

South Main Erosion Control Calculations

Project Name:	South Main
Project Address:	403 South Main Street Rolesville, NC
Pins:	1758784708 (1.8 acres) 1758785571 (.23 acres)
Latitude: Longitude:	N 35.916120 W -78.468430
Zoning:	GC
River Basin:	Neuse
Watershed:	Milburnie Lake
HUC:	0302020107
Developer:	Toy Storage, LLC 2700 Gresham lake Rd. Raleigh, NC 27615
Telephone:	(919) 604-0505
Email:	Storit@AOL.com

1.0 Site Description

The project consists of a single parcel located at the intersection of Wall Creek Drive and South Main Street in downtown Rolesville. The lot is approximately 1.80 acres (78,408 sq feet) and a portion of the lot on the south property line will be used for the BMP (approximately 0.23 acres from parcel 1758.08-78-5571). The parcel is vacant with grassy vegetation with approximately 4195 sq ft of impervious area. The project will consist of a commercial / residential building.

The site is in the Neuse River Basin, Milburnie Lake Watershed and subject to those rules regarding nutrient management and post storm water runoff.

Page 2 of 4

The parcel is not located within a flood zone as noted per FEMA map 3720175800K, Dated July 19, 2022.

Based on the Wake County SCS soils map (attached) the onsite soils are primarily Durham Series (DuB), soil group B, throughout the tract. The Durham Series soil type is considered to be well drained soils.

2.0 Erosion Control

Analysis for the skimmer basins used the Wake County Tool to size the skimmer basin. Approximately 1.83 acres is draining to the sediment basin.

Total disturbance is approximately 2.16 acres.

The site does not have an area of wetlands, and is not within a FEMA mapped flood plain.

<u>Skimmer Basin</u>

Okay

1.83	Drainage Area (Acres)
5.06	Peak Flow from 10-year Storm (cfs)
3294	Required Volume (ft ³)
2201	Required Surface Area (ft ²)
33.2	Suggested Width (ft)
66.3	Suggested Length (ft)
52	Trial Top Width at Spillway Invert (ft)
82	Trial Top Length at Spillway Invert (ft)
2	Trial Side Slope Ratio Z:1
2	Trial Depth (ft) (2 to 3.5 feet above grade)
44	Bottom Width (ft)
74	Bottom Length (ft)
3256	Bottom Area (ft ²)
7499	Actual Volume (ft ³) Okay
4264	Actual Surface Area (ft ²) Okay
10	Trial Weir Length (ft)
0.5	Suggested Trial Depth of Flow (ft)
10.6	Spillway Capacity (cfs) Okay
1.5	Skimmer Size (inches) Skimmer Size
0.125	Head on Skimmer (feet) (Inches)
1	Orifice Size (1/4 inch increments) 1.5
4.03	Dewatering Time (days)
	Required 3 to 5 days for Wake County 2.5

(Inche	es)
	1.5
	2
	2.5
	3
	4
	5
	6
	8

MANNING	S'S EQUATION FOR	PIPE FLOW					
Project:	South Main		Location:	Rolesville			
By:	A4-A5	Date:					
Chk. By:		Date:			mdo	version 12.8	.00
						CI	ear Data
			θ			Er	ntry Cells
							y -
		\sim		×	/	INPUT	
					D-	15	inches
			<u> </u>	-×	=0 =	10.9	inches
Mannings	Formula	. [(n=	0.013	mannings coeff
	(- • · · ·	D.)	θ=	126.1	degrees
Q=(1.486/	n)AR _h ^{2/3} S ^{1/2}				S=	0.01	slope in/in
	R=A/P	▼					
	A=cross sectional area						
	P=wetted perimeter			V=(1.49/n)F	R _h ^{2/3} S ^{1/2}		
	S=slope of channel			Q=V x A			
	n=Manning's roughness	coefficient					
	WINTON	HWORDUNG	Solution to M	lannings Equation	on	Manni	ng's n-values
	Area,ft ² Perimeter,	ft Radius, ft	velocity ft/s	flow, cfs		PVC	0.01
	0.96 2.55	0.37	5.94	5.67		PE (<9"dia)	0.015
						PE (>12"dia)	0.02
						PE(9-12"dia)	0.017
						CMP	0.025
						ADS N12	0.012
	Created by: Mike O'She	а				HCMP	0.023
						Conc	0.013

MANNING	S'S EQUATION FOR	PIPE FLOW					
Project:	South Main		Location:	Rolesville			
By:	B2-B3	Date:					
Chk. By:		Date:			mdo	version 12.8	.00
			θ —		/	CI Er INPUT	ear Data htry Cells
Mannings Q=(1.486/i	Formula n)AR _h ^{2/3} S ^{1/2} R=A/P A=cross sectional area		D		D= d= n= θ= S=	15 8.7 0.013 161.6 0.01	inches inches mannings coeff degrees slope in/in
	P=wetted perimeter			V=(1.49/n)F	$R_{h}^{2}S''^{2}$		
	S=slope of channel			Q=V x A			
	n=Manning's roughness of	coefficient	r				
	Welled	HWORSHUC	Solution to M	annings Equation	on	Mannii	ng's n-values
	Area,ft ² Perimeter,	ft Radius, ft	velocity ft/s	flow, cfs		PVC	0.01
	0.74 2.16	0.34	5.58	4.12		PE (<9"dia)	0.015
						PE (>12"dia)	0.02
	Created by: Mike O'Shea	a				PE(9-12"dia) CMP ADS N12 HCMP Conc	0.017 0.025 0.012 0.023 0.013

