ヨロISヨ」IHMNOWVヨS：MS

EXECUTIVE SUMMARY

Introduction

The proposed project includes the development of 1 car wash facility building, vacuum equipment building, associated parking areas, and necessary infrastructure. The project will sit on a 1.92 acre property subdivided from a larger 3.80 acre parcel defined as Wake County PIN 1758479244.

Existing Site Conditions

Existing Use

The property currently exist as a vacant lost composed primarily of woods.

Watersheds, Buffers, and Flood Plains

The proposed project is located within the Lower Neuse River watershed. There are no floodplains on the site. The property is located in Flood Zone X, an area of minimal flood hazard.

Soils

Based on the North Carolina Department of Environmental Quality (NCDEQ) Wake County 1970 Soil Map for the site, the soils located within the project area are defined as LwB and LwC. The Wake County 1970 Soil Survey Map for the site is included in the Appendix of this report.

Drainage

In the existing condition the site drains to three points of interest (POI) along the northwest property boundary. POI 1 collects the most drainage from the site via overland flow. POI 1 and POI 2 collect the remainder of the drainage also via overland flow. Runoff from POI 2 discharges into the existing catch basin on the southbound lane of Grand Park Drive. Runoff from POI 3 discharges into the catch basin on the northside of the water tower access road in existing conditions.

Proposed Site Conditions

Improvements

The proposed improvements to the site are the development of a car wash building, associated parking areas, and associated infrastructure.

Drainage

Runoff from the proposed buildings and site impervious areas will be conveyed to an underground detention system via three curb inlets. All new proposed impervious area will drain to the underground detention and be treated for water quality.

Existing Stormwater Management

Existing Quality and Detention

The site is currently vacant with no on site stormwater management.

Proposed Stormwater Management

Proposed Quality and Detention

All existing and proposed drainage areas are being evaluated at the Points of Interest described in the Drainage Section of this report above. Existing and Proposed Drainage Basins are shown along with the corresponding Points of Interest on the Pre- and Post-Development Maps included in Appendix.

Curve number and time of concentration calculations are included in Appendix.

The pre-developed and post developed flow rates and volume calculations were performed with Hydroflow Hydrographs using an SCS Methodology and a 24-hour hydrograph (based on NOAA Atlas 15 depths) as described in the NCDEQ stormwater design manual. A summary of the results is shown in the Table below:

An ADS StormTech underground detention system is proposed to reduce the post-development flow and mitigate the nitrogen export due to the increase in impervious areas. The proposed system will store the runoff as the outlet control structure releases the runoff at a lower flow rate than pre-developed conditions. The Wake County Hybrid Stormwater Tool was used to determine the system mitigates the nitrogen export to below the states maximum. The detention system storage sizing calculations are included in the Appendix.

A summary of the pre-development and post development runoff flows for POI 1 and the bypass drainage areas are shown in the Table below:

Pre and Post Development Runoff Summary						
Design Storm	Pre Development	Post Development				
	POI	POI 2	POI 3	POI 1	POI 2	POI 3
2 Year	0.173	0.042	0.106	0.093	0.034	0.049
10 Year	0.402	0.104	0.263	0.108	0.079	0.115

The Wake County Hybrid Stormwater Tool was used to determine the ADS StormTech underground detention system mitigates the nitrogen export to below the states maximum. Infiltration through the existing Wedowee-Urban Land (WgB) soil will be used for water quality treatment. According to the USGS soil survey, WgB soil has an infiltration rate pf 0.57 to $1.98 \mathrm{in} / \mathrm{hr}$. The most conservative value infiltration rate, $0.57 \mathrm{in} / \mathrm{hr}$, was used in the Hydroflow Hydrographs model for peak discharge calculations. The detention system storage sizing and Wake County Hybrid Stormwater Tool calculations are included in the Appendix.

A summary of the pre-development and post development nitrogen loading rates from the site are shown in the Table below:

POI 1 Pre and Post Development Nitrogen Loading Summary

Pre-Developed Loading $(\mathrm{lb} / \mathrm{ac} / \mathrm{yr})$	Post-Developed Loading (lb/ac/yr)	Post BMP Loading (Ib/ac/yr)
1.16	9.58	1.07

Erosion Control

Erosion and sediment control measures during construction will be accomplished using temporary and permanent best management practices (BMPs). Temporary best management practices include the utilization of a silt fence, inlet protection, and temporary seeding during construction. Permanent best management practices include the permanent seeding and stabilization of the site.

Stormwater Conveyance

The stormwater conveyance pipe system was designed to convey the 10-year, 24 -hour storm event and checked with the 25 -year, 24 hour storm event. The pipe modeling software, Hydraflow Storm Sewers, has been used for the design of the proposed storm drainage pipes and inlets for the site (stormwater conveyance system). Storm Sewers utilizes the Rational Method based on the 10-year, 24 -hour storm event.

DEVELOPMENT DRAINAGE MAPS

CURVE NUMBER CALCULATIONS

Soil Conservation Service Drainage Runoff Curve Number

Project: TWAS Rolesville @ Main St				
Municipality: Rolesville/ Wake County				CPE
				Job\# 10772
Pre-Development				
PRE BASIN 1				
Cover Type Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
WOODS B	FAIR	60.00	0.83	49.80
GRAVEL B	FAIR	85.00	0.04	3.40
		Sub-total	0.87	53.20
PRE BASIN 1 Net SCS Curve Number =	61			
PRE BASIN 2				
Cover Type \quad Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
WOODS B	FAIR	60.00	0.22	13.20
GRASS (FAIR CONDITION) B	FAIR	61.00	0.12	7.32
		Sub-total	0.34	20.52
PRE BASIN 2 Net SCS Curve Number =	60			
PRE BASIN 3				
Cover Type \quad Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
WOODS B	FAIR	60.00	0.57	34.20
GRASS (FAIR CONDITION) B	FAIR	61.00	0.22	13.42
		Sub-total	0.79	47.62
PRE BASIN 3 Net SCS Curve Number =	60			

Soil Conservation Service Drainage Runoff Curve Number

Project: TWAS Rolesville @ Main St

Municipality: Rolesville/ Wake County					CPE
Post-Development					
POST DA 1 (BMP)					
Cover Type	Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
PAVED PARKING	B	FAIR	98.00	1.29	126.42
GRASS (FAIR CONDITION)	B	FAIR	61.00	0.30	18.30
			Sub-total	1.59	144.72

