

Tommie L. (Trey) Little III, P.E. SeamonWhiteside 230 E Peterson Dr Charlotte, NC 28217 NCBEL # C-2466 Prepared by:

124 E Thompson St. Thomaston, GA 30286

DRAINAGE REPORT FOR

TIDAL WAVE AUTO SPA

Rolesville, North Carolina

December 22, 2023

Prepared for:

SHJ Development LLC

rcvd 80 12-22-23 **SDP-23-** V2 -

EXECUTIVE SUMMARY

Introduction

The proposed project includes the development of 1 car wash facility building, vacuum equipment building, associated parking areas, and necessary infrastructure. The project will sit on a 1.92 acre property subdivided from a larger 3.80 acre parcel defined as Wake County PIN 1758479244.

Existing Site Conditions

Existing Use

The property currently exist as a vacant lost composed primarily of woods.

Watersheds, Buffers, and Flood Plains

The proposed project is located within the Lower Neuse River watershed. There are no floodplains on the site. The property is located in Flood Zone X, an area of minimal flood hazard.

Soils

Based on the North Carolina Department of Environmental Quality (NCDEQ) Wake County 1970 Soil Map for the site, the soils located within the project area are defined as LwB and LwC. The Wake County 1970 Soil Survey Map for the site is included in the Appendix of this report.

Drainage

In the existing condition the site drains to three points of interest (POI) along the northwest property boundary. POI 1 collects the most drainage from the site via overland flow. POI 1 and POI 2 collect the remainder of the drainage also via overland flow. Runoff from POI 2 discharges into the existing catch basin on the southbound lane of Grand Park Drive. Runoff from POI 3 discharges into the catch basin on the northside of the water tower access road in existing conditions.

Proposed Site Conditions

Improvements

The proposed improvements to the site are the development of a car wash building, associated parking areas, and associated infrastructure.

Drainage

Runoff from the proposed buildings and site impervious areas will be conveyed to an underground detention system via three curb inlets. All new proposed impervious area will drain to the underground detention and be treated for water quality.

Existing Stormwater Management

Existing Quality and Detention

The site is currently vacant with no on site stormwater management.

Proposed Stormwater Management

Proposed Quality and Detention

All existing and proposed drainage areas are being evaluated at the Points of Interest described in the Drainage Section of this report above. Existing and Proposed Drainage Basins are shown along with the corresponding Points of Interest on the Pre- and Post-Development Maps included in Appendix.

Curve number and time of concentration calculations are included in Appendix.

The pre-developed and post developed flow rates and volume calculations were performed with Hydroflow Hydrographs using an SCS Methodology and a 24-hour hydrograph (based on NOAA Atlas 15 depths) as described in the NCDEQ stormwater design manual. A summary of the results is shown in the Table below:

An ADS StormTech underground detention system is proposed to reduce the post-development flow and mitigate the nitrogen export due to the increase in impervious areas. The proposed system will store the runoff as the outlet control structure releases the runoff at a lower flow rate than pre-developed conditions. The Wake County Hybrid Stormwater Tool was used to determine the system mitigates the nitrogen export to below the states maximum. The detention system storage sizing calculations are included in the Appendix.

A summary of the pre-development and post development runoff flows for POI 1 and the bypass drainage areas are shown in the Table below:

	Pre and Post Development Runoff Summary					
Design	Design Pre Development Post Development					
Storm	POI 1	POI 2	POI 3	POI 1	POI 2	POI 3
1 Year	0.173	0.042	0.106	0.093	0.034	0.049
2 Year	0.402	0.104	0.263	0.108	0.079	0.115
10 Year	1.293	0.361	0.908	0.911	0.253	0.360

The Wake County Hybrid Stormwater Tool was used to determine the ADS StormTech underground detention system mitigates the nitrogen export to below the states maximum. Infiltration through the existing Wedowee-Urban Land (WgB) soil will be used for water quality treatment. According to the USGS soil survey, WgB soil has an infiltration rate pf 0.57 to 1.98 in/hr. The most conservative value infiltration rate, 0.57 in/hr, was used in the Hydroflow Hydrographs model for peak discharge calculations. The detention system storage sizing and Wake County Hybrid Stormwater Tool calculations are included in the Appendix.

A summary of the pre-development and post development nitrogen loading rates from the site are shown in the Table below:

POI 1 Pre and	Post Development Nitrogen Loading	Summary
Pre-Developed Loading	Post-Developed Loading	Post BMP Loading
(lb/ac/yr)	(lb/ac/yr)	(lb/ac/yr)
1.16	9.58	1.07

Erosion Control

Erosion and sediment control measures during construction will be accomplished using temporary and permanent best management practices (BMPs). Temporary best management practices include the utilization of a silt fence, inlet protection, and temporary seeding during construction. Permanent best management practices include the permanent seeding and stabilization of the site.

Stormwater Conveyance

The stormwater conveyance pipe system was designed to convey the 10-year, 24-hour storm event and checked with the 25-year, 24 hour storm event. The pipe modeling software, Hydraflow Storm Sewers, has been used for the design of the proposed storm drainage pipes and inlets for the site (stormwater conveyance system). Storm Sewers utilizes the Rational Method based on the 10-year, 24-hour storm event.

DEVELOPMENT DRAINAGE MAPS

PRE DEVELC DRAINA	
MAP	

X	>1
$\mathcal{S}_{\mathfrak{r}}$	\sum_{k}

CURVE NUMBER CALCULATIONS

Soil Conservation Service Drainage Runoff Curve Number

Project: TWAS Rolesville @ Main St Municipality: Rolesville/ Wake County

CPE Job# 10772

		Pre-Developme	nt		
PRE BASIN 1 Cover Type	Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
W0000	_				
WOODS	В	FAIR	60.00	0.83	49.80
GRAVEL	В	FAIR	85.00	0.04	3.40
			Sub-total	0.87	53.20
PRE BASIN 1 Net SCS Curve	e Number =	61			
PRE BASIN 2 Cover Type	Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
W0000					
WOODS	В	FAIR	60.00	0.22	13.20
GRASS (FAIR CONDITION)	В	FAIR	61.00	0.12	7.32
			Sub-total	0.34	20.52
PRE BASIN 2 Net SCS Curve	e Number =	60			
PRE BASIN 3					
Cover Type	Soil Group	Soil Condtion	C N Factor	Acres	Acre x Factor
WOODS	В	FAIR	60.00	0.57	34.20
GRASS (FAIR CONDITION)	В	FAIR	61.00	0.22	13.42
			Sub-total	0.79	47.62
PRE BASIN 3 Net SCS Curve	e Number =	60			

CPE

Job# 10772

Soil Conservation Service Drainage Runoff Curve Number

Project: TWAS Rolesville @ Main St Municipality: Rolesville/ Wake County

POST DA 3 Net SCS Curve Number =

Post-Development POST DA 1 (BMP) **Cover Type** Soil Group Soil Condtion **C N Factor** Acres Acre x Factor PAVED PARKING 1.29 В FAIR 98.00 126.42 **GRASS (FAIR CONDITION)** В FAIR 0.30 61.00 18.30 Sub-total 1.59 144.72 POST DA 1 (BMP) Net SCS Curve Number = 91 POST DA 2 **Soil Condtion** Acre x Factor Cover Type Soil Group **C N Factor** Acres **GRASS (FAIR CONDITION)** FAIR В 61.00 0.17 10.37 Sub-total 0.17 10.37 POST DA 2 Net SCS Curve Number = 61 **POST DA 3** Cover Type Soil Group Soil Condtion **C N Factor** Acres Acre x Factor GRASS (FAIR CONDITION) В FAIR 0.22 61.00 13.42

61

Sub-total

0.22

13.42

TIME OF CONCENTRATION CALCULATIONS

Time of Concentration Calculations Pre-Development

Project: TWAS Rolesville @ S Main St Municipality: Rolesville/Wake County

CPE Job# 10772

Mannings Roughness Coefficient (Sheet Flow)					
Meadow	0.24	Smooth Earth	0.022	Smooth Conc.	0.012
Lawn	0.41	Smooth Clay	0.016	Asphalt	0.013
Farm Field	0.12	Drainage Ditch	0.04	RCP Pipe	0.012
Woods	0.6	Stream, Best	0.04	CMP Pipe	0.022
Fallow Earth	0.05	Stream, Worst	0.15	PVC Pipe	0.011

Pre Basin 1

Tc = {0.007 * [(L*	Sheet Flow Tc = {0.007 * [(L* n)^0.8] / [P2^0.5 * s^0.4]}*60			Shallow Conc. Flow $T_t = L/(60*V)$		Channel Flow T _t = L/(60*V)		
Kinemat	tic Wave/Sh	eet Flow	(V _{unpaved} =16.1	345s ^{0.5} V _{pave}	_d =20.3282s ^{0.5})	(Assume 2 ft/s for ty otherwise	yp. lowcountr use Manning	y channels & pipes, 's formula)
	Tc 1			Tc 2			Tc 3	
Length =	100	L (ft)	Paved?	Ν				
Mannings	0.6		Length =	70.91	L (ft)			
rainfall	2.86	i	Slope =	0.02	s (ft/ft)	Length	0	L (ft)
slope	0.04	s (ft/ft)	Velocity =	2.28	V (ft/s)	Velocity =	0	V (ft/s)
Tc 1 =	18.72	_	T _t 2 =	0.52	min.	T _t 3 =	0.00	min.
						Total T _c =		<mark>19</mark> min.

