hydrant.

*To maintain system water quality, storage tanks may be maintained as low as 20' below overflow.

updated February 2020

1208 Jones Dairy Rd

Hydrant Flow Test Report

Test Date 3/1/2023

Location

1208 Jones Dairy Road Wake Forest, NC Test Time 12:35 PM

Tested by

Associated Fire Protection, Inc. PO Box 28022 Raleigh, NC 27611-28022 DKing@afp-nc.com 919-906-5236

Read Hydrant

57 psi **static pressure** 51 psi **residual pressure** 390 ft **hydrant elevation**

Created with the free hydrant flow test program from www.igneusinc.com

Notes

		ster			ster	,e			aints	ster	,e
NOPE	a) an Ho	se Mon	nosphei	al au He	ose Morris Att	nosphei		EION	Test Po	Sennon A	mospher
10.1	2211 10	open open	41-	2.11 MC	open open			Key	2.21 M	open open	
PSI	GPM	GPM	PSI	GPM	GPM			GPM	PSI	PSI	
10	521	529	41	1055	1071			500	9.5	9.1	
11	547	555	42	1068	1084			562.5	11.7	11.3	
12	571	579	43	1081	1096			750	20.7	20.1	
13	594	603	44	1093	1109		_	1000	36.8	35.8	
14	617	626	45	1106	1122		_	1125	46.6	45.3	
15	<mark>638</mark>	648	46	1118	1134			1500	82.8	80.5	
16	659	669	47	1130	1146		The readings of	on this chart are	based on which	ch device the P	itotless Nozzle
17	679	689	48	1142	1158		is connected t It is the user's	o. responsibility to	verify that the	correct chart	and column is
18	699	709	49	1154	1170		being used. • 2 ½" H	ose Monster M	odel II or Flush	er with flow sp	olitter (HM2H,
19	718	729	50	1165	1182		HM2HF 2 ½" Ho	. Use this colun se Monster or Fl	nn if the Pitotle lusher. The bui	ss Nozzle is co ilt-in pitot or fl	nnected to the ow splitter must
20	737	748	51	1177	1194		be installed for accuracy. If you do not have the built-in pitot or flow splitter, please contact us.				
21	755	766	52	1188	1206		Open connect	Atmosphere. Us ed directly to a	se this column test header or l	when the Pitot hydrant flowin	less Nozzle is g openly to
22	773	784	53	1200	1217		atmosp	nere.			
23	790	802	54	1211	1229		This chart is FI the Authority	Approved for Having Jurisdicti	flow rate accur on to call us if t	acy. Please ca	ll us or instruct juestions.
24	807	819	55	1222	1240		Additional cop	ies of flow chart er.com/literature.ht	ts are available Iml	at:	
25	824	836	56	1233	1251						
26	840	853	57	1244	1262		-				M
27	856	869	58	1255	1273		-			APPI	ROVED
28	872	885	59	1266	1284		-				
29	887	900	60	1277	1295		-				
30	903	916	61	1287	1306		-	A The f		~	
31	918	931	62	1298	1317		-		2" PN2		
32	932	946	63	1308	1327		-	RA ACOPTO	40 Patent 6,874,375 Hydro Flow Products, Inc. 2-9967, <u>www.HoseMonster.3</u> Wed Operating Range 10 - 80	The last	
33	947	960	64	1318	1338		-	1	State State		
34	961	975	65	1329	1348		-				
35	975	989	66	1339	1358		-		-0		
36	989	1003	67	1349	1369		-	T	ŧ The		
37	1002	1017	68	1359	1379		-		HO	SE	
38	1016	1031	69	1369	1389		-	MO	NST	ER	
39	1029	1044	70	1379	1399		-	CO	MPA	NY	
40	1042	1057						Divisio	n of Hydro Flow Proc	lucts, Inc.	Updated Jun. 2015

MANUFACTURED BY: Hydro Flow Products, Inc. 888.202.9987 TOLL FREE 847.434.0073 FAX Service@FlowTest.com EMAIL www.HoseMonster.com

U. S. Patent # 6,874,375

Calculating Flow-rates

The flow charts we provide with the Pitotless Nozzle[™], Hose Monster[®] and Nozzle Inserts are correct and should be referred to first. Our flow charts are calculated using K-Factors derived from testing performed at FM Approvals. It is common for third-party software to use the pitot formula to compute flow-rate. The 2½ " Hose Monster uses a pitot to measure velocity pressure. The Pitotless Nozzle and 4" and 4½ " Hose Monsters do not use a pitot, and the pitot formula has to be tricked into calculating correct flow-rates. Entering the coefficients into a program that uses orifice diameter, coefficient and velocity pressure should give relatively accurate flow-rates. Check results against our flow charts.