POST DA 1 (BMP) Net SCS Curve Number = 91

POST DA 2					
Cover Type	Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
GRASS (FAIR CONDITION)	B	FAIR	61.00	0.17	10.37
			Sub-total	0.17	10.37

POST DA 2 Net SCS Curve Number $=\quad 61$

POST DA 3

Cover Type	Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
GRASS (FAIR CONDITION)	B				
	FAIR	61.00			
			Sub-total	0.22	13.42

[^0]
TIME OF CONCENTRATION CALCULATIONS

Time of Concentration Calculations

Pre-Development

Project: TWAS Rolesville @ S Main St
Municipality: Rolesville/Wake County

Pre Basin 2

Channel Flow$\mathrm{T}_{\mathrm{t}}=\mathrm{L} /\left(60^{*} \mathrm{~V}\right)$		
Tc 3		
Length	0	L (ft)
Velocity =	0	V (t/s)
$\mathrm{T}_{\mathrm{t}} 3=$		min.
Total $\mathrm{T}_{\mathrm{c}}=$		min.

Pre Basin 3								
Sheet Flow			Shallow Conc. Flow			Channel Flow		
$\mathrm{Tc}=\left\{0.007^{*}\left[\left(L^{*}\right)\right)^{\wedge} 0.8\right] /\left[\mathrm{P}^{\wedge} 0.5{ }^{*} \mathrm{~s}^{\wedge} 0.4\right]^{*} 60$			$\begin{gathered} \mathrm{T}_{\mathrm{t}}=\mathrm{L} /\left(60^{*} \mathrm{~V}\right) \\ \left(\mathrm{V}_{\text {unpanead }}=16.13455^{0.5} \mathrm{~V}_{\text {peaved }}=20.3288 \mathrm{~s}^{0.5}\right) \end{gathered}$			(Assume $2 \mathrm{tt} / \mathrm{s}$ tor tvn Inwr.nuintrv		
Kinematic Wave/Sheet Flow								
	Tc 1			Tc 2			Tc 3	
Length $=$	100	L (ft)	Paved?	N				
Mannings	0.6		Length =	104	L (ft)			
rainfall	2.86	i	Slope $=$	0.04	s (ft/f)	Length	0	L (ft)
slope	0.019	s (ft/ft)	Velocity $=$	3.23	V (ft/s)	Velocity =	0	V (ft/s)
Tc $1=$	23.40		$\mathrm{T}_{\mathrm{t}} 2=$	0.54		$\mathrm{T}_{\mathrm{t}} 3=$	0.00	min.

Time of Concentration Calculations
 Post-Development

$$
\begin{aligned}
& \text { PEAK ATTENUATION } \\
& \text { CALCULATIONS (1-, 2-, } \\
& \text { 10-, 24-HR EVENTS) }
\end{aligned}
$$

Watershed Model Schematic

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

1-YEAR 24-HOUR STORM EVENT

Hydrograph Summary Report

draflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hydrograph Report

Hyd. No. 1

PRE DA 1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.173 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=728 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=989 \mathrm{cuft}$
Drainage area	$=0.870$ ac	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=2.08$	Tser	Dise of conc. (Tc)
Total precip.	$=2.86$ in	$=19.00 \mathrm{~min}$	
Storm duration	$=24 \mathrm{hrs}$	Shapution	$=$ Type II
			$=484$

Hyd. No. 2

PRE DA 2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.042 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=736 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=351 \mathrm{cuft}$
Drainage area	$=0.340$ ac	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=27.00 \mathrm{~min}$
Total precip.	$=2.86$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 3

PRE DA 3

Hydrograph type	= SCS Runoff	Peak discharge	$=0.106 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	734 min
Time interval	$=2 \mathrm{~min}$	Hyd. volume	= 803 cuft
Drainage area	$=0.790 \mathrm{ac}$	Curve number	= 60
Basin Slope	= 0.0 \%	Hydraulic length	$=0 \mathrm{ft}$
Tc method	= User	Time of conc. (Tc)	$=24.00 \mathrm{~min}$
Total precip.	$=2.86$ in	Distribution	= Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 4

POST DA 1 (BMP)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=5.058 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=10,503 \mathrm{cuft}$
Drainage area	$=1.590 \mathrm{ac}$	Curve number	$=91$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=\mathrm{User}$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=2.86 \mathrm{in}$	Distribution	$=\mathrm{Type} \mathrm{II}$
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 5

POST DA 2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.034 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=728 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=193 \mathrm{cuft}$
Drainage area	$=0.170$ ac	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=20.00 \mathrm{~min}$
Total precip.	$=2.86$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6

POST DA 3

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.049 \mathrm{cfs}$
Storm frequency	$=1$ yrs	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=244 \mathrm{cuft}$
Drainage area	$=0.220$ ac	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=16.00 \mathrm{~min}$
Total precip.	$=2.86$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 7

UNDERGROUND DETENTION

Hydrograph type	$=$ Reservoir	Peak discharge	$=0.093 \mathrm{cfs}$
Storm frequency	$=1 \mathrm{yrs}$	Time to peak	$=956 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=10,458 \mathrm{cuft}$
Inflow hyd. No.	$=4-$ POST DA 1 (BMP)	Max. Elevation	$=388.82 \mathrm{ft}$
Reservoir name	$=$ UNDER GROUND DETENTIOMax. Storage	$=7,285 \mathrm{cuft}$	

Storage Indication method used.