Dro	Dacin	2
Pre	Basin	2

	Sheet Flov	v	Shal	low Conc.	Flow
Tc = {0.007 * [(L	.* n)^0.8]/[P2	^0.5 * s^0.4]}*60	Т	$t_t = L/(60*)$	V)
Kinema	itic Wave/Sh	eet Flow	(V _{unpaved} =16.1	345s ^{0.5} V _{pave}	_d =20.3282s ^{0.5})
	Tc 1			Tc 2	
Length =	100	L (ft)	Paved?	Ν	
Mannings	0.6		Length =	63.48	L (ft)
rainfall	2.86	i	Slope =	0.013	s (ft/ft)
slope	0.013	s (ft/ft)	Velocity =	1.84	V (ft/s)
Tc 1 =	26.22	_	T _t 2 =	0.58	min.

Assume 2 tt/s tor	Channel Flow $T_t = L/(60*V)$	
	Tc 3	
Length Velocity =	0 0	L (ft) V (ft/s)
T _t 3 =	0.00	min.
Total T _c =	27	min.

Pre Basin 3								
	Sheet Flov	v	Shal	low Conc.	Flow	с	hannel Flo	ow
Tc = {0.007 * [(L	* n)^0.8] / [P2	2^0.5 * s^0.4]}*60	Т	t _t = L/(60*	V)	Т	t = L/(60*)	V)
Kinema	tic Wave/Sh	eet Flow	(V _{unpaved} =16.13	345s ^{0.5} V _{pav}	ed=20.3282s ^{0.5})	(Assume 2 tt/s tor tvp_lowcountry		
	Tc 1			Tc 2			Tc 3	
Length =	100	L (ft)	Paved?	Ν				
Mannings	0.6		Length =	104	L (ft)			
rainfall	2.86	i	Slope =	0.04	s (ft/ft)	Length	0	L (ft)
slope	0.019	s (ft/ft)	Velocity =	3.23	V (ft/s)	Velocity =	0	V (ft/s)
Tc 1 =	23.40		T _t 2 =	0.54	min.	T _t 3 =	0.00	min.
-			-			• –		

Total T_c = 24 min.

Time of Concentration Calculations Post-Development

Project: TWAS Rolesville @ S Main St Municipality: Rolesville/Wake County

CPE Job# 10772

Mannings Roughness Coefficient (Sheet Flow)						
Meadow	0.24	Smooth Earth	0.022	Smooth Conc.	0.012	
Lawn	0.41	Smooth Clay	0.016	Asphalt	0.013	
Farm Field	0.12	Drainage Ditch	0.04	RCP Pipe	0.012	
Woods	0.6	Stream, Best	0.04	CMP Pipe	0.022	
Fallow Earth	0.05	Stream, Worst	0.15	PVC Pipe	0.011	

Post Basin 1A (BMP)

	()							
Sheet Flow Tc = {0.007 * [(L* n)^0.8] / [P2^0.5 * s^0.4]}*60 Kinematic Wave/Sheet Flow			Shallow Conc. Flow $T_t = L/(60*V)$ $(V_{unpaved}=16.1345s^{0.5} V_{paved}=20.3282s^{0.5})$			Channel Flow T _t = L/(60*V) (Assume 2 tt/s for typ_lowcountry		
	Tc 1			Tc 2			Tc 3	
Length =	100	L (ft)	Paved?	Y				
Mannings	0.013		Length =	96.31	L (ft)			
rainfall	2.68	i	Slope =	0.02	s (ft/ft)	Length	0	L (ft)
slope	0.016	s (ft/ft)	Velocity =	2.87	V (ft/s)	Velocity =	0	V (ft/s)
Tc 1 =	2.54	_	T _t 2 =	0.56	min.	T _t 3 =	0.00	min.
						Total T _c =		<mark>3</mark> min.

Post Basin 2									
Sheet Flow			Shall	low Conc.	Flow	C	Channel Flow		
Tc = {0.007 * [(L* n)^0.8] / [P2^0.5 * s^0.4]}*60			Т	$t_t = L/(60*)$	√)	T	t = L/(60*	V)	
Kinemat	ic Wave/Sh	eet Flow	(V _{unpaved} =16.13	345s ^{0.5} V _{pave}	=20.3282s ^{0.5})	(Assume 2 tt/s for typ_lowcountry			
Tc 1			Tc 2			Tc 3			
Length =	75.2	L (ft)	Paved?	Y					
Mannings	0.41		Length =	0	L (ft)				
rainfall	2.68	i	Slope =	0	s (ft/ft)	Length	0	L (ft)	
slope	0.01	s (ft/ft)	Velocity =	0.00	V (ft/s)	Velocity =	0	V (ft/s)	
Tc 1 =	19.53	_	T _t 2 =	0.00	min.	T _t 3 =	0.00	min.	
						Total T _c =		20 min.	
Post Basin 3									
Post Basin 3	Sheet Flov	N	Shall	low Conc.	Flow	C	hannel Fle	ow	
Post Basin 3 5 Tc = {0.007 * [(L*	Sheet Flov n)^0.8] / [P2	V 2^0.5 * s^0.4]}*60	Shall T	low Conc. t = L/(60*)	Flow √)	CI T	hannel Flo t = L/(60*	ow V)	
Post Basin 3 Tc = {0.007 * [(L* Kinemat	Sheet Flov [:] n)^0.8] / [P2 ic Wave/Sh	v 2^0.5 * s^0.4]}*60 eet Flow	Shal l T (V _{unpaved} =16.13	low Conc. $T_t = L/(60^*)$ 345s ^{0.5} V _{pave}	Flow √) ₀=20.3282s ^{0.5})	CI T (Assume 2 tt/s tor tvp_lowcountry	hannel Fle t = L/(60*	ow V)	
Post Basin 3 Tc = {0.007 * [(L* Kinemat	Sheet Flov : n)^0.8] / [P2 ic Wave/Sh Tc 1	v 2^0.5 * s^0.4]}*60 eet Flow	Shall T (V _{unpaved} =16.1:	low Conc. $T_t = L/(60^*)$ $345s^{0.5} V_{pave}$ <i>Tc</i> 2	Flow √) _d =20.3282s ^{0.5})	CI T (Assume 2 tt/s tor tvp_lowcountry	hannel Fle t = L/(60* Tc 3	ow ∨)	
Post Basin 3 Tc = {0.007 * [(L* Kinemat Length =	Sheet Flov ^r n)^0.8] / [P2 ic Wave/Sh Tc 1 100	v 2^0.5 * s^0.4]}*60 eet Flow L (ft)	Shall T (V _{unpaved} =16.1: Paved?	low Conc. $T_t = L/(60^{*1})$ 345s ^{0.5} V _{pave} <i>Tc 2</i> N	Flow V) _{sd} =20.3282s ^{0.5})	C T (Assume 2 tt/s tor tvp_lowcountry	hannel Flo t = L/(60* Tc 3	ow V)	
Post Basin 3 Tc = {0.007 * [(L* Kinemat Length = Mannings	Sheet Flov i n)^0.8] / [P2 ic Wave/Sh Tc 1 100 0.41	v ^{2^0.5 *} s^0.4]}*60 eet Flow L (ft)	Shall T (V _{unpaved} =16.1: Paved? Length =	low Conc. $T_t = L/(60^*)$ 345s ^{0.5} V _{pave} <i>Tc 2</i> N 91.31	Flow ✓) ₅d=20.3282s ^{0.5}) L (ft)	CI T (Assume 2 tt/s tor tvp_lowcountry	hannel Flo t = L/(60* Tc 3	ow ∨)	
Post Basin 3	Sheet Flov n)^0.8] / [P2 ic Wave/Sh Tc 1 100 0.41 2.68	v 2^0.5 * s^0.4]}*60 eet Flow L (ft) i	Shall T (V _{unpaved} =16.13 Paved? Length = Slope =	low Conc. $T_t = L/(60^{*1})^{-1}$ $345s^{0.5} V_{pave}$ Tc 2 N 91.31 0.027	Flow V) _{sd} =20.3282s ^{0.5}) L (ft) s (ft/ft)	CI (Assume 2 tt/s tor tvp_lowcountry Length	hannel Flo = L/(60* <i>Tc 3</i> 0	ow ∨) L (ft)	
Post Basin 3 Tc = {0.007 * [(L* Kinemat Length = Mannings rainfall slope	Sheet Flov in)^0.8] / [P2 ic Wave/Sh Tc 1 100 0.41 2.68 0.04	v 2^0.5 * s^0.4]}*60 eet Flow L (ft) i s (ft/ft)	Shall T (V _{unpaved} =16.13 Paved? Length = Slope = Velocity =	low Conc. $T_t = L/(60^*)$ 345s ^{0.5} V _{pave} <i>Tc 2</i> N 91.31 0.027 2.65	Flow ✓) ₅d=20.3282s ^{0.5}) L (ft) s (ft/ft) V (ft/s)	CI (Assume 2 tt/s tor tvp_lowcountrv Length Velocity =	hannel Flo = L/(60* <i>Tc 3</i> 0 0	ow ∨) L (ft) V (ft/s)	
Post Basin 3 Tc = {0.007 * [(L* Kinemat Length = Mannings rainfall slope Tc 1 =	Sheet Flov in)^0.8] / [P2 ic Wave/Sh Tc 1 100 0.41 2.68 0.04 15.29	v 2^0.5 * s^0.4]}*60 eet Flow L (ft) i s (ft/ft)	Shall T (V _{unpaved} =16.13 Paved? Length = Slope = Velocity = T _t 2 =	low Conc. $T_t = L/(60^*)$ $345s^{0.5} V_{pave}$ Tc 2 N 91.31 0.027 2.65 0.57	Flow ✓) ₅d=20.3282s ^{0.5}) L (ft) s (ft/ft) V (ft/s) min.	Cl T (Assume 2 tt/s tor tvn_lowcountrv Length Velocity = T _t 3 =	hannel Fla = L/(60* <i>Tc 3</i> 0 0 0	ow V) L (ft) V (ft/s) min.	