Here are the equations used for calculating flow-rates and predicting flow-rates. Use the orifice diameter, coefficient or K-factor found on the next page.

K-factor Formula

Computes a flow-rate in GPM given a psi and a K-factor of the flow device.

 $\mathbf{Q} = \sqrt{\mathbf{P} \mathbf{x} \mathbf{K}}$

Q = flow-rate in GPM, P = velocity pressure in psi, K = K-factor of flow device

Pitot Formula

Computes a flow-rate in GPM given a psi and coefficient of the flow device.

 $Q = 29.84 \text{ x} \sqrt{P} \text{ x} D^2 \text{ x} C$

Q = flow-rate in GPM, P = velocity pressure in psi, D = orifice diameter in inches

C = coefficient of flow device

Equation for Determining Rated Capacity

Computes the flow-rate available at a specified residual pressure (a.k.a. Rated Capacity).

The example below enables you to find the predicted flow-rate at 20 psi residual pressure.

 $Q_{R} = Q_{F} \times (H_{R}^{0.54} / H_{F}^{0.54})$

- Q_{R} = Flow-rate predicted at the desired residual pressure in GPM
- Q_F = Total test flow-rate measured during test in GPM (GPM measured from Hose Monster or Pitotless Nozzle)
- H_R = Pressure drop from static pressure to desired residual pressure (Static 20 psi [if 20 psi is the desired residual pressure])
- H_{E} = Actual pressure drop measured during the test (Static Actual Residual)

(Source: NFPA 291, 2010)

Conversion Factors

Here are some conversion factors for switching between US and metric units:

Flow-rate:

Pressure:

US Gallons per Minute x 3.785 = Liters per Minute Liters per Minute x 0.264 = US Gallons per Minute

US Gallons per Minute x 0.1337 = Cubic Feet per Minute Cubic Feet per Minute x 7.481 = US Gallons per Minute

Volume:

US Gallons x 3.785 = Liters Liters x 0.264 = US Gallons

US Gallons x 0.8327 = Imperial Gallons Imperial Gallons x 1.201 = US Gallons

Cubic Feet x 7.48051945 = US Gallons US Gallons x 0.1337 = Cubic Feet psi x 0.0689 = Bars Bars x 14.5038 = psi

psi x 6894.757 = Pascals Pascals x 0.000145 = psi

Bars x 100,000 = Pascals Pascals x 0.00001 = Bars

Weight of Water:

US Gallons of Water x 8.3454 = Pounds Cubic Feet of Water x 62.42796 = Pounds

Length:

Meters x 3.2808 = Feet Feet x 0.3048 = Meters

Coefficient and K-Factor Table for Various Flow Devices

last update: 2/14/2012

Pitotless Nozzle [™]						
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)	
2 " Pitotless Nozzle + Little Hose Monster™	156.0	1.31	2 "	10–70	490–1300	
2" Pitotless Nozzle + 2½" Hose Monster Steel	<mark>164.8</mark>	1.38	2"	10-80	520-1380	
2 "Pitotless Nozzle + Open Atmosphere	167.2	1.40	2 "	10–70	530-1400	
1 ³ / ₄ " Pitotless Nozzle + Little Hose Monster	104.7	1.15	1.75"	10–90	330-1000	
1 ³ / ₄ " Pitotless Nozzle + 2 ¹ / ₂ " Hose Monster Steel	106.6	1.17	1.75"	10–90	340-1010	
1 ³ / ₄ " Pitotless Nozzle + Open Atmosphere	109.7	1.20	1.75"	10–90	350-1040	
11/8" Pitotless Nozzle + Little Hose Monster	37.2	0.98	1.125"	5–90	80–350	
1 ¹ / ₈ " Pitotless Nozzle + 2 ¹ / ₂ " Hose Monster Steel	37.4	0.99	1.125"	5–90	80–350	
1 ¹ / ₈ " Pitotless Nozzle + Open Atmosphere	37.0	0.98	1.125"	5–90	80–350	
1 "Pitotless Nozzle + Little Hose Monster	27.2	0.91	1 "	3–90	50–260	
1 "Pitotless Nozzle + 21/2" Hose Monster Steel	27.6	0.93	1 "	3–90	50–260	
1 "Pitotless Nozzle + Open Atmosphere	27.7	0.93	1 "	3–90	50–260	
In-Line Pitotless Nozzle™						
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)	
2 " In-line Pitotless Nozzle	165.3	1.38	2 "	10–75	530–1430	
1¾" In-line Pitotless Nozzle	109.9	1.20	1.75" 5–80		250–980	
1 ¹ / ₈ " In-line Pitotless Nozzle	38.4	1.02	1.125"	5–70	90–320	
BigBoy Hose Monster™						
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)	
4 to 10 psi (BigBoy Hose Monster)	382.9	1.38	3.05 "	4–10	766–1211	
11 to 36 psi (BigBoy Hose Monster)	376.0	1.35	3.05 "	11–36	1247-2256	
37 to 53 psi (BigBoy Hose Monster)	372.0	1.34	3.05 "	37–53	2263-2708	
Note: Due to the shape and size of the BigBoy Pitotless No	zzle, the BigBo	y Hose Monster	uses three different k	-factors over its ope	rating range.	
21/2" Hose Monster®						
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)	
2½" Hose Monster	168.67	0.906	2.5"	10–75	530–1460	
1¾" Nozzle Insert	89.04	0.975	1.75"	10–75	280–770	
1 ¹ / ₈ " Nozzle Insert	37.36	0.99	1.125" 10–75		120–320	
4" and 4½" Hose Monster®						
Device	K-factor	Coefficient	Orifice Diameter	psi Range	Flow Range (GPM)	
4½" Hose Monster	331.07	0.548	4.5"	10–75	1050–2870	
4 "Hose Monster	339.65	0.712	4 "	10–75	1070–2940	
Using Software						
Use the table below if you are using software that requires	the coefficient	input to be less	than '1.0'. Notice tha	at the orifice diamete	er must be changed from	
its true diameter in order to accommodate the lower coeffi	cient. This is ne	ecessary only for	the 2 " Pitotless Nozz	le and the ³ / ₄ " Pitotle	ess Nozzle.	
Device Coefficient Orifice Diameter						

2 "Pitotless Nozzle + Little Hose Monster	0.99	2.30"
2 "Pitotless Nozzle + 21/2" Hose Monster Steel	0.99	2.36"
2 "Pitotless Nozzle + Open Atmosphere	0.99	2.38"
1 ³ / ₄ " Pitotless Nozzle + Little Hose Monster	0.99	1.88"
1¾" Pitotless Nozzle + 21/2" Hose Monster Steel	0.99	1.90"
1¾ "Pitotless Nozzle + Open Atmosphere	0.99	1.93 "

Note: If your software uses the Theoretical Discharge Formula, found in NFPA 291, 4.7.3, the coefficient of discharge can be used to produce flow rates that will match our flow charts.

A hand-held pitot directly at a h	ydrant outlet	Classifying and Marking of Hydrants				
Outlet Type	Coefficient	Rated Capacity at 20 psi	Class	Marking Color of Hydrant Tops and Nozzles		
Outlet smooth and rounded	0.9	≥1500 GPM	AA	Light Blue		
Outlet square and sharp	0.8	1000–1499 GPM	А	Green		
Outlet square and projecting into barrel	0.7	500–999 GPM	В	Orange		
If a stream straightener is used	0.95	≤499 GPM	С	Red		

The above are the NFPA hydrant classifications and color markings for various rated capacities. Source: NFPA 291, 5.1, 2010.

1208 Jones Dairy Road, Wake Forest flow test - Wednesday, March 1, 2023