2-YEAR 24-HOUR STORM EVENT

Hydrograph Summary Report

draflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 1

PRE DA 1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.402 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=728 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,738 \mathrm{cuft}$
Drainage area	$=0.870$ ac	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=19.00 \mathrm{~min}$
Total precip.	$=3.45$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Q (cfs)
0.50 PRE DA 1
:---

Hydrograph Report

Hyd. No. 2

PRE DA 2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.104 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=734$ min
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=629 \mathrm{cuft}$
Drainage area	$=0.340$ ac	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=3$ User	Time of conc. (Tc)	$=27.00 \mathrm{~min}$
Total precip.	$=3.45$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hydrograph Report

Hyd. No. 3

PRE DA 3

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.263 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,439 \mathrm{cuft}$
Drainage area	$=0.790$ ac	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=24.00 \mathrm{~min}$
Total precip.	$=3.45$ in	Distribution	$=$ Type II
Storm duration	$=24$ hrs	Shape factor	$=484$

Hyd. No. 4

POST DA 1 (BMP)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=6.413 \mathrm{cfs}$
Storm frequency	$=2 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=13,494 \mathrm{cuft}$
Drainage area	$=1.590 \mathrm{ac}$	Curve number	$=91$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=3.45 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hydrograph Report

Hyd. No. 5

POST DA 2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.079 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=728 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=340 \mathrm{cuft}$
Drainage area	$=0.170$ ac	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=3$ User	Time of conc. (Tc)	$=20.00 \mathrm{~min}$
Total precip.	$=3.45$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Abstract

POST DA 2

Hydrograph Report

Hyd. No. 6

POST DA 3

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.115 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=724$ min
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=429 \mathrm{cuft}$
Drainage area	$=0.220$ ac	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$==$ User	Time of conc. (Tc)	$=16.00 \mathrm{~min}$
Total precip.	$=3.45$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 7

UNDERGROUND DETENTION

Hydrograph type	$=$ Reservoir	Peak discharge	$=0.108 \mathrm{cfs}$
Storm frequency	$=2$ yrs	Time to peak	$=982 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=13,441 \mathrm{cuft}$
Inflow hyd. No.	$=4-$ POST DA 1 (BMP)	Max. Elevation	$=389.10 \mathrm{ft}$
Reservoir name	$=$ UNDER GROUND DETENTIOMax. Storage	$=9,579 \mathrm{cuft}$	

Storage Indication method used.

10-YEAR 24-HOUR STORM EVENT

Hydrograph Summary Report

draflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 1

PRE DA 1

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=1.293 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=4,400 \mathrm{cuft}$
Drainage area	$=0.870 \mathrm{ac}$	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=19.00 \mathrm{~min}$
Total precip.	$=5.04 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

PRE DA 1

Hyd. No. 2

PRE DA 2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.361 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=732 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,635 \mathrm{cuft}$
Drainage area	$=0.340$ ac	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$==$ User	Time of conc. (Tc)	$=27.00 \mathrm{~min}$
Total precip.	$=5.04$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 3

PRE DA 3

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.908 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=730 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=3,739 \mathrm{cuft}$
Drainage area	$=0.790$ ac	Curve number	$=60$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=$ User	Time of conc. (Tc)	$=24.00 \mathrm{~min}$
Total precip.	$=5.04$ in	Distribution	$=$ Type II
Storm duration	$=24$ hrs	Shape factor	$=484$

Hyd. No. 4
POST DA 1 (BMP)

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=10.04 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=716 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=21,757 \mathrm{cuft}$
Drainage area	$=1.590 \mathrm{ac}$	Curve number	$=91$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$=U s e r$	Time of conc. (Tc)	$=5.00 \mathrm{~min}$
Total precip.	$=5.04 \mathrm{in}$	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 5

POST DA 2

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.253 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=726 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=860 \mathrm{cuft}$
Drainage area	$=0.170$ ac	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$==$ User	Time of conc. (Tc)	$=20.00 \mathrm{~min}$
Total precip.	$=5.04$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 6

POST DA 3

Hydrograph type	$=$ SCS Runoff	Peak discharge	$=0.360 \mathrm{cfs}$
Storm frequency	$=10$ yrs	Time to peak	$=724 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=1,085 \mathrm{cuft}$
Drainage area	$=0.220$ ac	Curve number	$=61$
Basin Slope	$=0.0 \%$	Hydraulic length	$=0 \mathrm{ft}$
Tc method	$==$ User	Time of conc. (Tc)	$=16.00 \mathrm{~min}$
Total precip.	$=5.04$ in	Distribution	$=$ Type II
Storm duration	$=24 \mathrm{hrs}$	Shape factor	$=484$

Hyd. No. 7

UNDERGROUND DETENTION

Hydrograph type	$=$ Reservoir	Peak discharge	$=0.911 \mathrm{cfs}$
Storm frequency	$=10 \mathrm{yrs}$	Time to peak	$=744 \mathrm{~min}$
Time interval	$=2 \mathrm{~min}$	Hyd. volume	$=21,675 \mathrm{cuft}$
Inflow hyd. No.	$=4-$ POST DA 1 (BMP)	Max. Elevation	$=389.48 \mathrm{ft}$
Reservoir name	$=$ UNDER GROUND DETENTIOMax. Storage	$=12,723 \mathrm{cuft}$	

Storage Indication method used.

HYDRAFLOW STORM SEWERS CALCULATIONS

Storm Sewer Tabulation

NOTES:Intensity $=86.72$ / (Inlet time +15.30$)^{\wedge} 0.82$; Return period $=$ Yrs. 10 ; $c=c i r e=e l l i p ~ b=b o x$

WAKE COUNTY HYBRID STORMWATER TOOL CALCULATIONS

SITE DATA

COUNTY
north carolina

\square TIDAL WAVE AUTO SPA

WAKE
COUNTY

LAND USE \& SITE DATA	PRE-DEVELOPMENT								POST-DEVELOPMENT							
Drainage Area (Acres)=	0.87								1.59							
Site Acreage within Drainage=	0.87								1.59							
One-year, 24-hour rainfall (in)=	3.00															
Land Use (acres) by Soil Group:	A Soils		B Soils		C Soils		D Soils		A Soils		B Soils		C Soils		D Soils	
Commercial	Site	Offsite														
Parking lot			0.04								1.29					
Roof																
Open/Landscaped											0.30			!		
Industrial	Site	Offsite														
Parking lot														+		
Roof														!		
Open/Landscaped														!		
Transportation	Site	Offsite														
High Density (interstate, main)																
High Density (Grassed Right-of-ways)																
Low Density (secondary, feeder)																
Low Density (Grassed Right-of-ways)																
Rural																
Rural (Grassed Right-of-ways)																
Sidewalk																
Misc. Pervious	Site	Offsite														
Managed pervious (Open Space)														,		
Unmanaged (pasture)														!		
Woods (not on lots)			0.83											!		
Residential	Site	Offsite														
Roadway																
Grassed Right-of-ways														!		
Driveway																
Parking lot																
Roof																
Sidewalk (Includes Patios)																
Lawn																
Managed pervious (Open Space)																
Woods (on lots)																
Land Taken up by BMP																
JURISDICTIONAL LANDS	Site	Offsite														
Natural wetland														!		
Riparian buffer (Zone 1 only)														+		
Open water																
Totals (Ac) $=$	0.00	0.00	0.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.59	0.00	0.00	0.00	0.00	0.00