PEAK ATTENUATION CALCULATIONS (1-, 2-, 10-, 24-HR EVENTS)

Watershed Model Schematic Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

1-YEAR 24-HOUR STORM EVENT

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.173	2	728	989				PRE DA 1
2	SCS Runoff	0.042	2	736	351				PRE DA 2
3	SCS Runoff	0.106	2	734	803				PRE DA 3
4	SCS Runoff	5.058	2	716	10,503				POST DA 1 (BMP)
5	SCS Runoff	0.034	2	728	193				POST DA 2
6	SCS Runoff	0.049	2	726	244				POST DA 3
7	Reservoir	0.093	2	956	10,458	4	388.82	7,285	UNDERGROUND DETENTION
Sto	rage Model L/	ARGE.gp	w		Return P	eriod: 1 Ye	ar	Tuesday, 10	0/31/2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 1

PRE DA 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.173 cfs
Storm frequency	= 1 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 989 cuft
Drainage area	= 0.870 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 2

PRE DA 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.042 cfs
Storm frequency	= 1 yrs	Time to peak	= 736 min
Time interval	= 2 min	Hyd. volume	= 351 cuft
Drainage area	= 0.340 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 27.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 3

PRE DA 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.106 cfs
Storm frequency	= 1 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 803 cuft
Drainage area	= 0.790 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 24.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Tuesday, 10 / 31 / 2023

Hyd. No. 4

POST DA 1 (BMP)

Hydrograph type	= SCS Runoff	Peak discharge	= 5.058 cfs
Storm frequency	= 1 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 10,503 cuft
Drainage area	= 1.590 ac	Curve number	= 91
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 5

POST DA 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.034 cfs
Storm frequency	= 1 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 193 cuft
Drainage area	= 0.170 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 6

POST DA 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.049 cfs
Storm frequency	= 1 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 244 cuft
Drainage area	= 0.220 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 2.86 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 7

UNDERGROUND DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 0.093 cfs
Storm frequency	= 1 yrs	Time to peak	= 956 min
Time interval	= 2 min	Hyd. volume	= 10,458 cuft
Inflow hyd. No.	= 4 - POST DA 1 (BMP)	Max. Elevation	= 388.82 ft
Reservoir name	= UNDER GROUND DETEN	NTIOMax. Storage	= 7,285 cuft

Storage Indication method used.

9

2-YEAR 24-HOUR STORM EVENT

Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	0.402	2	728	1,738				PRE DA 1
2	SCS Runoff	0.104	2	734	629				PRE DA 2
3	SCS Runoff	0.263	2	732	1,439				PRE DA 3
4	SCS Runoff	6.413	2	716	13,494				POST DA 1 (BMP)
5	SCS Runoff	0.079	2	728	340				POST DA 2
6	SCS Runoff	0.115	2	724	429				POST DA 3
7	Reservoir	0.108	2	982	13,441	4	389.10	9,579	UNDERGROUND DETENTION
Sto	rage Model L4	ARGE.gp	W		Return P	eriod: 2 Ye	ar	Tuesday, 10	0/31/2023
Sto	rage Model LA	ARGE.gp	w		Return P	eriod: 2 Ye	ar	Tuesday, 10	0 / 31 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 1

PRE DA 1

Hydrograph type	= SCS Runoff	Peak discharge	= 0.402 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 1,738 cuft
Drainage area	= 0.870 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 3.45 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 2

PRE DA 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.104 cfs
Storm frequency	= 2 yrs	Time to peak	= 734 min
Time interval	= 2 min	Hyd. volume	= 629 cuft
Drainage area	= 0.340 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 27.00 min
Total precip.	= 3.45 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 3

PRE DA 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.263 cfs
Storm frequency	= 2 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 1,439 cuft
Drainage area	= 0.790 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 24.00 min
Total precip.	= 3.45 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

2

Tuesday, 10 / 31 / 2023

Hyd. No. 4

POST DA 1 (BMP)

Hydrograph type	= SCS Runoff	Peak discharge	= 6.413 cfs
Storm frequency	= 2 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 13,494 cuft
Drainage area	= 1.590 ac	Curve number	= 91
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 3.45 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 5

POST DA 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.079 cfs
Storm frequency	= 2 yrs	Time to peak	= 728 min
Time interval	= 2 min	Hyd. volume	= 340 cuft
Drainage area	= 0.170 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 3.45 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 6

POST DA 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.115 cfs
Storm frequency	= 2 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 429 cuft
Drainage area	= 0.220 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 3.45 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 7

UNDERGROUND DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 0.108 cfs
Storm frequency	= 2 yrs	Time to peak	= 982 min
Time interval	= 2 min	Hyd. volume	= 13,441 cuft
Inflow hyd. No.	= 4 - POST DA 1 (BMP)	Max. Elevation	= 389.10 ft
Reservoir name	= UNDER GROUND DETENT	IOMax. Storage	= 9,579 cuft

Storage Indication method used.