ZONE	MATERIAL	CLASS OF STONE	SIZE OF	LENGTH OF	MINT
1	STONE	EINE	DIONE	APRON	OF STONE
2'	STONE	LINE	3 "	4 X D	0 "
	DIONE	LIGHT	6 "	6 X D	
	STONE	MEDIUM	JJu		12"
4	STONE	HEALTY		8 X D	18"
5	STONE		23"	8 X D	30"
6		HEAVY	23"	10 X D	
	STONE	HEAVY	23"		30"
7	REQUIRES I SUCH AS A DESIGN IS	LARGER STON STILLING E	NE OR ANO BASIN, IM	THER TYPE O	30" F DEVICE,

CHART 2: Precalculated Apron Sizes for Maximum TW Conditions

Apron Sizing Based on NCDENR Charts for Sizing

ZONE 3/4 APRONS - Class 1 Rip Rap

Pipe Diameter L inch 12 3 1 12 3 3 1 15 3 7.5 30 7.5 9 9 36 9 9 9 48 10.5 10.5 10.5	≥ # ∾	T	5		
inch 12 15 16 18 375 375 375 375 375 375 375 375 375 375	3 H	1		M	F
12 15 16 375 24 8 30 45 30 45 30 45 30 45 45 30 45 5 30 45 5 30 45 5 30 45 5 30 45 5 30 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3	Incn	Ħ	ft.	inch
V 15 18 375 24 30 30 45 45 36 36 9 6 5 45 45 45 45 36 9 9 9 9 9 10 5 10 5	いたいというというないというというというというという	12	4	3	12
18 24 6 30 36 7.5 42 42 9 9 48 10 5 10 5 10 5	3.75	12	υ	3.75	12
24 30 36 42 42 42 42 105 105 125	4.5	12	9	4.5	12
30 7.5 36 9 42 10.5 48 12	9	12	80	9	12
36 9 42 10.5 48 12	7.5	12	10	7,6	12
42 10.5 48 12	6	12	12	6	12
48 12	10.5	12	14	10.5	12
	12	12	16	12	12
54 13.5	13.5	12	18	13.5	12
60 15	15	12	20	15	12

inch 24 24 24 24 24 24 24 24 24 24 24

A 4.2 5.25 6.3 6.3 8.4 10.5 12.6 18.9 18.9 21 21

inch 24 24 24 24 24 24 24 24 24 24 24 24 24

Pipe Diameter 15 18 18 24 30 36 36 42 48 48 60 60

Outlet W

F

Inlet

_	-
- 7	5
5	,
1	2
C	2
•	٠
-	-
C	5
~	1
-22	3
7	5
	-
C	2
1	۲
(,
-	-
-	•
2	-
C	3
	1
0	b
2	c
C	,
5	-
11	
•	A
1	2
n	1
-	٠
	~
0	2
0	0
	é
q	U
-	2
(3
~	1
11	2
U.	,
-	
_	,
2	2
2	-
C	5
NO	5
RON	2
RON	5
PRON	502
NORDA	
APRON	
APRON	
APRON	
2 APRON	1011111
CAPRON	1011111
F 2 APRON	
IF 2 APRON	
NF 2 APRON	
NNF 2 APRON	
ONF 2 APRON	

	Г										-		
		F	inch	18	18	18	18	18	18	18	18	18	α
	Outlet	M	Ĥ	3.4	4.25	5.1	6.8	8.5	10.2	11.9	13.6	15.3	47
		L	ft	9	7.5	6	12	15	18	21	24	27	30
ontrol Stone		٢	inch	18	18	18	18	18	18	18	18	18	α
Erosion Co	Inlet	M	Ĥ	3	3.75	4.5	9	7.6	6	10.5	12	13.5	1U
S - Class B		_	Ħ	0	3.75	4.5	9	7.5	თ	10.5	12	13.5	ля В
ZONE 2 APRON		Pipe Diameter	inch	-12	15	18	24	30	36	42	48	54	en B

NE 5 APRON	IS - Class	2 Rip Rap				
		Inlet			Outlet	
pe Diameter	_	M	T	L	N	F
inch	Ħ	ft	inch	ft	ft	inch
12	9	9	36	10	9	36
15	6.25	3.75	36	12.5	6.25	36
18	7.5	4.5	36	15	7.5	36
24	10	9	36	20	10	36
30	12.5	7,5	36	25	12.5	36
36	15	6	36	30	15	36
42	17.5	10.5	36	35	17.5	36
48	20	12	36	40	20	36
54	22.5	13.5	36	45	22.5	36
RO RO	20	n r	80	04	20	90