SITE FLOW	PRE-DEVELOPMENT T ${ }_{\text {c }}$	POST-DEVELOPMENT Tc
Sheet Flow		
Length (ft)=	100.00	100.00
Slope (ft/ti)=	0.04	0.02
Surface Cover:	Woods	Paved, Gravel, or Bare Soil
n -value=	0.40	0.011
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.26	0.02
Shallow Flow		
Length (ft)=	70.91	96.31
Slope (ft/ti)=	0.02	0.02
Surface Cover:	Unpaved	Paved
Average Velocity (ft/sec) $=$	2.28	2.87
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.01	0.01
Channel Flow 1		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft^{2}) $=$		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=	0.00	0.00
Average Velocity (ft/sec)=	0.00	0.00
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.00	0.00
Tc (hrs)=	0.32	0.08
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Site Impervious Surface Area (Ac) =	0.04	1.29
Lot Impervious Surface Area (Ac) =	0.00	0.00
1-year, 24-hour storm (Peak Flow)		
Volume of runoff (ft^{3}) $=$	989	13,361
Volume change $\left(\mathrm{ft}^{3}\right)=$		
Runoff (inches) $=\mathrm{Q}^{*}=$	0.3131	2.3148
Peak Discharge (cfs)= Q=	0.1214	6.1124
Composite Curve Number (DA)=	57	91
Composite Curve Number (Site only)=	57	91

Post-development peak flow exceeds pre-development peak flow for this DA!

SITE FLOW	PRE-DEVELOPMENT $\mathrm{T}_{\text {c }}$	POST-DEVELOPMENT Tc
Sheet Flow		
Length (ft)=	100.00	75.20
Slope (ft/ft)=	0.01	0.01
Surface Cover:	Woods	Grass
n-value=	0.40	0.240
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs}$) $=$	0.45	0.24
Shallow Flow		
Length (ft)=	63.48	
Slope (ft/ft)=	0.01	
Surface Cover:	Unpaved	
Average Velocity (ft/sec)=	1.61	0.00
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.01	0.00
Channel Flow 1		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area $\left(\mathrm{ft}^{2}\right)=$		
Wetted Perimeter (ft)=		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=	0.00	0.00
Average Velocity (ft/sec)=	0.00	0.00
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.00	0.00
Tc (hrs) $=$	0.46	0.33
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Site Impervious Surface Area (Ac) $=$	0.00	0.00
Lot Impervious Surface Area (Ac) =	0.00	0.00
1-year, 24-hour storm (Peak Flow)		
Volume of runoff $\left(\mathrm{ft}^{3}\right)=$	308	225
Volume change (ft^{3}) $=$		
Runoff (inches) $=\mathrm{Q}^{*}=$	0.2493	0.3651
Peak Discharge (cfs) $=\mathrm{Q}=$	0.0316	0.0386
Composite Curve Number (DA)=	57	61
Composite Curve Number (Site only)=	57	61
DISCONNECTED IMPERVIOUS - Credit given only to residential development with drainage area with less than 30\% impervious		
Percent Disconnected Impervious Credit (Residential Only) =		
Disconnected impervious area (Ac) =		0.00
Drainage Area $\mathrm{CN}_{\text {adjusted }}=$		61
Site Only $\mathrm{CN}_{\text {adjusted }}=$		61

Project Name:
 DRAINAGE AREA 1 BMP CALCULATIONS

TIDAL WAVE AUTO SPA

DA1 Site Acreage=	1.59										
DA1 Off-Site Acreage=	0.00										
Total Required Storage Volume for Site TCN Requirement $\left(\mathrm{ft}^{3}\right)=$											
Will site use underground water harvesting?	Yes	Enter \%	volume re deci	duction in nal form=		0.91		Note: Sup should be water us	porting in submitte g.	ormation/ to demo	details strate
ENTER AREA TREATED BY BMP											
Land Use (acres)		$\begin{aligned} & \hline \text { Sub-DA1(a) } \\ & (\mathbf{A c}) \\ & \hline \end{aligned}$		$\begin{aligned} & \text { Sub-DA1(b) } \\ & \text { (Ac) } \end{aligned}$		$\begin{aligned} & \text { Sub-DA1(c) } \\ & \text { (Ac) } \end{aligned}$		$\begin{aligned} & \text { Sub-DA1(d) } \\ & \text { (Ac) } \end{aligned}$		$\begin{aligned} & \text { Sub-DA1(e) } \\ & \text { (Ac) } \end{aligned}$	
Commercial		Site	Off-site								
Parking lot		1.29									
Roof											
Open/Landscaped		0.30									
Industrial		Site	Off-site								
Parking lot											
Roof											
Open/Landscaped											
Transportation		Site	Off-site								
High Density (interstate, main)											
High Density (Grassed Right-of-ways)											
Low Density (secondary, feeder)											
Low Density (Grassed Right-of-ways)											
Rural											
Rural (Grassed Right-of-ways)											
Sidewalk											
Misc. Pervious		Site	Off-site								
Managed pervious											
Unmanaged (pasture)											
Woods (not on lots)											
Residential		Site	Off-site								
Roadway											
Grassed Right-of-ways											
Driveway											
Parking lot											
Roof											
Sidewalk											
Lawn											
Managed pervious											
Woods (on lots)											
Land Taken up by BMP											
JURISDICTIONAL LANDS		Site	Off-site	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Natural wetland											
Riparian buffer (Zone 1 only)											
	Totals (Ac) $=$	1.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sub-DA1(a) BMP(s)											
Device Name (As Shown on Plan)	Device Type	Water Quality Volume (c.f.)	Inflow N EMC (mg/L)	Total Inflow N ($\mathrm{lb} / \mathrm{ac} / \mathrm{yr}$)	Inflow P EMC (mg/L)	Total Inflow P ($\mathrm{lb} / \mathrm{ac} / \mathrm{yr}$)	Outflow N EMC (mg/L)	Total Outflow N (lb/ac/yr)	Outflow P EMC (mg/L)	Total Outflow P (lb/ac/yr)	Provided Volume Managed (c.f.)
UNDERGROUND DETENTION	Water Harvesting	4,503	1.45	11.64	0.16	1.31	1.45	1.05	0.16	0.12	8,330
Outflow Total Nitrogen (lb/ac/yr)=		1.05		Oufflow Total Phosphorus ($\mathrm{lb} / \mathrm{ac} / \mathrm{yr}$) $=$						0.12	
Sub-DA1 (b) BMP(s)											