10-YEAR 24-HOUR STORM EVENT
Hydrograph Summary Report Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to Peak (min)	Hyd. volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Total strge used (cuft)	Hydrograph Description
1	SCS Runoff	1.293	2	726	4,400				PRE DA 1
2	SCS Runoff	0.361	2	732	1,635				PRE DA 2
3	SCS Runoff	0.908	2	730	3,739				PRE DA 3
4	SCS Runoff	10.04	2	716	21,757				POST DA 1 (BMP)
5	SCS Runoff	0.253	2	726	860				POST DA 2
6	SCS Runoff	0.360	2	724	1,085				POST DA 3
7	Reservoir	0.911	2	744	21,675	4	389.48	12,723	UNDERGROUND DETENTION
Sto	rage Model I				Return P	eriod: 10 Y		Tuesday 1	0 / 31 / 2023
Sto	rage Model LA	ARGE.gp	W		Return P	eriod: 10 Y	ear	Tuesday, 10	0 / 31 / 2023

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 1

PRE DA 1

Hydrograph type	= SCS Runoff	Peak discharge	= 1.293 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 4,400 cuft
Drainage area	= 0.870 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 19.00 min
Total precip.	= 5.04 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 2

PRE DA 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.361 cfs
Storm frequency	= 10 yrs	Time to peak	= 732 min
Time interval	= 2 min	Hyd. volume	= 1,635 cuft
Drainage area	= 0.340 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 27.00 min
Total precip.	= 5.04 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 3

PRE DA 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.908 cfs
Storm frequency	= 10 yrs	Time to peak	= 730 min
Time interval	= 2 min	Hyd. volume	= 3,739 cuft
Drainage area	= 0.790 ac	Curve number	= 60
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 24.00 min
Total precip.	= 5.04 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

21

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Tuesday, 10 / 31 / 2023

Hyd. No. 4

POST DA 1 (BMP)

Hydrograph type	= SCS Runoff	Peak discharge	= 10.04 cfs
Storm frequency	= 10 yrs	Time to peak	= 716 min
Time interval	= 2 min	Hyd. volume	= 21,757 cuft
Drainage area	= 1.590 ac	Curve number	= 91
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 5.00 min
Total precip.	= 5.04 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 5

POST DA 2

Hydrograph type	= SCS Runoff	Peak discharge	= 0.253 cfs
Storm frequency	= 10 yrs	Time to peak	= 726 min
Time interval	= 2 min	Hyd. volume	= 860 cuft
Drainage area	= 0.170 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 20.00 min
Total precip.	= 5.04 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 6

POST DA 3

Hydrograph type	= SCS Runoff	Peak discharge	= 0.360 cfs
Storm frequency	= 10 yrs	Time to peak	= 724 min
Time interval	= 2 min	Hyd. volume	= 1,085 cuft
Drainage area	= 0.220 ac	Curve number	= 61
Basin Slope	= 0.0 %	Hydraulic length	= 0 ft
Tc method	= User	Time of conc. (Tc)	= 16.00 min
Total precip.	= 5.04 in	Distribution	= Type II
Storm duration	= 24 hrs	Shape factor	= 484

Hydraflow Hydrographs Extension for Autodesk® Civil 3D® 2019 by Autodesk, Inc. v2019.2

Hyd. No. 7

UNDERGROUND DETENTION

Hydrograph type	= Reservoir	Peak discharge	= 0.911 cfs
Storm frequency	= 10 yrs	Time to peak	= 744 min
Time interval	= 2 min	Hyd. volume	= 21,675 cuft
Inflow hyd. No.	= 4 - POST DA 1 (BMP)	Max. Elevation	= 389.48 ft
Reservoir name	= UNDER GROUND DETENT	IOMax. Storage	= 12,723 cuft

Storage Indication method used.

HYDRAFLOW STORM SEWERS CALCULATIONS

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	с	Тс		Rain	Total	Сар	Vel	'el Pipe I		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID
Line	To		Incr	Total	-coem	Incr	Total	Inlet	Syst	(1)	now	run		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	6.003	0.24	0.24	0.95	0.22	0.22	6.0	6.0	7.0	1.56	4.56	1.73	15	0.50	390.24	390.27	391.11	391.11	391.76	393.85	A5 - A6
2	End	16.379	0.49	0.49	0.95	0.47	0.47	6.0	6.0	7.0	3.27	4.51	3.22	15	0.49	389.71	389.79	390.70	390.73	391.23	393.94	A1 - A2
3	End	16.373	0.64	0.64	0.95	0.61	0.61	6.0	6.0	7.0	4.24	4.51	3.91	15	0.49	389.52	389.60	390.56	390.62	391.04	393.36	A3 - A4
4	End	83.086	0.18	0.18	0.97	0.17	0.17	6.0	6.0	7.0	1.22	7.92	2.30	15	1.50	388.77	390.02	389.61	390.45	390.29	394.56	A7 - A8
5	End	46.882	0.18	0.21	0.97	0.17	0.20	6.0	7.3	6.6	5.35	7.46	3.80	18	0.50	386.10	386.34	387.30	387.38	387.90	391.97	A9 - A10
6	5	193.728	0.00	0.03	0.00	0.00	0.03	6.0	6.4	6.9	4.20	4.57	4.16	15	0.50	386.59	387.56	387.58	388.48	391.97	394.81	A10 - A11
7	6	33.883	0.03	0.03	0.93	0.03	0.03	6.0	6.2	6.9	4.20	4.57	3.92	15	0.50	387.56	387.73	388.60	388.72	394.81	394.41	A11 - A12
8	7	45.782	0.00	0.00	0.00	0.00	0.00	6.0	6.0	0.0	4.00	4.57	3.67	15	0.50	387.73	387.95	388.81	388.95	394.41	389.47	A12 - A13
Proje	ct File:	10.26.2	023 Sto	rm Sewe	ers.stm											Number	of lines: 8			Run Dat	e: 10/26/2	2023
NOTI	ES:Inte	nsity = 8	6.72 / (I	nlet time	+ 15.30) ^ 0.82;	Return	period =	Yrs. 10	; c = cir	e = ellip	b = bo	x									

WAKE COUNTY HYBRID STORMWATER TOOL CALCULATIONS

SITE DATA

	Project Information							
Project Name:	TIDAL WAVE AUTO SPA							
Permit No (if known):								
Applicant:	SHJ DEVELOPMENT LLC							
Applicant Contact Name:	PARKER EVANS							
Applicant Contact Number:	(864) 612-6101							
Contact Email:	PEVANS@SEAMONWHITESIDE.COM							
Last Modified Date:	Friday, October 27, 2023							
Site Data:								
River Basin:	Neuse							
Regulatory Watershed:	N/A							
Physiographic/Geologic Region:	Piedmont							
Type of Development (Select from Dropdown menu):	Non-Residential							
Zoning:	General Business							
Total Site Area (Ac):	1.98							
Existing Lake/Pond Area (Ac):	0.00							
Proposed Disturbed Area (Ac):	0.00							
Proposed Impervious Surface Area from DA Sheets (acre):	1.29							
Percent Built Upon Area (BUA):	65%							
Is the proposed project a site expansion?	No							
Number of Drainage Areas on Site (Points of Analysis):	3							
Annual Rainfall (in):	45.41							
One-year, 24-hour rainfall (in):	3.00							
Two-year, 24-hour rainfall (in):	3.60							
Proposed Reside	ential Stormwater Details (if applicable):							
Site Square Footage:	86,249							
Total Acreage in Lots:								
Lot Square Footage:								
Number of Lots:								
Average Lot Size (SF):								
Proposed Impervious Surface Area from DA sheets (SF):	56,192							
Proposed Impervious Surface Area Devoted to Lots (SF):								
Total Impervious Surface Area Devoted to Roads (SF):								
Other Impervious Surface Area (SF):								

Project Name:

Γ

TIDAL WAVE AUTO SPA

DRAINAGE AREA 1 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA			Р	RE-DEVE		NT		POST-DEVELOPMENT									
Drainage Area (Acres)=				0.	87				1.59								
Site Acreage within Drainage=		0.87									1.59						
One-year, 24-hour rainfall (in)=								3.	.00								
Land Use (acres) by Soil Group:	AS	Soils	BS	Soils	C S	oils	DS	Soils	AS	A Soils B Soils C Soils					DS	oils	
Commercial	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site Offsit		Site	Offsite	Site	Offsite	Site	Offsite	
Parking lot			0.04			-				-	1.29						
Roof																	
Open/Landscaped		1		1		i		1		i	0.30	Ì		Ì		Ì	
Industrial	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Parking lot		1		1		1		1		1							
Roof		1		1		1		1		1							
Open/Landscaped		ļ		ļ		į		ļ		į		ļ		ļ		ļ	
Transportation	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
High Density (interstate, main)		1		1		1		1		1							
High Density (Grassed Right-of-ways)						-				-							
Low Density (secondary, feeder)		1		1		1		-		1							
Low Density (Grassed Right-of-ways)																	
Rural																	
Rural (Grassed Right-of-ways)																	
Sidewalk																	
Misc. Pervious	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Managed pervious (Open Space)		i		i		1		i		1							
Unmanaged (pasture)						1		1		1		i		i		i	
Woods (not on lots)		1	0.83	1		İ		1		İ		l		l		l	
Residential	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Roadway		i i		i i		1		i i		1		ļ		ļ		ļ	
Grassed Right-of-ways												ļ		ļ		ļ	
Driveway						1				1							
Parking lot						-				1							
Roof						-				-							
Sidewalk (Includes Patios)																	
Lawn																	
Managed pervious (Open Space)																	
Woods (on lots)																	
Land Taken up by BMP																	
JURISDICTIONAL LANDS	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Natural wetland		1		1		i		1		i		i		l		i	
Riparian buffer (Zone 1 only)																	
Open water						1				1							
Totals (Ac)=	0.00	0.00	0.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	1.59	0.00	0.00	0.00	0.00	0.00	

SITE FLOW	PRI	E-DEVELOPMENT T _c	POST-DEVELOPMENT Tc						
Sheet Flow									
Length (ft)=		100.00	100.00						
Slope (ft/ft)=		0.04	0.02						
Surface Cover:		Woods	Paved, Gravel, or Bare Soil						
n-value=		0.40	0.011						
T _t (hrs)=		0.26	0.02						
Shallow Flow									
Length (ft)=		70.91	96.31						
Slope (ft/ft)=		0.02	0.02						
Surface Cover:		Unpaved	Paved						
Average Velocity (ft/sec)=		2.28	2.87						
T _t (hrs)=		0.01	0.01						
Channel Flow 1									
Length (ft)=									
Slope (ft/ft)=									
Cross Sectional Flow Area (ft ²)=									
Wetted Perimeter (ft)=									
Channel Lining:									
n-value=									
Hydraulic Radius (ft)=		0.00	0.00						
Average Velocity (ft/sec)=		0.00	0.00						
T _t (hrs)=		0.00	0.00						
Tc (hrs)=		0.32	0.08						
RESULTS	PI	RE-DEVELOPMENT	POST-DEVELOPMENT						
Site Impervious Surface Area (Ac) =		0.04	1.29						
Lot Impervious Surface Area (Ac) =		0.00	0.00						
1-year, 24-hour storm (Peak Flow)									
Volume of runoff (ft ³) =		989	13,361						
Volume change (ft ³) =		12,	372						
Runoff (inches) = Q*=		0.3131	2.3148						
Peak Discharge (cfs)= Q=		0.1214	6.1124						
Composite Curve Number (DA)=		57	91						
Composite Curve Number (Site only)=		57	91						
DISCONNECTED IMPERVIOUS - Credit given on	DISCONNECTED IMPERVIOUS - Credit given only to residential development with drainage area with less than 30% impervious								
Percent Disconnected Impervious Credit (Residentia	al Only) =								
Disconnected impervious area (Ac) =			0.00						
Drainage Area CN _{adjusted} =		91							
Site Only CN _{adjusted} =		91							

Post-development peak flow exceeds pre-development peak flow for this DA!

Project Name:

Γ

TIDAL WAVE AUTO SPA

DRAINAGE AREA 2 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA	PRE-DEVELOPMENT					POST-DEVELOPMENT										
Drainage Area (Acres)=	0.34							0.17								
Site Acreage within Drainage=		0.34						0.17								
One-year, 24-hour rainfall (in)=								3.	3.00							
Land Use (acres) by Soil Group:	AS	Soils	в	Soils	CS	Soils	DS	Soils	AS	A Soils B Soils			C Soils		D Soils	
Commercial	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Parking lot								-								
Roof																
Open/Landscaped											0.17					
Industrial	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Parking lot																
Roof																
Open/Landscaped								1								
Transportation	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
High Density (interstate, main)		1		1		l		1		1		1		1		1
High Density (Grassed Right-of-ways)								1								
Low Density (secondary, feeder)				1				1				1		1		
Low Density (Grassed Right-of-ways)		!		ļ		ļ		į		!		ļ		ļ		ļ
Rural				1				1				1		1		1
Rural (Grassed Right-of-ways)		1						1		1						
Sidewalk																
Misc. Pervious	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Managed pervious (Open Space)			0.12													
Unmanaged (pasture)																
Woods (not on lots)			0.22													
Residential	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Roadway		1						1		1						
Grassed Right-of-ways		1		1		l I		i		1		1		1		1
Driveway		1		1		1		i		1		1		1		1
Parking lot				1								1		1		1
Roof		1		1				1		1		1		1		
Sidewalk (Includes Patios)		į		į –		1		į –		į		į –		į –		į –
Lawn		1		1		1		1		1		1		1		1
Managed pervious (Open Space)																
Woods (on lots)																
Land Taken up by BMP		!		1				!		1		1		1		1
JURISDICTIONAL LANDS	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite
Natural wetland																
Riparian buffer (Zone 1 only)																
Open water																
Totals (Ac)=	0.00	0.00	0.34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.00	0.00	0.00	0.00	0.00

SITE FLOW	PRE-	DEVELOPMENT T _c	POST-DEVELOPMENT Tc					
Sheet Flow								
Length (ft)=		100.00	75.20					
Slope (ft/ft)=		0.01	0.01					
Surface Cover:		Woods	Grass					
n-value=		0.40	0.240					
T _t (hrs)=		0.45	0.24					
Shallow Flow								
Length (ft)=		63.48						
Slope (ft/ft)=		0.01						
Surface Cover:		Unpaved						
Average Velocity (ft/sec)=		1.61	0.00					
T _t (hrs)=		0.01	0.00					
Channel Flow 1								
Length (ft)=								
Slope (ft/ft)=								
Cross Sectional Flow Area (ft ²)=								
Wetted Perimeter (ft)=								
Channel Lining:								
n-value=								
Hydraulic Radius (ft)=		0.00	0.00					
Average Velocity (ft/sec)=		0.00	0.00					
T _t (hrs)=		0.00	0.00					
Tc (hrs)=		0.46	0.33					
RESULTS	PRE	DEVELOPMENT	POST-DEVELOPMENT					
Site Impervious Surface Area (Ac) =		0.00	0.00					
Lot Impervious Surface Area (Ac) =		0.00	0.00					
1-year, 24-hour storm (Peak Flow)								
Volume of runoff (ft ³) =		308	225					
Volume change (ft ³) =		-6	32					
Runoff (inches) = Q*=		0.2493	0.3651					
Peak Discharge (cfs)= Q=		0.0316	0.0386					
Composite Curve Number (DA)=		57	61					
Composite Curve Number (Site only)=		57	61					
DISCONNECTED IMPERVIOUS - Credit given on	ly to residential development wit	h drainage area with less than 30% impervious						
Percent Disconnected Impervious Credit (Residenti	ial Only) =							
Disconnected impervious area (Ac) =		0.00						
Drainage Area CN _{adjusted} =		61						
Site Only CN _{adjusted} =		61						

Post-development peak flow exceeds pre-development peak flow for this DA!