BMP SUMMARY

DRAINAGE AREA SUMMARIES

DRAINAGE AREA:	DA1	DA2	DA3	DA4	DA5	DA6
Post-Development (1-year, 24-hour storm)						
Peak Flow (cfs) $=\mathrm{Q}_{1 \text { 1-year }}=$	6.11	0.04	0.07			
Post-Development with BMPs (1-year, 24-hour storm)						
\% Impervious =	65\%					
Volume Managed (CF)=	8,330					
Post BMP Peak Discharge (cfs)= $\mathrm{Q}_{1 \text {-year }}=$	3.70	0.04	0.07			
Have Target Curve Number Requirements been met?	N/A					
Pre Development Nitrogen and Phosphorus Load						
Total Nitrogen (lb/ac/yr)=	1.16					
Total Phosphorus (lb/ac/yr)=	N/A					
Post Development Nitrogen and Phosphorus Load						
Total Nitrogen (lb/ac/yr)=	9.58					
Total Phosphorus (lb/ac/yr)=	N/A					
Post-BMP Nitrogen Loading						
Outflow Total Nitrogen (lb/ac/yr)=	1.07					
Outflow Total Phosphorus (lb/ac/yr)=	0.14					
Has site met the Target?	YES					
Has site met requirements for offsetting?	YES					

SITE FLOW	PRE-DEVELOPMENT T_{c}	POST-DEVELOPMENT Tc
Sheet Flow		
Length (ft)=	100.00	100.00
Slope (ft/ft)=	0.02	0.04
Surface Cover:	Woods	Grass
n -value=	0.40	0.240
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.34	0.17
Shallow Flow		
Length (ft)=	104.00	91.31
Slope (ft/ft)=	0.04	0.03
Surface Cover:	Unpaved	Unpaved
Average Velocity (ft/sec) $=$	3.23	2.79
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.01	0.01
Channel Flow 1		
Length (ft)=		
Slope (ft/ft)=		
Cross Sectional Flow Area (ft^{2}) $=$		
Wetted Perimeter (ft$)=$		
Channel Lining:		
n-value=		
Hydraulic Radius (ft)=	0.00	0.00
Average Velocity (ft/sec)=	0.00	0.00
$\mathrm{T}_{\mathrm{t}}(\mathrm{hrs})=$	0.00	0.00
Tc (hrs) $=$	0.35	0.18
RESULTS	PRE-DEVELOPMENT	POST-DEVELOPMENT
Site Impervious Surface Area (Ac) =	0.00	0.00
Lot Impervious Surface Area (Ac) $=$	0.00	0.00
1-year, 24-hour storm (Peak Flow)		
Volume of runoff (ft ${ }^{3}$) $=$	681	292
Volume change (ft^{3}) $=$		
Runoff (inches) $=\mathrm{Q}^{*}=$	0.2373	0.3651
Peak Discharge (cfs)= Q=	0.0803	0.0694
Composite Curve Number (DA)=	57	61
Composite Curve Number (Site only)=	57	61
DISCONNECTED IMPERVIOUS - Credit given only to residential development with drainage area with less than $\mathbf{3 0 \%}$ impervious		
Percent Disconnected Impervious Credit (Residential Only) =		
Disconnected impervious area (Ac) =		0.00
Drainage Area $\mathrm{CN}_{\text {adjusted }}=$		61
Site Only $\mathrm{CN}_{\text {adjusted }}=$		61

REFERENCES

SOIL MAP

ArcGIS Web Map

12/18/2023, 7:15:28 PM
1:6,843
North Carolina Parcels (Polygons) - Parcels

255-1
\square Major River Basins

FEMA FLOOD MAP

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

Without Base Flood Elevation (BFE)

	Without Base Flood Elevation (BFE) Zone A, V, A99 With BFE or Depth Zone AE, AO, AH, VE, AR
SPECIAL FLOOD	
HAZARD AREAS	Regulatory Floodway
O.2\% Annual Chance Flood Hazard, Areas of 1\% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X	
OTHER AREAS OF	
FLOOD HAZARD	Future Conditions 1\% Annual Chance Flood Hazard Zone X
Area with Reduced Flood Risk due to	
Levee. See Notes. Zone X	

no screen Area of Minimal Flood Hazard Zone X OTHER AREAS \square Effective LOMRs
OTHER AREAS
Area of Undetermined Flood Hazard Zone D

- - - - Channel, Culvert, or Storm Sewer STRUCTURES

111111 Levee, Dike, or Floodwall
B $-\quad \mathbf{2 0 . 2}$ Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation Coastal Transect
mu $\mathrm{m}_{13 \mathrm{~mm}}$ Base Flood Elevation Line (BFE)
Limit of Study
_Jurisdiction Boundary
-- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline
\qquad

MAP PANELS

: Digital Data Available
 No Digital Data Available
 Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/19/2023 at 9:49 AM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FirM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

USGS QUAD MAP

PRECIPITATION DEPTHS PER NOAA ATLAS 15

NOAA Atlas 14, Volume 2, Version 3 Location name: Rolesville, North Carolina, USA* Latitude: 35.9246°, Longitude: -78.4558°

Elevation: 432 ft**

source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials

PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches/hour) ${ }^{1}$											
Duration	Average recurrence interval (years)										
Duratio	1	2	5	10	25	50	100	200	500	1000	
5-min	$\begin{gathered} \hline 4.84 \\ (4.43-5.29) \end{gathered}$	5.62 $(5.15-6.13)$	6.40 $(5.87-6.98)$	7.19 $(6.58-7.85)$	$\begin{gathered} \hline 7.98 \\ (7.27-8.70) \\ \hline \end{gathered}$	8.62 $(7.81-9.38)$	$\begin{gathered} 9.18 \\ (8.27-10.0) \end{gathered}$	$\begin{gathered} 9.67 \\ (8.66-10.6) \end{gathered}$	$\begin{gathered} 10.2 \\ (9.08-11.2) \end{gathered}$	$\begin{gathered} 10.7 \\ (9.44-11.7) \end{gathered}$	
10-m	$\begin{array}{r} 3 \\ (3.54 \end{array}$	$\begin{array}{r} \hline 4 \\ (4.12 \end{array}$	$\begin{array}{r} 5 \\ \hline 4.70 \end{array}$	$\begin{array}{r} 5 \\ (5.2 \end{array}$	$\begin{gathered} \hline 6.36 \\ (5.80-6.94) \end{gathered}$	$\begin{gathered} \hline 6.86 \\ (6.22-7.48) \end{gathered}$	$\begin{gathered} \hline 7.29 \\ (6.57-7.94) \end{gathered}$	$\begin{gathered} 7.67 \\ (6.87-8.36) \end{gathered}$	$\begin{gathered} \hline 8.09 \\ (7.19-8.83) \end{gathered}$	$\begin{gathered} \hline 8.44 \\ (7.44-9.24) \end{gathered}$	
15-min	$\begin{array}{r} 3 \\ (2.95 \end{array}$	$\begin{array}{r} 3 . \\ (3.45 \end{array}$	(3.9)	(4.4		$\begin{gathered} \hline 5.79 \\ (5.25-6.31) \end{gathered}$			$\begin{gathered} \hline 6.78 \\ (6.03-7.41) \end{gathered}$	$\begin{gathered} \hline 7.06 \\ (6.22-7.73) \end{gathered}$	
30-1	(2.02-2	$\begin{array}{r} \hline 2.6 \\ (2.38-2 \end{array}$	$\begin{gathered} 3.07 \\ (2.81-3.3 \end{gathered}$	$\begin{array}{r} \hline 3.51 \\ (3.21-3.8 \end{array}$		$\begin{gathered} \hline 4.36 \\ (3.95-4.75) \end{gathered}$	$\begin{gathered} \hline 4.70 \\ (4.24-5.12) \end{gathered}$	$\begin{gathered} 5.02 \\ (4.50-5.48) \end{gathered}$	$\begin{gathered} 5.40 \\ (4.80-5.90) \end{gathered}$	$\begin{gathered} \hline 5.72 \\ (5.04-6.26) \end{gathered}$	
60-min	(1.26-1	$\begin{array}{r} 1.6 \\ (1.50- \end{array}$	$\begin{gathered} 1.97 \\ (1.80-2.1 \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 2 9} \\ (2.09-2.5 \end{gathered}$	$\begin{array}{r} \hline \mathbf{2 . 6} \\ (2.41-2 \end{array}$	$\begin{gathered} \hline 2.95 \\ (2.68-3.22) \end{gathered}$	$\begin{gathered} \hline 3.24 \\ (2.92-3.53) \end{gathered}$	$\begin{array}{r} 3.5 \\ (3.15- \end{array}$	$\begin{gathered} \hline 3.87 \\ (3.44-4.23) \end{gathered}$	$\begin{gathered} \hline \hline 4.18 \\ (3.68-4.57) \end{gathered}$	
2-hr	$\\|(0.732-0.887$	(0.874-1	$\begin{gathered} 1.17 \\ (1.06-1.2 \\ \hline \hline \end{gathered}$	$\begin{array}{r} 1.37 \\ (1.24-1.5 \\ \hline \end{array}$	$\begin{gathered} 1.61 \\ (1.46-1.76 \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.83 \\ (1.64-2.00) \\ \hline \end{gathered}$	$\begin{gathered} 2.03 \\ (1.81-2.22) \end{gathered}$	$\begin{gathered} 2.24 \\ (1.98-2.45) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.51 \\ (2.20-2.74) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.75 \\ (2.40-3.02) \\ \hline \end{gathered}$	
3-hr	$(0.516-0.629)$	$\begin{array}{\|c\|} \hline \mathbf{0 . 6 7 6} \\ (0.617-0.746) \\ \hline \end{array}$	$(0.753-0.913)$	$\begin{gathered} 0.979 \\ (0.888-1.08) \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.16 \\ (1.05-1.28) \\ \hline \end{gathered}$	$\begin{gathered} 1.33 \\ (1.19-1.46) \end{gathered}$	$\begin{gathered} 1.49 \\ (1.32-1.64) \\ \hline \end{gathered}$	(1.47-1.82)	$\begin{gathered} 1.89 \\ (1.65-2.07) \\ \hline \end{gathered}$	$\begin{gathered} 2.10 \\ (1.81-2.31) \\ \hline \end{gathered}$	
6-hr	$(0.311-0.377)$	$(0.372-0.448)$	$(0.454-0.548)$	$\begin{gathered} 0.590 \\ (0.537-0.648) \end{gathered}$	$\begin{gathered} 0.704 \\ (0.636-0.771) \\ \hline \end{gathered}$	$(0.725-0.883)$	$\begin{gathered} 0.911 \\ (0.810-0.995) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.02 \\ (0.898-1.11) \\ \hline \end{array}$	$\begin{gathered} \hline \hline 1.17 \\ (1.02-1.27) \\ \hline \end{gathered}$	$\begin{gathered} 1.30 \\ (1.12-1.42) \\ \hline \end{gathered}$	
12-hr	$\begin{gathered} 0.200 \\ (0.183-0.220) \end{gathered}$	$\begin{gathered} 0.238 \\ (0.219-0.261) \\ \hline \end{gathered}$	$\begin{gathered} 0.293 \\ (0.268-0.321) \\ \hline \end{gathered}$	$(0.319-0.383)$	$\begin{gathered} \mathbf{0 . 4 2 0} \\ (0.380-0.458) \\ \hline \end{gathered}$	$(0.436-0.527)$	$(0.489-0.598)$	$(0.546-0.674)$	(0.622-0.779)	$\mathbf{0 . 8 0 8}$ $(0.689-0.878)$	
24-hr	$(0.110-0.128)$	$(0.134-0.155)$	$(0.168-0.194)$	$(0.195-0.226)$	$(0.231-0.269)$	$(0.260-0.303)$	$(0.289-0.339)$	$(0.319-0.376)$	(0.360-0.427)	$(0.393-0.468)$	