Project Name:

TIDAL WAVE AUTO SPA

DRAINAGE AREA 3 STORMWATER PRE-POST CALCULATIONS

LAND USE & SITE DATA		PRE-DEVELOPMENT					POST-DEVELOPMENT										
Drainage Area (Acres)=	1	0.79						0.22									
Site Acreage within Drainage=		0.79						0.22									
One-vear, 24-hour rainfall (in)=					-			3.	3.00								
Land Use (acres) by Soil Group:	AS	Soils	в	Soils	C S	Soils	DS	Soils	AS	Soils	в	Soils	C Soils		DS	D Soils	
Commercial	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Parking lot																	
Roof		<u> </u>				-				1		<u>+</u>		<u>+</u>		<u>+</u>	
Open/Landscaped		-				1					0.22	<u> </u>		<u> </u>			
Industrial	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Parking lot		!		!		!		!									
Roof		1		!		!		!				1		1		1	
Open/Landscaped																l .	
Transportation	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
High Density (interstate, main)		į.		1		1		1		1		ļ		ļ		į	
High Density (Grassed Right-of-ways)		1		1		1		1		1							
Low Density (secondary, feeder)		i		į		i		į		1		i		i		1	
Low Density (Grassed Right-of-ways)		į		į.		į.		į.		1		1		1		1	
Rural		i		1		1		1		1		İ		İ		i	
Rural (Grassed Right-of-ways)		1		1		1		1		1		t i i i i i i i i i i i i i i i i i i i		t i i i i i i i i i i i i i i i i i i i		ł	
Sidewalk		1				1											
Misc. Pervious	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Managed pervious (Open Space)		1	0.22	1		1		1				1		1		1	
Unmanaged (pasture)																	
Woods (not on lots)			0.57	1		1		1									
Residential	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Roadway																	
Grassed Right-of-ways																	
Driveway																	
Parking lot						-											
Roof																	
Sidewalk (Includes Patios)		-															
Lawn		-		-		-		-									
Managed pervious (Open Space)												Į		Į		1	
Woods (on lots)		ļ		į		1		į		1		ļ		ļ		į –	
Land Taken up by BMP		į		į		ļ		į		1		ļ		ļ		ļ	
JURISDICTIONAL LANDS	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Natural wetland		1		1		1		1									
Riparian buffer (Zone 1 only)		i i				1						ĺ		ĺ			
Open water																	
Totals (Ac)=	0.00	0.00	0.79	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.22	0.00	0.00	0.00	0.00	0.00	

TIDAL WAVE AUTO SPA

Project Name:

DRAINAGE AREA 1 BMP CALCULATIONS

DRAINAGE AREA 1 - BMP DEVICES	AND ADJUSTMENTS											
DA1 Site Acreage=	1.59											
DA1 Off-Site Acreage=					0.00							
Total Required Storage Volume for Site												
TCN Requirement (ft ³)=												
Will site use underground water harvesting?	Yes	Enter %	volume re decii	duction in mal form=		0.91		Note: Sup should be water usa	porting in submitter age.	formation/ d to demor	details nstrate	
ENTER AREA TREATED BY BMP									_			
Land Use (acres))	Sub-E	DA1(a)	Sub-D	Sub-DA1(b))A1(c)	Sub-D)A1(d)	Sub-	DA1(e)	
Commercial		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
Parking lot		1.29										
Roof							l					
Open/Landscaped		0.30										
Industrial		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
Parking lot												
Roof			İ									
Open/Landscaped			İ		İ				İ			
Transportation		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
High Density (interstate, main)												
High Density (Grassed Right-of-ways)			i						i			
Low Density (secondary, feeder)												
Low Density (Grassed Right-of-ways)												
Rural												
Rural (Grassed Right-of-ways)												
Sidewalk												
Misc. Pervious		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
Managed pervious												
Unmanaged (pasture)												
Woods (not on lots)							1					
Residential		Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	Site	Off-site	
Roadway			!				<u> </u>				!	
Grassed Right-of-ways												
Driveway			ļ		<u> </u>		ļ		<u> </u>		ļ	
Parking lot			ļ		ļ		ļ		ļ		ļ	
Root			ļ		ļ		į		<u> </u>		į –	
SIDEWalk			ł		ł		ł		ł		ł	
Managed pervious												
Woods (on lots)												
Land Taken up by BMP			i		-		1		ł		i	
JURISDICTIONAL LANDS		Site	Off-site	Site	Offsite	Site	Offsite	Site	Offsite	Site	Offsite	
Natural wetland									1			
Riparian buffer (Zone 1 only)												
	Totals (Ac)=	1.59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Sub-DA1(a) BMP(s)												
Device Name (As Shown on Plan)	Device Type	Water Quality Volume (c.f.)	Inflow N EMC (mg/L)	Total Inflow N (lb/ac/yr)	Inflow P EMC (mg/L)	Total Inflow P (lb/ac/yr)	Outflow N EMC (mg/L)	Total Outflow N (lb/ac/yr)	Outflow P EMC (mg/L)	Total Outflow P (lb/ac/yr)	Provided Volume Managed (c.f.)	
	Water Harvesting		1.45	11.64	0.16	1.31	1.45	1.05	0.16	0.12	8,330	
		4,503										
				<u>}</u>				┨───┤				
		 					<u> </u>					
Outfle	ow Total Nitrogen (lb/ac/yr)=	1.	.05			Outflow	/ Total Ph	osphorus ((lb/ac/yr)=	0	.12	
Sub-DA1(b) BMP(s)												

Project Name: TIDAL WAVE AUTO SPA

DA SITE SUMMARY BMP CALCULATIONS

BMP SUMMARY										
DRAINAGE AREA SUMMARIES										
DRAINAGE AREA:	DA1 DA2 DA3 DA4 DA5									
Post-Developme	ent (1-year, 24-hour storm)									
Peak Flow (cfs)=Q _{1-year} =	6.11 0.04 0.07									
Post-Development with BMPs (1-year, 24-hour storm)										
% Impervious = 65%										
Volume Managed (CF)=	8,330									
Post BMP Peak Discharge (cfs)= Q _{1-year} =	3.70 0.04 0.07									
Have Target Curve Number Requirements been met?	N/A									
Pre Development Ni	trogen and	d Phospho	rus Load							
Total Nitrogen (lb/ac/yr)=			1.	16						
Total Phosphorus (lb/ac/yr)=			N	/A						
Post Development N	itrogen an	d Phospho	orus Load							
Total Nitrogen (lb/ac/yr)=			9.	58						
Total Phosphorus (lb/ac/yr)=			N	/A						
Post-BMF	P Nitrogen	Loading								
Outflow Total Nitrogen (lb/ac/yr)=			1.	07						
Outflow Total Phosphorus (lb/ac/yr)=	0.14									
Has site met the Target?			YE	ES						
Has site met requirements for offsetting?			YE	ES						

SITE FLOW	PRE-	DEVELOPMENT T _c	POST-DEVELOPMENT Tc					
Sheet Flow								
Length (ft)=		100.00	100.00					
Slope (ft/ft)=		0.02	0.04					
Surface Cover:		Woods	Grass					
n-value=		0.40	0.240					
T _t (hrs)=		0.34	0.17					
Shallow Flow								
Length (ft)=		104.00	91.31					
Slope (ft/ft)=		0.04	0.03					
Surface Cover:		Unpaved	Unpaved					
Average Velocity (ft/sec)=		3.23	2.79					
T _t (hrs)=		0.01	0.01					
Channel Flow 1								
Length (ft)=								
Slope (ft/ft)=								
Cross Sectional Flow Area (ft ²)=								
Wetted Perimeter (ft)=								
Channel Lining:								
n-value=								
Hydraulic Radius (ft)=		0.00	0.00					
Average Velocity (ft/sec)=		0.00	0.00					
T _t (hrs)=		0.00	0.00					
Tc (hrs)=		0.35	0.18					
RESULTS	PRE	-DEVELOPMENT	POST-DEVELOPMENT					
Site Impervious Surface Area (Ac) =		0.00	0.00					
Lot Impervious Surface Area (Ac) =		0.00	0.00					
1-year, 24-hour storm (Peak Flow)								
Volume of runoff (ft ³) =		681	292					
Volume change (ft ³) =		-3	89					
Runoff (inches) = Q*=		0.2373	0.3651					
Peak Discharge (cfs)= Q=		0.0803	0.0694					
Composite Curve Number (DA)=		57	61					
Composite Curve Number (Site only)=		57	61					
DISCONNECTED IMPERVIOUS - Credit given only	y to residential development with	drainage area with less than 30% impervious						
Percent Disconnected Impervious Credit (Residentia	al Only) =							
Disconnected impervious area (Ac) =			0.00					
Drainage Area CN _{adjusted} =		61						
Site Only CN _{adjusted} =		61						

REFERENCES

ArcGIS Web Map

Esrl Community Maps Contributors, City of Raielgh, Town of Cary, Wake County, State of North Carolina DOT, © OpenStreetMag, Microsoft, Esrl, HERE, Garmin, SafeGraph, GeoTechnologies, Inc, METUNASA, USGS, EPA, NPS, US Census Bureau, USDA, Natural Resources Conservation Service (NRCS), NCDOT Project ATLAS SWEEP group, NC CGIA, Maxar, USGS FEMA FLOOD MAP

National Flood Hazard Layer FIRMette

Legend

Basemap Imagery Source: USGS National Map 2023

USGS QUAD MAP

U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY

ROLESVILLE QUADRANGLE NORTH CAROLINA 7.5-MINUTE SERIES

Produced by the United States Geological Survey North American Datum of 1983 (NAD83) World Geodetic System of 1984 (WGS84). Projection and 1 000-meter grid:Universal Transverse Mercator, Zone 175 This map is not a legal document. Boundaries may be generalized for this map scale. Private lands within government reservations may not be shown. Obtain permission before entering private lands.