2-day	$\begin{gathered} 0.069 \\ (0.064-0.074) \\ \hline \end{gathered}$	$\begin{gathered} 0.083 \\ (0.077-0.089) \end{gathered}$	$(0.096-0.111)$	$(0.111-0.129)$	$(0.131-0.152)$	$(0.147-0.171)$	$(0.163-0.191)$	$(0.179-0.211)$	(0.201-0.239)	$\mathbf{0 . 2 4 1}$ $(0.219-0.261)$	
3-day	$\begin{gathered} 0.048 \\ (0.045-0.052) \\ \hline \end{gathered}$	$\begin{gathered} 0.058 \\ (0.054-0.062) \\ \hline \end{gathered}$	$\begin{gathered} 0.072 \\ (0.067-0.078) \\ \hline \end{gathered}$	$(0.078-0.090)$	$(0.092-0.106)$	$(0.103-0.119)$	$(0.114-0.132)$	$(0.125-0.146)$	$(0.140-0.166)$	$\mathbf{0 . 1 6 8}$ $(0.152-0.181)$	
4-day	$\left(\begin{array}{c} 0.038 \\ (0.036-0.041) \end{array}\right.$	$\left(\begin{array}{c} 0.046 \\ (0.043-0.049) \end{array}\right.$	$(0.053-0.061)$	$(0.061-0.070)$	$\begin{gathered} 0.077 \\ (0.072-0.083) \\ \hline \end{gathered}$	$(0.080-0.093)$	$(0.089-0.103)$	$(0.098-0.114)$	$\mid(0.110-0.129)$	$(0.119-0.141)$	
7-day	$\left(\begin{array}{c} 0.025 \\ (0.024-0.027) \\ \hline \end{array}\right.$	$\begin{gathered} 0.030 \\ (0.028-0.032) \end{gathered}$	$\begin{gathered} 0.037 \\ (0.034-0.039) \\ \hline \end{gathered}$	$\begin{gathered} 0.042 \\ (0.039-0.045) \\ \hline \end{gathered}$	$\begin{gathered} 0.050 \\ (0.046-0.053) \end{gathered}$	$(0.051-0.059)$	$(0.057-0.066)$	$\begin{gathered} 0.068 \\ (0.062-0.072) \end{gathered}$	$\begin{gathered} 0.076 \\ (0.070-0.082) \end{gathered}$	$\|\mid(0.076-0.089)$	
10-day	$\left\lvert\, \begin{gathered} \mathbf{0 . 0 2 0} \\ (0.019-0.021) \end{gathered}\right.$	$\begin{gathered} 0.024 \\ (0.022-0.025) \end{gathered}$	$\begin{gathered} 0.029 \\ (0.027-0.031) \end{gathered}$	$\left\lvert\, \begin{gathered} 0.033 \\ (0.031-0.035) \end{gathered}\right.$	$\left(\begin{array}{c} 0.038 \\ (0.035-0.041) \end{array}\right.$	$\left(\begin{array}{c} \mathbf{0 . 0 4 2} \\ (0.039-0.045) \end{array}\right.$	$\begin{gathered} \mathbf{0 . 0 4 6} \\ (0.043-0.050) \end{gathered}$	$\left(\begin{array}{c} 0.051 \\ (0.047-0.054) \end{array}\right.$	$\left(\begin{array}{c} 0.056 \\ (0.052-0.061) \end{array}\right.$	$\|\|(0.056-0.066)\|$	
20-day	$\left(\begin{array}{c} 0.013 \\ (0.012-0.014) \end{array}\right.$	$\left(\begin{array}{c} 0.016 \\ (0.015-0.017) \end{array}\right.$	$\begin{gathered} 0.019 \\ (0.018-0.020) \end{gathered}$	$\left\lvert\, \begin{gathered} 0.021 \\ (0.020-0.022) \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0.024 \\ (0.023-0.026) \end{gathered}\right.$	$\begin{gathered} \mathbf{0 . 0 2 7} \\ (0.025-0.029) \end{gathered}$	$\begin{gathered} \mathbf{0 . 0 2 9} \\ (0.027-0.031) \end{gathered}$	$\left\lvert\, \begin{gathered} \boldsymbol{0 . 0 3 2} \\ (0.030-0.034) \end{gathered}\right.$	$\left(\begin{array}{c} 0.035 \\ (0.033-0.038) \end{array}\right.$	$\left(\begin{array}{c} 0.038 \\ (0.035-0.041) \end{array}\right.$	
30-day	$\left\lvert\, \begin{gathered} 0.011 \\ (0.010-0.012) \end{gathered}\right.$	$\left(\begin{array}{c} \mathbf{0 . 0 1 3} \\ (0.012-0.014) \end{array}\right.$	$\left(\begin{array}{c} 0.015 \\ (0.014-0.016) \end{array}\right.$	$\left(\begin{array}{c} 0.017 \\ (0.016-0.018) \end{array}\right.$	$\begin{gathered} 0.019 \\ (0.018-0.020) \end{gathered}$	$\left(\begin{array}{c} 0.021 \\ (0.019-0.022) \end{array}\right.$	$\begin{gathered} \mathbf{0 . 0 2 3} \\ (0.021-0.024) \end{gathered}$	$\left\lvert\, \begin{gathered} \boldsymbol{0 . 0 2 4} \\ (0.023-0.026) \end{gathered}\right.$	$\left(\begin{array}{c} 0.027 \\ (0.025-0.028) \end{array}\right.$	0.028 $(0.026-0.030)$	
45-day	$\mathbf{0 . 0 0 9}$ $(0.009-0.010)$	0.011 $(0.010-0.011)$	0.012 $(0.012-0.013)$	$\left\lvert\, \begin{gathered} 0.014 \\ (0.013-0.015) \end{gathered}\right.$	$\mathbf{0 . 0 1 5}$ $(0.015-0.016)$ 0.0 .0	0.017 $(0.016-0.018)$	0.018 $(0.017-0.019)$	0.019 $(0.018-0.020)$	$\mathbf{0 . 0 2 1}$ $(0.019-0.022)$	$\mathbf{0 . 0 2 2}$ $(0.020-0.023)$	
60-day	$\begin{gathered} 0.008 \\ (0.008-0.009) \\ \hline \end{gathered}$	$\begin{array}{c\|} 0.010 \\ (0.009-0.010) \\ \hline \end{array}$	$\begin{gathered} 0.011 \\ (0.010-0.012) \\ \hline \end{gathered}$	$\begin{array}{c\|} \mathbf{0 . 0 1 2} \\ (0.011-0.013) \\ \hline \end{array}$	$\begin{gathered} 0.013 \\ (0.013-0.014) \\ \hline \end{gathered}$	$\begin{gathered} 0.014 \\ (0.014-0.015) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 0 1 5} \\ (0.014-0.016) \\ \hline \end{array}$	$\begin{gathered} \mathbf{0 . 0 1 6} \\ (0.015-0.017) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 0.018 \\ (0.016-0.019) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 0 1 8} \\ (0.017-0.020) \\ \hline \end{array}$	

[^1]
PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 35.9246°, Longitude: -78.4558°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
-100
-200
-1000
-

NOAA Atlas 14, Volume 2, Version 3
Created (GMT): Thu Oct 26 22:00:25 2023
Back to Top

Maps \& aerials

Small scale terrain

Large scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

Stormtech MC-3500 Underground Detention Details \& Maintenance

Save Valuable Land and Protect Water Resources

StormTech

Detention • Retention • Water Quality
Subsurface Stormwater Management ${ }^{\text {sn }}$

Isolator"' Row 0\&M Manual

StormTech ${ }^{\circledR}$ Chamber System for Stormwater Management

1.1 INTRODUCTION

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a patented technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance.

Looking down the Isolator Row from the manhole opening, woven geotextile is shown between the chamber and stone base.

1.2 THE ISOLATOR ${ }^{m "}$ ROW

The Isolator Row is a row of StormTech chambers, either SC-310, SC-740, DC-780 or MC-3500 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

Two different fabrics are used for the Isolator Row. A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The tough geotextile provides a media for storm water filtration and provides a durable surface for maintenance operations. It is also designed to prevent scour of the underlying stone and remain intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber.

The Isolator Row is typically designed to capture the "first flush" and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole not only provides access to the Isolator Row but typically includes a high flow weir such that storm water flowrates or volumes that exceed the capacity of the Isolator Row overtop the over flow weir and discharge through a manifold to the other chambers.

The Isolator Row may also be part of a treatment train. By treating storm water prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured. Pre-treatment best management practices can be as simple as deep sump catch basins, oil-water separators or can be innovative storm water treatment devices. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.

Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.

StormTech Isolator Row with Overflow Spillway (not to scale)

2.0 Isolator Row Inspection/Maintenance

2.1 INSPECTION

The frequency of Inspection and Maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.

2.2 MAINTENANCE

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Examples of culvert cleaning nozzles appropriate for Isolator Row maintenance. (These are not StormTech products.)

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

StormTech Isolator Row (not to scale)

Note: For many applications, the non-woven geotextile over the DC-780, MC-3500 and MC-4500 Isolator Row chambers can be eliminated or substituted with the AASHTO Class 1 woven geotextile. Contact your StormTech representative for assistance.

3.0 Isolator Row Step By Step Maintenance Procedures

Step 1) Inspect Isolator Row for sediment
A) Inspection ports (if present)
i. Remove lid from floor box frame
ii. Remove cap from inspection riser
iii. Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
iv. If sediment is at, or above, 3 inch depth proceed to Step 2. If not proceed to step 3.
B) All Isolator Rows
i. Remove cover from manhole at upstream end of Isolator Row

StormTech Isolator Row (not to scale)

ii. Using a flashlight, inspect down Isolator Row through outlet pipe

1. Mirrors on poles or cameras may be used to avoid a confined space entry
2. Follow OSHA regulations for confined space entry if entering manhole
iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches) proceed to Step 2. If not proceed to Step 3.

Step 2) Clean out Isolator Row using the JetVac process
A) A fixed culvert cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
B) Apply multiple passes of JetVac until backflush water is clean
C) Vacuum manhole sump as required

Step 3) Replace all caps, lids and covers, record observations and actions
Step 4) Inspect \& clean catch basins and manholes upstream of the StormTech system

Sample Maintenance Log

Date	Stadia Rod Readings		Sediment Depth (1) - (2)	Observations/Actions	Inspector
	Fixed point to chamber bottom (1)	Fixed point to top of sediment (2)			
3/15/01	6.3 ft .	none		New installation. Fixed point is Cl frame at grade	djm
9/24/01		6.2	0.1 ft .	Some grit felt	sm
6/20/03		5.8	0.5 ft .	Mucky feel, debris visible in manhole and in Isolator row, maintenance due	rv
7/7/03	6.3 ft .		0	System jetted and vacuumed	djm

Detention • Retention • Water Quality
Subsurface Stormwater Management" ${ }^{\text {s" }}$

70 Inwood Road, Suite $3 \mid$ Rocky Hill \mid Connecticut $\mid 06067$	
$860.529 .8188 \mid 888.892 .2694$	\mid fax $866.328 .8401 \mid$ www.stormtech.com

Isolator Row Inspection Maintenance

Step 1) Inspect Isolator Row for sediment
A) Remove cover from manhole at upstream end of Isolator Row
B) Using a flashlight, inspect down Isolator Row through outlet pipe

1. Mirrors on poles or cameras may be used to avoid a confined space entry
2. Follow OSHA regulations for confined space entry if entering manhole
C) If sediment is approximately 3 inches, proceed to Step 2. If not, proceed to Step 3.

Step 2) Clean out Isolator Row using JetVac process
A) A fixed culvert cleaning nozzle with rear facing nozzle spread of at least 45 inches or more is preferable
B) Apply multiple passes of JetVac until backflush water is clean
C) Vacuum manhole sump as required

Step 3) Replace all caps, lids, and covers, record observations and actions
Step 4) Inspect and clean basins and manholes upstream of the Isolator Row

Additional Notes

1. Inspect every 6 months during the first year of operation. Adjust the
inspection interval based on previous observations of sediment accumulation and high water elevations.
2. Conduct jetting and vactoring only when inspection shows that maintenance is necessary.

DATE	OBSERVATIONS IRECOMMENDATIONS	INTALS

[^0]: POST DA 3 Net SCS Curve Number =
 61

[^1]: ${ }^{1}$ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.
 Please refer to NOAA Atlas 14 document for more information.