ROAD CLASSIFICATION
Expressway
Secondary Hwy
Ramp
Interstate Route
US Route
State Route

PRECIPITATION DEPTHS PER NOAA ATLAS 15 Precipitation Frequency Data Server

NOAA Atlas 14, Volume 2, Version 3 Location name: Rolesville, North Carolina, USA* Latitude: 35.9246°, Longitude: -78.4558° Elevation: 432 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

G.M. Bonnin, D. Martin, B. Lin, T. Parzybok, M.Yekta, and D. Riley

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-b	² DS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹									
Duration				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	4.84 (4.43-5.29)	5.62 (5.15-6.13)	6.40 (5.87-6.98)	7.19 (6.58-7.85)	7.98 (7.27-8.70)	8.62 (7.81-9.38)	9.18 (8.27-10.0)	9.67 (8.66-10.6)	10.2 (9.08-11.2)	10.7 (9.44-11.7)
10-min	3.86	4.49	5.12	5.75	6.36	6.86	7.29	7.67	8.09	8.44
	(3.54-4.22)	(4.12-4.91)	(4.70-5.59)	(5.26-6.27)	(5.80-6.94)	(6.22-7.48)	(6.57-7.94)	(6.87-8.36)	(7.19-8.83)	(7.44-9.24)
15-min	3.22	3.77	4.32	4.85	5.38	5.79	6.14	6.45	6.78	7.06
	(2.95-3.52)	(3.45-4.11)	(3.96-4.72)	(4.44-5.29)	(4.90-5.86)	(5.25-6.31)	(5.54-6.69)	(5.78-7.04)	(6.03-7.41)	(6.22-7.73)
30-min	2.21 (2.02-2.41)	2.60 (2.38-2.84)	3.07 (2.81-3.35)	3.51 (3.21-3.83)	3.98 (3.63-4.34)	4.36 (3.95-4.75)	4.70 (4.24-5.12)	5.02 (4.50-5.48)	5.40 (4.80-5.90)	5.72 (5.04-6.26)
60-min	1.38	1.63	1.97	2.29	2.65	2.95	3.24	3.52	3.87	4.18
	(1.26-1.50)	(1.50-1.78)	(1.80-2.15)	(2.09-2.50)	(2.41-2.89)	(2.68-3.22)	(2.92-3.53)	(3.15-3.84)	(3.44-4.23)	(3.68-4.57)
2-hr	0.805 (0.732-0.887)	0.957 (0.874-1.05)	1.17 (1.06-1.28)	1.37 (1.24-1.50)	1.61 (1.46-1.76)	1.83 (1.64-2.00)	2.03 (1.81-2.22)	2.24 (1.98-2.45)	2.51 (2.20-2.74)	2.75 (2.40-3.02)
3-hr	0.568 (0.516-0.629)	0.676 (0.617-0.746)	0.827 (0.753-0.913)	0.979 (0.888-1.08)	1.16 (1.05-1.28)	1.33 (1.19-1.46)	1.49 (1.32-1.64)	1.66 (1.47-1.82)	1.89 (1.65-2.07)	2.10 (1.81-2.31)
6-hr	0.341	0.406	0.498	0.590	0.704	0.808	0.911	1.02	1.17	1.30
	(0.311-0.377)	(0.372-0.448)	(0.454-0.548)	(0.537-0.648)	(0.636-0.771)	(0.725-0.883)	(0.810-0.995)	(0.898-1.11)	(1.02-1.27)	(1.12-1.42)
12-hr	0.200	0.238	0.293	0.349	0.420	0.485	0.550	0.621	0.718	0.808
	(0.183-0.220)	(0.219-0.261)	(0.268-0.321)	(0.319-0.383)	(0.380-0.458)	(0.436-0.527)	(0.489-0.598)	(0.546-0.674)	(0.622-0.779)	(0.689-0.878)
24-hr	0.119	0.143	0.180	0.210	0.250	0.282	0.314	0.349	0.396	0.433
	(0.110-0.128)	(0.134-0.155)	(0.168-0.194)	(0.195-0.226)	(0.231-0.269)	(0.260-0.303)	(0.289-0.339)	(0.319-0.376)	(0.360-0.427)	(0.393-0.468)
2-day	0.069	0.083	0.103	0.119	0.141	0.159	0.177	0.195	0.221	0.241
	(0.064-0.074)	(0.077-0.089)	(0.096-0.111)	(0.111-0.129)	(0.131-0.152)	(0.147-0.171)	(0.163-0.191)	(0.179-0.211)	(0.201-0.239)	(0.219-0.261)
3-day	0.048	0.058	0.072	0.084	0.099	0.111	0.123	0.136	0.154	0.168
	(0.045-0.052)	(0.054-0.062)	(0.067-0.078)	(0.078-0.090)	(0.092-0.106)	(0.103-0.119)	(0.114-0.132)	(0.125-0.146)	(0.140-0.166)	(0.152-0.181)
4-day	0.038	0.046	0.057	0.066	0.077	0.087	0.097	0.107	0.120	0.131
	(0.036-0.041)	(0.043-0.049)	(0.053-0.061)	(0.061-0.070)	(0.072-0.083)	(0.080-0.093)	(0.089-0.103)	(0.098-0.114)	(0.110-0.129)	(0.119-0.141)
7-day	0.025	0.030	0.037	0.042	0.050	0.055	0.061	0.068	0.076	0.083
	(0.024-0.027)	(0.028-0.032)	(0.034-0.039)	(0.039-0.045)	(0.046-0.053)	(0.051-0.059)	(0.057-0.066)	(0.062-0.072)	(0.070-0.082)	(0.076-0.089)
10-day	0.020	0.024	0.029	0.033	0.038	0.042	0.046	0.051	0.056	0.061
	(0.019-0.021)	(0.022-0.025)	(0.027-0.031)	(0.031-0.035)	(0.035-0.041)	(0.039-0.045)	(0.043-0.050)	(0.047-0.054)	(0.052-0.061)	(0.056-0.066)
20-day	0.013	0.016	0.019	0.021	0.024	0.027	0.029	0.032	0.035	0.038
	(0.012-0.014)	(0.015-0.017)	(0.018-0.020)	(0.020-0.022)	(0.023-0.026)	(0.025-0.029)	(0.027-0.031)	(0.030-0.034)	(0.033-0.038)	(0.035-0.041)
30-day	0.011	0.013	0.015	0.017	0.019	0.021	0.023	0.024	0.027	0.028
	(0.010-0.012)	(0.012-0.014)	(0.014-0.016)	(0.016-0.018)	(0.018-0.020)	(0.019-0.022)	(0.021-0.024)	(0.023-0.026)	(0.025-0.028)	(0.026-0.030)
45-day	0.009	0.011	0.012	0.014	0.015	0.017	0.018	0.019	0.021	0.022
	(0.009-0.010)	(0.010-0.011)	(0.012-0.013)	(0.013-0.015)	(0.015-0.016)	(0.016-0.018)	(0.017-0.019)	(0.018-0.020)	(0.019-0.022)	(0.020-0.023)
60-day	0.008	0.010	0.011	0.012	0.013	0.014	0.015	0.016	0.018	0.018
	(0.008-0.009)	(0.009-0.010)	(0.010-0.012)	(0.011-0.013)	(0.013-0.014)	(0.014-0.015)	(0.014-0.016)	(0.015-0.017)	(0.016-0.019)	(0.017-0.020)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 35.9246°, Longitude: -78.4558°

Duration							
5-min	2-day						
10-min	— 3-day						
15-min	— 4-day						
30-min	— 7-day						
	— 10-day						
2-hr	— 20-day						
— 3-hr	— 30-day						
— 6-hr	— 45-day						
12-hr	- 60-day						
24-hr							

NOAA Atlas 14, Volume 2, Version 3

Created (GMT): Thu Oct 26 22:00:25 2023

Back to Top

Maps & aerials

Small scale terrain

Precipitation Frequency Data Server

Large scale terrain

Large scale map 85 Norfo 95 ston-Salem Greensboro Durhan Rocky Mount Raleigh Greenville North Carolina +arlotte Fayetteville 1<u>00km</u> Jacksonville 60mi

Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: HDSC.Questions@noaa.gov

Disclaimer

Stormtech MC-3500 Underground Detention Details & Maintenance

Save Valuable Land and Protect Water Resources

Subsurface Stormwater Management[™]

Isolator[™] **Row O&M Manual** StormTech[®] Chamber System for Stormwater Management

1.0 The Isolator™ Row

1.1 INTRODUCTION

An important component of any Stormwater Pollution Prevention Plan is inspection and maintenance. The StormTech Isolator Row is a patented technique to inexpensively enhance Total Suspended Solids (TSS) removal and provide easy access for inspection and maintenance.

Looking down the Isolator Row from the manhole opening, woven geotextile is shown between the chamber and stone base.

1.2 THE ISOLATOR[™] ROW

The Isolator Row is a row of StormTech chambers, either SC-310, SC-740, DC-780 or MC-3500 models, that is surrounded with filter fabric and connected to a closely located manhole for easy access. The fabric-wrapped chambers provide for settling and filtration of sediment as storm water rises in the Isolator Row and ultimately passes through the filter fabric. The open bottom chambers and perforated sidewalls allow storm water to flow both vertically and horizontally out of the chambers. Sediments are captured in the Isolator Row protecting the storage areas of the adjacent stone and chambers from sediment accumulation.

Two different fabrics are used for the Isolator Row. A woven geotextile fabric is placed between the stone and the Isolator Row chambers. The tough geotextile provides a media for storm water filtration and provides a durable surface for maintenance operations. It is also designed to prevent scour of the underlying stone and remain intact during high pressure jetting. A non-woven fabric is placed over the chambers to provide a filter media for flows passing through the perforations in the sidewall of the chamber. The Isolator Row is typically designed to capture the "first flush" and offers the versatility to be sized on a volume basis or flow rate basis. An upstream manhole not only provides access to the Isolator Row but typically includes a high flow weir such that storm water flowrates or volumes that exceed the capacity of the Isolator Row overtop the over flow weir and discharge through a manifold to the other chambers.

The Isolator Row may also be part of a treatment train. By treating storm water prior to entry into the chamber system, the service life can be extended and pollutants such as hydrocarbons can be captured. Pre-treatment best management practices can be as simple as deep sump catch basins, oil-water separators or can be innovative storm water treatment devices. The design of the treatment train and selection of pretreatment devices by the design engineer is often driven by regulatory requirements. Whether pretreatment is used or not, the Isolator Row is recommended by StormTech as an effective means to minimize maintenance requirements and maintenance costs.

Note: See the StormTech Design Manual for detailed information on designing inlets for a StormTech system, including the Isolator Row.

2.0 Isolator Row Inspection/Maintenance

2.1 INSPECTION

The frequency of Inspection and Maintenance varies by location. A routine inspection schedule needs to be established for each individual location based upon site specific variables. The type of land use (i.e. industrial, commercial residential), anticipated pollutant load, percent imperviousness, climate, etc. all play a critical role in determining the actual frequency of inspection and maintenance practices.

At a minimum, StormTech recommends annual inspections. Initially, the Isolator Row should be inspected every 6 months for the first year of operation. For subsequent years, the inspection should be adjusted based upon previous observation of sediment deposition.

The Isolator Row incorporates a combination of standard manhole(s) and strategically located inspection ports (as needed). The inspection ports allow for easy access to the system from the surface, eliminating the need to perform a confined space entry for inspection purposes.

If upon visual inspection it is found that sediment has accumulated, a stadia rod should be inserted to determine the depth of sediment. When the average depth of sediment exceeds 3 inches throughout the length of the Isolator Row, clean-out should be performed.

2.2 MAINTENANCE

The Isolator Row was designed to reduce the cost of periodic maintenance. By "isolating" sediments to just one row, costs are dramatically reduced by eliminating the need to clean out each row of the entire storage bed. If inspection indicates the potential need for maintenance, access is provided via a manhole(s) located on the end(s) of the row for cleanout. If entry into the manhole is required, please follow local and OSHA rules for a confined space entries.

Examples of culvert cleaning nozzles appropriate for Isolator Row maintenance. (These are not StormTech products.)

Maintenance is accomplished with the JetVac process. The JetVac process utilizes a high pressure water nozzle to propel itself down the Isolator Row while scouring and suspending sediments. As the nozzle is retrieved, the captured pollutants are flushed back into the manhole for vacuuming. Most sewer and pipe maintenance companies have vacuum/JetVac combination vehicles. Selection of an appropriate JetVac nozzle will improve maintenance efficiency. Fixed nozzles designed for culverts or large diameter pipe cleaning are preferable. Rear facing jets with an effective spread of at least 45" are best. Most JetVac reels have 400 feet of hose allowing maintenance of an Isolator Row up to 50 chambers long. The JetVac process shall only be performed on StormTech Isolator Rows that have AASHTO class 1 woven geotextile (as specified by StormTech) over their angular base stone.

Note: For many applications, the non-woven geotextile over the DC-780, MC-3500 and MC-4500 Isolator Row chambers can be eliminated or substituted with the AASHTO Class 1 woven geotextile. Contact your StormTech representative for assistance.
3.0 Isolator Row Step By Step Maintenance Procedures

Step 1) Inspect Isolator Row for sediment

- A) Inspection ports (if present)
 - i. Remove lid from floor box frame
 - ii. Remove cap from inspection riser
 - Using a flashlight and stadia rod, measure depth of sediment and record results on maintenance log.
 - iv. If sediment is at, or above, 3 inch depth proceed to Step 2. If not proceed to step 3.
- B) All Isolator Rows

Sample Maintenance Log

i. Remove cover from manhole at upstream end of Isolator Row

- ii. Using a flashlight, inspect down Isolator Row through outlet pipe1. Mirrors on poles or cameras may be used to avoid a confined space entry2. Follow OSHA regulations for confined space entry if entering manhole
- iii. If sediment is at or above the lower row of sidewall holes (approximately 3 inches) proceed to Step 2. If not proceed to Step 3.
- Step 2) Clean out Isolator Row using the JetVac process
 - A) A fixed culvert cleaning nozzle with rear facing nozzle spread of 45 inches or more is preferable
 - B) Apply multiple passes of JetVac until backflush water is clean
 - C) Vacuum manhole sump as required

Step 3) Replace all caps, lids and covers, record observations and actions

Step 4) Inspect & clean catch basins and manholes upstream of the StormTech system

	Stadia Rod Readings		Sodimont		
Date	Fixed point to chamber bottom (1)	Fixed point to top of sediment (2)	Depth (1) - (2)	Observations/Actions	Inspector
3/15/01	6.3 ft.	none		New installation. Fixed point is Cl frame at grade	djm
9/24/01		6.2	0.1 ft.	Some grit felt	sm
6/20/03		5.8	0.5 ft.	Mucky feel, debris visible in manhole and in Isolator row, maintenance due	rv
7/7/03	6.3 ft.		0	System jetted and vacuumed	djm

 70 Inwood Road, Suite 3
 Rocky Hill
 Connecticut
 06067

 860.529.8188
 888.892.2694
 fax 866.328.8401
 www.stormtech.com

Isolator Row Inspection Maintenance

	DATE	OBSERVATIONS / RECOMMENDATIONS	INTIALS
STEP 1			
 Step 1) Inspect Isolator Row for sediment A) Remove cover from manhole at upstream end of Isolator Row B) Using a flashlight, inspect down Isolator Row through outlet pipe 1. Mirrors on poles or cameras may be used to avoid a			
Step 2) Clean out Isolator Row using JetVac process			
spread of at least 45 inches or more is preferable			
B) Apply multiple passes of JetVac until backflush water is clean			
C) vacuum mannole sump as required			
Step 3) Replace all caps, lids, and covers, record observations and actions			
Step 4) Inspect and clean basins and manholes upstream of the Isolator Row			
Additional Notes:			
 Inspect every 6 months during the first year of operation. Adjust the inspection interval based on previous observations of sediment accumulation and high water elevations. 			
 Conduct jetting and vactoring only when inspection shows that maintenance is necessary. 			